lguest: cleanup passing of /dev/lguest fd around example launcher.
[pohmelfs.git] / Documentation / lguest / lguest.c
blob1a2b906a3ae6cfffd8422a64723a0d7f5230d0ea
1 /*P:100 This is the Launcher code, a simple program which lays out the
2 * "physical" memory for the new Guest by mapping the kernel image and
3 * the virtual devices, then opens /dev/lguest to tell the kernel
4 * about the Guest and control it. :*/
5 #define _LARGEFILE64_SOURCE
6 #define _GNU_SOURCE
7 #include <stdio.h>
8 #include <string.h>
9 #include <unistd.h>
10 #include <err.h>
11 #include <stdint.h>
12 #include <stdlib.h>
13 #include <elf.h>
14 #include <sys/mman.h>
15 #include <sys/param.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <sys/wait.h>
19 #include <fcntl.h>
20 #include <stdbool.h>
21 #include <errno.h>
22 #include <ctype.h>
23 #include <sys/socket.h>
24 #include <sys/ioctl.h>
25 #include <sys/time.h>
26 #include <time.h>
27 #include <netinet/in.h>
28 #include <net/if.h>
29 #include <linux/sockios.h>
30 #include <linux/if_tun.h>
31 #include <sys/uio.h>
32 #include <termios.h>
33 #include <getopt.h>
34 #include <zlib.h>
35 #include <assert.h>
36 #include <sched.h>
37 #include <limits.h>
38 #include <stddef.h>
39 #include <signal.h>
40 #include "linux/lguest_launcher.h"
41 #include "linux/virtio_config.h"
42 #include "linux/virtio_net.h"
43 #include "linux/virtio_blk.h"
44 #include "linux/virtio_console.h"
45 #include "linux/virtio_rng.h"
46 #include "linux/virtio_ring.h"
47 #include "asm/bootparam.h"
48 /*L:110 We can ignore the 39 include files we need for this program, but I do
49 * want to draw attention to the use of kernel-style types.
51 * As Linus said, "C is a Spartan language, and so should your naming be." I
52 * like these abbreviations, so we define them here. Note that u64 is always
53 * unsigned long long, which works on all Linux systems: this means that we can
54 * use %llu in printf for any u64. */
55 typedef unsigned long long u64;
56 typedef uint32_t u32;
57 typedef uint16_t u16;
58 typedef uint8_t u8;
59 /*:*/
61 #define PAGE_PRESENT 0x7 /* Present, RW, Execute */
62 #define NET_PEERNUM 1
63 #define BRIDGE_PFX "bridge:"
64 #ifndef SIOCBRADDIF
65 #define SIOCBRADDIF 0x89a2 /* add interface to bridge */
66 #endif
67 /* We can have up to 256 pages for devices. */
68 #define DEVICE_PAGES 256
69 /* This will occupy 3 pages: it must be a power of 2. */
70 #define VIRTQUEUE_NUM 256
72 /*L:120 verbose is both a global flag and a macro. The C preprocessor allows
73 * this, and although I wouldn't recommend it, it works quite nicely here. */
74 static bool verbose;
75 #define verbose(args...) \
76 do { if (verbose) printf(args); } while(0)
77 /*:*/
79 /* File descriptors for the Waker. */
80 struct {
81 int pipe[2];
82 } waker_fds;
84 /* The pointer to the start of guest memory. */
85 static void *guest_base;
86 /* The maximum guest physical address allowed, and maximum possible. */
87 static unsigned long guest_limit, guest_max;
88 /* The pipe for signal hander to write to. */
89 static int timeoutpipe[2];
90 static unsigned int timeout_usec = 500;
91 /* The /dev/lguest file descriptor. */
92 static int lguest_fd;
94 /* a per-cpu variable indicating whose vcpu is currently running */
95 static unsigned int __thread cpu_id;
97 /* This is our list of devices. */
98 struct device_list
100 /* Summary information about the devices in our list: ready to pass to
101 * select() to ask which need servicing.*/
102 fd_set infds;
103 int max_infd;
105 /* Counter to assign interrupt numbers. */
106 unsigned int next_irq;
108 /* Counter to print out convenient device numbers. */
109 unsigned int device_num;
111 /* The descriptor page for the devices. */
112 u8 *descpage;
114 /* A single linked list of devices. */
115 struct device *dev;
116 /* And a pointer to the last device for easy append and also for
117 * configuration appending. */
118 struct device *lastdev;
121 /* The list of Guest devices, based on command line arguments. */
122 static struct device_list devices;
124 /* The device structure describes a single device. */
125 struct device
127 /* The linked-list pointer. */
128 struct device *next;
130 /* The device's descriptor, as mapped into the Guest. */
131 struct lguest_device_desc *desc;
133 /* We can't trust desc values once Guest has booted: we use these. */
134 unsigned int feature_len;
135 unsigned int num_vq;
137 /* The name of this device, for --verbose. */
138 const char *name;
140 /* If handle_input is set, it wants to be called when this file
141 * descriptor is ready. */
142 int fd;
143 bool (*handle_input)(struct device *me);
145 /* Any queues attached to this device */
146 struct virtqueue *vq;
148 /* Handle status being finalized (ie. feature bits stable). */
149 void (*ready)(struct device *me);
151 /* Device-specific data. */
152 void *priv;
155 /* The virtqueue structure describes a queue attached to a device. */
156 struct virtqueue
158 struct virtqueue *next;
160 /* Which device owns me. */
161 struct device *dev;
163 /* The configuration for this queue. */
164 struct lguest_vqconfig config;
166 /* The actual ring of buffers. */
167 struct vring vring;
169 /* Last available index we saw. */
170 u16 last_avail_idx;
172 /* The routine to call when the Guest pings us, or timeout. */
173 void (*handle_output)(struct virtqueue *me, bool timeout);
175 /* Outstanding buffers */
176 unsigned int inflight;
178 /* Is this blocked awaiting a timer? */
179 bool blocked;
182 /* Remember the arguments to the program so we can "reboot" */
183 static char **main_args;
185 /* Since guest is UP and we don't run at the same time, we don't need barriers.
186 * But I include them in the code in case others copy it. */
187 #define wmb()
189 /* Convert an iovec element to the given type.
191 * This is a fairly ugly trick: we need to know the size of the type and
192 * alignment requirement to check the pointer is kosher. It's also nice to
193 * have the name of the type in case we report failure.
195 * Typing those three things all the time is cumbersome and error prone, so we
196 * have a macro which sets them all up and passes to the real function. */
197 #define convert(iov, type) \
198 ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
200 static void *_convert(struct iovec *iov, size_t size, size_t align,
201 const char *name)
203 if (iov->iov_len != size)
204 errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
205 if ((unsigned long)iov->iov_base % align != 0)
206 errx(1, "Bad alignment %p for %s", iov->iov_base, name);
207 return iov->iov_base;
210 /* Wrapper for the last available index. Makes it easier to change. */
211 #define lg_last_avail(vq) ((vq)->last_avail_idx)
213 /* The virtio configuration space is defined to be little-endian. x86 is
214 * little-endian too, but it's nice to be explicit so we have these helpers. */
215 #define cpu_to_le16(v16) (v16)
216 #define cpu_to_le32(v32) (v32)
217 #define cpu_to_le64(v64) (v64)
218 #define le16_to_cpu(v16) (v16)
219 #define le32_to_cpu(v32) (v32)
220 #define le64_to_cpu(v64) (v64)
222 /* Is this iovec empty? */
223 static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
225 unsigned int i;
227 for (i = 0; i < num_iov; i++)
228 if (iov[i].iov_len)
229 return false;
230 return true;
233 /* Take len bytes from the front of this iovec. */
234 static void iov_consume(struct iovec iov[], unsigned num_iov, unsigned len)
236 unsigned int i;
238 for (i = 0; i < num_iov; i++) {
239 unsigned int used;
241 used = iov[i].iov_len < len ? iov[i].iov_len : len;
242 iov[i].iov_base += used;
243 iov[i].iov_len -= used;
244 len -= used;
246 assert(len == 0);
249 /* The device virtqueue descriptors are followed by feature bitmasks. */
250 static u8 *get_feature_bits(struct device *dev)
252 return (u8 *)(dev->desc + 1)
253 + dev->num_vq * sizeof(struct lguest_vqconfig);
256 /*L:100 The Launcher code itself takes us out into userspace, that scary place
257 * where pointers run wild and free! Unfortunately, like most userspace
258 * programs, it's quite boring (which is why everyone likes to hack on the
259 * kernel!). Perhaps if you make up an Lguest Drinking Game at this point, it
260 * will get you through this section. Or, maybe not.
262 * The Launcher sets up a big chunk of memory to be the Guest's "physical"
263 * memory and stores it in "guest_base". In other words, Guest physical ==
264 * Launcher virtual with an offset.
266 * This can be tough to get your head around, but usually it just means that we
267 * use these trivial conversion functions when the Guest gives us it's
268 * "physical" addresses: */
269 static void *from_guest_phys(unsigned long addr)
271 return guest_base + addr;
274 static unsigned long to_guest_phys(const void *addr)
276 return (addr - guest_base);
279 /*L:130
280 * Loading the Kernel.
282 * We start with couple of simple helper routines. open_or_die() avoids
283 * error-checking code cluttering the callers: */
284 static int open_or_die(const char *name, int flags)
286 int fd = open(name, flags);
287 if (fd < 0)
288 err(1, "Failed to open %s", name);
289 return fd;
292 /* map_zeroed_pages() takes a number of pages. */
293 static void *map_zeroed_pages(unsigned int num)
295 int fd = open_or_die("/dev/zero", O_RDONLY);
296 void *addr;
298 /* We use a private mapping (ie. if we write to the page, it will be
299 * copied). */
300 addr = mmap(NULL, getpagesize() * num,
301 PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
302 if (addr == MAP_FAILED)
303 err(1, "Mmaping %u pages of /dev/zero", num);
304 close(fd);
306 return addr;
309 /* Get some more pages for a device. */
310 static void *get_pages(unsigned int num)
312 void *addr = from_guest_phys(guest_limit);
314 guest_limit += num * getpagesize();
315 if (guest_limit > guest_max)
316 errx(1, "Not enough memory for devices");
317 return addr;
320 /* This routine is used to load the kernel or initrd. It tries mmap, but if
321 * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
322 * it falls back to reading the memory in. */
323 static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
325 ssize_t r;
327 /* We map writable even though for some segments are marked read-only.
328 * The kernel really wants to be writable: it patches its own
329 * instructions.
331 * MAP_PRIVATE means that the page won't be copied until a write is
332 * done to it. This allows us to share untouched memory between
333 * Guests. */
334 if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
335 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
336 return;
338 /* pread does a seek and a read in one shot: saves a few lines. */
339 r = pread(fd, addr, len, offset);
340 if (r != len)
341 err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
344 /* This routine takes an open vmlinux image, which is in ELF, and maps it into
345 * the Guest memory. ELF = Embedded Linking Format, which is the format used
346 * by all modern binaries on Linux including the kernel.
348 * The ELF headers give *two* addresses: a physical address, and a virtual
349 * address. We use the physical address; the Guest will map itself to the
350 * virtual address.
352 * We return the starting address. */
353 static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
355 Elf32_Phdr phdr[ehdr->e_phnum];
356 unsigned int i;
358 /* Sanity checks on the main ELF header: an x86 executable with a
359 * reasonable number of correctly-sized program headers. */
360 if (ehdr->e_type != ET_EXEC
361 || ehdr->e_machine != EM_386
362 || ehdr->e_phentsize != sizeof(Elf32_Phdr)
363 || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
364 errx(1, "Malformed elf header");
366 /* An ELF executable contains an ELF header and a number of "program"
367 * headers which indicate which parts ("segments") of the program to
368 * load where. */
370 /* We read in all the program headers at once: */
371 if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
372 err(1, "Seeking to program headers");
373 if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
374 err(1, "Reading program headers");
376 /* Try all the headers: there are usually only three. A read-only one,
377 * a read-write one, and a "note" section which we don't load. */
378 for (i = 0; i < ehdr->e_phnum; i++) {
379 /* If this isn't a loadable segment, we ignore it */
380 if (phdr[i].p_type != PT_LOAD)
381 continue;
383 verbose("Section %i: size %i addr %p\n",
384 i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
386 /* We map this section of the file at its physical address. */
387 map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
388 phdr[i].p_offset, phdr[i].p_filesz);
391 /* The entry point is given in the ELF header. */
392 return ehdr->e_entry;
395 /*L:150 A bzImage, unlike an ELF file, is not meant to be loaded. You're
396 * supposed to jump into it and it will unpack itself. We used to have to
397 * perform some hairy magic because the unpacking code scared me.
399 * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
400 * a small patch to jump over the tricky bits in the Guest, so now we just read
401 * the funky header so we know where in the file to load, and away we go! */
402 static unsigned long load_bzimage(int fd)
404 struct boot_params boot;
405 int r;
406 /* Modern bzImages get loaded at 1M. */
407 void *p = from_guest_phys(0x100000);
409 /* Go back to the start of the file and read the header. It should be
410 * a Linux boot header (see Documentation/x86/i386/boot.txt) */
411 lseek(fd, 0, SEEK_SET);
412 read(fd, &boot, sizeof(boot));
414 /* Inside the setup_hdr, we expect the magic "HdrS" */
415 if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
416 errx(1, "This doesn't look like a bzImage to me");
418 /* Skip over the extra sectors of the header. */
419 lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
421 /* Now read everything into memory. in nice big chunks. */
422 while ((r = read(fd, p, 65536)) > 0)
423 p += r;
425 /* Finally, code32_start tells us where to enter the kernel. */
426 return boot.hdr.code32_start;
429 /*L:140 Loading the kernel is easy when it's a "vmlinux", but most kernels
430 * come wrapped up in the self-decompressing "bzImage" format. With a little
431 * work, we can load those, too. */
432 static unsigned long load_kernel(int fd)
434 Elf32_Ehdr hdr;
436 /* Read in the first few bytes. */
437 if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
438 err(1, "Reading kernel");
440 /* If it's an ELF file, it starts with "\177ELF" */
441 if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
442 return map_elf(fd, &hdr);
444 /* Otherwise we assume it's a bzImage, and try to load it. */
445 return load_bzimage(fd);
448 /* This is a trivial little helper to align pages. Andi Kleen hated it because
449 * it calls getpagesize() twice: "it's dumb code."
451 * Kernel guys get really het up about optimization, even when it's not
452 * necessary. I leave this code as a reaction against that. */
453 static inline unsigned long page_align(unsigned long addr)
455 /* Add upwards and truncate downwards. */
456 return ((addr + getpagesize()-1) & ~(getpagesize()-1));
459 /*L:180 An "initial ram disk" is a disk image loaded into memory along with
460 * the kernel which the kernel can use to boot from without needing any
461 * drivers. Most distributions now use this as standard: the initrd contains
462 * the code to load the appropriate driver modules for the current machine.
464 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
465 * kernels. He sent me this (and tells me when I break it). */
466 static unsigned long load_initrd(const char *name, unsigned long mem)
468 int ifd;
469 struct stat st;
470 unsigned long len;
472 ifd = open_or_die(name, O_RDONLY);
473 /* fstat() is needed to get the file size. */
474 if (fstat(ifd, &st) < 0)
475 err(1, "fstat() on initrd '%s'", name);
477 /* We map the initrd at the top of memory, but mmap wants it to be
478 * page-aligned, so we round the size up for that. */
479 len = page_align(st.st_size);
480 map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
481 /* Once a file is mapped, you can close the file descriptor. It's a
482 * little odd, but quite useful. */
483 close(ifd);
484 verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
486 /* We return the initrd size. */
487 return len;
489 /*:*/
491 /* Simple routine to roll all the commandline arguments together with spaces
492 * between them. */
493 static void concat(char *dst, char *args[])
495 unsigned int i, len = 0;
497 for (i = 0; args[i]; i++) {
498 if (i) {
499 strcat(dst+len, " ");
500 len++;
502 strcpy(dst+len, args[i]);
503 len += strlen(args[i]);
505 /* In case it's empty. */
506 dst[len] = '\0';
509 /*L:185 This is where we actually tell the kernel to initialize the Guest. We
510 * saw the arguments it expects when we looked at initialize() in lguest_user.c:
511 * the base of Guest "physical" memory, the top physical page to allow and the
512 * entry point for the Guest. */
513 static void tell_kernel(unsigned long start)
515 unsigned long args[] = { LHREQ_INITIALIZE,
516 (unsigned long)guest_base,
517 guest_limit / getpagesize(), start };
518 verbose("Guest: %p - %p (%#lx)\n",
519 guest_base, guest_base + guest_limit, guest_limit);
520 lguest_fd = open_or_die("/dev/lguest", O_RDWR);
521 if (write(lguest_fd, args, sizeof(args)) < 0)
522 err(1, "Writing to /dev/lguest");
524 /*:*/
526 static void add_device_fd(int fd)
528 FD_SET(fd, &devices.infds);
529 if (fd > devices.max_infd)
530 devices.max_infd = fd;
533 /*L:200
534 * The Waker.
536 * With console, block and network devices, we can have lots of input which we
537 * need to process. We could try to tell the kernel what file descriptors to
538 * watch, but handing a file descriptor mask through to the kernel is fairly
539 * icky.
541 * Instead, we clone off a thread which watches the file descriptors and writes
542 * the LHREQ_BREAK command to the /dev/lguest file descriptor to tell the Host
543 * stop running the Guest. This causes the Launcher to return from the
544 * /dev/lguest read with -EAGAIN, where it will write to /dev/lguest to reset
545 * the LHREQ_BREAK and wake us up again.
547 * This, of course, is merely a different *kind* of icky.
549 * Given my well-known antipathy to threads, I'd prefer to use processes. But
550 * it's easier to share Guest memory with threads, and trivial to share the
551 * devices.infds as the Launcher changes it.
553 static int waker(void *unused)
555 /* Close the write end of the pipe: only the Launcher has it open. */
556 close(waker_fds.pipe[1]);
558 for (;;) {
559 fd_set rfds = devices.infds;
560 unsigned long args[] = { LHREQ_BREAK, 1 };
561 unsigned int maxfd = devices.max_infd;
563 /* We also listen to the pipe from the Launcher. */
564 FD_SET(waker_fds.pipe[0], &rfds);
565 if (waker_fds.pipe[0] > maxfd)
566 maxfd = waker_fds.pipe[0];
568 /* Wait until input is ready from one of the devices. */
569 select(maxfd+1, &rfds, NULL, NULL, NULL);
571 /* Message from Launcher? */
572 if (FD_ISSET(waker_fds.pipe[0], &rfds)) {
573 char c;
574 /* If this fails, then assume Launcher has exited.
575 * Don't do anything on exit: we're just a thread! */
576 if (read(waker_fds.pipe[0], &c, 1) != 1)
577 _exit(0);
578 continue;
581 /* Send LHREQ_BREAK command to snap the Launcher out of it. */
582 pwrite(lguest_fd, args, sizeof(args), cpu_id);
584 return 0;
587 /* This routine just sets up a pipe to the Waker process. */
588 static void setup_waker(void)
590 /* This pipe is closed when Launcher dies, telling Waker. */
591 if (pipe(waker_fds.pipe) != 0)
592 err(1, "Creating pipe for Waker");
594 if (clone(waker, malloc(4096) + 4096, CLONE_VM | SIGCHLD, NULL) == -1)
595 err(1, "Creating Waker");
599 * Device Handling.
601 * When the Guest gives us a buffer, it sends an array of addresses and sizes.
602 * We need to make sure it's not trying to reach into the Launcher itself, so
603 * we have a convenient routine which checks it and exits with an error message
604 * if something funny is going on:
606 static void *_check_pointer(unsigned long addr, unsigned int size,
607 unsigned int line)
609 /* We have to separately check addr and addr+size, because size could
610 * be huge and addr + size might wrap around. */
611 if (addr >= guest_limit || addr + size >= guest_limit)
612 errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
613 /* We return a pointer for the caller's convenience, now we know it's
614 * safe to use. */
615 return from_guest_phys(addr);
617 /* A macro which transparently hands the line number to the real function. */
618 #define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
620 /* Each buffer in the virtqueues is actually a chain of descriptors. This
621 * function returns the next descriptor in the chain, or vq->vring.num if we're
622 * at the end. */
623 static unsigned next_desc(struct virtqueue *vq, unsigned int i)
625 unsigned int next;
627 /* If this descriptor says it doesn't chain, we're done. */
628 if (!(vq->vring.desc[i].flags & VRING_DESC_F_NEXT))
629 return vq->vring.num;
631 /* Check they're not leading us off end of descriptors. */
632 next = vq->vring.desc[i].next;
633 /* Make sure compiler knows to grab that: we don't want it changing! */
634 wmb();
636 if (next >= vq->vring.num)
637 errx(1, "Desc next is %u", next);
639 return next;
642 /* This looks in the virtqueue and for the first available buffer, and converts
643 * it to an iovec for convenient access. Since descriptors consist of some
644 * number of output then some number of input descriptors, it's actually two
645 * iovecs, but we pack them into one and note how many of each there were.
647 * This function returns the descriptor number found, or vq->vring.num (which
648 * is never a valid descriptor number) if none was found. */
649 static unsigned get_vq_desc(struct virtqueue *vq,
650 struct iovec iov[],
651 unsigned int *out_num, unsigned int *in_num)
653 unsigned int i, head;
654 u16 last_avail;
656 /* Check it isn't doing very strange things with descriptor numbers. */
657 last_avail = lg_last_avail(vq);
658 if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
659 errx(1, "Guest moved used index from %u to %u",
660 last_avail, vq->vring.avail->idx);
662 /* If there's nothing new since last we looked, return invalid. */
663 if (vq->vring.avail->idx == last_avail)
664 return vq->vring.num;
666 /* Grab the next descriptor number they're advertising, and increment
667 * the index we've seen. */
668 head = vq->vring.avail->ring[last_avail % vq->vring.num];
669 lg_last_avail(vq)++;
671 /* If their number is silly, that's a fatal mistake. */
672 if (head >= vq->vring.num)
673 errx(1, "Guest says index %u is available", head);
675 /* When we start there are none of either input nor output. */
676 *out_num = *in_num = 0;
678 i = head;
679 do {
680 /* Grab the first descriptor, and check it's OK. */
681 iov[*out_num + *in_num].iov_len = vq->vring.desc[i].len;
682 iov[*out_num + *in_num].iov_base
683 = check_pointer(vq->vring.desc[i].addr,
684 vq->vring.desc[i].len);
685 /* If this is an input descriptor, increment that count. */
686 if (vq->vring.desc[i].flags & VRING_DESC_F_WRITE)
687 (*in_num)++;
688 else {
689 /* If it's an output descriptor, they're all supposed
690 * to come before any input descriptors. */
691 if (*in_num)
692 errx(1, "Descriptor has out after in");
693 (*out_num)++;
696 /* If we've got too many, that implies a descriptor loop. */
697 if (*out_num + *in_num > vq->vring.num)
698 errx(1, "Looped descriptor");
699 } while ((i = next_desc(vq, i)) != vq->vring.num);
701 vq->inflight++;
702 return head;
705 /* After we've used one of their buffers, we tell them about it. We'll then
706 * want to send them an interrupt, using trigger_irq(). */
707 static void add_used(struct virtqueue *vq, unsigned int head, int len)
709 struct vring_used_elem *used;
711 /* The virtqueue contains a ring of used buffers. Get a pointer to the
712 * next entry in that used ring. */
713 used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
714 used->id = head;
715 used->len = len;
716 /* Make sure buffer is written before we update index. */
717 wmb();
718 vq->vring.used->idx++;
719 vq->inflight--;
722 /* This actually sends the interrupt for this virtqueue */
723 static void trigger_irq(struct virtqueue *vq)
725 unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
727 /* If they don't want an interrupt, don't send one, unless empty. */
728 if ((vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
729 && vq->inflight)
730 return;
732 /* Send the Guest an interrupt tell them we used something up. */
733 if (write(lguest_fd, buf, sizeof(buf)) != 0)
734 err(1, "Triggering irq %i", vq->config.irq);
737 /* And here's the combo meal deal. Supersize me! */
738 static void add_used_and_trigger(struct virtqueue *vq, unsigned head, int len)
740 add_used(vq, head, len);
741 trigger_irq(vq);
745 * The Console
747 * Here is the input terminal setting we save, and the routine to restore them
748 * on exit so the user gets their terminal back. */
749 static struct termios orig_term;
750 static void restore_term(void)
752 tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
755 /* We associate some data with the console for our exit hack. */
756 struct console_abort
758 /* How many times have they hit ^C? */
759 int count;
760 /* When did they start? */
761 struct timeval start;
764 /* This is the routine which handles console input (ie. stdin). */
765 static bool handle_console_input(struct device *dev)
767 int len;
768 unsigned int head, in_num, out_num;
769 struct iovec iov[dev->vq->vring.num];
770 struct console_abort *abort = dev->priv;
772 /* First we need a console buffer from the Guests's input virtqueue. */
773 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
775 /* If they're not ready for input, stop listening to this file
776 * descriptor. We'll start again once they add an input buffer. */
777 if (head == dev->vq->vring.num)
778 return false;
780 if (out_num)
781 errx(1, "Output buffers in console in queue?");
783 /* This is why we convert to iovecs: the readv() call uses them, and so
784 * it reads straight into the Guest's buffer. */
785 len = readv(dev->fd, iov, in_num);
786 if (len <= 0) {
787 /* This implies that the console is closed, is /dev/null, or
788 * something went terribly wrong. */
789 warnx("Failed to get console input, ignoring console.");
790 /* Put the input terminal back. */
791 restore_term();
792 /* Remove callback from input vq, so it doesn't restart us. */
793 dev->vq->handle_output = NULL;
794 /* Stop listening to this fd: don't call us again. */
795 return false;
798 /* Tell the Guest about the new input. */
799 add_used_and_trigger(dev->vq, head, len);
801 /* Three ^C within one second? Exit.
803 * This is such a hack, but works surprisingly well. Each ^C has to be
804 * in a buffer by itself, so they can't be too fast. But we check that
805 * we get three within about a second, so they can't be too slow. */
806 if (len == 1 && ((char *)iov[0].iov_base)[0] == 3) {
807 if (!abort->count++)
808 gettimeofday(&abort->start, NULL);
809 else if (abort->count == 3) {
810 struct timeval now;
811 gettimeofday(&now, NULL);
812 if (now.tv_sec <= abort->start.tv_sec+1) {
813 unsigned long args[] = { LHREQ_BREAK, 0 };
814 /* Close the fd so Waker will know it has to
815 * exit. */
816 close(waker_fds.pipe[1]);
817 /* Just in case Waker is blocked in BREAK, send
818 * unbreak now. */
819 write(lguest_fd, args, sizeof(args));
820 exit(2);
822 abort->count = 0;
824 } else
825 /* Any other key resets the abort counter. */
826 abort->count = 0;
828 /* Everything went OK! */
829 return true;
832 /* Handling output for console is simple: we just get all the output buffers
833 * and write them to stdout. */
834 static void handle_console_output(struct virtqueue *vq, bool timeout)
836 unsigned int head, out, in;
837 int len;
838 struct iovec iov[vq->vring.num];
840 /* Keep getting output buffers from the Guest until we run out. */
841 while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
842 if (in)
843 errx(1, "Input buffers in output queue?");
844 len = writev(STDOUT_FILENO, iov, out);
845 add_used_and_trigger(vq, head, len);
849 /* This is called when we no longer want to hear about Guest changes to a
850 * virtqueue. This is more efficient in high-traffic cases, but it means we
851 * have to set a timer to check if any more changes have occurred. */
852 static void block_vq(struct virtqueue *vq)
854 struct itimerval itm;
856 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
857 vq->blocked = true;
859 itm.it_interval.tv_sec = 0;
860 itm.it_interval.tv_usec = 0;
861 itm.it_value.tv_sec = 0;
862 itm.it_value.tv_usec = timeout_usec;
864 setitimer(ITIMER_REAL, &itm, NULL);
868 * The Network
870 * Handling output for network is also simple: we get all the output buffers
871 * and write them (ignoring the first element) to this device's file descriptor
872 * (/dev/net/tun).
874 static void handle_net_output(struct virtqueue *vq, bool timeout)
876 unsigned int head, out, in, num = 0;
877 int len;
878 struct iovec iov[vq->vring.num];
879 static int last_timeout_num;
881 /* Keep getting output buffers from the Guest until we run out. */
882 while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
883 if (in)
884 errx(1, "Input buffers in output queue?");
885 len = writev(vq->dev->fd, iov, out);
886 if (len < 0)
887 err(1, "Writing network packet to tun");
888 add_used_and_trigger(vq, head, len);
889 num++;
892 /* Block further kicks and set up a timer if we saw anything. */
893 if (!timeout && num)
894 block_vq(vq);
896 /* We never quite know how long should we wait before we check the
897 * queue again for more packets. We start at 500 microseconds, and if
898 * we get fewer packets than last time, we assume we made the timeout
899 * too small and increase it by 10 microseconds. Otherwise, we drop it
900 * by one microsecond every time. It seems to work well enough. */
901 if (timeout) {
902 if (num < last_timeout_num)
903 timeout_usec += 10;
904 else if (timeout_usec > 1)
905 timeout_usec--;
906 last_timeout_num = num;
910 /* This is where we handle a packet coming in from the tun device to our
911 * Guest. */
912 static bool handle_tun_input(struct device *dev)
914 unsigned int head, in_num, out_num;
915 int len;
916 struct iovec iov[dev->vq->vring.num];
918 /* First we need a network buffer from the Guests's recv virtqueue. */
919 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
920 if (head == dev->vq->vring.num) {
921 /* Now, it's expected that if we try to send a packet too
922 * early, the Guest won't be ready yet. Wait until the device
923 * status says it's ready. */
924 /* FIXME: Actually want DRIVER_ACTIVE here. */
926 /* Now tell it we want to know if new things appear. */
927 dev->vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
928 wmb();
930 /* We'll turn this back on if input buffers are registered. */
931 return false;
932 } else if (out_num)
933 errx(1, "Output buffers in network recv queue?");
935 /* Read the packet from the device directly into the Guest's buffer. */
936 len = readv(dev->fd, iov, in_num);
937 if (len <= 0)
938 err(1, "reading network");
940 /* Tell the Guest about the new packet. */
941 add_used_and_trigger(dev->vq, head, len);
943 verbose("tun input packet len %i [%02x %02x] (%s)\n", len,
944 ((u8 *)iov[1].iov_base)[0], ((u8 *)iov[1].iov_base)[1],
945 head != dev->vq->vring.num ? "sent" : "discarded");
947 /* All good. */
948 return true;
951 /*L:215 This is the callback attached to the network and console input
952 * virtqueues: it ensures we try again, in case we stopped console or net
953 * delivery because Guest didn't have any buffers. */
954 static void enable_fd(struct virtqueue *vq, bool timeout)
956 add_device_fd(vq->dev->fd);
957 /* Snap the Waker out of its select loop. */
958 write(waker_fds.pipe[1], "", 1);
961 static void net_enable_fd(struct virtqueue *vq, bool timeout)
963 /* We don't need to know again when Guest refills receive buffer. */
964 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
965 enable_fd(vq, timeout);
968 /* When the Guest tells us they updated the status field, we handle it. */
969 static void update_device_status(struct device *dev)
971 struct virtqueue *vq;
973 /* This is a reset. */
974 if (dev->desc->status == 0) {
975 verbose("Resetting device %s\n", dev->name);
977 /* Clear any features they've acked. */
978 memset(get_feature_bits(dev) + dev->feature_len, 0,
979 dev->feature_len);
981 /* Zero out the virtqueues. */
982 for (vq = dev->vq; vq; vq = vq->next) {
983 memset(vq->vring.desc, 0,
984 vring_size(vq->config.num, LGUEST_VRING_ALIGN));
985 lg_last_avail(vq) = 0;
987 } else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
988 warnx("Device %s configuration FAILED", dev->name);
989 } else if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK) {
990 unsigned int i;
992 verbose("Device %s OK: offered", dev->name);
993 for (i = 0; i < dev->feature_len; i++)
994 verbose(" %02x", get_feature_bits(dev)[i]);
995 verbose(", accepted");
996 for (i = 0; i < dev->feature_len; i++)
997 verbose(" %02x", get_feature_bits(dev)
998 [dev->feature_len+i]);
1000 if (dev->ready)
1001 dev->ready(dev);
1005 /* This is the generic routine we call when the Guest uses LHCALL_NOTIFY. */
1006 static void handle_output(unsigned long addr)
1008 struct device *i;
1009 struct virtqueue *vq;
1011 /* Check each device and virtqueue. */
1012 for (i = devices.dev; i; i = i->next) {
1013 /* Notifications to device descriptors update device status. */
1014 if (from_guest_phys(addr) == i->desc) {
1015 update_device_status(i);
1016 return;
1019 /* Notifications to virtqueues mean output has occurred. */
1020 for (vq = i->vq; vq; vq = vq->next) {
1021 if (vq->config.pfn != addr/getpagesize())
1022 continue;
1024 /* Guest should acknowledge (and set features!) before
1025 * using the device. */
1026 if (i->desc->status == 0) {
1027 warnx("%s gave early output", i->name);
1028 return;
1031 if (strcmp(vq->dev->name, "console") != 0)
1032 verbose("Output to %s\n", vq->dev->name);
1033 if (vq->handle_output)
1034 vq->handle_output(vq, false);
1035 return;
1039 /* Early console write is done using notify on a nul-terminated string
1040 * in Guest memory. */
1041 if (addr >= guest_limit)
1042 errx(1, "Bad NOTIFY %#lx", addr);
1044 write(STDOUT_FILENO, from_guest_phys(addr),
1045 strnlen(from_guest_phys(addr), guest_limit - addr));
1048 static void handle_timeout(void)
1050 char buf[32];
1051 struct device *i;
1052 struct virtqueue *vq;
1054 /* Clear the pipe */
1055 read(timeoutpipe[0], buf, sizeof(buf));
1057 /* Check each device and virtqueue: flush blocked ones. */
1058 for (i = devices.dev; i; i = i->next) {
1059 for (vq = i->vq; vq; vq = vq->next) {
1060 if (!vq->blocked)
1061 continue;
1063 vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
1064 vq->blocked = false;
1065 if (vq->handle_output)
1066 vq->handle_output(vq, true);
1071 /* This is called when the Waker wakes us up: check for incoming file
1072 * descriptors. */
1073 static void handle_input(void)
1075 /* select() wants a zeroed timeval to mean "don't wait". */
1076 struct timeval poll = { .tv_sec = 0, .tv_usec = 0 };
1078 for (;;) {
1079 struct device *i;
1080 fd_set fds = devices.infds;
1081 int num;
1083 num = select(devices.max_infd+1, &fds, NULL, NULL, &poll);
1084 /* Could get interrupted */
1085 if (num < 0)
1086 continue;
1087 /* If nothing is ready, we're done. */
1088 if (num == 0)
1089 break;
1091 /* Otherwise, call the device(s) which have readable file
1092 * descriptors and a method of handling them. */
1093 for (i = devices.dev; i; i = i->next) {
1094 if (i->handle_input && FD_ISSET(i->fd, &fds)) {
1095 if (i->handle_input(i))
1096 continue;
1098 /* If handle_input() returns false, it means we
1099 * should no longer service it. Networking and
1100 * console do this when there's no input
1101 * buffers to deliver into. Console also uses
1102 * it when it discovers that stdin is closed. */
1103 FD_CLR(i->fd, &devices.infds);
1107 /* Is this the timeout fd? */
1108 if (FD_ISSET(timeoutpipe[0], &fds))
1109 handle_timeout();
1113 /*L:190
1114 * Device Setup
1116 * All devices need a descriptor so the Guest knows it exists, and a "struct
1117 * device" so the Launcher can keep track of it. We have common helper
1118 * routines to allocate and manage them.
1121 /* The layout of the device page is a "struct lguest_device_desc" followed by a
1122 * number of virtqueue descriptors, then two sets of feature bits, then an
1123 * array of configuration bytes. This routine returns the configuration
1124 * pointer. */
1125 static u8 *device_config(const struct device *dev)
1127 return (void *)(dev->desc + 1)
1128 + dev->num_vq * sizeof(struct lguest_vqconfig)
1129 + dev->feature_len * 2;
1132 /* This routine allocates a new "struct lguest_device_desc" from descriptor
1133 * table page just above the Guest's normal memory. It returns a pointer to
1134 * that descriptor. */
1135 static struct lguest_device_desc *new_dev_desc(u16 type)
1137 struct lguest_device_desc d = { .type = type };
1138 void *p;
1140 /* Figure out where the next device config is, based on the last one. */
1141 if (devices.lastdev)
1142 p = device_config(devices.lastdev)
1143 + devices.lastdev->desc->config_len;
1144 else
1145 p = devices.descpage;
1147 /* We only have one page for all the descriptors. */
1148 if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
1149 errx(1, "Too many devices");
1151 /* p might not be aligned, so we memcpy in. */
1152 return memcpy(p, &d, sizeof(d));
1155 /* Each device descriptor is followed by the description of its virtqueues. We
1156 * specify how many descriptors the virtqueue is to have. */
1157 static void add_virtqueue(struct device *dev, unsigned int num_descs,
1158 void (*handle_output)(struct virtqueue *, bool))
1160 unsigned int pages;
1161 struct virtqueue **i, *vq = malloc(sizeof(*vq));
1162 void *p;
1164 /* First we need some memory for this virtqueue. */
1165 pages = (vring_size(num_descs, LGUEST_VRING_ALIGN) + getpagesize() - 1)
1166 / getpagesize();
1167 p = get_pages(pages);
1169 /* Initialize the virtqueue */
1170 vq->next = NULL;
1171 vq->last_avail_idx = 0;
1172 vq->dev = dev;
1173 vq->inflight = 0;
1174 vq->blocked = false;
1176 /* Initialize the configuration. */
1177 vq->config.num = num_descs;
1178 vq->config.irq = devices.next_irq++;
1179 vq->config.pfn = to_guest_phys(p) / getpagesize();
1181 /* Initialize the vring. */
1182 vring_init(&vq->vring, num_descs, p, LGUEST_VRING_ALIGN);
1184 /* Append virtqueue to this device's descriptor. We use
1185 * device_config() to get the end of the device's current virtqueues;
1186 * we check that we haven't added any config or feature information
1187 * yet, otherwise we'd be overwriting them. */
1188 assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
1189 memcpy(device_config(dev), &vq->config, sizeof(vq->config));
1190 dev->num_vq++;
1191 dev->desc->num_vq++;
1193 verbose("Virtqueue page %#lx\n", to_guest_phys(p));
1195 /* Add to tail of list, so dev->vq is first vq, dev->vq->next is
1196 * second. */
1197 for (i = &dev->vq; *i; i = &(*i)->next);
1198 *i = vq;
1200 /* Set the routine to call when the Guest does something to this
1201 * virtqueue. */
1202 vq->handle_output = handle_output;
1204 /* As an optimization, set the advisory "Don't Notify Me" flag if we
1205 * don't have a handler */
1206 if (!handle_output)
1207 vq->vring.used->flags = VRING_USED_F_NO_NOTIFY;
1210 /* The first half of the feature bitmask is for us to advertise features. The
1211 * second half is for the Guest to accept features. */
1212 static void add_feature(struct device *dev, unsigned bit)
1214 u8 *features = get_feature_bits(dev);
1216 /* We can't extend the feature bits once we've added config bytes */
1217 if (dev->desc->feature_len <= bit / CHAR_BIT) {
1218 assert(dev->desc->config_len == 0);
1219 dev->feature_len = dev->desc->feature_len = (bit/CHAR_BIT) + 1;
1222 features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
1225 /* This routine sets the configuration fields for an existing device's
1226 * descriptor. It only works for the last device, but that's OK because that's
1227 * how we use it. */
1228 static void set_config(struct device *dev, unsigned len, const void *conf)
1230 /* Check we haven't overflowed our single page. */
1231 if (device_config(dev) + len > devices.descpage + getpagesize())
1232 errx(1, "Too many devices");
1234 /* Copy in the config information, and store the length. */
1235 memcpy(device_config(dev), conf, len);
1236 dev->desc->config_len = len;
1239 /* This routine does all the creation and setup of a new device, including
1240 * calling new_dev_desc() to allocate the descriptor and device memory.
1242 * See what I mean about userspace being boring? */
1243 static struct device *new_device(const char *name, u16 type, int fd,
1244 bool (*handle_input)(struct device *))
1246 struct device *dev = malloc(sizeof(*dev));
1248 /* Now we populate the fields one at a time. */
1249 dev->fd = fd;
1250 /* If we have an input handler for this file descriptor, then we add it
1251 * to the device_list's fdset and maxfd. */
1252 if (handle_input)
1253 add_device_fd(dev->fd);
1254 dev->desc = new_dev_desc(type);
1255 dev->handle_input = handle_input;
1256 dev->name = name;
1257 dev->vq = NULL;
1258 dev->ready = NULL;
1259 dev->feature_len = 0;
1260 dev->num_vq = 0;
1262 /* Append to device list. Prepending to a single-linked list is
1263 * easier, but the user expects the devices to be arranged on the bus
1264 * in command-line order. The first network device on the command line
1265 * is eth0, the first block device /dev/vda, etc. */
1266 if (devices.lastdev)
1267 devices.lastdev->next = dev;
1268 else
1269 devices.dev = dev;
1270 devices.lastdev = dev;
1272 return dev;
1275 /* Our first setup routine is the console. It's a fairly simple device, but
1276 * UNIX tty handling makes it uglier than it could be. */
1277 static void setup_console(void)
1279 struct device *dev;
1281 /* If we can save the initial standard input settings... */
1282 if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
1283 struct termios term = orig_term;
1284 /* Then we turn off echo, line buffering and ^C etc. We want a
1285 * raw input stream to the Guest. */
1286 term.c_lflag &= ~(ISIG|ICANON|ECHO);
1287 tcsetattr(STDIN_FILENO, TCSANOW, &term);
1288 /* If we exit gracefully, the original settings will be
1289 * restored so the user can see what they're typing. */
1290 atexit(restore_term);
1293 dev = new_device("console", VIRTIO_ID_CONSOLE,
1294 STDIN_FILENO, handle_console_input);
1295 /* We store the console state in dev->priv, and initialize it. */
1296 dev->priv = malloc(sizeof(struct console_abort));
1297 ((struct console_abort *)dev->priv)->count = 0;
1299 /* The console needs two virtqueues: the input then the output. When
1300 * they put something the input queue, we make sure we're listening to
1301 * stdin. When they put something in the output queue, we write it to
1302 * stdout. */
1303 add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
1304 add_virtqueue(dev, VIRTQUEUE_NUM, handle_console_output);
1306 verbose("device %u: console\n", devices.device_num++);
1308 /*:*/
1310 static void timeout_alarm(int sig)
1312 write(timeoutpipe[1], "", 1);
1315 static void setup_timeout(void)
1317 if (pipe(timeoutpipe) != 0)
1318 err(1, "Creating timeout pipe");
1320 if (fcntl(timeoutpipe[1], F_SETFL,
1321 fcntl(timeoutpipe[1], F_GETFL) | O_NONBLOCK) != 0)
1322 err(1, "Making timeout pipe nonblocking");
1324 add_device_fd(timeoutpipe[0]);
1325 signal(SIGALRM, timeout_alarm);
1328 /*M:010 Inter-guest networking is an interesting area. Simplest is to have a
1329 * --sharenet=<name> option which opens or creates a named pipe. This can be
1330 * used to send packets to another guest in a 1:1 manner.
1332 * More sopisticated is to use one of the tools developed for project like UML
1333 * to do networking.
1335 * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
1336 * completely generic ("here's my vring, attach to your vring") and would work
1337 * for any traffic. Of course, namespace and permissions issues need to be
1338 * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
1339 * multiple inter-guest channels behind one interface, although it would
1340 * require some manner of hotplugging new virtio channels.
1342 * Finally, we could implement a virtio network switch in the kernel. :*/
1344 static u32 str2ip(const char *ipaddr)
1346 unsigned int b[4];
1348 if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
1349 errx(1, "Failed to parse IP address '%s'", ipaddr);
1350 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
1353 static void str2mac(const char *macaddr, unsigned char mac[6])
1355 unsigned int m[6];
1356 if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
1357 &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
1358 errx(1, "Failed to parse mac address '%s'", macaddr);
1359 mac[0] = m[0];
1360 mac[1] = m[1];
1361 mac[2] = m[2];
1362 mac[3] = m[3];
1363 mac[4] = m[4];
1364 mac[5] = m[5];
1367 /* This code is "adapted" from libbridge: it attaches the Host end of the
1368 * network device to the bridge device specified by the command line.
1370 * This is yet another James Morris contribution (I'm an IP-level guy, so I
1371 * dislike bridging), and I just try not to break it. */
1372 static void add_to_bridge(int fd, const char *if_name, const char *br_name)
1374 int ifidx;
1375 struct ifreq ifr;
1377 if (!*br_name)
1378 errx(1, "must specify bridge name");
1380 ifidx = if_nametoindex(if_name);
1381 if (!ifidx)
1382 errx(1, "interface %s does not exist!", if_name);
1384 strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
1385 ifr.ifr_name[IFNAMSIZ-1] = '\0';
1386 ifr.ifr_ifindex = ifidx;
1387 if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
1388 err(1, "can't add %s to bridge %s", if_name, br_name);
1391 /* This sets up the Host end of the network device with an IP address, brings
1392 * it up so packets will flow, the copies the MAC address into the hwaddr
1393 * pointer. */
1394 static void configure_device(int fd, const char *tapif, u32 ipaddr)
1396 struct ifreq ifr;
1397 struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
1399 memset(&ifr, 0, sizeof(ifr));
1400 strcpy(ifr.ifr_name, tapif);
1402 /* Don't read these incantations. Just cut & paste them like I did! */
1403 sin->sin_family = AF_INET;
1404 sin->sin_addr.s_addr = htonl(ipaddr);
1405 if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
1406 err(1, "Setting %s interface address", tapif);
1407 ifr.ifr_flags = IFF_UP;
1408 if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
1409 err(1, "Bringing interface %s up", tapif);
1412 static int get_tun_device(char tapif[IFNAMSIZ])
1414 struct ifreq ifr;
1415 int netfd;
1417 /* Start with this zeroed. Messy but sure. */
1418 memset(&ifr, 0, sizeof(ifr));
1420 /* We open the /dev/net/tun device and tell it we want a tap device. A
1421 * tap device is like a tun device, only somehow different. To tell
1422 * the truth, I completely blundered my way through this code, but it
1423 * works now! */
1424 netfd = open_or_die("/dev/net/tun", O_RDWR);
1425 ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
1426 strcpy(ifr.ifr_name, "tap%d");
1427 if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
1428 err(1, "configuring /dev/net/tun");
1430 if (ioctl(netfd, TUNSETOFFLOAD,
1431 TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0)
1432 err(1, "Could not set features for tun device");
1434 /* We don't need checksums calculated for packets coming in this
1435 * device: trust us! */
1436 ioctl(netfd, TUNSETNOCSUM, 1);
1438 memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
1439 return netfd;
1442 /*L:195 Our network is a Host<->Guest network. This can either use bridging or
1443 * routing, but the principle is the same: it uses the "tun" device to inject
1444 * packets into the Host as if they came in from a normal network card. We
1445 * just shunt packets between the Guest and the tun device. */
1446 static void setup_tun_net(char *arg)
1448 struct device *dev;
1449 int netfd, ipfd;
1450 u32 ip = INADDR_ANY;
1451 bool bridging = false;
1452 char tapif[IFNAMSIZ], *p;
1453 struct virtio_net_config conf;
1455 netfd = get_tun_device(tapif);
1457 /* First we create a new network device. */
1458 dev = new_device("net", VIRTIO_ID_NET, netfd, handle_tun_input);
1460 /* Network devices need a receive and a send queue, just like
1461 * console. */
1462 add_virtqueue(dev, VIRTQUEUE_NUM, net_enable_fd);
1463 add_virtqueue(dev, VIRTQUEUE_NUM, handle_net_output);
1465 /* We need a socket to perform the magic network ioctls to bring up the
1466 * tap interface, connect to the bridge etc. Any socket will do! */
1467 ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
1468 if (ipfd < 0)
1469 err(1, "opening IP socket");
1471 /* If the command line was --tunnet=bridge:<name> do bridging. */
1472 if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
1473 arg += strlen(BRIDGE_PFX);
1474 bridging = true;
1477 /* A mac address may follow the bridge name or IP address */
1478 p = strchr(arg, ':');
1479 if (p) {
1480 str2mac(p+1, conf.mac);
1481 add_feature(dev, VIRTIO_NET_F_MAC);
1482 *p = '\0';
1485 /* arg is now either an IP address or a bridge name */
1486 if (bridging)
1487 add_to_bridge(ipfd, tapif, arg);
1488 else
1489 ip = str2ip(arg);
1491 /* Set up the tun device. */
1492 configure_device(ipfd, tapif, ip);
1494 add_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY);
1495 /* Expect Guest to handle everything except UFO */
1496 add_feature(dev, VIRTIO_NET_F_CSUM);
1497 add_feature(dev, VIRTIO_NET_F_GUEST_CSUM);
1498 add_feature(dev, VIRTIO_NET_F_GUEST_TSO4);
1499 add_feature(dev, VIRTIO_NET_F_GUEST_TSO6);
1500 add_feature(dev, VIRTIO_NET_F_GUEST_ECN);
1501 add_feature(dev, VIRTIO_NET_F_HOST_TSO4);
1502 add_feature(dev, VIRTIO_NET_F_HOST_TSO6);
1503 add_feature(dev, VIRTIO_NET_F_HOST_ECN);
1504 set_config(dev, sizeof(conf), &conf);
1506 /* We don't need the socket any more; setup is done. */
1507 close(ipfd);
1509 devices.device_num++;
1511 if (bridging)
1512 verbose("device %u: tun %s attached to bridge: %s\n",
1513 devices.device_num, tapif, arg);
1514 else
1515 verbose("device %u: tun %s: %s\n",
1516 devices.device_num, tapif, arg);
1519 /* Our block (disk) device should be really simple: the Guest asks for a block
1520 * number and we read or write that position in the file. Unfortunately, that
1521 * was amazingly slow: the Guest waits until the read is finished before
1522 * running anything else, even if it could have been doing useful work.
1524 * We could use async I/O, except it's reputed to suck so hard that characters
1525 * actually go missing from your code when you try to use it.
1527 * So we farm the I/O out to thread, and communicate with it via a pipe. */
1529 /* This hangs off device->priv. */
1530 struct vblk_info
1532 /* The size of the file. */
1533 off64_t len;
1535 /* The file descriptor for the file. */
1536 int fd;
1538 /* IO thread listens on this file descriptor [0]. */
1539 int workpipe[2];
1541 /* IO thread writes to this file descriptor to mark it done, then
1542 * Launcher triggers interrupt to Guest. */
1543 int done_fd;
1546 /*L:210
1547 * The Disk
1549 * Remember that the block device is handled by a separate I/O thread. We head
1550 * straight into the core of that thread here:
1552 static bool service_io(struct device *dev)
1554 struct vblk_info *vblk = dev->priv;
1555 unsigned int head, out_num, in_num, wlen;
1556 int ret;
1557 u8 *in;
1558 struct virtio_blk_outhdr *out;
1559 struct iovec iov[dev->vq->vring.num];
1560 off64_t off;
1562 /* See if there's a request waiting. If not, nothing to do. */
1563 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
1564 if (head == dev->vq->vring.num)
1565 return false;
1567 /* Every block request should contain at least one output buffer
1568 * (detailing the location on disk and the type of request) and one
1569 * input buffer (to hold the result). */
1570 if (out_num == 0 || in_num == 0)
1571 errx(1, "Bad virtblk cmd %u out=%u in=%u",
1572 head, out_num, in_num);
1574 out = convert(&iov[0], struct virtio_blk_outhdr);
1575 in = convert(&iov[out_num+in_num-1], u8);
1576 off = out->sector * 512;
1578 /* The block device implements "barriers", where the Guest indicates
1579 * that it wants all previous writes to occur before this write. We
1580 * don't have a way of asking our kernel to do a barrier, so we just
1581 * synchronize all the data in the file. Pretty poor, no? */
1582 if (out->type & VIRTIO_BLK_T_BARRIER)
1583 fdatasync(vblk->fd);
1585 /* In general the virtio block driver is allowed to try SCSI commands.
1586 * It'd be nice if we supported eject, for example, but we don't. */
1587 if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
1588 fprintf(stderr, "Scsi commands unsupported\n");
1589 *in = VIRTIO_BLK_S_UNSUPP;
1590 wlen = sizeof(*in);
1591 } else if (out->type & VIRTIO_BLK_T_OUT) {
1592 /* Write */
1594 /* Move to the right location in the block file. This can fail
1595 * if they try to write past end. */
1596 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1597 err(1, "Bad seek to sector %llu", out->sector);
1599 ret = writev(vblk->fd, iov+1, out_num-1);
1600 verbose("WRITE to sector %llu: %i\n", out->sector, ret);
1602 /* Grr... Now we know how long the descriptor they sent was, we
1603 * make sure they didn't try to write over the end of the block
1604 * file (possibly extending it). */
1605 if (ret > 0 && off + ret > vblk->len) {
1606 /* Trim it back to the correct length */
1607 ftruncate64(vblk->fd, vblk->len);
1608 /* Die, bad Guest, die. */
1609 errx(1, "Write past end %llu+%u", off, ret);
1611 wlen = sizeof(*in);
1612 *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
1613 } else {
1614 /* Read */
1616 /* Move to the right location in the block file. This can fail
1617 * if they try to read past end. */
1618 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1619 err(1, "Bad seek to sector %llu", out->sector);
1621 ret = readv(vblk->fd, iov+1, in_num-1);
1622 verbose("READ from sector %llu: %i\n", out->sector, ret);
1623 if (ret >= 0) {
1624 wlen = sizeof(*in) + ret;
1625 *in = VIRTIO_BLK_S_OK;
1626 } else {
1627 wlen = sizeof(*in);
1628 *in = VIRTIO_BLK_S_IOERR;
1632 /* OK, so we noted that it was pretty poor to use an fdatasync as a
1633 * barrier. But Christoph Hellwig points out that we need a sync
1634 * *afterwards* as well: "Barriers specify no reordering to the front
1635 * or the back." And Jens Axboe confirmed it, so here we are: */
1636 if (out->type & VIRTIO_BLK_T_BARRIER)
1637 fdatasync(vblk->fd);
1639 /* We can't trigger an IRQ, because we're not the Launcher. It does
1640 * that when we tell it we're done. */
1641 add_used(dev->vq, head, wlen);
1642 return true;
1645 /* This is the thread which actually services the I/O. */
1646 static int io_thread(void *_dev)
1648 struct device *dev = _dev;
1649 struct vblk_info *vblk = dev->priv;
1650 char c;
1652 /* Close other side of workpipe so we get 0 read when main dies. */
1653 close(vblk->workpipe[1]);
1654 /* Close the other side of the done_fd pipe. */
1655 close(dev->fd);
1657 /* When this read fails, it means Launcher died, so we follow. */
1658 while (read(vblk->workpipe[0], &c, 1) == 1) {
1659 /* We acknowledge each request immediately to reduce latency,
1660 * rather than waiting until we've done them all. I haven't
1661 * measured to see if it makes any difference.
1663 * That would be an interesting test, wouldn't it? You could
1664 * also try having more than one I/O thread. */
1665 while (service_io(dev))
1666 write(vblk->done_fd, &c, 1);
1668 return 0;
1671 /* Now we've seen the I/O thread, we return to the Launcher to see what happens
1672 * when that thread tells us it's completed some I/O. */
1673 static bool handle_io_finish(struct device *dev)
1675 char c;
1677 /* If the I/O thread died, presumably it printed the error, so we
1678 * simply exit. */
1679 if (read(dev->fd, &c, 1) != 1)
1680 exit(1);
1682 /* It did some work, so trigger the irq. */
1683 trigger_irq(dev->vq);
1684 return true;
1687 /* When the Guest submits some I/O, we just need to wake the I/O thread. */
1688 static void handle_virtblk_output(struct virtqueue *vq, bool timeout)
1690 struct vblk_info *vblk = vq->dev->priv;
1691 char c = 0;
1693 /* Wake up I/O thread and tell it to go to work! */
1694 if (write(vblk->workpipe[1], &c, 1) != 1)
1695 /* Presumably it indicated why it died. */
1696 exit(1);
1699 /*L:198 This actually sets up a virtual block device. */
1700 static void setup_block_file(const char *filename)
1702 int p[2];
1703 struct device *dev;
1704 struct vblk_info *vblk;
1705 void *stack;
1706 struct virtio_blk_config conf;
1708 /* This is the pipe the I/O thread will use to tell us I/O is done. */
1709 pipe(p);
1711 /* The device responds to return from I/O thread. */
1712 dev = new_device("block", VIRTIO_ID_BLOCK, p[0], handle_io_finish);
1714 /* The device has one virtqueue, where the Guest places requests. */
1715 add_virtqueue(dev, VIRTQUEUE_NUM, handle_virtblk_output);
1717 /* Allocate the room for our own bookkeeping */
1718 vblk = dev->priv = malloc(sizeof(*vblk));
1720 /* First we open the file and store the length. */
1721 vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
1722 vblk->len = lseek64(vblk->fd, 0, SEEK_END);
1724 /* We support barriers. */
1725 add_feature(dev, VIRTIO_BLK_F_BARRIER);
1727 /* Tell Guest how many sectors this device has. */
1728 conf.capacity = cpu_to_le64(vblk->len / 512);
1730 /* Tell Guest not to put in too many descriptors at once: two are used
1731 * for the in and out elements. */
1732 add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
1733 conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
1735 set_config(dev, sizeof(conf), &conf);
1737 /* The I/O thread writes to this end of the pipe when done. */
1738 vblk->done_fd = p[1];
1740 /* This is the second pipe, which is how we tell the I/O thread about
1741 * more work. */
1742 pipe(vblk->workpipe);
1744 /* Create stack for thread and run it. Since stack grows upwards, we
1745 * point the stack pointer to the end of this region. */
1746 stack = malloc(32768);
1747 /* SIGCHLD - We dont "wait" for our cloned thread, so prevent it from
1748 * becoming a zombie. */
1749 if (clone(io_thread, stack + 32768, CLONE_VM | SIGCHLD, dev) == -1)
1750 err(1, "Creating clone");
1752 /* We don't need to keep the I/O thread's end of the pipes open. */
1753 close(vblk->done_fd);
1754 close(vblk->workpipe[0]);
1756 verbose("device %u: virtblock %llu sectors\n",
1757 devices.device_num, le64_to_cpu(conf.capacity));
1760 /* Our random number generator device reads from /dev/random into the Guest's
1761 * input buffers. The usual case is that the Guest doesn't want random numbers
1762 * and so has no buffers although /dev/random is still readable, whereas
1763 * console is the reverse.
1765 * The same logic applies, however. */
1766 static bool handle_rng_input(struct device *dev)
1768 int len;
1769 unsigned int head, in_num, out_num, totlen = 0;
1770 struct iovec iov[dev->vq->vring.num];
1772 /* First we need a buffer from the Guests's virtqueue. */
1773 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
1775 /* If they're not ready for input, stop listening to this file
1776 * descriptor. We'll start again once they add an input buffer. */
1777 if (head == dev->vq->vring.num)
1778 return false;
1780 if (out_num)
1781 errx(1, "Output buffers in rng?");
1783 /* This is why we convert to iovecs: the readv() call uses them, and so
1784 * it reads straight into the Guest's buffer. We loop to make sure we
1785 * fill it. */
1786 while (!iov_empty(iov, in_num)) {
1787 len = readv(dev->fd, iov, in_num);
1788 if (len <= 0)
1789 err(1, "Read from /dev/random gave %i", len);
1790 iov_consume(iov, in_num, len);
1791 totlen += len;
1794 /* Tell the Guest about the new input. */
1795 add_used_and_trigger(dev->vq, head, totlen);
1797 /* Everything went OK! */
1798 return true;
1801 /* And this creates a "hardware" random number device for the Guest. */
1802 static void setup_rng(void)
1804 struct device *dev;
1805 int fd;
1807 fd = open_or_die("/dev/random", O_RDONLY);
1809 /* The device responds to return from I/O thread. */
1810 dev = new_device("rng", VIRTIO_ID_RNG, fd, handle_rng_input);
1812 /* The device has one virtqueue, where the Guest places inbufs. */
1813 add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
1815 verbose("device %u: rng\n", devices.device_num++);
1817 /* That's the end of device setup. */
1819 /*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
1820 static void __attribute__((noreturn)) restart_guest(void)
1822 unsigned int i;
1824 /* Since we don't track all open fds, we simply close everything beyond
1825 * stderr. */
1826 for (i = 3; i < FD_SETSIZE; i++)
1827 close(i);
1829 /* The exec automatically gets rid of the I/O and Waker threads. */
1830 execv(main_args[0], main_args);
1831 err(1, "Could not exec %s", main_args[0]);
1834 /*L:220 Finally we reach the core of the Launcher which runs the Guest, serves
1835 * its input and output, and finally, lays it to rest. */
1836 static void __attribute__((noreturn)) run_guest(void)
1838 for (;;) {
1839 unsigned long args[] = { LHREQ_BREAK, 0 };
1840 unsigned long notify_addr;
1841 int readval;
1843 /* We read from the /dev/lguest device to run the Guest. */
1844 readval = pread(lguest_fd, &notify_addr,
1845 sizeof(notify_addr), cpu_id);
1847 /* One unsigned long means the Guest did HCALL_NOTIFY */
1848 if (readval == sizeof(notify_addr)) {
1849 verbose("Notify on address %#lx\n", notify_addr);
1850 handle_output(notify_addr);
1851 continue;
1852 /* ENOENT means the Guest died. Reading tells us why. */
1853 } else if (errno == ENOENT) {
1854 char reason[1024] = { 0 };
1855 pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
1856 errx(1, "%s", reason);
1857 /* ERESTART means that we need to reboot the guest */
1858 } else if (errno == ERESTART) {
1859 restart_guest();
1860 /* EAGAIN means a signal (timeout).
1861 * Anything else means a bug or incompatible change. */
1862 } else if (errno != EAGAIN)
1863 err(1, "Running guest failed");
1865 /* Only service input on thread for CPU 0. */
1866 if (cpu_id != 0)
1867 continue;
1869 /* Service input, then unset the BREAK to release the Waker. */
1870 handle_input();
1871 if (pwrite(lguest_fd, args, sizeof(args), cpu_id) < 0)
1872 err(1, "Resetting break");
1875 /*L:240
1876 * This is the end of the Launcher. The good news: we are over halfway
1877 * through! The bad news: the most fiendish part of the code still lies ahead
1878 * of us.
1880 * Are you ready? Take a deep breath and join me in the core of the Host, in
1881 * "make Host".
1884 static struct option opts[] = {
1885 { "verbose", 0, NULL, 'v' },
1886 { "tunnet", 1, NULL, 't' },
1887 { "block", 1, NULL, 'b' },
1888 { "rng", 0, NULL, 'r' },
1889 { "initrd", 1, NULL, 'i' },
1890 { NULL },
1892 static void usage(void)
1894 errx(1, "Usage: lguest [--verbose] "
1895 "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
1896 "|--block=<filename>|--initrd=<filename>]...\n"
1897 "<mem-in-mb> vmlinux [args...]");
1900 /*L:105 The main routine is where the real work begins: */
1901 int main(int argc, char *argv[])
1903 /* Memory, top-level pagetable, code startpoint and size of the
1904 * (optional) initrd. */
1905 unsigned long mem = 0, start, initrd_size = 0;
1906 /* Two temporaries. */
1907 int i, c;
1908 /* The boot information for the Guest. */
1909 struct boot_params *boot;
1910 /* If they specify an initrd file to load. */
1911 const char *initrd_name = NULL;
1913 /* Save the args: we "reboot" by execing ourselves again. */
1914 main_args = argv;
1915 /* We don't "wait" for the children, so prevent them from becoming
1916 * zombies. */
1917 signal(SIGCHLD, SIG_IGN);
1919 /* First we initialize the device list. Since console and network
1920 * device receive input from a file descriptor, we keep an fdset
1921 * (infds) and the maximum fd number (max_infd) with the head of the
1922 * list. We also keep a pointer to the last device. Finally, we keep
1923 * the next interrupt number to use for devices (1: remember that 0 is
1924 * used by the timer). */
1925 FD_ZERO(&devices.infds);
1926 devices.max_infd = -1;
1927 devices.lastdev = NULL;
1928 devices.next_irq = 1;
1930 cpu_id = 0;
1931 /* We need to know how much memory so we can set up the device
1932 * descriptor and memory pages for the devices as we parse the command
1933 * line. So we quickly look through the arguments to find the amount
1934 * of memory now. */
1935 for (i = 1; i < argc; i++) {
1936 if (argv[i][0] != '-') {
1937 mem = atoi(argv[i]) * 1024 * 1024;
1938 /* We start by mapping anonymous pages over all of
1939 * guest-physical memory range. This fills it with 0,
1940 * and ensures that the Guest won't be killed when it
1941 * tries to access it. */
1942 guest_base = map_zeroed_pages(mem / getpagesize()
1943 + DEVICE_PAGES);
1944 guest_limit = mem;
1945 guest_max = mem + DEVICE_PAGES*getpagesize();
1946 devices.descpage = get_pages(1);
1947 break;
1951 /* The options are fairly straight-forward */
1952 while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
1953 switch (c) {
1954 case 'v':
1955 verbose = true;
1956 break;
1957 case 't':
1958 setup_tun_net(optarg);
1959 break;
1960 case 'b':
1961 setup_block_file(optarg);
1962 break;
1963 case 'r':
1964 setup_rng();
1965 break;
1966 case 'i':
1967 initrd_name = optarg;
1968 break;
1969 default:
1970 warnx("Unknown argument %s", argv[optind]);
1971 usage();
1974 /* After the other arguments we expect memory and kernel image name,
1975 * followed by command line arguments for the kernel. */
1976 if (optind + 2 > argc)
1977 usage();
1979 verbose("Guest base is at %p\n", guest_base);
1981 /* We always have a console device */
1982 setup_console();
1984 /* We can timeout waiting for Guest network transmit. */
1985 setup_timeout();
1987 /* Now we load the kernel */
1988 start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
1990 /* Boot information is stashed at physical address 0 */
1991 boot = from_guest_phys(0);
1993 /* Map the initrd image if requested (at top of physical memory) */
1994 if (initrd_name) {
1995 initrd_size = load_initrd(initrd_name, mem);
1996 /* These are the location in the Linux boot header where the
1997 * start and size of the initrd are expected to be found. */
1998 boot->hdr.ramdisk_image = mem - initrd_size;
1999 boot->hdr.ramdisk_size = initrd_size;
2000 /* The bootloader type 0xFF means "unknown"; that's OK. */
2001 boot->hdr.type_of_loader = 0xFF;
2004 /* The Linux boot header contains an "E820" memory map: ours is a
2005 * simple, single region. */
2006 boot->e820_entries = 1;
2007 boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
2008 /* The boot header contains a command line pointer: we put the command
2009 * line after the boot header. */
2010 boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
2011 /* We use a simple helper to copy the arguments separated by spaces. */
2012 concat((char *)(boot + 1), argv+optind+2);
2014 /* Boot protocol version: 2.07 supports the fields for lguest. */
2015 boot->hdr.version = 0x207;
2017 /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
2018 boot->hdr.hardware_subarch = 1;
2020 /* Tell the entry path not to try to reload segment registers. */
2021 boot->hdr.loadflags |= KEEP_SEGMENTS;
2023 /* We tell the kernel to initialize the Guest: this returns the open
2024 * /dev/lguest file descriptor. */
2025 tell_kernel(start);
2027 /* We clone off a thread, which wakes the Launcher whenever one of the
2028 * input file descriptors needs attention. We call this the Waker, and
2029 * we'll cover it in a moment. */
2030 setup_waker();
2032 /* Finally, run the Guest. This doesn't return. */
2033 run_guest();
2035 /*:*/
2037 /*M:999
2038 * Mastery is done: you now know everything I do.
2040 * But surely you have seen code, features and bugs in your wanderings which
2041 * you now yearn to attack? That is the real game, and I look forward to you
2042 * patching and forking lguest into the Your-Name-Here-visor.
2044 * Farewell, and good coding!
2045 * Rusty Russell.