rt2x00: Pass BlockAck and BlackAckReq frames to mac80211 in monitor mode
[pohmelfs.git] / net / wireless / reg.c
blob0e67016ce78f23525a0e8fdba5458a8ec826a0f7
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 /**
13 * DOC: Wireless regulatory infrastructure
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
38 #include <linux/kernel.h>
39 #include <linux/export.h>
40 #include <linux/slab.h>
41 #include <linux/list.h>
42 #include <linux/random.h>
43 #include <linux/ctype.h>
44 #include <linux/nl80211.h>
45 #include <linux/platform_device.h>
46 #include <linux/moduleparam.h>
47 #include <net/cfg80211.h>
48 #include "core.h"
49 #include "reg.h"
50 #include "regdb.h"
51 #include "nl80211.h"
53 #ifdef CONFIG_CFG80211_REG_DEBUG
54 #define REG_DBG_PRINT(format, args...) \
55 printk(KERN_DEBUG pr_fmt(format), ##args)
56 #else
57 #define REG_DBG_PRINT(args...)
58 #endif
60 /* Receipt of information from last regulatory request */
61 static struct regulatory_request *last_request;
63 /* To trigger userspace events */
64 static struct platform_device *reg_pdev;
66 static struct device_type reg_device_type = {
67 .uevent = reg_device_uevent,
71 * Central wireless core regulatory domains, we only need two,
72 * the current one and a world regulatory domain in case we have no
73 * information to give us an alpha2
75 const struct ieee80211_regdomain *cfg80211_regdomain;
78 * Protects static reg.c components:
79 * - cfg80211_world_regdom
80 * - cfg80211_regdom
81 * - last_request
83 static DEFINE_MUTEX(reg_mutex);
85 static inline void assert_reg_lock(void)
87 lockdep_assert_held(&reg_mutex);
90 /* Used to queue up regulatory hints */
91 static LIST_HEAD(reg_requests_list);
92 static spinlock_t reg_requests_lock;
94 /* Used to queue up beacon hints for review */
95 static LIST_HEAD(reg_pending_beacons);
96 static spinlock_t reg_pending_beacons_lock;
98 /* Used to keep track of processed beacon hints */
99 static LIST_HEAD(reg_beacon_list);
101 struct reg_beacon {
102 struct list_head list;
103 struct ieee80211_channel chan;
106 static void reg_todo(struct work_struct *work);
107 static DECLARE_WORK(reg_work, reg_todo);
109 static void reg_timeout_work(struct work_struct *work);
110 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
112 /* We keep a static world regulatory domain in case of the absence of CRDA */
113 static const struct ieee80211_regdomain world_regdom = {
114 .n_reg_rules = 5,
115 .alpha2 = "00",
116 .reg_rules = {
117 /* IEEE 802.11b/g, channels 1..11 */
118 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
119 /* IEEE 802.11b/g, channels 12..13. No HT40
120 * channel fits here. */
121 REG_RULE(2467-10, 2472+10, 20, 6, 20,
122 NL80211_RRF_PASSIVE_SCAN |
123 NL80211_RRF_NO_IBSS),
124 /* IEEE 802.11 channel 14 - Only JP enables
125 * this and for 802.11b only */
126 REG_RULE(2484-10, 2484+10, 20, 6, 20,
127 NL80211_RRF_PASSIVE_SCAN |
128 NL80211_RRF_NO_IBSS |
129 NL80211_RRF_NO_OFDM),
130 /* IEEE 802.11a, channel 36..48 */
131 REG_RULE(5180-10, 5240+10, 40, 6, 20,
132 NL80211_RRF_PASSIVE_SCAN |
133 NL80211_RRF_NO_IBSS),
135 /* NB: 5260 MHz - 5700 MHz requies DFS */
137 /* IEEE 802.11a, channel 149..165 */
138 REG_RULE(5745-10, 5825+10, 40, 6, 20,
139 NL80211_RRF_PASSIVE_SCAN |
140 NL80211_RRF_NO_IBSS),
144 static const struct ieee80211_regdomain *cfg80211_world_regdom =
145 &world_regdom;
147 static char *ieee80211_regdom = "00";
148 static char user_alpha2[2];
150 module_param(ieee80211_regdom, charp, 0444);
151 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
153 static void reset_regdomains(void)
155 /* avoid freeing static information or freeing something twice */
156 if (cfg80211_regdomain == cfg80211_world_regdom)
157 cfg80211_regdomain = NULL;
158 if (cfg80211_world_regdom == &world_regdom)
159 cfg80211_world_regdom = NULL;
160 if (cfg80211_regdomain == &world_regdom)
161 cfg80211_regdomain = NULL;
163 kfree(cfg80211_regdomain);
164 kfree(cfg80211_world_regdom);
166 cfg80211_world_regdom = &world_regdom;
167 cfg80211_regdomain = NULL;
171 * Dynamic world regulatory domain requested by the wireless
172 * core upon initialization
174 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
176 BUG_ON(!last_request);
178 reset_regdomains();
180 cfg80211_world_regdom = rd;
181 cfg80211_regdomain = rd;
184 bool is_world_regdom(const char *alpha2)
186 if (!alpha2)
187 return false;
188 if (alpha2[0] == '0' && alpha2[1] == '0')
189 return true;
190 return false;
193 static bool is_alpha2_set(const char *alpha2)
195 if (!alpha2)
196 return false;
197 if (alpha2[0] != 0 && alpha2[1] != 0)
198 return true;
199 return false;
202 static bool is_unknown_alpha2(const char *alpha2)
204 if (!alpha2)
205 return false;
207 * Special case where regulatory domain was built by driver
208 * but a specific alpha2 cannot be determined
210 if (alpha2[0] == '9' && alpha2[1] == '9')
211 return true;
212 return false;
215 static bool is_intersected_alpha2(const char *alpha2)
217 if (!alpha2)
218 return false;
220 * Special case where regulatory domain is the
221 * result of an intersection between two regulatory domain
222 * structures
224 if (alpha2[0] == '9' && alpha2[1] == '8')
225 return true;
226 return false;
229 static bool is_an_alpha2(const char *alpha2)
231 if (!alpha2)
232 return false;
233 if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
234 return true;
235 return false;
238 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
240 if (!alpha2_x || !alpha2_y)
241 return false;
242 if (alpha2_x[0] == alpha2_y[0] &&
243 alpha2_x[1] == alpha2_y[1])
244 return true;
245 return false;
248 static bool regdom_changes(const char *alpha2)
250 assert_cfg80211_lock();
252 if (!cfg80211_regdomain)
253 return true;
254 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
255 return false;
256 return true;
260 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
261 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
262 * has ever been issued.
264 static bool is_user_regdom_saved(void)
266 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
267 return false;
269 /* This would indicate a mistake on the design */
270 if (WARN((!is_world_regdom(user_alpha2) &&
271 !is_an_alpha2(user_alpha2)),
272 "Unexpected user alpha2: %c%c\n",
273 user_alpha2[0],
274 user_alpha2[1]))
275 return false;
277 return true;
280 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
281 const struct ieee80211_regdomain *src_regd)
283 struct ieee80211_regdomain *regd;
284 int size_of_regd = 0;
285 unsigned int i;
287 size_of_regd = sizeof(struct ieee80211_regdomain) +
288 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
290 regd = kzalloc(size_of_regd, GFP_KERNEL);
291 if (!regd)
292 return -ENOMEM;
294 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
296 for (i = 0; i < src_regd->n_reg_rules; i++)
297 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
298 sizeof(struct ieee80211_reg_rule));
300 *dst_regd = regd;
301 return 0;
304 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
305 struct reg_regdb_search_request {
306 char alpha2[2];
307 struct list_head list;
310 static LIST_HEAD(reg_regdb_search_list);
311 static DEFINE_MUTEX(reg_regdb_search_mutex);
313 static void reg_regdb_search(struct work_struct *work)
315 struct reg_regdb_search_request *request;
316 const struct ieee80211_regdomain *curdom, *regdom;
317 int i, r;
319 mutex_lock(&reg_regdb_search_mutex);
320 while (!list_empty(&reg_regdb_search_list)) {
321 request = list_first_entry(&reg_regdb_search_list,
322 struct reg_regdb_search_request,
323 list);
324 list_del(&request->list);
326 for (i=0; i<reg_regdb_size; i++) {
327 curdom = reg_regdb[i];
329 if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
330 r = reg_copy_regd(&regdom, curdom);
331 if (r)
332 break;
333 mutex_lock(&cfg80211_mutex);
334 set_regdom(regdom);
335 mutex_unlock(&cfg80211_mutex);
336 break;
340 kfree(request);
342 mutex_unlock(&reg_regdb_search_mutex);
345 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
347 static void reg_regdb_query(const char *alpha2)
349 struct reg_regdb_search_request *request;
351 if (!alpha2)
352 return;
354 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
355 if (!request)
356 return;
358 memcpy(request->alpha2, alpha2, 2);
360 mutex_lock(&reg_regdb_search_mutex);
361 list_add_tail(&request->list, &reg_regdb_search_list);
362 mutex_unlock(&reg_regdb_search_mutex);
364 schedule_work(&reg_regdb_work);
366 #else
367 static inline void reg_regdb_query(const char *alpha2) {}
368 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
371 * This lets us keep regulatory code which is updated on a regulatory
372 * basis in userspace. Country information is filled in by
373 * reg_device_uevent
375 static int call_crda(const char *alpha2)
377 if (!is_world_regdom((char *) alpha2))
378 pr_info("Calling CRDA for country: %c%c\n",
379 alpha2[0], alpha2[1]);
380 else
381 pr_info("Calling CRDA to update world regulatory domain\n");
383 /* query internal regulatory database (if it exists) */
384 reg_regdb_query(alpha2);
386 return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
389 /* Used by nl80211 before kmalloc'ing our regulatory domain */
390 bool reg_is_valid_request(const char *alpha2)
392 assert_cfg80211_lock();
394 if (!last_request)
395 return false;
397 return alpha2_equal(last_request->alpha2, alpha2);
400 /* Sanity check on a regulatory rule */
401 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
403 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
404 u32 freq_diff;
406 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
407 return false;
409 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
410 return false;
412 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
414 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
415 freq_range->max_bandwidth_khz > freq_diff)
416 return false;
418 return true;
421 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
423 const struct ieee80211_reg_rule *reg_rule = NULL;
424 unsigned int i;
426 if (!rd->n_reg_rules)
427 return false;
429 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
430 return false;
432 for (i = 0; i < rd->n_reg_rules; i++) {
433 reg_rule = &rd->reg_rules[i];
434 if (!is_valid_reg_rule(reg_rule))
435 return false;
438 return true;
441 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
442 u32 center_freq_khz,
443 u32 bw_khz)
445 u32 start_freq_khz, end_freq_khz;
447 start_freq_khz = center_freq_khz - (bw_khz/2);
448 end_freq_khz = center_freq_khz + (bw_khz/2);
450 if (start_freq_khz >= freq_range->start_freq_khz &&
451 end_freq_khz <= freq_range->end_freq_khz)
452 return true;
454 return false;
458 * freq_in_rule_band - tells us if a frequency is in a frequency band
459 * @freq_range: frequency rule we want to query
460 * @freq_khz: frequency we are inquiring about
462 * This lets us know if a specific frequency rule is or is not relevant to
463 * a specific frequency's band. Bands are device specific and artificial
464 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
465 * safe for now to assume that a frequency rule should not be part of a
466 * frequency's band if the start freq or end freq are off by more than 2 GHz.
467 * This resolution can be lowered and should be considered as we add
468 * regulatory rule support for other "bands".
470 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
471 u32 freq_khz)
473 #define ONE_GHZ_IN_KHZ 1000000
474 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
475 return true;
476 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
477 return true;
478 return false;
479 #undef ONE_GHZ_IN_KHZ
483 * Helper for regdom_intersect(), this does the real
484 * mathematical intersection fun
486 static int reg_rules_intersect(
487 const struct ieee80211_reg_rule *rule1,
488 const struct ieee80211_reg_rule *rule2,
489 struct ieee80211_reg_rule *intersected_rule)
491 const struct ieee80211_freq_range *freq_range1, *freq_range2;
492 struct ieee80211_freq_range *freq_range;
493 const struct ieee80211_power_rule *power_rule1, *power_rule2;
494 struct ieee80211_power_rule *power_rule;
495 u32 freq_diff;
497 freq_range1 = &rule1->freq_range;
498 freq_range2 = &rule2->freq_range;
499 freq_range = &intersected_rule->freq_range;
501 power_rule1 = &rule1->power_rule;
502 power_rule2 = &rule2->power_rule;
503 power_rule = &intersected_rule->power_rule;
505 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
506 freq_range2->start_freq_khz);
507 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
508 freq_range2->end_freq_khz);
509 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
510 freq_range2->max_bandwidth_khz);
512 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
513 if (freq_range->max_bandwidth_khz > freq_diff)
514 freq_range->max_bandwidth_khz = freq_diff;
516 power_rule->max_eirp = min(power_rule1->max_eirp,
517 power_rule2->max_eirp);
518 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
519 power_rule2->max_antenna_gain);
521 intersected_rule->flags = (rule1->flags | rule2->flags);
523 if (!is_valid_reg_rule(intersected_rule))
524 return -EINVAL;
526 return 0;
530 * regdom_intersect - do the intersection between two regulatory domains
531 * @rd1: first regulatory domain
532 * @rd2: second regulatory domain
534 * Use this function to get the intersection between two regulatory domains.
535 * Once completed we will mark the alpha2 for the rd as intersected, "98",
536 * as no one single alpha2 can represent this regulatory domain.
538 * Returns a pointer to the regulatory domain structure which will hold the
539 * resulting intersection of rules between rd1 and rd2. We will
540 * kzalloc() this structure for you.
542 static struct ieee80211_regdomain *regdom_intersect(
543 const struct ieee80211_regdomain *rd1,
544 const struct ieee80211_regdomain *rd2)
546 int r, size_of_regd;
547 unsigned int x, y;
548 unsigned int num_rules = 0, rule_idx = 0;
549 const struct ieee80211_reg_rule *rule1, *rule2;
550 struct ieee80211_reg_rule *intersected_rule;
551 struct ieee80211_regdomain *rd;
552 /* This is just a dummy holder to help us count */
553 struct ieee80211_reg_rule irule;
555 /* Uses the stack temporarily for counter arithmetic */
556 intersected_rule = &irule;
558 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
560 if (!rd1 || !rd2)
561 return NULL;
564 * First we get a count of the rules we'll need, then we actually
565 * build them. This is to so we can malloc() and free() a
566 * regdomain once. The reason we use reg_rules_intersect() here
567 * is it will return -EINVAL if the rule computed makes no sense.
568 * All rules that do check out OK are valid.
571 for (x = 0; x < rd1->n_reg_rules; x++) {
572 rule1 = &rd1->reg_rules[x];
573 for (y = 0; y < rd2->n_reg_rules; y++) {
574 rule2 = &rd2->reg_rules[y];
575 if (!reg_rules_intersect(rule1, rule2,
576 intersected_rule))
577 num_rules++;
578 memset(intersected_rule, 0,
579 sizeof(struct ieee80211_reg_rule));
583 if (!num_rules)
584 return NULL;
586 size_of_regd = sizeof(struct ieee80211_regdomain) +
587 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
589 rd = kzalloc(size_of_regd, GFP_KERNEL);
590 if (!rd)
591 return NULL;
593 for (x = 0; x < rd1->n_reg_rules; x++) {
594 rule1 = &rd1->reg_rules[x];
595 for (y = 0; y < rd2->n_reg_rules; y++) {
596 rule2 = &rd2->reg_rules[y];
598 * This time around instead of using the stack lets
599 * write to the target rule directly saving ourselves
600 * a memcpy()
602 intersected_rule = &rd->reg_rules[rule_idx];
603 r = reg_rules_intersect(rule1, rule2,
604 intersected_rule);
606 * No need to memset here the intersected rule here as
607 * we're not using the stack anymore
609 if (r)
610 continue;
611 rule_idx++;
615 if (rule_idx != num_rules) {
616 kfree(rd);
617 return NULL;
620 rd->n_reg_rules = num_rules;
621 rd->alpha2[0] = '9';
622 rd->alpha2[1] = '8';
624 return rd;
628 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
629 * want to just have the channel structure use these
631 static u32 map_regdom_flags(u32 rd_flags)
633 u32 channel_flags = 0;
634 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
635 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
636 if (rd_flags & NL80211_RRF_NO_IBSS)
637 channel_flags |= IEEE80211_CHAN_NO_IBSS;
638 if (rd_flags & NL80211_RRF_DFS)
639 channel_flags |= IEEE80211_CHAN_RADAR;
640 return channel_flags;
643 static int freq_reg_info_regd(struct wiphy *wiphy,
644 u32 center_freq,
645 u32 desired_bw_khz,
646 const struct ieee80211_reg_rule **reg_rule,
647 const struct ieee80211_regdomain *custom_regd)
649 int i;
650 bool band_rule_found = false;
651 const struct ieee80211_regdomain *regd;
652 bool bw_fits = false;
654 if (!desired_bw_khz)
655 desired_bw_khz = MHZ_TO_KHZ(20);
657 regd = custom_regd ? custom_regd : cfg80211_regdomain;
660 * Follow the driver's regulatory domain, if present, unless a country
661 * IE has been processed or a user wants to help complaince further
663 if (!custom_regd &&
664 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
665 last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
666 wiphy->regd)
667 regd = wiphy->regd;
669 if (!regd)
670 return -EINVAL;
672 for (i = 0; i < regd->n_reg_rules; i++) {
673 const struct ieee80211_reg_rule *rr;
674 const struct ieee80211_freq_range *fr = NULL;
676 rr = &regd->reg_rules[i];
677 fr = &rr->freq_range;
680 * We only need to know if one frequency rule was
681 * was in center_freq's band, that's enough, so lets
682 * not overwrite it once found
684 if (!band_rule_found)
685 band_rule_found = freq_in_rule_band(fr, center_freq);
687 bw_fits = reg_does_bw_fit(fr,
688 center_freq,
689 desired_bw_khz);
691 if (band_rule_found && bw_fits) {
692 *reg_rule = rr;
693 return 0;
697 if (!band_rule_found)
698 return -ERANGE;
700 return -EINVAL;
703 int freq_reg_info(struct wiphy *wiphy,
704 u32 center_freq,
705 u32 desired_bw_khz,
706 const struct ieee80211_reg_rule **reg_rule)
708 assert_cfg80211_lock();
709 return freq_reg_info_regd(wiphy,
710 center_freq,
711 desired_bw_khz,
712 reg_rule,
713 NULL);
715 EXPORT_SYMBOL(freq_reg_info);
717 #ifdef CONFIG_CFG80211_REG_DEBUG
718 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
720 switch (initiator) {
721 case NL80211_REGDOM_SET_BY_CORE:
722 return "Set by core";
723 case NL80211_REGDOM_SET_BY_USER:
724 return "Set by user";
725 case NL80211_REGDOM_SET_BY_DRIVER:
726 return "Set by driver";
727 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
728 return "Set by country IE";
729 default:
730 WARN_ON(1);
731 return "Set by bug";
735 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
736 u32 desired_bw_khz,
737 const struct ieee80211_reg_rule *reg_rule)
739 const struct ieee80211_power_rule *power_rule;
740 const struct ieee80211_freq_range *freq_range;
741 char max_antenna_gain[32];
743 power_rule = &reg_rule->power_rule;
744 freq_range = &reg_rule->freq_range;
746 if (!power_rule->max_antenna_gain)
747 snprintf(max_antenna_gain, 32, "N/A");
748 else
749 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
751 REG_DBG_PRINT("Updating information on frequency %d MHz "
752 "for a %d MHz width channel with regulatory rule:\n",
753 chan->center_freq,
754 KHZ_TO_MHZ(desired_bw_khz));
756 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
757 freq_range->start_freq_khz,
758 freq_range->end_freq_khz,
759 freq_range->max_bandwidth_khz,
760 max_antenna_gain,
761 power_rule->max_eirp);
763 #else
764 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
765 u32 desired_bw_khz,
766 const struct ieee80211_reg_rule *reg_rule)
768 return;
770 #endif
773 * Note that right now we assume the desired channel bandwidth
774 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
775 * per channel, the primary and the extension channel). To support
776 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
777 * new ieee80211_channel.target_bw and re run the regulatory check
778 * on the wiphy with the target_bw specified. Then we can simply use
779 * that below for the desired_bw_khz below.
781 static void handle_channel(struct wiphy *wiphy,
782 enum nl80211_reg_initiator initiator,
783 enum ieee80211_band band,
784 unsigned int chan_idx)
786 int r;
787 u32 flags, bw_flags = 0;
788 u32 desired_bw_khz = MHZ_TO_KHZ(20);
789 const struct ieee80211_reg_rule *reg_rule = NULL;
790 const struct ieee80211_power_rule *power_rule = NULL;
791 const struct ieee80211_freq_range *freq_range = NULL;
792 struct ieee80211_supported_band *sband;
793 struct ieee80211_channel *chan;
794 struct wiphy *request_wiphy = NULL;
796 assert_cfg80211_lock();
798 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
800 sband = wiphy->bands[band];
801 BUG_ON(chan_idx >= sband->n_channels);
802 chan = &sband->channels[chan_idx];
804 flags = chan->orig_flags;
806 r = freq_reg_info(wiphy,
807 MHZ_TO_KHZ(chan->center_freq),
808 desired_bw_khz,
809 &reg_rule);
811 if (r) {
813 * We will disable all channels that do not match our
814 * received regulatory rule unless the hint is coming
815 * from a Country IE and the Country IE had no information
816 * about a band. The IEEE 802.11 spec allows for an AP
817 * to send only a subset of the regulatory rules allowed,
818 * so an AP in the US that only supports 2.4 GHz may only send
819 * a country IE with information for the 2.4 GHz band
820 * while 5 GHz is still supported.
822 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
823 r == -ERANGE)
824 return;
826 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
827 chan->flags = IEEE80211_CHAN_DISABLED;
828 return;
831 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
833 power_rule = &reg_rule->power_rule;
834 freq_range = &reg_rule->freq_range;
836 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
837 bw_flags = IEEE80211_CHAN_NO_HT40;
839 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
840 request_wiphy && request_wiphy == wiphy &&
841 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
843 * This guarantees the driver's requested regulatory domain
844 * will always be used as a base for further regulatory
845 * settings
847 chan->flags = chan->orig_flags =
848 map_regdom_flags(reg_rule->flags) | bw_flags;
849 chan->max_antenna_gain = chan->orig_mag =
850 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
851 chan->max_power = chan->orig_mpwr =
852 (int) MBM_TO_DBM(power_rule->max_eirp);
853 return;
856 chan->beacon_found = false;
857 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
858 chan->max_antenna_gain = min(chan->orig_mag,
859 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
860 if (chan->orig_mpwr)
861 chan->max_power = min(chan->orig_mpwr,
862 (int) MBM_TO_DBM(power_rule->max_eirp));
863 else
864 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
867 static void handle_band(struct wiphy *wiphy,
868 enum ieee80211_band band,
869 enum nl80211_reg_initiator initiator)
871 unsigned int i;
872 struct ieee80211_supported_band *sband;
874 BUG_ON(!wiphy->bands[band]);
875 sband = wiphy->bands[band];
877 for (i = 0; i < sband->n_channels; i++)
878 handle_channel(wiphy, initiator, band, i);
881 static bool ignore_reg_update(struct wiphy *wiphy,
882 enum nl80211_reg_initiator initiator)
884 if (!last_request) {
885 REG_DBG_PRINT("Ignoring regulatory request %s since "
886 "last_request is not set\n",
887 reg_initiator_name(initiator));
888 return true;
891 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
892 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
893 REG_DBG_PRINT("Ignoring regulatory request %s "
894 "since the driver uses its own custom "
895 "regulatory domain\n",
896 reg_initiator_name(initiator));
897 return true;
901 * wiphy->regd will be set once the device has its own
902 * desired regulatory domain set
904 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
905 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
906 !is_world_regdom(last_request->alpha2)) {
907 REG_DBG_PRINT("Ignoring regulatory request %s "
908 "since the driver requires its own regulatory "
909 "domain to be set first\n",
910 reg_initiator_name(initiator));
911 return true;
914 return false;
917 static void handle_reg_beacon(struct wiphy *wiphy,
918 unsigned int chan_idx,
919 struct reg_beacon *reg_beacon)
921 struct ieee80211_supported_band *sband;
922 struct ieee80211_channel *chan;
923 bool channel_changed = false;
924 struct ieee80211_channel chan_before;
926 assert_cfg80211_lock();
928 sband = wiphy->bands[reg_beacon->chan.band];
929 chan = &sband->channels[chan_idx];
931 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
932 return;
934 if (chan->beacon_found)
935 return;
937 chan->beacon_found = true;
939 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
940 return;
942 chan_before.center_freq = chan->center_freq;
943 chan_before.flags = chan->flags;
945 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
946 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
947 channel_changed = true;
950 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
951 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
952 channel_changed = true;
955 if (channel_changed)
956 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
960 * Called when a scan on a wiphy finds a beacon on
961 * new channel
963 static void wiphy_update_new_beacon(struct wiphy *wiphy,
964 struct reg_beacon *reg_beacon)
966 unsigned int i;
967 struct ieee80211_supported_band *sband;
969 assert_cfg80211_lock();
971 if (!wiphy->bands[reg_beacon->chan.band])
972 return;
974 sband = wiphy->bands[reg_beacon->chan.band];
976 for (i = 0; i < sband->n_channels; i++)
977 handle_reg_beacon(wiphy, i, reg_beacon);
981 * Called upon reg changes or a new wiphy is added
983 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
985 unsigned int i;
986 struct ieee80211_supported_band *sband;
987 struct reg_beacon *reg_beacon;
989 assert_cfg80211_lock();
991 if (list_empty(&reg_beacon_list))
992 return;
994 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
995 if (!wiphy->bands[reg_beacon->chan.band])
996 continue;
997 sband = wiphy->bands[reg_beacon->chan.band];
998 for (i = 0; i < sband->n_channels; i++)
999 handle_reg_beacon(wiphy, i, reg_beacon);
1003 static bool reg_is_world_roaming(struct wiphy *wiphy)
1005 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1006 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1007 return true;
1008 if (last_request &&
1009 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1010 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1011 return true;
1012 return false;
1015 /* Reap the advantages of previously found beacons */
1016 static void reg_process_beacons(struct wiphy *wiphy)
1019 * Means we are just firing up cfg80211, so no beacons would
1020 * have been processed yet.
1022 if (!last_request)
1023 return;
1024 if (!reg_is_world_roaming(wiphy))
1025 return;
1026 wiphy_update_beacon_reg(wiphy);
1029 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1031 if (!chan)
1032 return true;
1033 if (chan->flags & IEEE80211_CHAN_DISABLED)
1034 return true;
1035 /* This would happen when regulatory rules disallow HT40 completely */
1036 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1037 return true;
1038 return false;
1041 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1042 enum ieee80211_band band,
1043 unsigned int chan_idx)
1045 struct ieee80211_supported_band *sband;
1046 struct ieee80211_channel *channel;
1047 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1048 unsigned int i;
1050 assert_cfg80211_lock();
1052 sband = wiphy->bands[band];
1053 BUG_ON(chan_idx >= sband->n_channels);
1054 channel = &sband->channels[chan_idx];
1056 if (is_ht40_not_allowed(channel)) {
1057 channel->flags |= IEEE80211_CHAN_NO_HT40;
1058 return;
1062 * We need to ensure the extension channels exist to
1063 * be able to use HT40- or HT40+, this finds them (or not)
1065 for (i = 0; i < sband->n_channels; i++) {
1066 struct ieee80211_channel *c = &sband->channels[i];
1067 if (c->center_freq == (channel->center_freq - 20))
1068 channel_before = c;
1069 if (c->center_freq == (channel->center_freq + 20))
1070 channel_after = c;
1074 * Please note that this assumes target bandwidth is 20 MHz,
1075 * if that ever changes we also need to change the below logic
1076 * to include that as well.
1078 if (is_ht40_not_allowed(channel_before))
1079 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1080 else
1081 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1083 if (is_ht40_not_allowed(channel_after))
1084 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1085 else
1086 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1089 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1090 enum ieee80211_band band)
1092 unsigned int i;
1093 struct ieee80211_supported_band *sband;
1095 BUG_ON(!wiphy->bands[band]);
1096 sband = wiphy->bands[band];
1098 for (i = 0; i < sband->n_channels; i++)
1099 reg_process_ht_flags_channel(wiphy, band, i);
1102 static void reg_process_ht_flags(struct wiphy *wiphy)
1104 enum ieee80211_band band;
1106 if (!wiphy)
1107 return;
1109 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1110 if (wiphy->bands[band])
1111 reg_process_ht_flags_band(wiphy, band);
1116 static void wiphy_update_regulatory(struct wiphy *wiphy,
1117 enum nl80211_reg_initiator initiator)
1119 enum ieee80211_band band;
1121 assert_reg_lock();
1123 if (ignore_reg_update(wiphy, initiator))
1124 return;
1126 last_request->dfs_region = cfg80211_regdomain->dfs_region;
1128 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1129 if (wiphy->bands[band])
1130 handle_band(wiphy, band, initiator);
1133 reg_process_beacons(wiphy);
1134 reg_process_ht_flags(wiphy);
1135 if (wiphy->reg_notifier)
1136 wiphy->reg_notifier(wiphy, last_request);
1139 void regulatory_update(struct wiphy *wiphy,
1140 enum nl80211_reg_initiator setby)
1142 mutex_lock(&reg_mutex);
1143 wiphy_update_regulatory(wiphy, setby);
1144 mutex_unlock(&reg_mutex);
1147 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1149 struct cfg80211_registered_device *rdev;
1151 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1152 wiphy_update_regulatory(&rdev->wiphy, initiator);
1155 static void handle_channel_custom(struct wiphy *wiphy,
1156 enum ieee80211_band band,
1157 unsigned int chan_idx,
1158 const struct ieee80211_regdomain *regd)
1160 int r;
1161 u32 desired_bw_khz = MHZ_TO_KHZ(20);
1162 u32 bw_flags = 0;
1163 const struct ieee80211_reg_rule *reg_rule = NULL;
1164 const struct ieee80211_power_rule *power_rule = NULL;
1165 const struct ieee80211_freq_range *freq_range = NULL;
1166 struct ieee80211_supported_band *sband;
1167 struct ieee80211_channel *chan;
1169 assert_reg_lock();
1171 sband = wiphy->bands[band];
1172 BUG_ON(chan_idx >= sband->n_channels);
1173 chan = &sband->channels[chan_idx];
1175 r = freq_reg_info_regd(wiphy,
1176 MHZ_TO_KHZ(chan->center_freq),
1177 desired_bw_khz,
1178 &reg_rule,
1179 regd);
1181 if (r) {
1182 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1183 "regd has no rule that fits a %d MHz "
1184 "wide channel\n",
1185 chan->center_freq,
1186 KHZ_TO_MHZ(desired_bw_khz));
1187 chan->flags = IEEE80211_CHAN_DISABLED;
1188 return;
1191 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1193 power_rule = &reg_rule->power_rule;
1194 freq_range = &reg_rule->freq_range;
1196 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1197 bw_flags = IEEE80211_CHAN_NO_HT40;
1199 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1200 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1201 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1204 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1205 const struct ieee80211_regdomain *regd)
1207 unsigned int i;
1208 struct ieee80211_supported_band *sband;
1210 BUG_ON(!wiphy->bands[band]);
1211 sband = wiphy->bands[band];
1213 for (i = 0; i < sband->n_channels; i++)
1214 handle_channel_custom(wiphy, band, i, regd);
1217 /* Used by drivers prior to wiphy registration */
1218 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1219 const struct ieee80211_regdomain *regd)
1221 enum ieee80211_band band;
1222 unsigned int bands_set = 0;
1224 mutex_lock(&reg_mutex);
1225 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1226 if (!wiphy->bands[band])
1227 continue;
1228 handle_band_custom(wiphy, band, regd);
1229 bands_set++;
1231 mutex_unlock(&reg_mutex);
1234 * no point in calling this if it won't have any effect
1235 * on your device's supportd bands.
1237 WARN_ON(!bands_set);
1239 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1242 * Return value which can be used by ignore_request() to indicate
1243 * it has been determined we should intersect two regulatory domains
1245 #define REG_INTERSECT 1
1247 /* This has the logic which determines when a new request
1248 * should be ignored. */
1249 static int ignore_request(struct wiphy *wiphy,
1250 struct regulatory_request *pending_request)
1252 struct wiphy *last_wiphy = NULL;
1254 assert_cfg80211_lock();
1256 /* All initial requests are respected */
1257 if (!last_request)
1258 return 0;
1260 switch (pending_request->initiator) {
1261 case NL80211_REGDOM_SET_BY_CORE:
1262 return 0;
1263 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1265 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1267 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1268 return -EINVAL;
1269 if (last_request->initiator ==
1270 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1271 if (last_wiphy != wiphy) {
1273 * Two cards with two APs claiming different
1274 * Country IE alpha2s. We could
1275 * intersect them, but that seems unlikely
1276 * to be correct. Reject second one for now.
1278 if (regdom_changes(pending_request->alpha2))
1279 return -EOPNOTSUPP;
1280 return -EALREADY;
1283 * Two consecutive Country IE hints on the same wiphy.
1284 * This should be picked up early by the driver/stack
1286 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1287 return 0;
1288 return -EALREADY;
1290 return 0;
1291 case NL80211_REGDOM_SET_BY_DRIVER:
1292 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1293 if (regdom_changes(pending_request->alpha2))
1294 return 0;
1295 return -EALREADY;
1299 * This would happen if you unplug and plug your card
1300 * back in or if you add a new device for which the previously
1301 * loaded card also agrees on the regulatory domain.
1303 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1304 !regdom_changes(pending_request->alpha2))
1305 return -EALREADY;
1307 return REG_INTERSECT;
1308 case NL80211_REGDOM_SET_BY_USER:
1309 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1310 return REG_INTERSECT;
1312 * If the user knows better the user should set the regdom
1313 * to their country before the IE is picked up
1315 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1316 last_request->intersect)
1317 return -EOPNOTSUPP;
1319 * Process user requests only after previous user/driver/core
1320 * requests have been processed
1322 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1323 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1324 last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1325 if (regdom_changes(last_request->alpha2))
1326 return -EAGAIN;
1329 if (!regdom_changes(pending_request->alpha2))
1330 return -EALREADY;
1332 return 0;
1335 return -EINVAL;
1338 static void reg_set_request_processed(void)
1340 bool need_more_processing = false;
1342 last_request->processed = true;
1344 spin_lock(&reg_requests_lock);
1345 if (!list_empty(&reg_requests_list))
1346 need_more_processing = true;
1347 spin_unlock(&reg_requests_lock);
1349 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1350 cancel_delayed_work_sync(&reg_timeout);
1352 if (need_more_processing)
1353 schedule_work(&reg_work);
1357 * __regulatory_hint - hint to the wireless core a regulatory domain
1358 * @wiphy: if the hint comes from country information from an AP, this
1359 * is required to be set to the wiphy that received the information
1360 * @pending_request: the regulatory request currently being processed
1362 * The Wireless subsystem can use this function to hint to the wireless core
1363 * what it believes should be the current regulatory domain.
1365 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1366 * already been set or other standard error codes.
1368 * Caller must hold &cfg80211_mutex and &reg_mutex
1370 static int __regulatory_hint(struct wiphy *wiphy,
1371 struct regulatory_request *pending_request)
1373 bool intersect = false;
1374 int r = 0;
1376 assert_cfg80211_lock();
1378 r = ignore_request(wiphy, pending_request);
1380 if (r == REG_INTERSECT) {
1381 if (pending_request->initiator ==
1382 NL80211_REGDOM_SET_BY_DRIVER) {
1383 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1384 if (r) {
1385 kfree(pending_request);
1386 return r;
1389 intersect = true;
1390 } else if (r) {
1392 * If the regulatory domain being requested by the
1393 * driver has already been set just copy it to the
1394 * wiphy
1396 if (r == -EALREADY &&
1397 pending_request->initiator ==
1398 NL80211_REGDOM_SET_BY_DRIVER) {
1399 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1400 if (r) {
1401 kfree(pending_request);
1402 return r;
1404 r = -EALREADY;
1405 goto new_request;
1407 kfree(pending_request);
1408 return r;
1411 new_request:
1412 kfree(last_request);
1414 last_request = pending_request;
1415 last_request->intersect = intersect;
1417 pending_request = NULL;
1419 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1420 user_alpha2[0] = last_request->alpha2[0];
1421 user_alpha2[1] = last_request->alpha2[1];
1424 /* When r == REG_INTERSECT we do need to call CRDA */
1425 if (r < 0) {
1427 * Since CRDA will not be called in this case as we already
1428 * have applied the requested regulatory domain before we just
1429 * inform userspace we have processed the request
1431 if (r == -EALREADY) {
1432 nl80211_send_reg_change_event(last_request);
1433 reg_set_request_processed();
1435 return r;
1438 return call_crda(last_request->alpha2);
1441 /* This processes *all* regulatory hints */
1442 static void reg_process_hint(struct regulatory_request *reg_request)
1444 int r = 0;
1445 struct wiphy *wiphy = NULL;
1446 enum nl80211_reg_initiator initiator = reg_request->initiator;
1448 BUG_ON(!reg_request->alpha2);
1450 if (wiphy_idx_valid(reg_request->wiphy_idx))
1451 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1453 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1454 !wiphy) {
1455 kfree(reg_request);
1456 return;
1459 r = __regulatory_hint(wiphy, reg_request);
1460 /* This is required so that the orig_* parameters are saved */
1461 if (r == -EALREADY && wiphy &&
1462 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1463 wiphy_update_regulatory(wiphy, initiator);
1464 return;
1468 * We only time out user hints, given that they should be the only
1469 * source of bogus requests.
1471 if (r != -EALREADY &&
1472 reg_request->initiator == NL80211_REGDOM_SET_BY_USER)
1473 schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1477 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1478 * Regulatory hints come on a first come first serve basis and we
1479 * must process each one atomically.
1481 static void reg_process_pending_hints(void)
1483 struct regulatory_request *reg_request;
1485 mutex_lock(&cfg80211_mutex);
1486 mutex_lock(&reg_mutex);
1488 /* When last_request->processed becomes true this will be rescheduled */
1489 if (last_request && !last_request->processed) {
1490 REG_DBG_PRINT("Pending regulatory request, waiting "
1491 "for it to be processed...\n");
1492 goto out;
1495 spin_lock(&reg_requests_lock);
1497 if (list_empty(&reg_requests_list)) {
1498 spin_unlock(&reg_requests_lock);
1499 goto out;
1502 reg_request = list_first_entry(&reg_requests_list,
1503 struct regulatory_request,
1504 list);
1505 list_del_init(&reg_request->list);
1507 spin_unlock(&reg_requests_lock);
1509 reg_process_hint(reg_request);
1511 out:
1512 mutex_unlock(&reg_mutex);
1513 mutex_unlock(&cfg80211_mutex);
1516 /* Processes beacon hints -- this has nothing to do with country IEs */
1517 static void reg_process_pending_beacon_hints(void)
1519 struct cfg80211_registered_device *rdev;
1520 struct reg_beacon *pending_beacon, *tmp;
1523 * No need to hold the reg_mutex here as we just touch wiphys
1524 * and do not read or access regulatory variables.
1526 mutex_lock(&cfg80211_mutex);
1528 /* This goes through the _pending_ beacon list */
1529 spin_lock_bh(&reg_pending_beacons_lock);
1531 if (list_empty(&reg_pending_beacons)) {
1532 spin_unlock_bh(&reg_pending_beacons_lock);
1533 goto out;
1536 list_for_each_entry_safe(pending_beacon, tmp,
1537 &reg_pending_beacons, list) {
1539 list_del_init(&pending_beacon->list);
1541 /* Applies the beacon hint to current wiphys */
1542 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1543 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1545 /* Remembers the beacon hint for new wiphys or reg changes */
1546 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1549 spin_unlock_bh(&reg_pending_beacons_lock);
1550 out:
1551 mutex_unlock(&cfg80211_mutex);
1554 static void reg_todo(struct work_struct *work)
1556 reg_process_pending_hints();
1557 reg_process_pending_beacon_hints();
1560 static void queue_regulatory_request(struct regulatory_request *request)
1562 if (isalpha(request->alpha2[0]))
1563 request->alpha2[0] = toupper(request->alpha2[0]);
1564 if (isalpha(request->alpha2[1]))
1565 request->alpha2[1] = toupper(request->alpha2[1]);
1567 spin_lock(&reg_requests_lock);
1568 list_add_tail(&request->list, &reg_requests_list);
1569 spin_unlock(&reg_requests_lock);
1571 schedule_work(&reg_work);
1575 * Core regulatory hint -- happens during cfg80211_init()
1576 * and when we restore regulatory settings.
1578 static int regulatory_hint_core(const char *alpha2)
1580 struct regulatory_request *request;
1582 kfree(last_request);
1583 last_request = NULL;
1585 request = kzalloc(sizeof(struct regulatory_request),
1586 GFP_KERNEL);
1587 if (!request)
1588 return -ENOMEM;
1590 request->alpha2[0] = alpha2[0];
1591 request->alpha2[1] = alpha2[1];
1592 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1594 queue_regulatory_request(request);
1596 return 0;
1599 /* User hints */
1600 int regulatory_hint_user(const char *alpha2)
1602 struct regulatory_request *request;
1604 BUG_ON(!alpha2);
1606 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1607 if (!request)
1608 return -ENOMEM;
1610 request->wiphy_idx = WIPHY_IDX_STALE;
1611 request->alpha2[0] = alpha2[0];
1612 request->alpha2[1] = alpha2[1];
1613 request->initiator = NL80211_REGDOM_SET_BY_USER;
1615 queue_regulatory_request(request);
1617 return 0;
1620 /* Driver hints */
1621 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1623 struct regulatory_request *request;
1625 BUG_ON(!alpha2);
1626 BUG_ON(!wiphy);
1628 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1629 if (!request)
1630 return -ENOMEM;
1632 request->wiphy_idx = get_wiphy_idx(wiphy);
1634 /* Must have registered wiphy first */
1635 BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1637 request->alpha2[0] = alpha2[0];
1638 request->alpha2[1] = alpha2[1];
1639 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1641 queue_regulatory_request(request);
1643 return 0;
1645 EXPORT_SYMBOL(regulatory_hint);
1648 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1649 * therefore cannot iterate over the rdev list here.
1651 void regulatory_hint_11d(struct wiphy *wiphy,
1652 enum ieee80211_band band,
1653 u8 *country_ie,
1654 u8 country_ie_len)
1656 char alpha2[2];
1657 enum environment_cap env = ENVIRON_ANY;
1658 struct regulatory_request *request;
1660 mutex_lock(&reg_mutex);
1662 if (unlikely(!last_request))
1663 goto out;
1665 /* IE len must be evenly divisible by 2 */
1666 if (country_ie_len & 0x01)
1667 goto out;
1669 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1670 goto out;
1672 alpha2[0] = country_ie[0];
1673 alpha2[1] = country_ie[1];
1675 if (country_ie[2] == 'I')
1676 env = ENVIRON_INDOOR;
1677 else if (country_ie[2] == 'O')
1678 env = ENVIRON_OUTDOOR;
1681 * We will run this only upon a successful connection on cfg80211.
1682 * We leave conflict resolution to the workqueue, where can hold
1683 * cfg80211_mutex.
1685 if (likely(last_request->initiator ==
1686 NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1687 wiphy_idx_valid(last_request->wiphy_idx)))
1688 goto out;
1690 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1691 if (!request)
1692 goto out;
1694 request->wiphy_idx = get_wiphy_idx(wiphy);
1695 request->alpha2[0] = alpha2[0];
1696 request->alpha2[1] = alpha2[1];
1697 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1698 request->country_ie_env = env;
1700 mutex_unlock(&reg_mutex);
1702 queue_regulatory_request(request);
1704 return;
1706 out:
1707 mutex_unlock(&reg_mutex);
1710 static void restore_alpha2(char *alpha2, bool reset_user)
1712 /* indicates there is no alpha2 to consider for restoration */
1713 alpha2[0] = '9';
1714 alpha2[1] = '7';
1716 /* The user setting has precedence over the module parameter */
1717 if (is_user_regdom_saved()) {
1718 /* Unless we're asked to ignore it and reset it */
1719 if (reset_user) {
1720 REG_DBG_PRINT("Restoring regulatory settings "
1721 "including user preference\n");
1722 user_alpha2[0] = '9';
1723 user_alpha2[1] = '7';
1726 * If we're ignoring user settings, we still need to
1727 * check the module parameter to ensure we put things
1728 * back as they were for a full restore.
1730 if (!is_world_regdom(ieee80211_regdom)) {
1731 REG_DBG_PRINT("Keeping preference on "
1732 "module parameter ieee80211_regdom: %c%c\n",
1733 ieee80211_regdom[0],
1734 ieee80211_regdom[1]);
1735 alpha2[0] = ieee80211_regdom[0];
1736 alpha2[1] = ieee80211_regdom[1];
1738 } else {
1739 REG_DBG_PRINT("Restoring regulatory settings "
1740 "while preserving user preference for: %c%c\n",
1741 user_alpha2[0],
1742 user_alpha2[1]);
1743 alpha2[0] = user_alpha2[0];
1744 alpha2[1] = user_alpha2[1];
1746 } else if (!is_world_regdom(ieee80211_regdom)) {
1747 REG_DBG_PRINT("Keeping preference on "
1748 "module parameter ieee80211_regdom: %c%c\n",
1749 ieee80211_regdom[0],
1750 ieee80211_regdom[1]);
1751 alpha2[0] = ieee80211_regdom[0];
1752 alpha2[1] = ieee80211_regdom[1];
1753 } else
1754 REG_DBG_PRINT("Restoring regulatory settings\n");
1758 * Restoring regulatory settings involves ingoring any
1759 * possibly stale country IE information and user regulatory
1760 * settings if so desired, this includes any beacon hints
1761 * learned as we could have traveled outside to another country
1762 * after disconnection. To restore regulatory settings we do
1763 * exactly what we did at bootup:
1765 * - send a core regulatory hint
1766 * - send a user regulatory hint if applicable
1768 * Device drivers that send a regulatory hint for a specific country
1769 * keep their own regulatory domain on wiphy->regd so that does does
1770 * not need to be remembered.
1772 static void restore_regulatory_settings(bool reset_user)
1774 char alpha2[2];
1775 struct reg_beacon *reg_beacon, *btmp;
1776 struct regulatory_request *reg_request, *tmp;
1777 LIST_HEAD(tmp_reg_req_list);
1779 mutex_lock(&cfg80211_mutex);
1780 mutex_lock(&reg_mutex);
1782 reset_regdomains();
1783 restore_alpha2(alpha2, reset_user);
1786 * If there's any pending requests we simply
1787 * stash them to a temporary pending queue and
1788 * add then after we've restored regulatory
1789 * settings.
1791 spin_lock(&reg_requests_lock);
1792 if (!list_empty(&reg_requests_list)) {
1793 list_for_each_entry_safe(reg_request, tmp,
1794 &reg_requests_list, list) {
1795 if (reg_request->initiator !=
1796 NL80211_REGDOM_SET_BY_USER)
1797 continue;
1798 list_del(&reg_request->list);
1799 list_add_tail(&reg_request->list, &tmp_reg_req_list);
1802 spin_unlock(&reg_requests_lock);
1804 /* Clear beacon hints */
1805 spin_lock_bh(&reg_pending_beacons_lock);
1806 if (!list_empty(&reg_pending_beacons)) {
1807 list_for_each_entry_safe(reg_beacon, btmp,
1808 &reg_pending_beacons, list) {
1809 list_del(&reg_beacon->list);
1810 kfree(reg_beacon);
1813 spin_unlock_bh(&reg_pending_beacons_lock);
1815 if (!list_empty(&reg_beacon_list)) {
1816 list_for_each_entry_safe(reg_beacon, btmp,
1817 &reg_beacon_list, list) {
1818 list_del(&reg_beacon->list);
1819 kfree(reg_beacon);
1823 /* First restore to the basic regulatory settings */
1824 cfg80211_regdomain = cfg80211_world_regdom;
1826 mutex_unlock(&reg_mutex);
1827 mutex_unlock(&cfg80211_mutex);
1829 regulatory_hint_core(cfg80211_regdomain->alpha2);
1832 * This restores the ieee80211_regdom module parameter
1833 * preference or the last user requested regulatory
1834 * settings, user regulatory settings takes precedence.
1836 if (is_an_alpha2(alpha2))
1837 regulatory_hint_user(user_alpha2);
1839 if (list_empty(&tmp_reg_req_list))
1840 return;
1842 mutex_lock(&cfg80211_mutex);
1843 mutex_lock(&reg_mutex);
1845 spin_lock(&reg_requests_lock);
1846 list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
1847 REG_DBG_PRINT("Adding request for country %c%c back "
1848 "into the queue\n",
1849 reg_request->alpha2[0],
1850 reg_request->alpha2[1]);
1851 list_del(&reg_request->list);
1852 list_add_tail(&reg_request->list, &reg_requests_list);
1854 spin_unlock(&reg_requests_lock);
1856 mutex_unlock(&reg_mutex);
1857 mutex_unlock(&cfg80211_mutex);
1859 REG_DBG_PRINT("Kicking the queue\n");
1861 schedule_work(&reg_work);
1864 void regulatory_hint_disconnect(void)
1866 REG_DBG_PRINT("All devices are disconnected, going to "
1867 "restore regulatory settings\n");
1868 restore_regulatory_settings(false);
1871 static bool freq_is_chan_12_13_14(u16 freq)
1873 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1874 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1875 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1876 return true;
1877 return false;
1880 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1881 struct ieee80211_channel *beacon_chan,
1882 gfp_t gfp)
1884 struct reg_beacon *reg_beacon;
1886 if (likely((beacon_chan->beacon_found ||
1887 (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1888 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1889 !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1890 return 0;
1892 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1893 if (!reg_beacon)
1894 return -ENOMEM;
1896 REG_DBG_PRINT("Found new beacon on "
1897 "frequency: %d MHz (Ch %d) on %s\n",
1898 beacon_chan->center_freq,
1899 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1900 wiphy_name(wiphy));
1902 memcpy(&reg_beacon->chan, beacon_chan,
1903 sizeof(struct ieee80211_channel));
1907 * Since we can be called from BH or and non-BH context
1908 * we must use spin_lock_bh()
1910 spin_lock_bh(&reg_pending_beacons_lock);
1911 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1912 spin_unlock_bh(&reg_pending_beacons_lock);
1914 schedule_work(&reg_work);
1916 return 0;
1919 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1921 unsigned int i;
1922 const struct ieee80211_reg_rule *reg_rule = NULL;
1923 const struct ieee80211_freq_range *freq_range = NULL;
1924 const struct ieee80211_power_rule *power_rule = NULL;
1926 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1928 for (i = 0; i < rd->n_reg_rules; i++) {
1929 reg_rule = &rd->reg_rules[i];
1930 freq_range = &reg_rule->freq_range;
1931 power_rule = &reg_rule->power_rule;
1934 * There may not be documentation for max antenna gain
1935 * in certain regions
1937 if (power_rule->max_antenna_gain)
1938 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1939 freq_range->start_freq_khz,
1940 freq_range->end_freq_khz,
1941 freq_range->max_bandwidth_khz,
1942 power_rule->max_antenna_gain,
1943 power_rule->max_eirp);
1944 else
1945 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1946 freq_range->start_freq_khz,
1947 freq_range->end_freq_khz,
1948 freq_range->max_bandwidth_khz,
1949 power_rule->max_eirp);
1953 bool reg_supported_dfs_region(u8 dfs_region)
1955 switch (dfs_region) {
1956 case NL80211_DFS_UNSET:
1957 case NL80211_DFS_FCC:
1958 case NL80211_DFS_ETSI:
1959 case NL80211_DFS_JP:
1960 return true;
1961 default:
1962 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
1963 dfs_region);
1964 return false;
1968 static void print_dfs_region(u8 dfs_region)
1970 if (!dfs_region)
1971 return;
1973 switch (dfs_region) {
1974 case NL80211_DFS_FCC:
1975 pr_info(" DFS Master region FCC");
1976 break;
1977 case NL80211_DFS_ETSI:
1978 pr_info(" DFS Master region ETSI");
1979 break;
1980 case NL80211_DFS_JP:
1981 pr_info(" DFS Master region JP");
1982 break;
1983 default:
1984 pr_info(" DFS Master region Uknown");
1985 break;
1989 static void print_regdomain(const struct ieee80211_regdomain *rd)
1992 if (is_intersected_alpha2(rd->alpha2)) {
1994 if (last_request->initiator ==
1995 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1996 struct cfg80211_registered_device *rdev;
1997 rdev = cfg80211_rdev_by_wiphy_idx(
1998 last_request->wiphy_idx);
1999 if (rdev) {
2000 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2001 rdev->country_ie_alpha2[0],
2002 rdev->country_ie_alpha2[1]);
2003 } else
2004 pr_info("Current regulatory domain intersected:\n");
2005 } else
2006 pr_info("Current regulatory domain intersected:\n");
2007 } else if (is_world_regdom(rd->alpha2))
2008 pr_info("World regulatory domain updated:\n");
2009 else {
2010 if (is_unknown_alpha2(rd->alpha2))
2011 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2012 else
2013 pr_info("Regulatory domain changed to country: %c%c\n",
2014 rd->alpha2[0], rd->alpha2[1]);
2016 print_dfs_region(rd->dfs_region);
2017 print_rd_rules(rd);
2020 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2022 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2023 print_rd_rules(rd);
2026 /* Takes ownership of rd only if it doesn't fail */
2027 static int __set_regdom(const struct ieee80211_regdomain *rd)
2029 const struct ieee80211_regdomain *intersected_rd = NULL;
2030 struct cfg80211_registered_device *rdev = NULL;
2031 struct wiphy *request_wiphy;
2032 /* Some basic sanity checks first */
2034 if (is_world_regdom(rd->alpha2)) {
2035 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2036 return -EINVAL;
2037 update_world_regdomain(rd);
2038 return 0;
2041 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2042 !is_unknown_alpha2(rd->alpha2))
2043 return -EINVAL;
2045 if (!last_request)
2046 return -EINVAL;
2049 * Lets only bother proceeding on the same alpha2 if the current
2050 * rd is non static (it means CRDA was present and was used last)
2051 * and the pending request came in from a country IE
2053 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2055 * If someone else asked us to change the rd lets only bother
2056 * checking if the alpha2 changes if CRDA was already called
2058 if (!regdom_changes(rd->alpha2))
2059 return -EINVAL;
2063 * Now lets set the regulatory domain, update all driver channels
2064 * and finally inform them of what we have done, in case they want
2065 * to review or adjust their own settings based on their own
2066 * internal EEPROM data
2069 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2070 return -EINVAL;
2072 if (!is_valid_rd(rd)) {
2073 pr_err("Invalid regulatory domain detected:\n");
2074 print_regdomain_info(rd);
2075 return -EINVAL;
2078 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2080 if (!last_request->intersect) {
2081 int r;
2083 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2084 reset_regdomains();
2085 cfg80211_regdomain = rd;
2086 return 0;
2090 * For a driver hint, lets copy the regulatory domain the
2091 * driver wanted to the wiphy to deal with conflicts
2095 * Userspace could have sent two replies with only
2096 * one kernel request.
2098 if (request_wiphy->regd)
2099 return -EALREADY;
2101 r = reg_copy_regd(&request_wiphy->regd, rd);
2102 if (r)
2103 return r;
2105 reset_regdomains();
2106 cfg80211_regdomain = rd;
2107 return 0;
2110 /* Intersection requires a bit more work */
2112 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2114 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2115 if (!intersected_rd)
2116 return -EINVAL;
2119 * We can trash what CRDA provided now.
2120 * However if a driver requested this specific regulatory
2121 * domain we keep it for its private use
2123 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2124 request_wiphy->regd = rd;
2125 else
2126 kfree(rd);
2128 rd = NULL;
2130 reset_regdomains();
2131 cfg80211_regdomain = intersected_rd;
2133 return 0;
2136 if (!intersected_rd)
2137 return -EINVAL;
2139 rdev = wiphy_to_dev(request_wiphy);
2141 rdev->country_ie_alpha2[0] = rd->alpha2[0];
2142 rdev->country_ie_alpha2[1] = rd->alpha2[1];
2143 rdev->env = last_request->country_ie_env;
2145 BUG_ON(intersected_rd == rd);
2147 kfree(rd);
2148 rd = NULL;
2150 reset_regdomains();
2151 cfg80211_regdomain = intersected_rd;
2153 return 0;
2158 * Use this call to set the current regulatory domain. Conflicts with
2159 * multiple drivers can be ironed out later. Caller must've already
2160 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2162 int set_regdom(const struct ieee80211_regdomain *rd)
2164 int r;
2166 assert_cfg80211_lock();
2168 mutex_lock(&reg_mutex);
2170 /* Note that this doesn't update the wiphys, this is done below */
2171 r = __set_regdom(rd);
2172 if (r) {
2173 kfree(rd);
2174 mutex_unlock(&reg_mutex);
2175 return r;
2178 /* This would make this whole thing pointless */
2179 if (!last_request->intersect)
2180 BUG_ON(rd != cfg80211_regdomain);
2182 /* update all wiphys now with the new established regulatory domain */
2183 update_all_wiphy_regulatory(last_request->initiator);
2185 print_regdomain(cfg80211_regdomain);
2187 nl80211_send_reg_change_event(last_request);
2189 reg_set_request_processed();
2191 mutex_unlock(&reg_mutex);
2193 return r;
2196 #ifdef CONFIG_HOTPLUG
2197 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2199 if (last_request && !last_request->processed) {
2200 if (add_uevent_var(env, "COUNTRY=%c%c",
2201 last_request->alpha2[0],
2202 last_request->alpha2[1]))
2203 return -ENOMEM;
2206 return 0;
2208 #else
2209 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2211 return -ENODEV;
2213 #endif /* CONFIG_HOTPLUG */
2215 /* Caller must hold cfg80211_mutex */
2216 void reg_device_remove(struct wiphy *wiphy)
2218 struct wiphy *request_wiphy = NULL;
2220 assert_cfg80211_lock();
2222 mutex_lock(&reg_mutex);
2224 kfree(wiphy->regd);
2226 if (last_request)
2227 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2229 if (!request_wiphy || request_wiphy != wiphy)
2230 goto out;
2232 last_request->wiphy_idx = WIPHY_IDX_STALE;
2233 last_request->country_ie_env = ENVIRON_ANY;
2234 out:
2235 mutex_unlock(&reg_mutex);
2238 static void reg_timeout_work(struct work_struct *work)
2240 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2241 "restoring regulatory settings\n");
2242 restore_regulatory_settings(true);
2245 int __init regulatory_init(void)
2247 int err = 0;
2249 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2250 if (IS_ERR(reg_pdev))
2251 return PTR_ERR(reg_pdev);
2253 reg_pdev->dev.type = &reg_device_type;
2255 spin_lock_init(&reg_requests_lock);
2256 spin_lock_init(&reg_pending_beacons_lock);
2258 cfg80211_regdomain = cfg80211_world_regdom;
2260 user_alpha2[0] = '9';
2261 user_alpha2[1] = '7';
2263 /* We always try to get an update for the static regdomain */
2264 err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2265 if (err) {
2266 if (err == -ENOMEM)
2267 return err;
2269 * N.B. kobject_uevent_env() can fail mainly for when we're out
2270 * memory which is handled and propagated appropriately above
2271 * but it can also fail during a netlink_broadcast() or during
2272 * early boot for call_usermodehelper(). For now treat these
2273 * errors as non-fatal.
2275 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2276 #ifdef CONFIG_CFG80211_REG_DEBUG
2277 /* We want to find out exactly why when debugging */
2278 WARN_ON(err);
2279 #endif
2283 * Finally, if the user set the module parameter treat it
2284 * as a user hint.
2286 if (!is_world_regdom(ieee80211_regdom))
2287 regulatory_hint_user(ieee80211_regdom);
2289 return 0;
2292 void /* __init_or_exit */ regulatory_exit(void)
2294 struct regulatory_request *reg_request, *tmp;
2295 struct reg_beacon *reg_beacon, *btmp;
2297 cancel_work_sync(&reg_work);
2298 cancel_delayed_work_sync(&reg_timeout);
2300 mutex_lock(&cfg80211_mutex);
2301 mutex_lock(&reg_mutex);
2303 reset_regdomains();
2305 kfree(last_request);
2307 platform_device_unregister(reg_pdev);
2309 spin_lock_bh(&reg_pending_beacons_lock);
2310 if (!list_empty(&reg_pending_beacons)) {
2311 list_for_each_entry_safe(reg_beacon, btmp,
2312 &reg_pending_beacons, list) {
2313 list_del(&reg_beacon->list);
2314 kfree(reg_beacon);
2317 spin_unlock_bh(&reg_pending_beacons_lock);
2319 if (!list_empty(&reg_beacon_list)) {
2320 list_for_each_entry_safe(reg_beacon, btmp,
2321 &reg_beacon_list, list) {
2322 list_del(&reg_beacon->list);
2323 kfree(reg_beacon);
2327 spin_lock(&reg_requests_lock);
2328 if (!list_empty(&reg_requests_list)) {
2329 list_for_each_entry_safe(reg_request, tmp,
2330 &reg_requests_list, list) {
2331 list_del(&reg_request->list);
2332 kfree(reg_request);
2335 spin_unlock(&reg_requests_lock);
2337 mutex_unlock(&reg_mutex);
2338 mutex_unlock(&cfg80211_mutex);