Implemented multi-queue network processing engine
[pohmelfs.git] / mm / mempolicy.c
blob47296fee23dbaa67c3408227d7653037a371bcdf
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
68 #include <linux/mempolicy.h>
69 #include <linux/mm.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/slab.h>
77 #include <linux/string.h>
78 #include <linux/export.h>
79 #include <linux/nsproxy.h>
80 #include <linux/interrupt.h>
81 #include <linux/init.h>
82 #include <linux/compat.h>
83 #include <linux/swap.h>
84 #include <linux/seq_file.h>
85 #include <linux/proc_fs.h>
86 #include <linux/migrate.h>
87 #include <linux/ksm.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92 #include <linux/mm_inline.h>
94 #include <asm/tlbflush.h>
95 #include <asm/uaccess.h>
96 #include <linux/random.h>
98 #include "internal.h"
100 /* Internal flags */
101 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
102 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
104 static struct kmem_cache *policy_cache;
105 static struct kmem_cache *sn_cache;
107 /* Highest zone. An specific allocation for a zone below that is not
108 policied. */
109 enum zone_type policy_zone = 0;
112 * run-time system-wide default policy => local allocation
114 static struct mempolicy default_policy = {
115 .refcnt = ATOMIC_INIT(1), /* never free it */
116 .mode = MPOL_PREFERRED,
117 .flags = MPOL_F_LOCAL,
120 static const struct mempolicy_operations {
121 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
123 * If read-side task has no lock to protect task->mempolicy, write-side
124 * task will rebind the task->mempolicy by two step. The first step is
125 * setting all the newly nodes, and the second step is cleaning all the
126 * disallowed nodes. In this way, we can avoid finding no node to alloc
127 * page.
128 * If we have a lock to protect task->mempolicy in read-side, we do
129 * rebind directly.
131 * step:
132 * MPOL_REBIND_ONCE - do rebind work at once
133 * MPOL_REBIND_STEP1 - set all the newly nodes
134 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
136 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
137 enum mpol_rebind_step step);
138 } mpol_ops[MPOL_MAX];
140 /* Check that the nodemask contains at least one populated zone */
141 static int is_valid_nodemask(const nodemask_t *nodemask)
143 int nd, k;
145 for_each_node_mask(nd, *nodemask) {
146 struct zone *z;
148 for (k = 0; k <= policy_zone; k++) {
149 z = &NODE_DATA(nd)->node_zones[k];
150 if (z->present_pages > 0)
151 return 1;
155 return 0;
158 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
160 return pol->flags & MPOL_MODE_FLAGS;
163 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
164 const nodemask_t *rel)
166 nodemask_t tmp;
167 nodes_fold(tmp, *orig, nodes_weight(*rel));
168 nodes_onto(*ret, tmp, *rel);
171 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
173 if (nodes_empty(*nodes))
174 return -EINVAL;
175 pol->v.nodes = *nodes;
176 return 0;
179 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
181 if (!nodes)
182 pol->flags |= MPOL_F_LOCAL; /* local allocation */
183 else if (nodes_empty(*nodes))
184 return -EINVAL; /* no allowed nodes */
185 else
186 pol->v.preferred_node = first_node(*nodes);
187 return 0;
190 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
192 if (!is_valid_nodemask(nodes))
193 return -EINVAL;
194 pol->v.nodes = *nodes;
195 return 0;
199 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
200 * any, for the new policy. mpol_new() has already validated the nodes
201 * parameter with respect to the policy mode and flags. But, we need to
202 * handle an empty nodemask with MPOL_PREFERRED here.
204 * Must be called holding task's alloc_lock to protect task's mems_allowed
205 * and mempolicy. May also be called holding the mmap_semaphore for write.
207 static int mpol_set_nodemask(struct mempolicy *pol,
208 const nodemask_t *nodes, struct nodemask_scratch *nsc)
210 int ret;
212 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
213 if (pol == NULL)
214 return 0;
215 /* Check N_HIGH_MEMORY */
216 nodes_and(nsc->mask1,
217 cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]);
219 VM_BUG_ON(!nodes);
220 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
221 nodes = NULL; /* explicit local allocation */
222 else {
223 if (pol->flags & MPOL_F_RELATIVE_NODES)
224 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
225 else
226 nodes_and(nsc->mask2, *nodes, nsc->mask1);
228 if (mpol_store_user_nodemask(pol))
229 pol->w.user_nodemask = *nodes;
230 else
231 pol->w.cpuset_mems_allowed =
232 cpuset_current_mems_allowed;
235 if (nodes)
236 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
237 else
238 ret = mpol_ops[pol->mode].create(pol, NULL);
239 return ret;
243 * This function just creates a new policy, does some check and simple
244 * initialization. You must invoke mpol_set_nodemask() to set nodes.
246 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
247 nodemask_t *nodes)
249 struct mempolicy *policy;
251 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
252 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
254 if (mode == MPOL_DEFAULT) {
255 if (nodes && !nodes_empty(*nodes))
256 return ERR_PTR(-EINVAL);
257 return NULL; /* simply delete any existing policy */
259 VM_BUG_ON(!nodes);
262 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
263 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
264 * All other modes require a valid pointer to a non-empty nodemask.
266 if (mode == MPOL_PREFERRED) {
267 if (nodes_empty(*nodes)) {
268 if (((flags & MPOL_F_STATIC_NODES) ||
269 (flags & MPOL_F_RELATIVE_NODES)))
270 return ERR_PTR(-EINVAL);
272 } else if (nodes_empty(*nodes))
273 return ERR_PTR(-EINVAL);
274 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
275 if (!policy)
276 return ERR_PTR(-ENOMEM);
277 atomic_set(&policy->refcnt, 1);
278 policy->mode = mode;
279 policy->flags = flags;
281 return policy;
284 /* Slow path of a mpol destructor. */
285 void __mpol_put(struct mempolicy *p)
287 if (!atomic_dec_and_test(&p->refcnt))
288 return;
289 kmem_cache_free(policy_cache, p);
292 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
293 enum mpol_rebind_step step)
298 * step:
299 * MPOL_REBIND_ONCE - do rebind work at once
300 * MPOL_REBIND_STEP1 - set all the newly nodes
301 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
303 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
304 enum mpol_rebind_step step)
306 nodemask_t tmp;
308 if (pol->flags & MPOL_F_STATIC_NODES)
309 nodes_and(tmp, pol->w.user_nodemask, *nodes);
310 else if (pol->flags & MPOL_F_RELATIVE_NODES)
311 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
312 else {
314 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
315 * result
317 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
318 nodes_remap(tmp, pol->v.nodes,
319 pol->w.cpuset_mems_allowed, *nodes);
320 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
321 } else if (step == MPOL_REBIND_STEP2) {
322 tmp = pol->w.cpuset_mems_allowed;
323 pol->w.cpuset_mems_allowed = *nodes;
324 } else
325 BUG();
328 if (nodes_empty(tmp))
329 tmp = *nodes;
331 if (step == MPOL_REBIND_STEP1)
332 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
333 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
334 pol->v.nodes = tmp;
335 else
336 BUG();
338 if (!node_isset(current->il_next, tmp)) {
339 current->il_next = next_node(current->il_next, tmp);
340 if (current->il_next >= MAX_NUMNODES)
341 current->il_next = first_node(tmp);
342 if (current->il_next >= MAX_NUMNODES)
343 current->il_next = numa_node_id();
347 static void mpol_rebind_preferred(struct mempolicy *pol,
348 const nodemask_t *nodes,
349 enum mpol_rebind_step step)
351 nodemask_t tmp;
353 if (pol->flags & MPOL_F_STATIC_NODES) {
354 int node = first_node(pol->w.user_nodemask);
356 if (node_isset(node, *nodes)) {
357 pol->v.preferred_node = node;
358 pol->flags &= ~MPOL_F_LOCAL;
359 } else
360 pol->flags |= MPOL_F_LOCAL;
361 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
362 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
363 pol->v.preferred_node = first_node(tmp);
364 } else if (!(pol->flags & MPOL_F_LOCAL)) {
365 pol->v.preferred_node = node_remap(pol->v.preferred_node,
366 pol->w.cpuset_mems_allowed,
367 *nodes);
368 pol->w.cpuset_mems_allowed = *nodes;
373 * mpol_rebind_policy - Migrate a policy to a different set of nodes
375 * If read-side task has no lock to protect task->mempolicy, write-side
376 * task will rebind the task->mempolicy by two step. The first step is
377 * setting all the newly nodes, and the second step is cleaning all the
378 * disallowed nodes. In this way, we can avoid finding no node to alloc
379 * page.
380 * If we have a lock to protect task->mempolicy in read-side, we do
381 * rebind directly.
383 * step:
384 * MPOL_REBIND_ONCE - do rebind work at once
385 * MPOL_REBIND_STEP1 - set all the newly nodes
386 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
388 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
389 enum mpol_rebind_step step)
391 if (!pol)
392 return;
393 if (!mpol_store_user_nodemask(pol) && step == 0 &&
394 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
395 return;
397 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
398 return;
400 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
401 BUG();
403 if (step == MPOL_REBIND_STEP1)
404 pol->flags |= MPOL_F_REBINDING;
405 else if (step == MPOL_REBIND_STEP2)
406 pol->flags &= ~MPOL_F_REBINDING;
407 else if (step >= MPOL_REBIND_NSTEP)
408 BUG();
410 mpol_ops[pol->mode].rebind(pol, newmask, step);
414 * Wrapper for mpol_rebind_policy() that just requires task
415 * pointer, and updates task mempolicy.
417 * Called with task's alloc_lock held.
420 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
421 enum mpol_rebind_step step)
423 mpol_rebind_policy(tsk->mempolicy, new, step);
427 * Rebind each vma in mm to new nodemask.
429 * Call holding a reference to mm. Takes mm->mmap_sem during call.
432 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
434 struct vm_area_struct *vma;
436 down_write(&mm->mmap_sem);
437 for (vma = mm->mmap; vma; vma = vma->vm_next)
438 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
439 up_write(&mm->mmap_sem);
442 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
443 [MPOL_DEFAULT] = {
444 .rebind = mpol_rebind_default,
446 [MPOL_INTERLEAVE] = {
447 .create = mpol_new_interleave,
448 .rebind = mpol_rebind_nodemask,
450 [MPOL_PREFERRED] = {
451 .create = mpol_new_preferred,
452 .rebind = mpol_rebind_preferred,
454 [MPOL_BIND] = {
455 .create = mpol_new_bind,
456 .rebind = mpol_rebind_nodemask,
460 static void migrate_page_add(struct page *page, struct list_head *pagelist,
461 unsigned long flags);
463 /* Scan through pages checking if pages follow certain conditions. */
464 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
465 unsigned long addr, unsigned long end,
466 const nodemask_t *nodes, unsigned long flags,
467 void *private)
469 pte_t *orig_pte;
470 pte_t *pte;
471 spinlock_t *ptl;
473 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
474 do {
475 struct page *page;
476 int nid;
478 if (!pte_present(*pte))
479 continue;
480 page = vm_normal_page(vma, addr, *pte);
481 if (!page)
482 continue;
484 * vm_normal_page() filters out zero pages, but there might
485 * still be PageReserved pages to skip, perhaps in a VDSO.
486 * And we cannot move PageKsm pages sensibly or safely yet.
488 if (PageReserved(page) || PageKsm(page))
489 continue;
490 nid = page_to_nid(page);
491 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
492 continue;
494 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
495 migrate_page_add(page, private, flags);
496 else
497 break;
498 } while (pte++, addr += PAGE_SIZE, addr != end);
499 pte_unmap_unlock(orig_pte, ptl);
500 return addr != end;
503 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
504 unsigned long addr, unsigned long end,
505 const nodemask_t *nodes, unsigned long flags,
506 void *private)
508 pmd_t *pmd;
509 unsigned long next;
511 pmd = pmd_offset(pud, addr);
512 do {
513 next = pmd_addr_end(addr, end);
514 split_huge_page_pmd(vma->vm_mm, pmd);
515 if (pmd_none_or_clear_bad(pmd))
516 continue;
517 if (check_pte_range(vma, pmd, addr, next, nodes,
518 flags, private))
519 return -EIO;
520 } while (pmd++, addr = next, addr != end);
521 return 0;
524 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
525 unsigned long addr, unsigned long end,
526 const nodemask_t *nodes, unsigned long flags,
527 void *private)
529 pud_t *pud;
530 unsigned long next;
532 pud = pud_offset(pgd, addr);
533 do {
534 next = pud_addr_end(addr, end);
535 if (pud_none_or_clear_bad(pud))
536 continue;
537 if (check_pmd_range(vma, pud, addr, next, nodes,
538 flags, private))
539 return -EIO;
540 } while (pud++, addr = next, addr != end);
541 return 0;
544 static inline int check_pgd_range(struct vm_area_struct *vma,
545 unsigned long addr, unsigned long end,
546 const nodemask_t *nodes, unsigned long flags,
547 void *private)
549 pgd_t *pgd;
550 unsigned long next;
552 pgd = pgd_offset(vma->vm_mm, addr);
553 do {
554 next = pgd_addr_end(addr, end);
555 if (pgd_none_or_clear_bad(pgd))
556 continue;
557 if (check_pud_range(vma, pgd, addr, next, nodes,
558 flags, private))
559 return -EIO;
560 } while (pgd++, addr = next, addr != end);
561 return 0;
565 * Check if all pages in a range are on a set of nodes.
566 * If pagelist != NULL then isolate pages from the LRU and
567 * put them on the pagelist.
569 static struct vm_area_struct *
570 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
571 const nodemask_t *nodes, unsigned long flags, void *private)
573 int err;
574 struct vm_area_struct *first, *vma, *prev;
577 first = find_vma(mm, start);
578 if (!first)
579 return ERR_PTR(-EFAULT);
580 prev = NULL;
581 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
582 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
583 if (!vma->vm_next && vma->vm_end < end)
584 return ERR_PTR(-EFAULT);
585 if (prev && prev->vm_end < vma->vm_start)
586 return ERR_PTR(-EFAULT);
588 if (!is_vm_hugetlb_page(vma) &&
589 ((flags & MPOL_MF_STRICT) ||
590 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
591 vma_migratable(vma)))) {
592 unsigned long endvma = vma->vm_end;
594 if (endvma > end)
595 endvma = end;
596 if (vma->vm_start > start)
597 start = vma->vm_start;
598 err = check_pgd_range(vma, start, endvma, nodes,
599 flags, private);
600 if (err) {
601 first = ERR_PTR(err);
602 break;
605 prev = vma;
607 return first;
610 /* Apply policy to a single VMA */
611 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
613 int err = 0;
614 struct mempolicy *old = vma->vm_policy;
616 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
617 vma->vm_start, vma->vm_end, vma->vm_pgoff,
618 vma->vm_ops, vma->vm_file,
619 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
621 if (vma->vm_ops && vma->vm_ops->set_policy)
622 err = vma->vm_ops->set_policy(vma, new);
623 if (!err) {
624 mpol_get(new);
625 vma->vm_policy = new;
626 mpol_put(old);
628 return err;
631 /* Step 2: apply policy to a range and do splits. */
632 static int mbind_range(struct mm_struct *mm, unsigned long start,
633 unsigned long end, struct mempolicy *new_pol)
635 struct vm_area_struct *next;
636 struct vm_area_struct *prev;
637 struct vm_area_struct *vma;
638 int err = 0;
639 pgoff_t pgoff;
640 unsigned long vmstart;
641 unsigned long vmend;
643 vma = find_vma(mm, start);
644 if (!vma || vma->vm_start > start)
645 return -EFAULT;
647 prev = vma->vm_prev;
648 if (start > vma->vm_start)
649 prev = vma;
651 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
652 next = vma->vm_next;
653 vmstart = max(start, vma->vm_start);
654 vmend = min(end, vma->vm_end);
656 if (mpol_equal(vma_policy(vma), new_pol))
657 continue;
659 pgoff = vma->vm_pgoff +
660 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
661 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
662 vma->anon_vma, vma->vm_file, pgoff,
663 new_pol);
664 if (prev) {
665 vma = prev;
666 next = vma->vm_next;
667 continue;
669 if (vma->vm_start != vmstart) {
670 err = split_vma(vma->vm_mm, vma, vmstart, 1);
671 if (err)
672 goto out;
674 if (vma->vm_end != vmend) {
675 err = split_vma(vma->vm_mm, vma, vmend, 0);
676 if (err)
677 goto out;
679 err = policy_vma(vma, new_pol);
680 if (err)
681 goto out;
684 out:
685 return err;
689 * Update task->flags PF_MEMPOLICY bit: set iff non-default
690 * mempolicy. Allows more rapid checking of this (combined perhaps
691 * with other PF_* flag bits) on memory allocation hot code paths.
693 * If called from outside this file, the task 'p' should -only- be
694 * a newly forked child not yet visible on the task list, because
695 * manipulating the task flags of a visible task is not safe.
697 * The above limitation is why this routine has the funny name
698 * mpol_fix_fork_child_flag().
700 * It is also safe to call this with a task pointer of current,
701 * which the static wrapper mpol_set_task_struct_flag() does,
702 * for use within this file.
705 void mpol_fix_fork_child_flag(struct task_struct *p)
707 if (p->mempolicy)
708 p->flags |= PF_MEMPOLICY;
709 else
710 p->flags &= ~PF_MEMPOLICY;
713 static void mpol_set_task_struct_flag(void)
715 mpol_fix_fork_child_flag(current);
718 /* Set the process memory policy */
719 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
720 nodemask_t *nodes)
722 struct mempolicy *new, *old;
723 struct mm_struct *mm = current->mm;
724 NODEMASK_SCRATCH(scratch);
725 int ret;
727 if (!scratch)
728 return -ENOMEM;
730 new = mpol_new(mode, flags, nodes);
731 if (IS_ERR(new)) {
732 ret = PTR_ERR(new);
733 goto out;
736 * prevent changing our mempolicy while show_numa_maps()
737 * is using it.
738 * Note: do_set_mempolicy() can be called at init time
739 * with no 'mm'.
741 if (mm)
742 down_write(&mm->mmap_sem);
743 task_lock(current);
744 ret = mpol_set_nodemask(new, nodes, scratch);
745 if (ret) {
746 task_unlock(current);
747 if (mm)
748 up_write(&mm->mmap_sem);
749 mpol_put(new);
750 goto out;
752 old = current->mempolicy;
753 current->mempolicy = new;
754 mpol_set_task_struct_flag();
755 if (new && new->mode == MPOL_INTERLEAVE &&
756 nodes_weight(new->v.nodes))
757 current->il_next = first_node(new->v.nodes);
758 task_unlock(current);
759 if (mm)
760 up_write(&mm->mmap_sem);
762 mpol_put(old);
763 ret = 0;
764 out:
765 NODEMASK_SCRATCH_FREE(scratch);
766 return ret;
770 * Return nodemask for policy for get_mempolicy() query
772 * Called with task's alloc_lock held
774 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
776 nodes_clear(*nodes);
777 if (p == &default_policy)
778 return;
780 switch (p->mode) {
781 case MPOL_BIND:
782 /* Fall through */
783 case MPOL_INTERLEAVE:
784 *nodes = p->v.nodes;
785 break;
786 case MPOL_PREFERRED:
787 if (!(p->flags & MPOL_F_LOCAL))
788 node_set(p->v.preferred_node, *nodes);
789 /* else return empty node mask for local allocation */
790 break;
791 default:
792 BUG();
796 static int lookup_node(struct mm_struct *mm, unsigned long addr)
798 struct page *p;
799 int err;
801 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
802 if (err >= 0) {
803 err = page_to_nid(p);
804 put_page(p);
806 return err;
809 /* Retrieve NUMA policy */
810 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
811 unsigned long addr, unsigned long flags)
813 int err;
814 struct mm_struct *mm = current->mm;
815 struct vm_area_struct *vma = NULL;
816 struct mempolicy *pol = current->mempolicy;
818 if (flags &
819 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
820 return -EINVAL;
822 if (flags & MPOL_F_MEMS_ALLOWED) {
823 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
824 return -EINVAL;
825 *policy = 0; /* just so it's initialized */
826 task_lock(current);
827 *nmask = cpuset_current_mems_allowed;
828 task_unlock(current);
829 return 0;
832 if (flags & MPOL_F_ADDR) {
834 * Do NOT fall back to task policy if the
835 * vma/shared policy at addr is NULL. We
836 * want to return MPOL_DEFAULT in this case.
838 down_read(&mm->mmap_sem);
839 vma = find_vma_intersection(mm, addr, addr+1);
840 if (!vma) {
841 up_read(&mm->mmap_sem);
842 return -EFAULT;
844 if (vma->vm_ops && vma->vm_ops->get_policy)
845 pol = vma->vm_ops->get_policy(vma, addr);
846 else
847 pol = vma->vm_policy;
848 } else if (addr)
849 return -EINVAL;
851 if (!pol)
852 pol = &default_policy; /* indicates default behavior */
854 if (flags & MPOL_F_NODE) {
855 if (flags & MPOL_F_ADDR) {
856 err = lookup_node(mm, addr);
857 if (err < 0)
858 goto out;
859 *policy = err;
860 } else if (pol == current->mempolicy &&
861 pol->mode == MPOL_INTERLEAVE) {
862 *policy = current->il_next;
863 } else {
864 err = -EINVAL;
865 goto out;
867 } else {
868 *policy = pol == &default_policy ? MPOL_DEFAULT :
869 pol->mode;
871 * Internal mempolicy flags must be masked off before exposing
872 * the policy to userspace.
874 *policy |= (pol->flags & MPOL_MODE_FLAGS);
877 if (vma) {
878 up_read(&current->mm->mmap_sem);
879 vma = NULL;
882 err = 0;
883 if (nmask) {
884 if (mpol_store_user_nodemask(pol)) {
885 *nmask = pol->w.user_nodemask;
886 } else {
887 task_lock(current);
888 get_policy_nodemask(pol, nmask);
889 task_unlock(current);
893 out:
894 mpol_cond_put(pol);
895 if (vma)
896 up_read(&current->mm->mmap_sem);
897 return err;
900 #ifdef CONFIG_MIGRATION
902 * page migration
904 static void migrate_page_add(struct page *page, struct list_head *pagelist,
905 unsigned long flags)
908 * Avoid migrating a page that is shared with others.
910 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
911 if (!isolate_lru_page(page)) {
912 list_add_tail(&page->lru, pagelist);
913 inc_zone_page_state(page, NR_ISOLATED_ANON +
914 page_is_file_cache(page));
919 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
921 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
925 * Migrate pages from one node to a target node.
926 * Returns error or the number of pages not migrated.
928 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
929 int flags)
931 nodemask_t nmask;
932 LIST_HEAD(pagelist);
933 int err = 0;
934 struct vm_area_struct *vma;
936 nodes_clear(nmask);
937 node_set(source, nmask);
939 vma = check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
940 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
941 if (IS_ERR(vma))
942 return PTR_ERR(vma);
944 if (!list_empty(&pagelist)) {
945 err = migrate_pages(&pagelist, new_node_page, dest,
946 false, MIGRATE_SYNC);
947 if (err)
948 putback_lru_pages(&pagelist);
951 return err;
955 * Move pages between the two nodesets so as to preserve the physical
956 * layout as much as possible.
958 * Returns the number of page that could not be moved.
960 int do_migrate_pages(struct mm_struct *mm,
961 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
963 int busy = 0;
964 int err;
965 nodemask_t tmp;
967 err = migrate_prep();
968 if (err)
969 return err;
971 down_read(&mm->mmap_sem);
973 err = migrate_vmas(mm, from_nodes, to_nodes, flags);
974 if (err)
975 goto out;
978 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
979 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
980 * bit in 'tmp', and return that <source, dest> pair for migration.
981 * The pair of nodemasks 'to' and 'from' define the map.
983 * If no pair of bits is found that way, fallback to picking some
984 * pair of 'source' and 'dest' bits that are not the same. If the
985 * 'source' and 'dest' bits are the same, this represents a node
986 * that will be migrating to itself, so no pages need move.
988 * If no bits are left in 'tmp', or if all remaining bits left
989 * in 'tmp' correspond to the same bit in 'to', return false
990 * (nothing left to migrate).
992 * This lets us pick a pair of nodes to migrate between, such that
993 * if possible the dest node is not already occupied by some other
994 * source node, minimizing the risk of overloading the memory on a
995 * node that would happen if we migrated incoming memory to a node
996 * before migrating outgoing memory source that same node.
998 * A single scan of tmp is sufficient. As we go, we remember the
999 * most recent <s, d> pair that moved (s != d). If we find a pair
1000 * that not only moved, but what's better, moved to an empty slot
1001 * (d is not set in tmp), then we break out then, with that pair.
1002 * Otherwise when we finish scanning from_tmp, we at least have the
1003 * most recent <s, d> pair that moved. If we get all the way through
1004 * the scan of tmp without finding any node that moved, much less
1005 * moved to an empty node, then there is nothing left worth migrating.
1008 tmp = *from_nodes;
1009 while (!nodes_empty(tmp)) {
1010 int s,d;
1011 int source = -1;
1012 int dest = 0;
1014 for_each_node_mask(s, tmp) {
1015 d = node_remap(s, *from_nodes, *to_nodes);
1016 if (s == d)
1017 continue;
1019 source = s; /* Node moved. Memorize */
1020 dest = d;
1022 /* dest not in remaining from nodes? */
1023 if (!node_isset(dest, tmp))
1024 break;
1026 if (source == -1)
1027 break;
1029 node_clear(source, tmp);
1030 err = migrate_to_node(mm, source, dest, flags);
1031 if (err > 0)
1032 busy += err;
1033 if (err < 0)
1034 break;
1036 out:
1037 up_read(&mm->mmap_sem);
1038 if (err < 0)
1039 return err;
1040 return busy;
1045 * Allocate a new page for page migration based on vma policy.
1046 * Start assuming that page is mapped by vma pointed to by @private.
1047 * Search forward from there, if not. N.B., this assumes that the
1048 * list of pages handed to migrate_pages()--which is how we get here--
1049 * is in virtual address order.
1051 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1053 struct vm_area_struct *vma = (struct vm_area_struct *)private;
1054 unsigned long uninitialized_var(address);
1056 while (vma) {
1057 address = page_address_in_vma(page, vma);
1058 if (address != -EFAULT)
1059 break;
1060 vma = vma->vm_next;
1064 * if !vma, alloc_page_vma() will use task or system default policy
1066 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1068 #else
1070 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1071 unsigned long flags)
1075 int do_migrate_pages(struct mm_struct *mm,
1076 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
1078 return -ENOSYS;
1081 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1083 return NULL;
1085 #endif
1087 static long do_mbind(unsigned long start, unsigned long len,
1088 unsigned short mode, unsigned short mode_flags,
1089 nodemask_t *nmask, unsigned long flags)
1091 struct vm_area_struct *vma;
1092 struct mm_struct *mm = current->mm;
1093 struct mempolicy *new;
1094 unsigned long end;
1095 int err;
1096 LIST_HEAD(pagelist);
1098 if (flags & ~(unsigned long)(MPOL_MF_STRICT |
1099 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1100 return -EINVAL;
1101 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1102 return -EPERM;
1104 if (start & ~PAGE_MASK)
1105 return -EINVAL;
1107 if (mode == MPOL_DEFAULT)
1108 flags &= ~MPOL_MF_STRICT;
1110 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1111 end = start + len;
1113 if (end < start)
1114 return -EINVAL;
1115 if (end == start)
1116 return 0;
1118 new = mpol_new(mode, mode_flags, nmask);
1119 if (IS_ERR(new))
1120 return PTR_ERR(new);
1123 * If we are using the default policy then operation
1124 * on discontinuous address spaces is okay after all
1126 if (!new)
1127 flags |= MPOL_MF_DISCONTIG_OK;
1129 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1130 start, start + len, mode, mode_flags,
1131 nmask ? nodes_addr(*nmask)[0] : -1);
1133 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1135 err = migrate_prep();
1136 if (err)
1137 goto mpol_out;
1140 NODEMASK_SCRATCH(scratch);
1141 if (scratch) {
1142 down_write(&mm->mmap_sem);
1143 task_lock(current);
1144 err = mpol_set_nodemask(new, nmask, scratch);
1145 task_unlock(current);
1146 if (err)
1147 up_write(&mm->mmap_sem);
1148 } else
1149 err = -ENOMEM;
1150 NODEMASK_SCRATCH_FREE(scratch);
1152 if (err)
1153 goto mpol_out;
1155 vma = check_range(mm, start, end, nmask,
1156 flags | MPOL_MF_INVERT, &pagelist);
1158 err = PTR_ERR(vma);
1159 if (!IS_ERR(vma)) {
1160 int nr_failed = 0;
1162 err = mbind_range(mm, start, end, new);
1164 if (!list_empty(&pagelist)) {
1165 nr_failed = migrate_pages(&pagelist, new_vma_page,
1166 (unsigned long)vma,
1167 false, true);
1168 if (nr_failed)
1169 putback_lru_pages(&pagelist);
1172 if (!err && nr_failed && (flags & MPOL_MF_STRICT))
1173 err = -EIO;
1174 } else
1175 putback_lru_pages(&pagelist);
1177 up_write(&mm->mmap_sem);
1178 mpol_out:
1179 mpol_put(new);
1180 return err;
1184 * User space interface with variable sized bitmaps for nodelists.
1187 /* Copy a node mask from user space. */
1188 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1189 unsigned long maxnode)
1191 unsigned long k;
1192 unsigned long nlongs;
1193 unsigned long endmask;
1195 --maxnode;
1196 nodes_clear(*nodes);
1197 if (maxnode == 0 || !nmask)
1198 return 0;
1199 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1200 return -EINVAL;
1202 nlongs = BITS_TO_LONGS(maxnode);
1203 if ((maxnode % BITS_PER_LONG) == 0)
1204 endmask = ~0UL;
1205 else
1206 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1208 /* When the user specified more nodes than supported just check
1209 if the non supported part is all zero. */
1210 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1211 if (nlongs > PAGE_SIZE/sizeof(long))
1212 return -EINVAL;
1213 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1214 unsigned long t;
1215 if (get_user(t, nmask + k))
1216 return -EFAULT;
1217 if (k == nlongs - 1) {
1218 if (t & endmask)
1219 return -EINVAL;
1220 } else if (t)
1221 return -EINVAL;
1223 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1224 endmask = ~0UL;
1227 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1228 return -EFAULT;
1229 nodes_addr(*nodes)[nlongs-1] &= endmask;
1230 return 0;
1233 /* Copy a kernel node mask to user space */
1234 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1235 nodemask_t *nodes)
1237 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1238 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1240 if (copy > nbytes) {
1241 if (copy > PAGE_SIZE)
1242 return -EINVAL;
1243 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1244 return -EFAULT;
1245 copy = nbytes;
1247 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1250 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1251 unsigned long, mode, unsigned long __user *, nmask,
1252 unsigned long, maxnode, unsigned, flags)
1254 nodemask_t nodes;
1255 int err;
1256 unsigned short mode_flags;
1258 mode_flags = mode & MPOL_MODE_FLAGS;
1259 mode &= ~MPOL_MODE_FLAGS;
1260 if (mode >= MPOL_MAX)
1261 return -EINVAL;
1262 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1263 (mode_flags & MPOL_F_RELATIVE_NODES))
1264 return -EINVAL;
1265 err = get_nodes(&nodes, nmask, maxnode);
1266 if (err)
1267 return err;
1268 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1271 /* Set the process memory policy */
1272 SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1273 unsigned long, maxnode)
1275 int err;
1276 nodemask_t nodes;
1277 unsigned short flags;
1279 flags = mode & MPOL_MODE_FLAGS;
1280 mode &= ~MPOL_MODE_FLAGS;
1281 if ((unsigned int)mode >= MPOL_MAX)
1282 return -EINVAL;
1283 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1284 return -EINVAL;
1285 err = get_nodes(&nodes, nmask, maxnode);
1286 if (err)
1287 return err;
1288 return do_set_mempolicy(mode, flags, &nodes);
1291 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1292 const unsigned long __user *, old_nodes,
1293 const unsigned long __user *, new_nodes)
1295 const struct cred *cred = current_cred(), *tcred;
1296 struct mm_struct *mm = NULL;
1297 struct task_struct *task;
1298 nodemask_t task_nodes;
1299 int err;
1300 nodemask_t *old;
1301 nodemask_t *new;
1302 NODEMASK_SCRATCH(scratch);
1304 if (!scratch)
1305 return -ENOMEM;
1307 old = &scratch->mask1;
1308 new = &scratch->mask2;
1310 err = get_nodes(old, old_nodes, maxnode);
1311 if (err)
1312 goto out;
1314 err = get_nodes(new, new_nodes, maxnode);
1315 if (err)
1316 goto out;
1318 /* Find the mm_struct */
1319 rcu_read_lock();
1320 task = pid ? find_task_by_vpid(pid) : current;
1321 if (!task) {
1322 rcu_read_unlock();
1323 err = -ESRCH;
1324 goto out;
1326 mm = get_task_mm(task);
1327 rcu_read_unlock();
1329 err = -EINVAL;
1330 if (!mm)
1331 goto out;
1334 * Check if this process has the right to modify the specified
1335 * process. The right exists if the process has administrative
1336 * capabilities, superuser privileges or the same
1337 * userid as the target process.
1339 rcu_read_lock();
1340 tcred = __task_cred(task);
1341 if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1342 cred->uid != tcred->suid && cred->uid != tcred->uid &&
1343 !capable(CAP_SYS_NICE)) {
1344 rcu_read_unlock();
1345 err = -EPERM;
1346 goto out;
1348 rcu_read_unlock();
1350 task_nodes = cpuset_mems_allowed(task);
1351 /* Is the user allowed to access the target nodes? */
1352 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1353 err = -EPERM;
1354 goto out;
1357 if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) {
1358 err = -EINVAL;
1359 goto out;
1362 err = security_task_movememory(task);
1363 if (err)
1364 goto out;
1366 err = do_migrate_pages(mm, old, new,
1367 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1368 out:
1369 if (mm)
1370 mmput(mm);
1371 NODEMASK_SCRATCH_FREE(scratch);
1373 return err;
1377 /* Retrieve NUMA policy */
1378 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1379 unsigned long __user *, nmask, unsigned long, maxnode,
1380 unsigned long, addr, unsigned long, flags)
1382 int err;
1383 int uninitialized_var(pval);
1384 nodemask_t nodes;
1386 if (nmask != NULL && maxnode < MAX_NUMNODES)
1387 return -EINVAL;
1389 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1391 if (err)
1392 return err;
1394 if (policy && put_user(pval, policy))
1395 return -EFAULT;
1397 if (nmask)
1398 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1400 return err;
1403 #ifdef CONFIG_COMPAT
1405 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1406 compat_ulong_t __user *nmask,
1407 compat_ulong_t maxnode,
1408 compat_ulong_t addr, compat_ulong_t flags)
1410 long err;
1411 unsigned long __user *nm = NULL;
1412 unsigned long nr_bits, alloc_size;
1413 DECLARE_BITMAP(bm, MAX_NUMNODES);
1415 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1416 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1418 if (nmask)
1419 nm = compat_alloc_user_space(alloc_size);
1421 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1423 if (!err && nmask) {
1424 unsigned long copy_size;
1425 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1426 err = copy_from_user(bm, nm, copy_size);
1427 /* ensure entire bitmap is zeroed */
1428 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1429 err |= compat_put_bitmap(nmask, bm, nr_bits);
1432 return err;
1435 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1436 compat_ulong_t maxnode)
1438 long err = 0;
1439 unsigned long __user *nm = NULL;
1440 unsigned long nr_bits, alloc_size;
1441 DECLARE_BITMAP(bm, MAX_NUMNODES);
1443 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1444 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1446 if (nmask) {
1447 err = compat_get_bitmap(bm, nmask, nr_bits);
1448 nm = compat_alloc_user_space(alloc_size);
1449 err |= copy_to_user(nm, bm, alloc_size);
1452 if (err)
1453 return -EFAULT;
1455 return sys_set_mempolicy(mode, nm, nr_bits+1);
1458 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1459 compat_ulong_t mode, compat_ulong_t __user *nmask,
1460 compat_ulong_t maxnode, compat_ulong_t flags)
1462 long err = 0;
1463 unsigned long __user *nm = NULL;
1464 unsigned long nr_bits, alloc_size;
1465 nodemask_t bm;
1467 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1468 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1470 if (nmask) {
1471 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1472 nm = compat_alloc_user_space(alloc_size);
1473 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1476 if (err)
1477 return -EFAULT;
1479 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1482 #endif
1485 * get_vma_policy(@task, @vma, @addr)
1486 * @task - task for fallback if vma policy == default
1487 * @vma - virtual memory area whose policy is sought
1488 * @addr - address in @vma for shared policy lookup
1490 * Returns effective policy for a VMA at specified address.
1491 * Falls back to @task or system default policy, as necessary.
1492 * Current or other task's task mempolicy and non-shared vma policies
1493 * are protected by the task's mmap_sem, which must be held for read by
1494 * the caller.
1495 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1496 * count--added by the get_policy() vm_op, as appropriate--to protect against
1497 * freeing by another task. It is the caller's responsibility to free the
1498 * extra reference for shared policies.
1500 struct mempolicy *get_vma_policy(struct task_struct *task,
1501 struct vm_area_struct *vma, unsigned long addr)
1503 struct mempolicy *pol = task->mempolicy;
1505 if (vma) {
1506 if (vma->vm_ops && vma->vm_ops->get_policy) {
1507 struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1508 addr);
1509 if (vpol)
1510 pol = vpol;
1511 } else if (vma->vm_policy)
1512 pol = vma->vm_policy;
1514 if (!pol)
1515 pol = &default_policy;
1516 return pol;
1520 * Return a nodemask representing a mempolicy for filtering nodes for
1521 * page allocation
1523 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1525 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1526 if (unlikely(policy->mode == MPOL_BIND) &&
1527 gfp_zone(gfp) >= policy_zone &&
1528 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1529 return &policy->v.nodes;
1531 return NULL;
1534 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1535 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1536 int nd)
1538 switch (policy->mode) {
1539 case MPOL_PREFERRED:
1540 if (!(policy->flags & MPOL_F_LOCAL))
1541 nd = policy->v.preferred_node;
1542 break;
1543 case MPOL_BIND:
1545 * Normally, MPOL_BIND allocations are node-local within the
1546 * allowed nodemask. However, if __GFP_THISNODE is set and the
1547 * current node isn't part of the mask, we use the zonelist for
1548 * the first node in the mask instead.
1550 if (unlikely(gfp & __GFP_THISNODE) &&
1551 unlikely(!node_isset(nd, policy->v.nodes)))
1552 nd = first_node(policy->v.nodes);
1553 break;
1554 default:
1555 BUG();
1557 return node_zonelist(nd, gfp);
1560 /* Do dynamic interleaving for a process */
1561 static unsigned interleave_nodes(struct mempolicy *policy)
1563 unsigned nid, next;
1564 struct task_struct *me = current;
1566 nid = me->il_next;
1567 next = next_node(nid, policy->v.nodes);
1568 if (next >= MAX_NUMNODES)
1569 next = first_node(policy->v.nodes);
1570 if (next < MAX_NUMNODES)
1571 me->il_next = next;
1572 return nid;
1576 * Depending on the memory policy provide a node from which to allocate the
1577 * next slab entry.
1578 * @policy must be protected by freeing by the caller. If @policy is
1579 * the current task's mempolicy, this protection is implicit, as only the
1580 * task can change it's policy. The system default policy requires no
1581 * such protection.
1583 unsigned slab_node(struct mempolicy *policy)
1585 if (!policy || policy->flags & MPOL_F_LOCAL)
1586 return numa_node_id();
1588 switch (policy->mode) {
1589 case MPOL_PREFERRED:
1591 * handled MPOL_F_LOCAL above
1593 return policy->v.preferred_node;
1595 case MPOL_INTERLEAVE:
1596 return interleave_nodes(policy);
1598 case MPOL_BIND: {
1600 * Follow bind policy behavior and start allocation at the
1601 * first node.
1603 struct zonelist *zonelist;
1604 struct zone *zone;
1605 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1606 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1607 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1608 &policy->v.nodes,
1609 &zone);
1610 return zone ? zone->node : numa_node_id();
1613 default:
1614 BUG();
1618 /* Do static interleaving for a VMA with known offset. */
1619 static unsigned offset_il_node(struct mempolicy *pol,
1620 struct vm_area_struct *vma, unsigned long off)
1622 unsigned nnodes = nodes_weight(pol->v.nodes);
1623 unsigned target;
1624 int c;
1625 int nid = -1;
1627 if (!nnodes)
1628 return numa_node_id();
1629 target = (unsigned int)off % nnodes;
1630 c = 0;
1631 do {
1632 nid = next_node(nid, pol->v.nodes);
1633 c++;
1634 } while (c <= target);
1635 return nid;
1638 /* Determine a node number for interleave */
1639 static inline unsigned interleave_nid(struct mempolicy *pol,
1640 struct vm_area_struct *vma, unsigned long addr, int shift)
1642 if (vma) {
1643 unsigned long off;
1646 * for small pages, there is no difference between
1647 * shift and PAGE_SHIFT, so the bit-shift is safe.
1648 * for huge pages, since vm_pgoff is in units of small
1649 * pages, we need to shift off the always 0 bits to get
1650 * a useful offset.
1652 BUG_ON(shift < PAGE_SHIFT);
1653 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1654 off += (addr - vma->vm_start) >> shift;
1655 return offset_il_node(pol, vma, off);
1656 } else
1657 return interleave_nodes(pol);
1661 * Return the bit number of a random bit set in the nodemask.
1662 * (returns -1 if nodemask is empty)
1664 int node_random(const nodemask_t *maskp)
1666 int w, bit = -1;
1668 w = nodes_weight(*maskp);
1669 if (w)
1670 bit = bitmap_ord_to_pos(maskp->bits,
1671 get_random_int() % w, MAX_NUMNODES);
1672 return bit;
1675 #ifdef CONFIG_HUGETLBFS
1677 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1678 * @vma = virtual memory area whose policy is sought
1679 * @addr = address in @vma for shared policy lookup and interleave policy
1680 * @gfp_flags = for requested zone
1681 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1682 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1684 * Returns a zonelist suitable for a huge page allocation and a pointer
1685 * to the struct mempolicy for conditional unref after allocation.
1686 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1687 * @nodemask for filtering the zonelist.
1689 * Must be protected by get_mems_allowed()
1691 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1692 gfp_t gfp_flags, struct mempolicy **mpol,
1693 nodemask_t **nodemask)
1695 struct zonelist *zl;
1697 *mpol = get_vma_policy(current, vma, addr);
1698 *nodemask = NULL; /* assume !MPOL_BIND */
1700 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1701 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1702 huge_page_shift(hstate_vma(vma))), gfp_flags);
1703 } else {
1704 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1705 if ((*mpol)->mode == MPOL_BIND)
1706 *nodemask = &(*mpol)->v.nodes;
1708 return zl;
1712 * init_nodemask_of_mempolicy
1714 * If the current task's mempolicy is "default" [NULL], return 'false'
1715 * to indicate default policy. Otherwise, extract the policy nodemask
1716 * for 'bind' or 'interleave' policy into the argument nodemask, or
1717 * initialize the argument nodemask to contain the single node for
1718 * 'preferred' or 'local' policy and return 'true' to indicate presence
1719 * of non-default mempolicy.
1721 * We don't bother with reference counting the mempolicy [mpol_get/put]
1722 * because the current task is examining it's own mempolicy and a task's
1723 * mempolicy is only ever changed by the task itself.
1725 * N.B., it is the caller's responsibility to free a returned nodemask.
1727 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1729 struct mempolicy *mempolicy;
1730 int nid;
1732 if (!(mask && current->mempolicy))
1733 return false;
1735 task_lock(current);
1736 mempolicy = current->mempolicy;
1737 switch (mempolicy->mode) {
1738 case MPOL_PREFERRED:
1739 if (mempolicy->flags & MPOL_F_LOCAL)
1740 nid = numa_node_id();
1741 else
1742 nid = mempolicy->v.preferred_node;
1743 init_nodemask_of_node(mask, nid);
1744 break;
1746 case MPOL_BIND:
1747 /* Fall through */
1748 case MPOL_INTERLEAVE:
1749 *mask = mempolicy->v.nodes;
1750 break;
1752 default:
1753 BUG();
1755 task_unlock(current);
1757 return true;
1759 #endif
1762 * mempolicy_nodemask_intersects
1764 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1765 * policy. Otherwise, check for intersection between mask and the policy
1766 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1767 * policy, always return true since it may allocate elsewhere on fallback.
1769 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1771 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1772 const nodemask_t *mask)
1774 struct mempolicy *mempolicy;
1775 bool ret = true;
1777 if (!mask)
1778 return ret;
1779 task_lock(tsk);
1780 mempolicy = tsk->mempolicy;
1781 if (!mempolicy)
1782 goto out;
1784 switch (mempolicy->mode) {
1785 case MPOL_PREFERRED:
1787 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1788 * allocate from, they may fallback to other nodes when oom.
1789 * Thus, it's possible for tsk to have allocated memory from
1790 * nodes in mask.
1792 break;
1793 case MPOL_BIND:
1794 case MPOL_INTERLEAVE:
1795 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1796 break;
1797 default:
1798 BUG();
1800 out:
1801 task_unlock(tsk);
1802 return ret;
1805 /* Allocate a page in interleaved policy.
1806 Own path because it needs to do special accounting. */
1807 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1808 unsigned nid)
1810 struct zonelist *zl;
1811 struct page *page;
1813 zl = node_zonelist(nid, gfp);
1814 page = __alloc_pages(gfp, order, zl);
1815 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1816 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1817 return page;
1821 * alloc_pages_vma - Allocate a page for a VMA.
1823 * @gfp:
1824 * %GFP_USER user allocation.
1825 * %GFP_KERNEL kernel allocations,
1826 * %GFP_HIGHMEM highmem/user allocations,
1827 * %GFP_FS allocation should not call back into a file system.
1828 * %GFP_ATOMIC don't sleep.
1830 * @order:Order of the GFP allocation.
1831 * @vma: Pointer to VMA or NULL if not available.
1832 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1834 * This function allocates a page from the kernel page pool and applies
1835 * a NUMA policy associated with the VMA or the current process.
1836 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1837 * mm_struct of the VMA to prevent it from going away. Should be used for
1838 * all allocations for pages that will be mapped into
1839 * user space. Returns NULL when no page can be allocated.
1841 * Should be called with the mm_sem of the vma hold.
1843 struct page *
1844 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1845 unsigned long addr, int node)
1847 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1848 struct zonelist *zl;
1849 struct page *page;
1851 get_mems_allowed();
1852 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1853 unsigned nid;
1855 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1856 mpol_cond_put(pol);
1857 page = alloc_page_interleave(gfp, order, nid);
1858 put_mems_allowed();
1859 return page;
1861 zl = policy_zonelist(gfp, pol, node);
1862 if (unlikely(mpol_needs_cond_ref(pol))) {
1864 * slow path: ref counted shared policy
1866 struct page *page = __alloc_pages_nodemask(gfp, order,
1867 zl, policy_nodemask(gfp, pol));
1868 __mpol_put(pol);
1869 put_mems_allowed();
1870 return page;
1873 * fast path: default or task policy
1875 page = __alloc_pages_nodemask(gfp, order, zl,
1876 policy_nodemask(gfp, pol));
1877 put_mems_allowed();
1878 return page;
1882 * alloc_pages_current - Allocate pages.
1884 * @gfp:
1885 * %GFP_USER user allocation,
1886 * %GFP_KERNEL kernel allocation,
1887 * %GFP_HIGHMEM highmem allocation,
1888 * %GFP_FS don't call back into a file system.
1889 * %GFP_ATOMIC don't sleep.
1890 * @order: Power of two of allocation size in pages. 0 is a single page.
1892 * Allocate a page from the kernel page pool. When not in
1893 * interrupt context and apply the current process NUMA policy.
1894 * Returns NULL when no page can be allocated.
1896 * Don't call cpuset_update_task_memory_state() unless
1897 * 1) it's ok to take cpuset_sem (can WAIT), and
1898 * 2) allocating for current task (not interrupt).
1900 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1902 struct mempolicy *pol = current->mempolicy;
1903 struct page *page;
1905 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1906 pol = &default_policy;
1908 get_mems_allowed();
1910 * No reference counting needed for current->mempolicy
1911 * nor system default_policy
1913 if (pol->mode == MPOL_INTERLEAVE)
1914 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
1915 else
1916 page = __alloc_pages_nodemask(gfp, order,
1917 policy_zonelist(gfp, pol, numa_node_id()),
1918 policy_nodemask(gfp, pol));
1919 put_mems_allowed();
1920 return page;
1922 EXPORT_SYMBOL(alloc_pages_current);
1925 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1926 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1927 * with the mems_allowed returned by cpuset_mems_allowed(). This
1928 * keeps mempolicies cpuset relative after its cpuset moves. See
1929 * further kernel/cpuset.c update_nodemask().
1931 * current's mempolicy may be rebinded by the other task(the task that changes
1932 * cpuset's mems), so we needn't do rebind work for current task.
1935 /* Slow path of a mempolicy duplicate */
1936 struct mempolicy *__mpol_dup(struct mempolicy *old)
1938 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1940 if (!new)
1941 return ERR_PTR(-ENOMEM);
1943 /* task's mempolicy is protected by alloc_lock */
1944 if (old == current->mempolicy) {
1945 task_lock(current);
1946 *new = *old;
1947 task_unlock(current);
1948 } else
1949 *new = *old;
1951 rcu_read_lock();
1952 if (current_cpuset_is_being_rebound()) {
1953 nodemask_t mems = cpuset_mems_allowed(current);
1954 if (new->flags & MPOL_F_REBINDING)
1955 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
1956 else
1957 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
1959 rcu_read_unlock();
1960 atomic_set(&new->refcnt, 1);
1961 return new;
1965 * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
1966 * eliminate the * MPOL_F_* flags that require conditional ref and
1967 * [NOTE!!!] drop the extra ref. Not safe to reference *frompol directly
1968 * after return. Use the returned value.
1970 * Allows use of a mempolicy for, e.g., multiple allocations with a single
1971 * policy lookup, even if the policy needs/has extra ref on lookup.
1972 * shmem_readahead needs this.
1974 struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
1975 struct mempolicy *frompol)
1977 if (!mpol_needs_cond_ref(frompol))
1978 return frompol;
1980 *tompol = *frompol;
1981 tompol->flags &= ~MPOL_F_SHARED; /* copy doesn't need unref */
1982 __mpol_put(frompol);
1983 return tompol;
1986 /* Slow path of a mempolicy comparison */
1987 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1989 if (!a || !b)
1990 return false;
1991 if (a->mode != b->mode)
1992 return false;
1993 if (a->flags != b->flags)
1994 return false;
1995 if (mpol_store_user_nodemask(a))
1996 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
1997 return false;
1999 switch (a->mode) {
2000 case MPOL_BIND:
2001 /* Fall through */
2002 case MPOL_INTERLEAVE:
2003 return !!nodes_equal(a->v.nodes, b->v.nodes);
2004 case MPOL_PREFERRED:
2005 return a->v.preferred_node == b->v.preferred_node;
2006 default:
2007 BUG();
2008 return false;
2013 * Shared memory backing store policy support.
2015 * Remember policies even when nobody has shared memory mapped.
2016 * The policies are kept in Red-Black tree linked from the inode.
2017 * They are protected by the sp->lock spinlock, which should be held
2018 * for any accesses to the tree.
2021 /* lookup first element intersecting start-end */
2022 /* Caller holds sp->lock */
2023 static struct sp_node *
2024 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2026 struct rb_node *n = sp->root.rb_node;
2028 while (n) {
2029 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2031 if (start >= p->end)
2032 n = n->rb_right;
2033 else if (end <= p->start)
2034 n = n->rb_left;
2035 else
2036 break;
2038 if (!n)
2039 return NULL;
2040 for (;;) {
2041 struct sp_node *w = NULL;
2042 struct rb_node *prev = rb_prev(n);
2043 if (!prev)
2044 break;
2045 w = rb_entry(prev, struct sp_node, nd);
2046 if (w->end <= start)
2047 break;
2048 n = prev;
2050 return rb_entry(n, struct sp_node, nd);
2053 /* Insert a new shared policy into the list. */
2054 /* Caller holds sp->lock */
2055 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2057 struct rb_node **p = &sp->root.rb_node;
2058 struct rb_node *parent = NULL;
2059 struct sp_node *nd;
2061 while (*p) {
2062 parent = *p;
2063 nd = rb_entry(parent, struct sp_node, nd);
2064 if (new->start < nd->start)
2065 p = &(*p)->rb_left;
2066 else if (new->end > nd->end)
2067 p = &(*p)->rb_right;
2068 else
2069 BUG();
2071 rb_link_node(&new->nd, parent, p);
2072 rb_insert_color(&new->nd, &sp->root);
2073 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2074 new->policy ? new->policy->mode : 0);
2077 /* Find shared policy intersecting idx */
2078 struct mempolicy *
2079 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2081 struct mempolicy *pol = NULL;
2082 struct sp_node *sn;
2084 if (!sp->root.rb_node)
2085 return NULL;
2086 spin_lock(&sp->lock);
2087 sn = sp_lookup(sp, idx, idx+1);
2088 if (sn) {
2089 mpol_get(sn->policy);
2090 pol = sn->policy;
2092 spin_unlock(&sp->lock);
2093 return pol;
2096 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2098 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2099 rb_erase(&n->nd, &sp->root);
2100 mpol_put(n->policy);
2101 kmem_cache_free(sn_cache, n);
2104 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2105 struct mempolicy *pol)
2107 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2109 if (!n)
2110 return NULL;
2111 n->start = start;
2112 n->end = end;
2113 mpol_get(pol);
2114 pol->flags |= MPOL_F_SHARED; /* for unref */
2115 n->policy = pol;
2116 return n;
2119 /* Replace a policy range. */
2120 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2121 unsigned long end, struct sp_node *new)
2123 struct sp_node *n, *new2 = NULL;
2125 restart:
2126 spin_lock(&sp->lock);
2127 n = sp_lookup(sp, start, end);
2128 /* Take care of old policies in the same range. */
2129 while (n && n->start < end) {
2130 struct rb_node *next = rb_next(&n->nd);
2131 if (n->start >= start) {
2132 if (n->end <= end)
2133 sp_delete(sp, n);
2134 else
2135 n->start = end;
2136 } else {
2137 /* Old policy spanning whole new range. */
2138 if (n->end > end) {
2139 if (!new2) {
2140 spin_unlock(&sp->lock);
2141 new2 = sp_alloc(end, n->end, n->policy);
2142 if (!new2)
2143 return -ENOMEM;
2144 goto restart;
2146 n->end = start;
2147 sp_insert(sp, new2);
2148 new2 = NULL;
2149 break;
2150 } else
2151 n->end = start;
2153 if (!next)
2154 break;
2155 n = rb_entry(next, struct sp_node, nd);
2157 if (new)
2158 sp_insert(sp, new);
2159 spin_unlock(&sp->lock);
2160 if (new2) {
2161 mpol_put(new2->policy);
2162 kmem_cache_free(sn_cache, new2);
2164 return 0;
2168 * mpol_shared_policy_init - initialize shared policy for inode
2169 * @sp: pointer to inode shared policy
2170 * @mpol: struct mempolicy to install
2172 * Install non-NULL @mpol in inode's shared policy rb-tree.
2173 * On entry, the current task has a reference on a non-NULL @mpol.
2174 * This must be released on exit.
2175 * This is called at get_inode() calls and we can use GFP_KERNEL.
2177 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2179 int ret;
2181 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2182 spin_lock_init(&sp->lock);
2184 if (mpol) {
2185 struct vm_area_struct pvma;
2186 struct mempolicy *new;
2187 NODEMASK_SCRATCH(scratch);
2189 if (!scratch)
2190 goto put_mpol;
2191 /* contextualize the tmpfs mount point mempolicy */
2192 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2193 if (IS_ERR(new))
2194 goto free_scratch; /* no valid nodemask intersection */
2196 task_lock(current);
2197 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2198 task_unlock(current);
2199 if (ret)
2200 goto put_new;
2202 /* Create pseudo-vma that contains just the policy */
2203 memset(&pvma, 0, sizeof(struct vm_area_struct));
2204 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2205 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2207 put_new:
2208 mpol_put(new); /* drop initial ref */
2209 free_scratch:
2210 NODEMASK_SCRATCH_FREE(scratch);
2211 put_mpol:
2212 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2216 int mpol_set_shared_policy(struct shared_policy *info,
2217 struct vm_area_struct *vma, struct mempolicy *npol)
2219 int err;
2220 struct sp_node *new = NULL;
2221 unsigned long sz = vma_pages(vma);
2223 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2224 vma->vm_pgoff,
2225 sz, npol ? npol->mode : -1,
2226 npol ? npol->flags : -1,
2227 npol ? nodes_addr(npol->v.nodes)[0] : -1);
2229 if (npol) {
2230 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2231 if (!new)
2232 return -ENOMEM;
2234 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2235 if (err && new)
2236 kmem_cache_free(sn_cache, new);
2237 return err;
2240 /* Free a backing policy store on inode delete. */
2241 void mpol_free_shared_policy(struct shared_policy *p)
2243 struct sp_node *n;
2244 struct rb_node *next;
2246 if (!p->root.rb_node)
2247 return;
2248 spin_lock(&p->lock);
2249 next = rb_first(&p->root);
2250 while (next) {
2251 n = rb_entry(next, struct sp_node, nd);
2252 next = rb_next(&n->nd);
2253 rb_erase(&n->nd, &p->root);
2254 mpol_put(n->policy);
2255 kmem_cache_free(sn_cache, n);
2257 spin_unlock(&p->lock);
2260 /* assumes fs == KERNEL_DS */
2261 void __init numa_policy_init(void)
2263 nodemask_t interleave_nodes;
2264 unsigned long largest = 0;
2265 int nid, prefer = 0;
2267 policy_cache = kmem_cache_create("numa_policy",
2268 sizeof(struct mempolicy),
2269 0, SLAB_PANIC, NULL);
2271 sn_cache = kmem_cache_create("shared_policy_node",
2272 sizeof(struct sp_node),
2273 0, SLAB_PANIC, NULL);
2276 * Set interleaving policy for system init. Interleaving is only
2277 * enabled across suitably sized nodes (default is >= 16MB), or
2278 * fall back to the largest node if they're all smaller.
2280 nodes_clear(interleave_nodes);
2281 for_each_node_state(nid, N_HIGH_MEMORY) {
2282 unsigned long total_pages = node_present_pages(nid);
2284 /* Preserve the largest node */
2285 if (largest < total_pages) {
2286 largest = total_pages;
2287 prefer = nid;
2290 /* Interleave this node? */
2291 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2292 node_set(nid, interleave_nodes);
2295 /* All too small, use the largest */
2296 if (unlikely(nodes_empty(interleave_nodes)))
2297 node_set(prefer, interleave_nodes);
2299 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2300 printk("numa_policy_init: interleaving failed\n");
2303 /* Reset policy of current process to default */
2304 void numa_default_policy(void)
2306 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2310 * Parse and format mempolicy from/to strings
2314 * "local" is pseudo-policy: MPOL_PREFERRED with MPOL_F_LOCAL flag
2315 * Used only for mpol_parse_str() and mpol_to_str()
2317 #define MPOL_LOCAL MPOL_MAX
2318 static const char * const policy_modes[] =
2320 [MPOL_DEFAULT] = "default",
2321 [MPOL_PREFERRED] = "prefer",
2322 [MPOL_BIND] = "bind",
2323 [MPOL_INTERLEAVE] = "interleave",
2324 [MPOL_LOCAL] = "local"
2328 #ifdef CONFIG_TMPFS
2330 * mpol_parse_str - parse string to mempolicy
2331 * @str: string containing mempolicy to parse
2332 * @mpol: pointer to struct mempolicy pointer, returned on success.
2333 * @no_context: flag whether to "contextualize" the mempolicy
2335 * Format of input:
2336 * <mode>[=<flags>][:<nodelist>]
2338 * if @no_context is true, save the input nodemask in w.user_nodemask in
2339 * the returned mempolicy. This will be used to "clone" the mempolicy in
2340 * a specific context [cpuset] at a later time. Used to parse tmpfs mpol
2341 * mount option. Note that if 'static' or 'relative' mode flags were
2342 * specified, the input nodemask will already have been saved. Saving
2343 * it again is redundant, but safe.
2345 * On success, returns 0, else 1
2347 int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2349 struct mempolicy *new = NULL;
2350 unsigned short mode;
2351 unsigned short uninitialized_var(mode_flags);
2352 nodemask_t nodes;
2353 char *nodelist = strchr(str, ':');
2354 char *flags = strchr(str, '=');
2355 int err = 1;
2357 if (nodelist) {
2358 /* NUL-terminate mode or flags string */
2359 *nodelist++ = '\0';
2360 if (nodelist_parse(nodelist, nodes))
2361 goto out;
2362 if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2363 goto out;
2364 } else
2365 nodes_clear(nodes);
2367 if (flags)
2368 *flags++ = '\0'; /* terminate mode string */
2370 for (mode = 0; mode <= MPOL_LOCAL; mode++) {
2371 if (!strcmp(str, policy_modes[mode])) {
2372 break;
2375 if (mode > MPOL_LOCAL)
2376 goto out;
2378 switch (mode) {
2379 case MPOL_PREFERRED:
2381 * Insist on a nodelist of one node only
2383 if (nodelist) {
2384 char *rest = nodelist;
2385 while (isdigit(*rest))
2386 rest++;
2387 if (*rest)
2388 goto out;
2390 break;
2391 case MPOL_INTERLEAVE:
2393 * Default to online nodes with memory if no nodelist
2395 if (!nodelist)
2396 nodes = node_states[N_HIGH_MEMORY];
2397 break;
2398 case MPOL_LOCAL:
2400 * Don't allow a nodelist; mpol_new() checks flags
2402 if (nodelist)
2403 goto out;
2404 mode = MPOL_PREFERRED;
2405 break;
2406 case MPOL_DEFAULT:
2408 * Insist on a empty nodelist
2410 if (!nodelist)
2411 err = 0;
2412 goto out;
2413 case MPOL_BIND:
2415 * Insist on a nodelist
2417 if (!nodelist)
2418 goto out;
2421 mode_flags = 0;
2422 if (flags) {
2424 * Currently, we only support two mutually exclusive
2425 * mode flags.
2427 if (!strcmp(flags, "static"))
2428 mode_flags |= MPOL_F_STATIC_NODES;
2429 else if (!strcmp(flags, "relative"))
2430 mode_flags |= MPOL_F_RELATIVE_NODES;
2431 else
2432 goto out;
2435 new = mpol_new(mode, mode_flags, &nodes);
2436 if (IS_ERR(new))
2437 goto out;
2439 if (no_context) {
2440 /* save for contextualization */
2441 new->w.user_nodemask = nodes;
2442 } else {
2443 int ret;
2444 NODEMASK_SCRATCH(scratch);
2445 if (scratch) {
2446 task_lock(current);
2447 ret = mpol_set_nodemask(new, &nodes, scratch);
2448 task_unlock(current);
2449 } else
2450 ret = -ENOMEM;
2451 NODEMASK_SCRATCH_FREE(scratch);
2452 if (ret) {
2453 mpol_put(new);
2454 goto out;
2457 err = 0;
2459 out:
2460 /* Restore string for error message */
2461 if (nodelist)
2462 *--nodelist = ':';
2463 if (flags)
2464 *--flags = '=';
2465 if (!err)
2466 *mpol = new;
2467 return err;
2469 #endif /* CONFIG_TMPFS */
2472 * mpol_to_str - format a mempolicy structure for printing
2473 * @buffer: to contain formatted mempolicy string
2474 * @maxlen: length of @buffer
2475 * @pol: pointer to mempolicy to be formatted
2476 * @no_context: "context free" mempolicy - use nodemask in w.user_nodemask
2478 * Convert a mempolicy into a string.
2479 * Returns the number of characters in buffer (if positive)
2480 * or an error (negative)
2482 int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2484 char *p = buffer;
2485 int l;
2486 nodemask_t nodes;
2487 unsigned short mode;
2488 unsigned short flags = pol ? pol->flags : 0;
2491 * Sanity check: room for longest mode, flag and some nodes
2493 VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2495 if (!pol || pol == &default_policy)
2496 mode = MPOL_DEFAULT;
2497 else
2498 mode = pol->mode;
2500 switch (mode) {
2501 case MPOL_DEFAULT:
2502 nodes_clear(nodes);
2503 break;
2505 case MPOL_PREFERRED:
2506 nodes_clear(nodes);
2507 if (flags & MPOL_F_LOCAL)
2508 mode = MPOL_LOCAL; /* pseudo-policy */
2509 else
2510 node_set(pol->v.preferred_node, nodes);
2511 break;
2513 case MPOL_BIND:
2514 /* Fall through */
2515 case MPOL_INTERLEAVE:
2516 if (no_context)
2517 nodes = pol->w.user_nodemask;
2518 else
2519 nodes = pol->v.nodes;
2520 break;
2522 default:
2523 BUG();
2526 l = strlen(policy_modes[mode]);
2527 if (buffer + maxlen < p + l + 1)
2528 return -ENOSPC;
2530 strcpy(p, policy_modes[mode]);
2531 p += l;
2533 if (flags & MPOL_MODE_FLAGS) {
2534 if (buffer + maxlen < p + 2)
2535 return -ENOSPC;
2536 *p++ = '=';
2539 * Currently, the only defined flags are mutually exclusive
2541 if (flags & MPOL_F_STATIC_NODES)
2542 p += snprintf(p, buffer + maxlen - p, "static");
2543 else if (flags & MPOL_F_RELATIVE_NODES)
2544 p += snprintf(p, buffer + maxlen - p, "relative");
2547 if (!nodes_empty(nodes)) {
2548 if (buffer + maxlen < p + 2)
2549 return -ENOSPC;
2550 *p++ = ':';
2551 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2553 return p - buffer;