davinci: dm646x-evm: Add platform data for NAND
[pohmelfs.git] / drivers / pci / dmar.c
blobb952ebc7a78b67776d985f006fb33633be43b80b
1 /*
2 * Copyright (c) 2006, Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
22 * This file implements early detection/parsing of Remapping Devices
23 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
24 * tables.
26 * These routines are used by both DMA-remapping and Interrupt-remapping
29 #include <linux/pci.h>
30 #include <linux/dmar.h>
31 #include <linux/iova.h>
32 #include <linux/intel-iommu.h>
33 #include <linux/timer.h>
34 #include <linux/irq.h>
35 #include <linux/interrupt.h>
36 #include <linux/tboot.h>
37 #include <linux/dmi.h>
39 #define PREFIX "DMAR: "
41 /* No locks are needed as DMA remapping hardware unit
42 * list is constructed at boot time and hotplug of
43 * these units are not supported by the architecture.
45 LIST_HEAD(dmar_drhd_units);
47 static struct acpi_table_header * __initdata dmar_tbl;
48 static acpi_size dmar_tbl_size;
50 static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
53 * add INCLUDE_ALL at the tail, so scan the list will find it at
54 * the very end.
56 if (drhd->include_all)
57 list_add_tail(&drhd->list, &dmar_drhd_units);
58 else
59 list_add(&drhd->list, &dmar_drhd_units);
62 static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
63 struct pci_dev **dev, u16 segment)
65 struct pci_bus *bus;
66 struct pci_dev *pdev = NULL;
67 struct acpi_dmar_pci_path *path;
68 int count;
70 bus = pci_find_bus(segment, scope->bus);
71 path = (struct acpi_dmar_pci_path *)(scope + 1);
72 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
73 / sizeof(struct acpi_dmar_pci_path);
75 while (count) {
76 if (pdev)
77 pci_dev_put(pdev);
79 * Some BIOSes list non-exist devices in DMAR table, just
80 * ignore it
82 if (!bus) {
83 printk(KERN_WARNING
84 PREFIX "Device scope bus [%d] not found\n",
85 scope->bus);
86 break;
88 pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
89 if (!pdev) {
90 printk(KERN_WARNING PREFIX
91 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
92 segment, bus->number, path->dev, path->fn);
93 break;
95 path ++;
96 count --;
97 bus = pdev->subordinate;
99 if (!pdev) {
100 printk(KERN_WARNING PREFIX
101 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
102 segment, scope->bus, path->dev, path->fn);
103 *dev = NULL;
104 return 0;
106 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
107 pdev->subordinate) || (scope->entry_type == \
108 ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
109 pci_dev_put(pdev);
110 printk(KERN_WARNING PREFIX
111 "Device scope type does not match for %s\n",
112 pci_name(pdev));
113 return -EINVAL;
115 *dev = pdev;
116 return 0;
119 static int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
120 struct pci_dev ***devices, u16 segment)
122 struct acpi_dmar_device_scope *scope;
123 void * tmp = start;
124 int index;
125 int ret;
127 *cnt = 0;
128 while (start < end) {
129 scope = start;
130 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
131 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
132 (*cnt)++;
133 else
134 printk(KERN_WARNING PREFIX
135 "Unsupported device scope\n");
136 start += scope->length;
138 if (*cnt == 0)
139 return 0;
141 *devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
142 if (!*devices)
143 return -ENOMEM;
145 start = tmp;
146 index = 0;
147 while (start < end) {
148 scope = start;
149 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
150 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
151 ret = dmar_parse_one_dev_scope(scope,
152 &(*devices)[index], segment);
153 if (ret) {
154 kfree(*devices);
155 return ret;
157 index ++;
159 start += scope->length;
162 return 0;
166 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
167 * structure which uniquely represent one DMA remapping hardware unit
168 * present in the platform
170 static int __init
171 dmar_parse_one_drhd(struct acpi_dmar_header *header)
173 struct acpi_dmar_hardware_unit *drhd;
174 struct dmar_drhd_unit *dmaru;
175 int ret = 0;
177 drhd = (struct acpi_dmar_hardware_unit *)header;
178 dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
179 if (!dmaru)
180 return -ENOMEM;
182 dmaru->hdr = header;
183 dmaru->reg_base_addr = drhd->address;
184 dmaru->segment = drhd->segment;
185 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
187 ret = alloc_iommu(dmaru);
188 if (ret) {
189 kfree(dmaru);
190 return ret;
192 dmar_register_drhd_unit(dmaru);
193 return 0;
196 static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
198 struct acpi_dmar_hardware_unit *drhd;
199 int ret = 0;
201 drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;
203 if (dmaru->include_all)
204 return 0;
206 ret = dmar_parse_dev_scope((void *)(drhd + 1),
207 ((void *)drhd) + drhd->header.length,
208 &dmaru->devices_cnt, &dmaru->devices,
209 drhd->segment);
210 if (ret) {
211 list_del(&dmaru->list);
212 kfree(dmaru);
214 return ret;
217 #ifdef CONFIG_DMAR
218 LIST_HEAD(dmar_rmrr_units);
220 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
222 list_add(&rmrr->list, &dmar_rmrr_units);
226 static int __init
227 dmar_parse_one_rmrr(struct acpi_dmar_header *header)
229 struct acpi_dmar_reserved_memory *rmrr;
230 struct dmar_rmrr_unit *rmrru;
232 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
233 if (!rmrru)
234 return -ENOMEM;
236 rmrru->hdr = header;
237 rmrr = (struct acpi_dmar_reserved_memory *)header;
238 rmrru->base_address = rmrr->base_address;
239 rmrru->end_address = rmrr->end_address;
241 dmar_register_rmrr_unit(rmrru);
242 return 0;
245 static int __init
246 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
248 struct acpi_dmar_reserved_memory *rmrr;
249 int ret;
251 rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
252 ret = dmar_parse_dev_scope((void *)(rmrr + 1),
253 ((void *)rmrr) + rmrr->header.length,
254 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
256 if (ret || (rmrru->devices_cnt == 0)) {
257 list_del(&rmrru->list);
258 kfree(rmrru);
260 return ret;
263 static LIST_HEAD(dmar_atsr_units);
265 static int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
267 struct acpi_dmar_atsr *atsr;
268 struct dmar_atsr_unit *atsru;
270 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
271 atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
272 if (!atsru)
273 return -ENOMEM;
275 atsru->hdr = hdr;
276 atsru->include_all = atsr->flags & 0x1;
278 list_add(&atsru->list, &dmar_atsr_units);
280 return 0;
283 static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru)
285 int rc;
286 struct acpi_dmar_atsr *atsr;
288 if (atsru->include_all)
289 return 0;
291 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
292 rc = dmar_parse_dev_scope((void *)(atsr + 1),
293 (void *)atsr + atsr->header.length,
294 &atsru->devices_cnt, &atsru->devices,
295 atsr->segment);
296 if (rc || !atsru->devices_cnt) {
297 list_del(&atsru->list);
298 kfree(atsru);
301 return rc;
304 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
306 int i;
307 struct pci_bus *bus;
308 struct acpi_dmar_atsr *atsr;
309 struct dmar_atsr_unit *atsru;
311 list_for_each_entry(atsru, &dmar_atsr_units, list) {
312 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
313 if (atsr->segment == pci_domain_nr(dev->bus))
314 goto found;
317 return 0;
319 found:
320 for (bus = dev->bus; bus; bus = bus->parent) {
321 struct pci_dev *bridge = bus->self;
323 if (!bridge || !bridge->is_pcie ||
324 bridge->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
325 return 0;
327 if (bridge->pcie_type == PCI_EXP_TYPE_ROOT_PORT) {
328 for (i = 0; i < atsru->devices_cnt; i++)
329 if (atsru->devices[i] == bridge)
330 return 1;
331 break;
335 if (atsru->include_all)
336 return 1;
338 return 0;
340 #endif
342 static void __init
343 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
345 struct acpi_dmar_hardware_unit *drhd;
346 struct acpi_dmar_reserved_memory *rmrr;
347 struct acpi_dmar_atsr *atsr;
348 struct acpi_dmar_rhsa *rhsa;
350 switch (header->type) {
351 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
352 drhd = container_of(header, struct acpi_dmar_hardware_unit,
353 header);
354 printk (KERN_INFO PREFIX
355 "DRHD base: %#016Lx flags: %#x\n",
356 (unsigned long long)drhd->address, drhd->flags);
357 break;
358 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
359 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
360 header);
361 printk (KERN_INFO PREFIX
362 "RMRR base: %#016Lx end: %#016Lx\n",
363 (unsigned long long)rmrr->base_address,
364 (unsigned long long)rmrr->end_address);
365 break;
366 case ACPI_DMAR_TYPE_ATSR:
367 atsr = container_of(header, struct acpi_dmar_atsr, header);
368 printk(KERN_INFO PREFIX "ATSR flags: %#x\n", atsr->flags);
369 break;
370 case ACPI_DMAR_HARDWARE_AFFINITY:
371 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
372 printk(KERN_INFO PREFIX "RHSA base: %#016Lx proximity domain: %#x\n",
373 (unsigned long long)rhsa->base_address,
374 rhsa->proximity_domain);
375 break;
380 * dmar_table_detect - checks to see if the platform supports DMAR devices
382 static int __init dmar_table_detect(void)
384 acpi_status status = AE_OK;
386 /* if we could find DMAR table, then there are DMAR devices */
387 status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
388 (struct acpi_table_header **)&dmar_tbl,
389 &dmar_tbl_size);
391 if (ACPI_SUCCESS(status) && !dmar_tbl) {
392 printk (KERN_WARNING PREFIX "Unable to map DMAR\n");
393 status = AE_NOT_FOUND;
396 return (ACPI_SUCCESS(status) ? 1 : 0);
400 * parse_dmar_table - parses the DMA reporting table
402 static int __init
403 parse_dmar_table(void)
405 struct acpi_table_dmar *dmar;
406 struct acpi_dmar_header *entry_header;
407 int ret = 0;
410 * Do it again, earlier dmar_tbl mapping could be mapped with
411 * fixed map.
413 dmar_table_detect();
416 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
417 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
419 dmar_tbl = tboot_get_dmar_table(dmar_tbl);
421 dmar = (struct acpi_table_dmar *)dmar_tbl;
422 if (!dmar)
423 return -ENODEV;
425 if (dmar->width < PAGE_SHIFT - 1) {
426 printk(KERN_WARNING PREFIX "Invalid DMAR haw\n");
427 return -EINVAL;
430 printk (KERN_INFO PREFIX "Host address width %d\n",
431 dmar->width + 1);
433 entry_header = (struct acpi_dmar_header *)(dmar + 1);
434 while (((unsigned long)entry_header) <
435 (((unsigned long)dmar) + dmar_tbl->length)) {
436 /* Avoid looping forever on bad ACPI tables */
437 if (entry_header->length == 0) {
438 printk(KERN_WARNING PREFIX
439 "Invalid 0-length structure\n");
440 ret = -EINVAL;
441 break;
444 dmar_table_print_dmar_entry(entry_header);
446 switch (entry_header->type) {
447 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
448 ret = dmar_parse_one_drhd(entry_header);
449 break;
450 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
451 #ifdef CONFIG_DMAR
452 ret = dmar_parse_one_rmrr(entry_header);
453 #endif
454 break;
455 case ACPI_DMAR_TYPE_ATSR:
456 #ifdef CONFIG_DMAR
457 ret = dmar_parse_one_atsr(entry_header);
458 #endif
459 break;
460 case ACPI_DMAR_HARDWARE_AFFINITY:
461 /* We don't do anything with RHSA (yet?) */
462 break;
463 default:
464 printk(KERN_WARNING PREFIX
465 "Unknown DMAR structure type %d\n",
466 entry_header->type);
467 ret = 0; /* for forward compatibility */
468 break;
470 if (ret)
471 break;
473 entry_header = ((void *)entry_header + entry_header->length);
475 return ret;
478 int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
479 struct pci_dev *dev)
481 int index;
483 while (dev) {
484 for (index = 0; index < cnt; index++)
485 if (dev == devices[index])
486 return 1;
488 /* Check our parent */
489 dev = dev->bus->self;
492 return 0;
495 struct dmar_drhd_unit *
496 dmar_find_matched_drhd_unit(struct pci_dev *dev)
498 struct dmar_drhd_unit *dmaru = NULL;
499 struct acpi_dmar_hardware_unit *drhd;
501 list_for_each_entry(dmaru, &dmar_drhd_units, list) {
502 drhd = container_of(dmaru->hdr,
503 struct acpi_dmar_hardware_unit,
504 header);
506 if (dmaru->include_all &&
507 drhd->segment == pci_domain_nr(dev->bus))
508 return dmaru;
510 if (dmar_pci_device_match(dmaru->devices,
511 dmaru->devices_cnt, dev))
512 return dmaru;
515 return NULL;
518 int __init dmar_dev_scope_init(void)
520 struct dmar_drhd_unit *drhd, *drhd_n;
521 int ret = -ENODEV;
523 list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
524 ret = dmar_parse_dev(drhd);
525 if (ret)
526 return ret;
529 #ifdef CONFIG_DMAR
531 struct dmar_rmrr_unit *rmrr, *rmrr_n;
532 struct dmar_atsr_unit *atsr, *atsr_n;
534 list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
535 ret = rmrr_parse_dev(rmrr);
536 if (ret)
537 return ret;
540 list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) {
541 ret = atsr_parse_dev(atsr);
542 if (ret)
543 return ret;
546 #endif
548 return ret;
552 int __init dmar_table_init(void)
554 static int dmar_table_initialized;
555 int ret;
557 if (dmar_table_initialized)
558 return 0;
560 dmar_table_initialized = 1;
562 ret = parse_dmar_table();
563 if (ret) {
564 if (ret != -ENODEV)
565 printk(KERN_INFO PREFIX "parse DMAR table failure.\n");
566 return ret;
569 if (list_empty(&dmar_drhd_units)) {
570 printk(KERN_INFO PREFIX "No DMAR devices found\n");
571 return -ENODEV;
574 #ifdef CONFIG_DMAR
575 if (list_empty(&dmar_rmrr_units))
576 printk(KERN_INFO PREFIX "No RMRR found\n");
578 if (list_empty(&dmar_atsr_units))
579 printk(KERN_INFO PREFIX "No ATSR found\n");
580 #endif
582 return 0;
585 int __init check_zero_address(void)
587 struct acpi_table_dmar *dmar;
588 struct acpi_dmar_header *entry_header;
589 struct acpi_dmar_hardware_unit *drhd;
591 dmar = (struct acpi_table_dmar *)dmar_tbl;
592 entry_header = (struct acpi_dmar_header *)(dmar + 1);
594 while (((unsigned long)entry_header) <
595 (((unsigned long)dmar) + dmar_tbl->length)) {
596 /* Avoid looping forever on bad ACPI tables */
597 if (entry_header->length == 0) {
598 printk(KERN_WARNING PREFIX
599 "Invalid 0-length structure\n");
600 return 0;
603 if (entry_header->type == ACPI_DMAR_TYPE_HARDWARE_UNIT) {
604 drhd = (void *)entry_header;
605 if (!drhd->address) {
606 /* Promote an attitude of violence to a BIOS engineer today */
607 WARN(1, "Your BIOS is broken; DMAR reported at address zero!\n"
608 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
609 dmi_get_system_info(DMI_BIOS_VENDOR),
610 dmi_get_system_info(DMI_BIOS_VERSION),
611 dmi_get_system_info(DMI_PRODUCT_VERSION));
612 #ifdef CONFIG_DMAR
613 dmar_disabled = 1;
614 #endif
615 return 0;
617 break;
620 entry_header = ((void *)entry_header + entry_header->length);
622 return 1;
625 void __init detect_intel_iommu(void)
627 int ret;
629 ret = dmar_table_detect();
630 if (ret)
631 ret = check_zero_address();
633 #ifdef CONFIG_INTR_REMAP
634 struct acpi_table_dmar *dmar;
636 * for now we will disable dma-remapping when interrupt
637 * remapping is enabled.
638 * When support for queued invalidation for IOTLB invalidation
639 * is added, we will not need this any more.
641 dmar = (struct acpi_table_dmar *) dmar_tbl;
642 if (ret && cpu_has_x2apic && dmar->flags & 0x1)
643 printk(KERN_INFO
644 "Queued invalidation will be enabled to support "
645 "x2apic and Intr-remapping.\n");
646 #endif
647 #ifdef CONFIG_DMAR
648 if (ret && !no_iommu && !iommu_detected && !swiotlb &&
649 !dmar_disabled)
650 iommu_detected = 1;
651 #endif
653 early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size);
654 dmar_tbl = NULL;
658 int alloc_iommu(struct dmar_drhd_unit *drhd)
660 struct intel_iommu *iommu;
661 int map_size;
662 u32 ver;
663 static int iommu_allocated = 0;
664 int agaw = 0;
665 int msagaw = 0;
667 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
668 if (!iommu)
669 return -ENOMEM;
671 iommu->seq_id = iommu_allocated++;
672 sprintf (iommu->name, "dmar%d", iommu->seq_id);
674 iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE);
675 if (!iommu->reg) {
676 printk(KERN_ERR "IOMMU: can't map the region\n");
677 goto error;
679 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
680 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
682 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
683 /* Promote an attitude of violence to a BIOS engineer today */
684 WARN(1, "Your BIOS is broken; DMAR reported at address %llx returns all ones!\n"
685 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
686 drhd->reg_base_addr,
687 dmi_get_system_info(DMI_BIOS_VENDOR),
688 dmi_get_system_info(DMI_BIOS_VERSION),
689 dmi_get_system_info(DMI_PRODUCT_VERSION));
690 goto err_unmap;
693 #ifdef CONFIG_DMAR
694 agaw = iommu_calculate_agaw(iommu);
695 if (agaw < 0) {
696 printk(KERN_ERR
697 "Cannot get a valid agaw for iommu (seq_id = %d)\n",
698 iommu->seq_id);
699 goto err_unmap;
701 msagaw = iommu_calculate_max_sagaw(iommu);
702 if (msagaw < 0) {
703 printk(KERN_ERR
704 "Cannot get a valid max agaw for iommu (seq_id = %d)\n",
705 iommu->seq_id);
706 goto err_unmap;
708 #endif
709 iommu->agaw = agaw;
710 iommu->msagaw = msagaw;
712 /* the registers might be more than one page */
713 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
714 cap_max_fault_reg_offset(iommu->cap));
715 map_size = VTD_PAGE_ALIGN(map_size);
716 if (map_size > VTD_PAGE_SIZE) {
717 iounmap(iommu->reg);
718 iommu->reg = ioremap(drhd->reg_base_addr, map_size);
719 if (!iommu->reg) {
720 printk(KERN_ERR "IOMMU: can't map the region\n");
721 goto error;
725 ver = readl(iommu->reg + DMAR_VER_REG);
726 pr_info("IOMMU %llx: ver %d:%d cap %llx ecap %llx\n",
727 (unsigned long long)drhd->reg_base_addr,
728 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
729 (unsigned long long)iommu->cap,
730 (unsigned long long)iommu->ecap);
732 spin_lock_init(&iommu->register_lock);
734 drhd->iommu = iommu;
735 return 0;
737 err_unmap:
738 iounmap(iommu->reg);
739 error:
740 kfree(iommu);
741 return -1;
744 void free_iommu(struct intel_iommu *iommu)
746 if (!iommu)
747 return;
749 #ifdef CONFIG_DMAR
750 free_dmar_iommu(iommu);
751 #endif
753 if (iommu->reg)
754 iounmap(iommu->reg);
755 kfree(iommu);
759 * Reclaim all the submitted descriptors which have completed its work.
761 static inline void reclaim_free_desc(struct q_inval *qi)
763 while (qi->desc_status[qi->free_tail] == QI_DONE ||
764 qi->desc_status[qi->free_tail] == QI_ABORT) {
765 qi->desc_status[qi->free_tail] = QI_FREE;
766 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
767 qi->free_cnt++;
771 static int qi_check_fault(struct intel_iommu *iommu, int index)
773 u32 fault;
774 int head, tail;
775 struct q_inval *qi = iommu->qi;
776 int wait_index = (index + 1) % QI_LENGTH;
778 if (qi->desc_status[wait_index] == QI_ABORT)
779 return -EAGAIN;
781 fault = readl(iommu->reg + DMAR_FSTS_REG);
784 * If IQE happens, the head points to the descriptor associated
785 * with the error. No new descriptors are fetched until the IQE
786 * is cleared.
788 if (fault & DMA_FSTS_IQE) {
789 head = readl(iommu->reg + DMAR_IQH_REG);
790 if ((head >> DMAR_IQ_SHIFT) == index) {
791 printk(KERN_ERR "VT-d detected invalid descriptor: "
792 "low=%llx, high=%llx\n",
793 (unsigned long long)qi->desc[index].low,
794 (unsigned long long)qi->desc[index].high);
795 memcpy(&qi->desc[index], &qi->desc[wait_index],
796 sizeof(struct qi_desc));
797 __iommu_flush_cache(iommu, &qi->desc[index],
798 sizeof(struct qi_desc));
799 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
800 return -EINVAL;
805 * If ITE happens, all pending wait_desc commands are aborted.
806 * No new descriptors are fetched until the ITE is cleared.
808 if (fault & DMA_FSTS_ITE) {
809 head = readl(iommu->reg + DMAR_IQH_REG);
810 head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
811 head |= 1;
812 tail = readl(iommu->reg + DMAR_IQT_REG);
813 tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
815 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
817 do {
818 if (qi->desc_status[head] == QI_IN_USE)
819 qi->desc_status[head] = QI_ABORT;
820 head = (head - 2 + QI_LENGTH) % QI_LENGTH;
821 } while (head != tail);
823 if (qi->desc_status[wait_index] == QI_ABORT)
824 return -EAGAIN;
827 if (fault & DMA_FSTS_ICE)
828 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
830 return 0;
834 * Submit the queued invalidation descriptor to the remapping
835 * hardware unit and wait for its completion.
837 int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
839 int rc;
840 struct q_inval *qi = iommu->qi;
841 struct qi_desc *hw, wait_desc;
842 int wait_index, index;
843 unsigned long flags;
845 if (!qi)
846 return 0;
848 hw = qi->desc;
850 restart:
851 rc = 0;
853 spin_lock_irqsave(&qi->q_lock, flags);
854 while (qi->free_cnt < 3) {
855 spin_unlock_irqrestore(&qi->q_lock, flags);
856 cpu_relax();
857 spin_lock_irqsave(&qi->q_lock, flags);
860 index = qi->free_head;
861 wait_index = (index + 1) % QI_LENGTH;
863 qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
865 hw[index] = *desc;
867 wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
868 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
869 wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
871 hw[wait_index] = wait_desc;
873 __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
874 __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
876 qi->free_head = (qi->free_head + 2) % QI_LENGTH;
877 qi->free_cnt -= 2;
880 * update the HW tail register indicating the presence of
881 * new descriptors.
883 writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
885 while (qi->desc_status[wait_index] != QI_DONE) {
887 * We will leave the interrupts disabled, to prevent interrupt
888 * context to queue another cmd while a cmd is already submitted
889 * and waiting for completion on this cpu. This is to avoid
890 * a deadlock where the interrupt context can wait indefinitely
891 * for free slots in the queue.
893 rc = qi_check_fault(iommu, index);
894 if (rc)
895 break;
897 spin_unlock(&qi->q_lock);
898 cpu_relax();
899 spin_lock(&qi->q_lock);
902 qi->desc_status[index] = QI_DONE;
904 reclaim_free_desc(qi);
905 spin_unlock_irqrestore(&qi->q_lock, flags);
907 if (rc == -EAGAIN)
908 goto restart;
910 return rc;
914 * Flush the global interrupt entry cache.
916 void qi_global_iec(struct intel_iommu *iommu)
918 struct qi_desc desc;
920 desc.low = QI_IEC_TYPE;
921 desc.high = 0;
923 /* should never fail */
924 qi_submit_sync(&desc, iommu);
927 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
928 u64 type)
930 struct qi_desc desc;
932 desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
933 | QI_CC_GRAN(type) | QI_CC_TYPE;
934 desc.high = 0;
936 qi_submit_sync(&desc, iommu);
939 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
940 unsigned int size_order, u64 type)
942 u8 dw = 0, dr = 0;
944 struct qi_desc desc;
945 int ih = 0;
947 if (cap_write_drain(iommu->cap))
948 dw = 1;
950 if (cap_read_drain(iommu->cap))
951 dr = 1;
953 desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
954 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
955 desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
956 | QI_IOTLB_AM(size_order);
958 qi_submit_sync(&desc, iommu);
961 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
962 u64 addr, unsigned mask)
964 struct qi_desc desc;
966 if (mask) {
967 BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
968 addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
969 desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
970 } else
971 desc.high = QI_DEV_IOTLB_ADDR(addr);
973 if (qdep >= QI_DEV_IOTLB_MAX_INVS)
974 qdep = 0;
976 desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
977 QI_DIOTLB_TYPE;
979 qi_submit_sync(&desc, iommu);
983 * Disable Queued Invalidation interface.
985 void dmar_disable_qi(struct intel_iommu *iommu)
987 unsigned long flags;
988 u32 sts;
989 cycles_t start_time = get_cycles();
991 if (!ecap_qis(iommu->ecap))
992 return;
994 spin_lock_irqsave(&iommu->register_lock, flags);
996 sts = dmar_readq(iommu->reg + DMAR_GSTS_REG);
997 if (!(sts & DMA_GSTS_QIES))
998 goto end;
1001 * Give a chance to HW to complete the pending invalidation requests.
1003 while ((readl(iommu->reg + DMAR_IQT_REG) !=
1004 readl(iommu->reg + DMAR_IQH_REG)) &&
1005 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1006 cpu_relax();
1008 iommu->gcmd &= ~DMA_GCMD_QIE;
1009 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1011 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1012 !(sts & DMA_GSTS_QIES), sts);
1013 end:
1014 spin_unlock_irqrestore(&iommu->register_lock, flags);
1018 * Enable queued invalidation.
1020 static void __dmar_enable_qi(struct intel_iommu *iommu)
1022 u32 sts;
1023 unsigned long flags;
1024 struct q_inval *qi = iommu->qi;
1026 qi->free_head = qi->free_tail = 0;
1027 qi->free_cnt = QI_LENGTH;
1029 spin_lock_irqsave(&iommu->register_lock, flags);
1031 /* write zero to the tail reg */
1032 writel(0, iommu->reg + DMAR_IQT_REG);
1034 dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
1036 iommu->gcmd |= DMA_GCMD_QIE;
1037 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1039 /* Make sure hardware complete it */
1040 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1042 spin_unlock_irqrestore(&iommu->register_lock, flags);
1046 * Enable Queued Invalidation interface. This is a must to support
1047 * interrupt-remapping. Also used by DMA-remapping, which replaces
1048 * register based IOTLB invalidation.
1050 int dmar_enable_qi(struct intel_iommu *iommu)
1052 struct q_inval *qi;
1054 if (!ecap_qis(iommu->ecap))
1055 return -ENOENT;
1058 * queued invalidation is already setup and enabled.
1060 if (iommu->qi)
1061 return 0;
1063 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1064 if (!iommu->qi)
1065 return -ENOMEM;
1067 qi = iommu->qi;
1069 qi->desc = (void *)(get_zeroed_page(GFP_ATOMIC));
1070 if (!qi->desc) {
1071 kfree(qi);
1072 iommu->qi = 0;
1073 return -ENOMEM;
1076 qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1077 if (!qi->desc_status) {
1078 free_page((unsigned long) qi->desc);
1079 kfree(qi);
1080 iommu->qi = 0;
1081 return -ENOMEM;
1084 qi->free_head = qi->free_tail = 0;
1085 qi->free_cnt = QI_LENGTH;
1087 spin_lock_init(&qi->q_lock);
1089 __dmar_enable_qi(iommu);
1091 return 0;
1094 /* iommu interrupt handling. Most stuff are MSI-like. */
1096 enum faulttype {
1097 DMA_REMAP,
1098 INTR_REMAP,
1099 UNKNOWN,
1102 static const char *dma_remap_fault_reasons[] =
1104 "Software",
1105 "Present bit in root entry is clear",
1106 "Present bit in context entry is clear",
1107 "Invalid context entry",
1108 "Access beyond MGAW",
1109 "PTE Write access is not set",
1110 "PTE Read access is not set",
1111 "Next page table ptr is invalid",
1112 "Root table address invalid",
1113 "Context table ptr is invalid",
1114 "non-zero reserved fields in RTP",
1115 "non-zero reserved fields in CTP",
1116 "non-zero reserved fields in PTE",
1119 static const char *intr_remap_fault_reasons[] =
1121 "Detected reserved fields in the decoded interrupt-remapped request",
1122 "Interrupt index exceeded the interrupt-remapping table size",
1123 "Present field in the IRTE entry is clear",
1124 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1125 "Detected reserved fields in the IRTE entry",
1126 "Blocked a compatibility format interrupt request",
1127 "Blocked an interrupt request due to source-id verification failure",
1130 #define MAX_FAULT_REASON_IDX (ARRAY_SIZE(fault_reason_strings) - 1)
1132 const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1134 if (fault_reason >= 0x20 && (fault_reason <= 0x20 +
1135 ARRAY_SIZE(intr_remap_fault_reasons))) {
1136 *fault_type = INTR_REMAP;
1137 return intr_remap_fault_reasons[fault_reason - 0x20];
1138 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1139 *fault_type = DMA_REMAP;
1140 return dma_remap_fault_reasons[fault_reason];
1141 } else {
1142 *fault_type = UNKNOWN;
1143 return "Unknown";
1147 void dmar_msi_unmask(unsigned int irq)
1149 struct intel_iommu *iommu = get_irq_data(irq);
1150 unsigned long flag;
1152 /* unmask it */
1153 spin_lock_irqsave(&iommu->register_lock, flag);
1154 writel(0, iommu->reg + DMAR_FECTL_REG);
1155 /* Read a reg to force flush the post write */
1156 readl(iommu->reg + DMAR_FECTL_REG);
1157 spin_unlock_irqrestore(&iommu->register_lock, flag);
1160 void dmar_msi_mask(unsigned int irq)
1162 unsigned long flag;
1163 struct intel_iommu *iommu = get_irq_data(irq);
1165 /* mask it */
1166 spin_lock_irqsave(&iommu->register_lock, flag);
1167 writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
1168 /* Read a reg to force flush the post write */
1169 readl(iommu->reg + DMAR_FECTL_REG);
1170 spin_unlock_irqrestore(&iommu->register_lock, flag);
1173 void dmar_msi_write(int irq, struct msi_msg *msg)
1175 struct intel_iommu *iommu = get_irq_data(irq);
1176 unsigned long flag;
1178 spin_lock_irqsave(&iommu->register_lock, flag);
1179 writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
1180 writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
1181 writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
1182 spin_unlock_irqrestore(&iommu->register_lock, flag);
1185 void dmar_msi_read(int irq, struct msi_msg *msg)
1187 struct intel_iommu *iommu = get_irq_data(irq);
1188 unsigned long flag;
1190 spin_lock_irqsave(&iommu->register_lock, flag);
1191 msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
1192 msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
1193 msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
1194 spin_unlock_irqrestore(&iommu->register_lock, flag);
1197 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1198 u8 fault_reason, u16 source_id, unsigned long long addr)
1200 const char *reason;
1201 int fault_type;
1203 reason = dmar_get_fault_reason(fault_reason, &fault_type);
1205 if (fault_type == INTR_REMAP)
1206 printk(KERN_ERR "INTR-REMAP: Request device [[%02x:%02x.%d] "
1207 "fault index %llx\n"
1208 "INTR-REMAP:[fault reason %02d] %s\n",
1209 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1210 PCI_FUNC(source_id & 0xFF), addr >> 48,
1211 fault_reason, reason);
1212 else
1213 printk(KERN_ERR
1214 "DMAR:[%s] Request device [%02x:%02x.%d] "
1215 "fault addr %llx \n"
1216 "DMAR:[fault reason %02d] %s\n",
1217 (type ? "DMA Read" : "DMA Write"),
1218 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1219 PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1220 return 0;
1223 #define PRIMARY_FAULT_REG_LEN (16)
1224 irqreturn_t dmar_fault(int irq, void *dev_id)
1226 struct intel_iommu *iommu = dev_id;
1227 int reg, fault_index;
1228 u32 fault_status;
1229 unsigned long flag;
1231 spin_lock_irqsave(&iommu->register_lock, flag);
1232 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1233 if (fault_status)
1234 printk(KERN_ERR "DRHD: handling fault status reg %x\n",
1235 fault_status);
1237 /* TBD: ignore advanced fault log currently */
1238 if (!(fault_status & DMA_FSTS_PPF))
1239 goto clear_rest;
1241 fault_index = dma_fsts_fault_record_index(fault_status);
1242 reg = cap_fault_reg_offset(iommu->cap);
1243 while (1) {
1244 u8 fault_reason;
1245 u16 source_id;
1246 u64 guest_addr;
1247 int type;
1248 u32 data;
1250 /* highest 32 bits */
1251 data = readl(iommu->reg + reg +
1252 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1253 if (!(data & DMA_FRCD_F))
1254 break;
1256 fault_reason = dma_frcd_fault_reason(data);
1257 type = dma_frcd_type(data);
1259 data = readl(iommu->reg + reg +
1260 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1261 source_id = dma_frcd_source_id(data);
1263 guest_addr = dmar_readq(iommu->reg + reg +
1264 fault_index * PRIMARY_FAULT_REG_LEN);
1265 guest_addr = dma_frcd_page_addr(guest_addr);
1266 /* clear the fault */
1267 writel(DMA_FRCD_F, iommu->reg + reg +
1268 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1270 spin_unlock_irqrestore(&iommu->register_lock, flag);
1272 dmar_fault_do_one(iommu, type, fault_reason,
1273 source_id, guest_addr);
1275 fault_index++;
1276 if (fault_index >= cap_num_fault_regs(iommu->cap))
1277 fault_index = 0;
1278 spin_lock_irqsave(&iommu->register_lock, flag);
1280 clear_rest:
1281 /* clear all the other faults */
1282 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1283 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1285 spin_unlock_irqrestore(&iommu->register_lock, flag);
1286 return IRQ_HANDLED;
1289 int dmar_set_interrupt(struct intel_iommu *iommu)
1291 int irq, ret;
1294 * Check if the fault interrupt is already initialized.
1296 if (iommu->irq)
1297 return 0;
1299 irq = create_irq();
1300 if (!irq) {
1301 printk(KERN_ERR "IOMMU: no free vectors\n");
1302 return -EINVAL;
1305 set_irq_data(irq, iommu);
1306 iommu->irq = irq;
1308 ret = arch_setup_dmar_msi(irq);
1309 if (ret) {
1310 set_irq_data(irq, NULL);
1311 iommu->irq = 0;
1312 destroy_irq(irq);
1313 return ret;
1316 ret = request_irq(irq, dmar_fault, 0, iommu->name, iommu);
1317 if (ret)
1318 printk(KERN_ERR "IOMMU: can't request irq\n");
1319 return ret;
1322 int __init enable_drhd_fault_handling(void)
1324 struct dmar_drhd_unit *drhd;
1327 * Enable fault control interrupt.
1329 for_each_drhd_unit(drhd) {
1330 int ret;
1331 struct intel_iommu *iommu = drhd->iommu;
1332 ret = dmar_set_interrupt(iommu);
1334 if (ret) {
1335 printk(KERN_ERR "DRHD %Lx: failed to enable fault, "
1336 " interrupt, ret %d\n",
1337 (unsigned long long)drhd->reg_base_addr, ret);
1338 return -1;
1342 return 0;
1346 * Re-enable Queued Invalidation interface.
1348 int dmar_reenable_qi(struct intel_iommu *iommu)
1350 if (!ecap_qis(iommu->ecap))
1351 return -ENOENT;
1353 if (!iommu->qi)
1354 return -ENOENT;
1357 * First disable queued invalidation.
1359 dmar_disable_qi(iommu);
1361 * Then enable queued invalidation again. Since there is no pending
1362 * invalidation requests now, it's safe to re-enable queued
1363 * invalidation.
1365 __dmar_enable_qi(iommu);
1367 return 0;
1371 * Check interrupt remapping support in DMAR table description.
1373 int dmar_ir_support(void)
1375 struct acpi_table_dmar *dmar;
1376 dmar = (struct acpi_table_dmar *)dmar_tbl;
1377 return dmar->flags & 0x1;