cgroups: Fix a lockdep warning at cgroup removal
[pohmelfs.git] / kernel / cgroup.c
bloba7837e2d9d6b27500f7431c61517b7d9ddc738d4
1 /*
2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #include <linux/cgroup.h>
30 #include <linux/ctype.h>
31 #include <linux/errno.h>
32 #include <linux/fs.h>
33 #include <linux/kernel.h>
34 #include <linux/list.h>
35 #include <linux/mm.h>
36 #include <linux/mutex.h>
37 #include <linux/mount.h>
38 #include <linux/pagemap.h>
39 #include <linux/proc_fs.h>
40 #include <linux/rcupdate.h>
41 #include <linux/sched.h>
42 #include <linux/backing-dev.h>
43 #include <linux/seq_file.h>
44 #include <linux/slab.h>
45 #include <linux/magic.h>
46 #include <linux/spinlock.h>
47 #include <linux/string.h>
48 #include <linux/sort.h>
49 #include <linux/kmod.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/cgroupstats.h>
53 #include <linux/hash.h>
54 #include <linux/namei.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/eventfd.h>
59 #include <linux/poll.h>
61 #include <asm/atomic.h>
63 static DEFINE_MUTEX(cgroup_mutex);
66 * Generate an array of cgroup subsystem pointers. At boot time, this is
67 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
68 * registered after that. The mutable section of this array is protected by
69 * cgroup_mutex.
71 #define SUBSYS(_x) &_x ## _subsys,
72 static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
73 #include <linux/cgroup_subsys.h>
76 #define MAX_CGROUP_ROOT_NAMELEN 64
79 * A cgroupfs_root represents the root of a cgroup hierarchy,
80 * and may be associated with a superblock to form an active
81 * hierarchy
83 struct cgroupfs_root {
84 struct super_block *sb;
87 * The bitmask of subsystems intended to be attached to this
88 * hierarchy
90 unsigned long subsys_bits;
92 /* Unique id for this hierarchy. */
93 int hierarchy_id;
95 /* The bitmask of subsystems currently attached to this hierarchy */
96 unsigned long actual_subsys_bits;
98 /* A list running through the attached subsystems */
99 struct list_head subsys_list;
101 /* The root cgroup for this hierarchy */
102 struct cgroup top_cgroup;
104 /* Tracks how many cgroups are currently defined in hierarchy.*/
105 int number_of_cgroups;
107 /* A list running through the active hierarchies */
108 struct list_head root_list;
110 /* Hierarchy-specific flags */
111 unsigned long flags;
113 /* The path to use for release notifications. */
114 char release_agent_path[PATH_MAX];
116 /* The name for this hierarchy - may be empty */
117 char name[MAX_CGROUP_ROOT_NAMELEN];
121 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
122 * subsystems that are otherwise unattached - it never has more than a
123 * single cgroup, and all tasks are part of that cgroup.
125 static struct cgroupfs_root rootnode;
128 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
129 * cgroup_subsys->use_id != 0.
131 #define CSS_ID_MAX (65535)
132 struct css_id {
134 * The css to which this ID points. This pointer is set to valid value
135 * after cgroup is populated. If cgroup is removed, this will be NULL.
136 * This pointer is expected to be RCU-safe because destroy()
137 * is called after synchronize_rcu(). But for safe use, css_is_removed()
138 * css_tryget() should be used for avoiding race.
140 struct cgroup_subsys_state __rcu *css;
142 * ID of this css.
144 unsigned short id;
146 * Depth in hierarchy which this ID belongs to.
148 unsigned short depth;
150 * ID is freed by RCU. (and lookup routine is RCU safe.)
152 struct rcu_head rcu_head;
154 * Hierarchy of CSS ID belongs to.
156 unsigned short stack[0]; /* Array of Length (depth+1) */
160 * cgroup_event represents events which userspace want to recieve.
162 struct cgroup_event {
164 * Cgroup which the event belongs to.
166 struct cgroup *cgrp;
168 * Control file which the event associated.
170 struct cftype *cft;
172 * eventfd to signal userspace about the event.
174 struct eventfd_ctx *eventfd;
176 * Each of these stored in a list by the cgroup.
178 struct list_head list;
180 * All fields below needed to unregister event when
181 * userspace closes eventfd.
183 poll_table pt;
184 wait_queue_head_t *wqh;
185 wait_queue_t wait;
186 struct work_struct remove;
189 /* The list of hierarchy roots */
191 static LIST_HEAD(roots);
192 static int root_count;
194 static DEFINE_IDA(hierarchy_ida);
195 static int next_hierarchy_id;
196 static DEFINE_SPINLOCK(hierarchy_id_lock);
198 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
199 #define dummytop (&rootnode.top_cgroup)
201 /* This flag indicates whether tasks in the fork and exit paths should
202 * check for fork/exit handlers to call. This avoids us having to do
203 * extra work in the fork/exit path if none of the subsystems need to
204 * be called.
206 static int need_forkexit_callback __read_mostly;
208 #ifdef CONFIG_PROVE_LOCKING
209 int cgroup_lock_is_held(void)
211 return lockdep_is_held(&cgroup_mutex);
213 #else /* #ifdef CONFIG_PROVE_LOCKING */
214 int cgroup_lock_is_held(void)
216 return mutex_is_locked(&cgroup_mutex);
218 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
220 EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
222 /* convenient tests for these bits */
223 inline int cgroup_is_removed(const struct cgroup *cgrp)
225 return test_bit(CGRP_REMOVED, &cgrp->flags);
228 /* bits in struct cgroupfs_root flags field */
229 enum {
230 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
233 static int cgroup_is_releasable(const struct cgroup *cgrp)
235 const int bits =
236 (1 << CGRP_RELEASABLE) |
237 (1 << CGRP_NOTIFY_ON_RELEASE);
238 return (cgrp->flags & bits) == bits;
241 static int notify_on_release(const struct cgroup *cgrp)
243 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
246 static int clone_children(const struct cgroup *cgrp)
248 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
252 * for_each_subsys() allows you to iterate on each subsystem attached to
253 * an active hierarchy
255 #define for_each_subsys(_root, _ss) \
256 list_for_each_entry(_ss, &_root->subsys_list, sibling)
258 /* for_each_active_root() allows you to iterate across the active hierarchies */
259 #define for_each_active_root(_root) \
260 list_for_each_entry(_root, &roots, root_list)
262 /* the list of cgroups eligible for automatic release. Protected by
263 * release_list_lock */
264 static LIST_HEAD(release_list);
265 static DEFINE_SPINLOCK(release_list_lock);
266 static void cgroup_release_agent(struct work_struct *work);
267 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
268 static void check_for_release(struct cgroup *cgrp);
270 /* Link structure for associating css_set objects with cgroups */
271 struct cg_cgroup_link {
273 * List running through cg_cgroup_links associated with a
274 * cgroup, anchored on cgroup->css_sets
276 struct list_head cgrp_link_list;
277 struct cgroup *cgrp;
279 * List running through cg_cgroup_links pointing at a
280 * single css_set object, anchored on css_set->cg_links
282 struct list_head cg_link_list;
283 struct css_set *cg;
286 /* The default css_set - used by init and its children prior to any
287 * hierarchies being mounted. It contains a pointer to the root state
288 * for each subsystem. Also used to anchor the list of css_sets. Not
289 * reference-counted, to improve performance when child cgroups
290 * haven't been created.
293 static struct css_set init_css_set;
294 static struct cg_cgroup_link init_css_set_link;
296 static int cgroup_init_idr(struct cgroup_subsys *ss,
297 struct cgroup_subsys_state *css);
299 /* css_set_lock protects the list of css_set objects, and the
300 * chain of tasks off each css_set. Nests outside task->alloc_lock
301 * due to cgroup_iter_start() */
302 static DEFINE_RWLOCK(css_set_lock);
303 static int css_set_count;
306 * hash table for cgroup groups. This improves the performance to find
307 * an existing css_set. This hash doesn't (currently) take into
308 * account cgroups in empty hierarchies.
310 #define CSS_SET_HASH_BITS 7
311 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
312 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
314 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
316 int i;
317 int index;
318 unsigned long tmp = 0UL;
320 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
321 tmp += (unsigned long)css[i];
322 tmp = (tmp >> 16) ^ tmp;
324 index = hash_long(tmp, CSS_SET_HASH_BITS);
326 return &css_set_table[index];
329 static void free_css_set_rcu(struct rcu_head *obj)
331 struct css_set *cg = container_of(obj, struct css_set, rcu_head);
332 kfree(cg);
335 /* We don't maintain the lists running through each css_set to its
336 * task until after the first call to cgroup_iter_start(). This
337 * reduces the fork()/exit() overhead for people who have cgroups
338 * compiled into their kernel but not actually in use */
339 static int use_task_css_set_links __read_mostly;
341 static void __put_css_set(struct css_set *cg, int taskexit)
343 struct cg_cgroup_link *link;
344 struct cg_cgroup_link *saved_link;
346 * Ensure that the refcount doesn't hit zero while any readers
347 * can see it. Similar to atomic_dec_and_lock(), but for an
348 * rwlock
350 if (atomic_add_unless(&cg->refcount, -1, 1))
351 return;
352 write_lock(&css_set_lock);
353 if (!atomic_dec_and_test(&cg->refcount)) {
354 write_unlock(&css_set_lock);
355 return;
358 /* This css_set is dead. unlink it and release cgroup refcounts */
359 hlist_del(&cg->hlist);
360 css_set_count--;
362 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
363 cg_link_list) {
364 struct cgroup *cgrp = link->cgrp;
365 list_del(&link->cg_link_list);
366 list_del(&link->cgrp_link_list);
367 if (atomic_dec_and_test(&cgrp->count) &&
368 notify_on_release(cgrp)) {
369 if (taskexit)
370 set_bit(CGRP_RELEASABLE, &cgrp->flags);
371 check_for_release(cgrp);
374 kfree(link);
377 write_unlock(&css_set_lock);
378 call_rcu(&cg->rcu_head, free_css_set_rcu);
382 * refcounted get/put for css_set objects
384 static inline void get_css_set(struct css_set *cg)
386 atomic_inc(&cg->refcount);
389 static inline void put_css_set(struct css_set *cg)
391 __put_css_set(cg, 0);
394 static inline void put_css_set_taskexit(struct css_set *cg)
396 __put_css_set(cg, 1);
400 * compare_css_sets - helper function for find_existing_css_set().
401 * @cg: candidate css_set being tested
402 * @old_cg: existing css_set for a task
403 * @new_cgrp: cgroup that's being entered by the task
404 * @template: desired set of css pointers in css_set (pre-calculated)
406 * Returns true if "cg" matches "old_cg" except for the hierarchy
407 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
409 static bool compare_css_sets(struct css_set *cg,
410 struct css_set *old_cg,
411 struct cgroup *new_cgrp,
412 struct cgroup_subsys_state *template[])
414 struct list_head *l1, *l2;
416 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
417 /* Not all subsystems matched */
418 return false;
422 * Compare cgroup pointers in order to distinguish between
423 * different cgroups in heirarchies with no subsystems. We
424 * could get by with just this check alone (and skip the
425 * memcmp above) but on most setups the memcmp check will
426 * avoid the need for this more expensive check on almost all
427 * candidates.
430 l1 = &cg->cg_links;
431 l2 = &old_cg->cg_links;
432 while (1) {
433 struct cg_cgroup_link *cgl1, *cgl2;
434 struct cgroup *cg1, *cg2;
436 l1 = l1->next;
437 l2 = l2->next;
438 /* See if we reached the end - both lists are equal length. */
439 if (l1 == &cg->cg_links) {
440 BUG_ON(l2 != &old_cg->cg_links);
441 break;
442 } else {
443 BUG_ON(l2 == &old_cg->cg_links);
445 /* Locate the cgroups associated with these links. */
446 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
447 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
448 cg1 = cgl1->cgrp;
449 cg2 = cgl2->cgrp;
450 /* Hierarchies should be linked in the same order. */
451 BUG_ON(cg1->root != cg2->root);
454 * If this hierarchy is the hierarchy of the cgroup
455 * that's changing, then we need to check that this
456 * css_set points to the new cgroup; if it's any other
457 * hierarchy, then this css_set should point to the
458 * same cgroup as the old css_set.
460 if (cg1->root == new_cgrp->root) {
461 if (cg1 != new_cgrp)
462 return false;
463 } else {
464 if (cg1 != cg2)
465 return false;
468 return true;
472 * find_existing_css_set() is a helper for
473 * find_css_set(), and checks to see whether an existing
474 * css_set is suitable.
476 * oldcg: the cgroup group that we're using before the cgroup
477 * transition
479 * cgrp: the cgroup that we're moving into
481 * template: location in which to build the desired set of subsystem
482 * state objects for the new cgroup group
484 static struct css_set *find_existing_css_set(
485 struct css_set *oldcg,
486 struct cgroup *cgrp,
487 struct cgroup_subsys_state *template[])
489 int i;
490 struct cgroupfs_root *root = cgrp->root;
491 struct hlist_head *hhead;
492 struct hlist_node *node;
493 struct css_set *cg;
496 * Build the set of subsystem state objects that we want to see in the
497 * new css_set. while subsystems can change globally, the entries here
498 * won't change, so no need for locking.
500 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
501 if (root->subsys_bits & (1UL << i)) {
502 /* Subsystem is in this hierarchy. So we want
503 * the subsystem state from the new
504 * cgroup */
505 template[i] = cgrp->subsys[i];
506 } else {
507 /* Subsystem is not in this hierarchy, so we
508 * don't want to change the subsystem state */
509 template[i] = oldcg->subsys[i];
513 hhead = css_set_hash(template);
514 hlist_for_each_entry(cg, node, hhead, hlist) {
515 if (!compare_css_sets(cg, oldcg, cgrp, template))
516 continue;
518 /* This css_set matches what we need */
519 return cg;
522 /* No existing cgroup group matched */
523 return NULL;
526 static void free_cg_links(struct list_head *tmp)
528 struct cg_cgroup_link *link;
529 struct cg_cgroup_link *saved_link;
531 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
532 list_del(&link->cgrp_link_list);
533 kfree(link);
538 * allocate_cg_links() allocates "count" cg_cgroup_link structures
539 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
540 * success or a negative error
542 static int allocate_cg_links(int count, struct list_head *tmp)
544 struct cg_cgroup_link *link;
545 int i;
546 INIT_LIST_HEAD(tmp);
547 for (i = 0; i < count; i++) {
548 link = kmalloc(sizeof(*link), GFP_KERNEL);
549 if (!link) {
550 free_cg_links(tmp);
551 return -ENOMEM;
553 list_add(&link->cgrp_link_list, tmp);
555 return 0;
559 * link_css_set - a helper function to link a css_set to a cgroup
560 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
561 * @cg: the css_set to be linked
562 * @cgrp: the destination cgroup
564 static void link_css_set(struct list_head *tmp_cg_links,
565 struct css_set *cg, struct cgroup *cgrp)
567 struct cg_cgroup_link *link;
569 BUG_ON(list_empty(tmp_cg_links));
570 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
571 cgrp_link_list);
572 link->cg = cg;
573 link->cgrp = cgrp;
574 atomic_inc(&cgrp->count);
575 list_move(&link->cgrp_link_list, &cgrp->css_sets);
577 * Always add links to the tail of the list so that the list
578 * is sorted by order of hierarchy creation
580 list_add_tail(&link->cg_link_list, &cg->cg_links);
584 * find_css_set() takes an existing cgroup group and a
585 * cgroup object, and returns a css_set object that's
586 * equivalent to the old group, but with the given cgroup
587 * substituted into the appropriate hierarchy. Must be called with
588 * cgroup_mutex held
590 static struct css_set *find_css_set(
591 struct css_set *oldcg, struct cgroup *cgrp)
593 struct css_set *res;
594 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
596 struct list_head tmp_cg_links;
598 struct hlist_head *hhead;
599 struct cg_cgroup_link *link;
601 /* First see if we already have a cgroup group that matches
602 * the desired set */
603 read_lock(&css_set_lock);
604 res = find_existing_css_set(oldcg, cgrp, template);
605 if (res)
606 get_css_set(res);
607 read_unlock(&css_set_lock);
609 if (res)
610 return res;
612 res = kmalloc(sizeof(*res), GFP_KERNEL);
613 if (!res)
614 return NULL;
616 /* Allocate all the cg_cgroup_link objects that we'll need */
617 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
618 kfree(res);
619 return NULL;
622 atomic_set(&res->refcount, 1);
623 INIT_LIST_HEAD(&res->cg_links);
624 INIT_LIST_HEAD(&res->tasks);
625 INIT_HLIST_NODE(&res->hlist);
627 /* Copy the set of subsystem state objects generated in
628 * find_existing_css_set() */
629 memcpy(res->subsys, template, sizeof(res->subsys));
631 write_lock(&css_set_lock);
632 /* Add reference counts and links from the new css_set. */
633 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
634 struct cgroup *c = link->cgrp;
635 if (c->root == cgrp->root)
636 c = cgrp;
637 link_css_set(&tmp_cg_links, res, c);
640 BUG_ON(!list_empty(&tmp_cg_links));
642 css_set_count++;
644 /* Add this cgroup group to the hash table */
645 hhead = css_set_hash(res->subsys);
646 hlist_add_head(&res->hlist, hhead);
648 write_unlock(&css_set_lock);
650 return res;
654 * Return the cgroup for "task" from the given hierarchy. Must be
655 * called with cgroup_mutex held.
657 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
658 struct cgroupfs_root *root)
660 struct css_set *css;
661 struct cgroup *res = NULL;
663 BUG_ON(!mutex_is_locked(&cgroup_mutex));
664 read_lock(&css_set_lock);
666 * No need to lock the task - since we hold cgroup_mutex the
667 * task can't change groups, so the only thing that can happen
668 * is that it exits and its css is set back to init_css_set.
670 css = task->cgroups;
671 if (css == &init_css_set) {
672 res = &root->top_cgroup;
673 } else {
674 struct cg_cgroup_link *link;
675 list_for_each_entry(link, &css->cg_links, cg_link_list) {
676 struct cgroup *c = link->cgrp;
677 if (c->root == root) {
678 res = c;
679 break;
683 read_unlock(&css_set_lock);
684 BUG_ON(!res);
685 return res;
689 * There is one global cgroup mutex. We also require taking
690 * task_lock() when dereferencing a task's cgroup subsys pointers.
691 * See "The task_lock() exception", at the end of this comment.
693 * A task must hold cgroup_mutex to modify cgroups.
695 * Any task can increment and decrement the count field without lock.
696 * So in general, code holding cgroup_mutex can't rely on the count
697 * field not changing. However, if the count goes to zero, then only
698 * cgroup_attach_task() can increment it again. Because a count of zero
699 * means that no tasks are currently attached, therefore there is no
700 * way a task attached to that cgroup can fork (the other way to
701 * increment the count). So code holding cgroup_mutex can safely
702 * assume that if the count is zero, it will stay zero. Similarly, if
703 * a task holds cgroup_mutex on a cgroup with zero count, it
704 * knows that the cgroup won't be removed, as cgroup_rmdir()
705 * needs that mutex.
707 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
708 * (usually) take cgroup_mutex. These are the two most performance
709 * critical pieces of code here. The exception occurs on cgroup_exit(),
710 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
711 * is taken, and if the cgroup count is zero, a usermode call made
712 * to the release agent with the name of the cgroup (path relative to
713 * the root of cgroup file system) as the argument.
715 * A cgroup can only be deleted if both its 'count' of using tasks
716 * is zero, and its list of 'children' cgroups is empty. Since all
717 * tasks in the system use _some_ cgroup, and since there is always at
718 * least one task in the system (init, pid == 1), therefore, top_cgroup
719 * always has either children cgroups and/or using tasks. So we don't
720 * need a special hack to ensure that top_cgroup cannot be deleted.
722 * The task_lock() exception
724 * The need for this exception arises from the action of
725 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
726 * another. It does so using cgroup_mutex, however there are
727 * several performance critical places that need to reference
728 * task->cgroup without the expense of grabbing a system global
729 * mutex. Therefore except as noted below, when dereferencing or, as
730 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
731 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
732 * the task_struct routinely used for such matters.
734 * P.S. One more locking exception. RCU is used to guard the
735 * update of a tasks cgroup pointer by cgroup_attach_task()
739 * cgroup_lock - lock out any changes to cgroup structures
742 void cgroup_lock(void)
744 mutex_lock(&cgroup_mutex);
746 EXPORT_SYMBOL_GPL(cgroup_lock);
749 * cgroup_unlock - release lock on cgroup changes
751 * Undo the lock taken in a previous cgroup_lock() call.
753 void cgroup_unlock(void)
755 mutex_unlock(&cgroup_mutex);
757 EXPORT_SYMBOL_GPL(cgroup_unlock);
760 * A couple of forward declarations required, due to cyclic reference loop:
761 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
762 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
763 * -> cgroup_mkdir.
766 static struct dentry *cgroup_lookup(struct inode *dir,
767 struct dentry *dentry, struct nameidata *nd);
768 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
769 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
770 static int cgroup_populate_dir(struct cgroup *cgrp);
771 static const struct inode_operations cgroup_dir_inode_operations;
772 static const struct file_operations proc_cgroupstats_operations;
774 static struct backing_dev_info cgroup_backing_dev_info = {
775 .name = "cgroup",
776 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
779 static int alloc_css_id(struct cgroup_subsys *ss,
780 struct cgroup *parent, struct cgroup *child);
782 static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
784 struct inode *inode = new_inode(sb);
786 if (inode) {
787 inode->i_ino = get_next_ino();
788 inode->i_mode = mode;
789 inode->i_uid = current_fsuid();
790 inode->i_gid = current_fsgid();
791 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
792 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
794 return inode;
798 * Call subsys's pre_destroy handler.
799 * This is called before css refcnt check.
801 static int cgroup_call_pre_destroy(struct cgroup *cgrp)
803 struct cgroup_subsys *ss;
804 int ret = 0;
806 for_each_subsys(cgrp->root, ss)
807 if (ss->pre_destroy) {
808 ret = ss->pre_destroy(ss, cgrp);
809 if (ret)
810 break;
813 return ret;
816 static void free_cgroup_rcu(struct rcu_head *obj)
818 struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);
820 kfree(cgrp);
823 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
825 /* is dentry a directory ? if so, kfree() associated cgroup */
826 if (S_ISDIR(inode->i_mode)) {
827 struct cgroup *cgrp = dentry->d_fsdata;
828 struct cgroup_subsys *ss;
829 BUG_ON(!(cgroup_is_removed(cgrp)));
830 /* It's possible for external users to be holding css
831 * reference counts on a cgroup; css_put() needs to
832 * be able to access the cgroup after decrementing
833 * the reference count in order to know if it needs to
834 * queue the cgroup to be handled by the release
835 * agent */
836 synchronize_rcu();
838 mutex_lock(&cgroup_mutex);
840 * Release the subsystem state objects.
842 for_each_subsys(cgrp->root, ss)
843 ss->destroy(ss, cgrp);
845 cgrp->root->number_of_cgroups--;
846 mutex_unlock(&cgroup_mutex);
849 * Drop the active superblock reference that we took when we
850 * created the cgroup
852 deactivate_super(cgrp->root->sb);
855 * if we're getting rid of the cgroup, refcount should ensure
856 * that there are no pidlists left.
858 BUG_ON(!list_empty(&cgrp->pidlists));
860 call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
862 iput(inode);
865 static void remove_dir(struct dentry *d)
867 struct dentry *parent = dget(d->d_parent);
869 d_delete(d);
870 simple_rmdir(parent->d_inode, d);
871 dput(parent);
874 static void cgroup_clear_directory(struct dentry *dentry)
876 struct list_head *node;
878 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
879 spin_lock(&dentry->d_lock);
880 node = dentry->d_subdirs.next;
881 while (node != &dentry->d_subdirs) {
882 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
884 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
885 list_del_init(node);
886 if (d->d_inode) {
887 /* This should never be called on a cgroup
888 * directory with child cgroups */
889 BUG_ON(d->d_inode->i_mode & S_IFDIR);
890 dget_dlock(d);
891 spin_unlock(&d->d_lock);
892 spin_unlock(&dentry->d_lock);
893 d_delete(d);
894 simple_unlink(dentry->d_inode, d);
895 dput(d);
896 spin_lock(&dentry->d_lock);
897 } else
898 spin_unlock(&d->d_lock);
899 node = dentry->d_subdirs.next;
901 spin_unlock(&dentry->d_lock);
905 * NOTE : the dentry must have been dget()'ed
907 static void cgroup_d_remove_dir(struct dentry *dentry)
909 struct dentry *parent;
911 cgroup_clear_directory(dentry);
913 parent = dentry->d_parent;
914 spin_lock(&parent->d_lock);
915 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
916 list_del_init(&dentry->d_u.d_child);
917 spin_unlock(&dentry->d_lock);
918 spin_unlock(&parent->d_lock);
919 remove_dir(dentry);
923 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
924 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
925 * reference to css->refcnt. In general, this refcnt is expected to goes down
926 * to zero, soon.
928 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
930 DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
932 static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
934 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
935 wake_up_all(&cgroup_rmdir_waitq);
938 void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
940 css_get(css);
943 void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
945 cgroup_wakeup_rmdir_waiter(css->cgroup);
946 css_put(css);
950 * Call with cgroup_mutex held. Drops reference counts on modules, including
951 * any duplicate ones that parse_cgroupfs_options took. If this function
952 * returns an error, no reference counts are touched.
954 static int rebind_subsystems(struct cgroupfs_root *root,
955 unsigned long final_bits)
957 unsigned long added_bits, removed_bits;
958 struct cgroup *cgrp = &root->top_cgroup;
959 int i;
961 BUG_ON(!mutex_is_locked(&cgroup_mutex));
963 removed_bits = root->actual_subsys_bits & ~final_bits;
964 added_bits = final_bits & ~root->actual_subsys_bits;
965 /* Check that any added subsystems are currently free */
966 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
967 unsigned long bit = 1UL << i;
968 struct cgroup_subsys *ss = subsys[i];
969 if (!(bit & added_bits))
970 continue;
972 * Nobody should tell us to do a subsys that doesn't exist:
973 * parse_cgroupfs_options should catch that case and refcounts
974 * ensure that subsystems won't disappear once selected.
976 BUG_ON(ss == NULL);
977 if (ss->root != &rootnode) {
978 /* Subsystem isn't free */
979 return -EBUSY;
983 /* Currently we don't handle adding/removing subsystems when
984 * any child cgroups exist. This is theoretically supportable
985 * but involves complex error handling, so it's being left until
986 * later */
987 if (root->number_of_cgroups > 1)
988 return -EBUSY;
990 /* Process each subsystem */
991 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
992 struct cgroup_subsys *ss = subsys[i];
993 unsigned long bit = 1UL << i;
994 if (bit & added_bits) {
995 /* We're binding this subsystem to this hierarchy */
996 BUG_ON(ss == NULL);
997 BUG_ON(cgrp->subsys[i]);
998 BUG_ON(!dummytop->subsys[i]);
999 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
1000 mutex_lock(&ss->hierarchy_mutex);
1001 cgrp->subsys[i] = dummytop->subsys[i];
1002 cgrp->subsys[i]->cgroup = cgrp;
1003 list_move(&ss->sibling, &root->subsys_list);
1004 ss->root = root;
1005 if (ss->bind)
1006 ss->bind(ss, cgrp);
1007 mutex_unlock(&ss->hierarchy_mutex);
1008 /* refcount was already taken, and we're keeping it */
1009 } else if (bit & removed_bits) {
1010 /* We're removing this subsystem */
1011 BUG_ON(ss == NULL);
1012 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1013 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1014 mutex_lock(&ss->hierarchy_mutex);
1015 if (ss->bind)
1016 ss->bind(ss, dummytop);
1017 dummytop->subsys[i]->cgroup = dummytop;
1018 cgrp->subsys[i] = NULL;
1019 subsys[i]->root = &rootnode;
1020 list_move(&ss->sibling, &rootnode.subsys_list);
1021 mutex_unlock(&ss->hierarchy_mutex);
1022 /* subsystem is now free - drop reference on module */
1023 module_put(ss->module);
1024 } else if (bit & final_bits) {
1025 /* Subsystem state should already exist */
1026 BUG_ON(ss == NULL);
1027 BUG_ON(!cgrp->subsys[i]);
1029 * a refcount was taken, but we already had one, so
1030 * drop the extra reference.
1032 module_put(ss->module);
1033 #ifdef CONFIG_MODULE_UNLOAD
1034 BUG_ON(ss->module && !module_refcount(ss->module));
1035 #endif
1036 } else {
1037 /* Subsystem state shouldn't exist */
1038 BUG_ON(cgrp->subsys[i]);
1041 root->subsys_bits = root->actual_subsys_bits = final_bits;
1042 synchronize_rcu();
1044 return 0;
1047 static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
1049 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
1050 struct cgroup_subsys *ss;
1052 mutex_lock(&cgroup_mutex);
1053 for_each_subsys(root, ss)
1054 seq_printf(seq, ",%s", ss->name);
1055 if (test_bit(ROOT_NOPREFIX, &root->flags))
1056 seq_puts(seq, ",noprefix");
1057 if (strlen(root->release_agent_path))
1058 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1059 if (clone_children(&root->top_cgroup))
1060 seq_puts(seq, ",clone_children");
1061 if (strlen(root->name))
1062 seq_printf(seq, ",name=%s", root->name);
1063 mutex_unlock(&cgroup_mutex);
1064 return 0;
1067 struct cgroup_sb_opts {
1068 unsigned long subsys_bits;
1069 unsigned long flags;
1070 char *release_agent;
1071 bool clone_children;
1072 char *name;
1073 /* User explicitly requested empty subsystem */
1074 bool none;
1076 struct cgroupfs_root *new_root;
1081 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1082 * with cgroup_mutex held to protect the subsys[] array. This function takes
1083 * refcounts on subsystems to be used, unless it returns error, in which case
1084 * no refcounts are taken.
1086 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1088 char *token, *o = data;
1089 bool all_ss = false, one_ss = false;
1090 unsigned long mask = (unsigned long)-1;
1091 int i;
1092 bool module_pin_failed = false;
1094 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1096 #ifdef CONFIG_CPUSETS
1097 mask = ~(1UL << cpuset_subsys_id);
1098 #endif
1100 memset(opts, 0, sizeof(*opts));
1102 while ((token = strsep(&o, ",")) != NULL) {
1103 if (!*token)
1104 return -EINVAL;
1105 if (!strcmp(token, "none")) {
1106 /* Explicitly have no subsystems */
1107 opts->none = true;
1108 continue;
1110 if (!strcmp(token, "all")) {
1111 /* Mutually exclusive option 'all' + subsystem name */
1112 if (one_ss)
1113 return -EINVAL;
1114 all_ss = true;
1115 continue;
1117 if (!strcmp(token, "noprefix")) {
1118 set_bit(ROOT_NOPREFIX, &opts->flags);
1119 continue;
1121 if (!strcmp(token, "clone_children")) {
1122 opts->clone_children = true;
1123 continue;
1125 if (!strncmp(token, "release_agent=", 14)) {
1126 /* Specifying two release agents is forbidden */
1127 if (opts->release_agent)
1128 return -EINVAL;
1129 opts->release_agent =
1130 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1131 if (!opts->release_agent)
1132 return -ENOMEM;
1133 continue;
1135 if (!strncmp(token, "name=", 5)) {
1136 const char *name = token + 5;
1137 /* Can't specify an empty name */
1138 if (!strlen(name))
1139 return -EINVAL;
1140 /* Must match [\w.-]+ */
1141 for (i = 0; i < strlen(name); i++) {
1142 char c = name[i];
1143 if (isalnum(c))
1144 continue;
1145 if ((c == '.') || (c == '-') || (c == '_'))
1146 continue;
1147 return -EINVAL;
1149 /* Specifying two names is forbidden */
1150 if (opts->name)
1151 return -EINVAL;
1152 opts->name = kstrndup(name,
1153 MAX_CGROUP_ROOT_NAMELEN - 1,
1154 GFP_KERNEL);
1155 if (!opts->name)
1156 return -ENOMEM;
1158 continue;
1161 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1162 struct cgroup_subsys *ss = subsys[i];
1163 if (ss == NULL)
1164 continue;
1165 if (strcmp(token, ss->name))
1166 continue;
1167 if (ss->disabled)
1168 continue;
1170 /* Mutually exclusive option 'all' + subsystem name */
1171 if (all_ss)
1172 return -EINVAL;
1173 set_bit(i, &opts->subsys_bits);
1174 one_ss = true;
1176 break;
1178 if (i == CGROUP_SUBSYS_COUNT)
1179 return -ENOENT;
1183 * If the 'all' option was specified select all the subsystems,
1184 * otherwise 'all, 'none' and a subsystem name options were not
1185 * specified, let's default to 'all'
1187 if (all_ss || (!all_ss && !one_ss && !opts->none)) {
1188 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1189 struct cgroup_subsys *ss = subsys[i];
1190 if (ss == NULL)
1191 continue;
1192 if (ss->disabled)
1193 continue;
1194 set_bit(i, &opts->subsys_bits);
1198 /* Consistency checks */
1201 * Option noprefix was introduced just for backward compatibility
1202 * with the old cpuset, so we allow noprefix only if mounting just
1203 * the cpuset subsystem.
1205 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1206 (opts->subsys_bits & mask))
1207 return -EINVAL;
1210 /* Can't specify "none" and some subsystems */
1211 if (opts->subsys_bits && opts->none)
1212 return -EINVAL;
1215 * We either have to specify by name or by subsystems. (So all
1216 * empty hierarchies must have a name).
1218 if (!opts->subsys_bits && !opts->name)
1219 return -EINVAL;
1222 * Grab references on all the modules we'll need, so the subsystems
1223 * don't dance around before rebind_subsystems attaches them. This may
1224 * take duplicate reference counts on a subsystem that's already used,
1225 * but rebind_subsystems handles this case.
1227 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1228 unsigned long bit = 1UL << i;
1230 if (!(bit & opts->subsys_bits))
1231 continue;
1232 if (!try_module_get(subsys[i]->module)) {
1233 module_pin_failed = true;
1234 break;
1237 if (module_pin_failed) {
1239 * oops, one of the modules was going away. this means that we
1240 * raced with a module_delete call, and to the user this is
1241 * essentially a "subsystem doesn't exist" case.
1243 for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1244 /* drop refcounts only on the ones we took */
1245 unsigned long bit = 1UL << i;
1247 if (!(bit & opts->subsys_bits))
1248 continue;
1249 module_put(subsys[i]->module);
1251 return -ENOENT;
1254 return 0;
1257 static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1259 int i;
1260 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1261 unsigned long bit = 1UL << i;
1263 if (!(bit & subsys_bits))
1264 continue;
1265 module_put(subsys[i]->module);
1269 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1271 int ret = 0;
1272 struct cgroupfs_root *root = sb->s_fs_info;
1273 struct cgroup *cgrp = &root->top_cgroup;
1274 struct cgroup_sb_opts opts;
1276 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1277 mutex_lock(&cgroup_mutex);
1279 /* See what subsystems are wanted */
1280 ret = parse_cgroupfs_options(data, &opts);
1281 if (ret)
1282 goto out_unlock;
1284 /* Don't allow flags or name to change at remount */
1285 if (opts.flags != root->flags ||
1286 (opts.name && strcmp(opts.name, root->name))) {
1287 ret = -EINVAL;
1288 drop_parsed_module_refcounts(opts.subsys_bits);
1289 goto out_unlock;
1292 ret = rebind_subsystems(root, opts.subsys_bits);
1293 if (ret) {
1294 drop_parsed_module_refcounts(opts.subsys_bits);
1295 goto out_unlock;
1298 /* (re)populate subsystem files */
1299 cgroup_populate_dir(cgrp);
1301 if (opts.release_agent)
1302 strcpy(root->release_agent_path, opts.release_agent);
1303 out_unlock:
1304 kfree(opts.release_agent);
1305 kfree(opts.name);
1306 mutex_unlock(&cgroup_mutex);
1307 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1308 return ret;
1311 static const struct super_operations cgroup_ops = {
1312 .statfs = simple_statfs,
1313 .drop_inode = generic_delete_inode,
1314 .show_options = cgroup_show_options,
1315 .remount_fs = cgroup_remount,
1318 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1320 INIT_LIST_HEAD(&cgrp->sibling);
1321 INIT_LIST_HEAD(&cgrp->children);
1322 INIT_LIST_HEAD(&cgrp->css_sets);
1323 INIT_LIST_HEAD(&cgrp->release_list);
1324 INIT_LIST_HEAD(&cgrp->pidlists);
1325 mutex_init(&cgrp->pidlist_mutex);
1326 INIT_LIST_HEAD(&cgrp->event_list);
1327 spin_lock_init(&cgrp->event_list_lock);
1330 static void init_cgroup_root(struct cgroupfs_root *root)
1332 struct cgroup *cgrp = &root->top_cgroup;
1333 INIT_LIST_HEAD(&root->subsys_list);
1334 INIT_LIST_HEAD(&root->root_list);
1335 root->number_of_cgroups = 1;
1336 cgrp->root = root;
1337 cgrp->top_cgroup = cgrp;
1338 init_cgroup_housekeeping(cgrp);
1341 static bool init_root_id(struct cgroupfs_root *root)
1343 int ret = 0;
1345 do {
1346 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1347 return false;
1348 spin_lock(&hierarchy_id_lock);
1349 /* Try to allocate the next unused ID */
1350 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1351 &root->hierarchy_id);
1352 if (ret == -ENOSPC)
1353 /* Try again starting from 0 */
1354 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1355 if (!ret) {
1356 next_hierarchy_id = root->hierarchy_id + 1;
1357 } else if (ret != -EAGAIN) {
1358 /* Can only get here if the 31-bit IDR is full ... */
1359 BUG_ON(ret);
1361 spin_unlock(&hierarchy_id_lock);
1362 } while (ret);
1363 return true;
1366 static int cgroup_test_super(struct super_block *sb, void *data)
1368 struct cgroup_sb_opts *opts = data;
1369 struct cgroupfs_root *root = sb->s_fs_info;
1371 /* If we asked for a name then it must match */
1372 if (opts->name && strcmp(opts->name, root->name))
1373 return 0;
1376 * If we asked for subsystems (or explicitly for no
1377 * subsystems) then they must match
1379 if ((opts->subsys_bits || opts->none)
1380 && (opts->subsys_bits != root->subsys_bits))
1381 return 0;
1383 return 1;
1386 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1388 struct cgroupfs_root *root;
1390 if (!opts->subsys_bits && !opts->none)
1391 return NULL;
1393 root = kzalloc(sizeof(*root), GFP_KERNEL);
1394 if (!root)
1395 return ERR_PTR(-ENOMEM);
1397 if (!init_root_id(root)) {
1398 kfree(root);
1399 return ERR_PTR(-ENOMEM);
1401 init_cgroup_root(root);
1403 root->subsys_bits = opts->subsys_bits;
1404 root->flags = opts->flags;
1405 if (opts->release_agent)
1406 strcpy(root->release_agent_path, opts->release_agent);
1407 if (opts->name)
1408 strcpy(root->name, opts->name);
1409 if (opts->clone_children)
1410 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1411 return root;
1414 static void cgroup_drop_root(struct cgroupfs_root *root)
1416 if (!root)
1417 return;
1419 BUG_ON(!root->hierarchy_id);
1420 spin_lock(&hierarchy_id_lock);
1421 ida_remove(&hierarchy_ida, root->hierarchy_id);
1422 spin_unlock(&hierarchy_id_lock);
1423 kfree(root);
1426 static int cgroup_set_super(struct super_block *sb, void *data)
1428 int ret;
1429 struct cgroup_sb_opts *opts = data;
1431 /* If we don't have a new root, we can't set up a new sb */
1432 if (!opts->new_root)
1433 return -EINVAL;
1435 BUG_ON(!opts->subsys_bits && !opts->none);
1437 ret = set_anon_super(sb, NULL);
1438 if (ret)
1439 return ret;
1441 sb->s_fs_info = opts->new_root;
1442 opts->new_root->sb = sb;
1444 sb->s_blocksize = PAGE_CACHE_SIZE;
1445 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1446 sb->s_magic = CGROUP_SUPER_MAGIC;
1447 sb->s_op = &cgroup_ops;
1449 return 0;
1452 static int cgroup_get_rootdir(struct super_block *sb)
1454 struct inode *inode =
1455 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1456 struct dentry *dentry;
1458 if (!inode)
1459 return -ENOMEM;
1461 inode->i_fop = &simple_dir_operations;
1462 inode->i_op = &cgroup_dir_inode_operations;
1463 /* directories start off with i_nlink == 2 (for "." entry) */
1464 inc_nlink(inode);
1465 dentry = d_alloc_root(inode);
1466 if (!dentry) {
1467 iput(inode);
1468 return -ENOMEM;
1470 sb->s_root = dentry;
1471 return 0;
1474 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1475 int flags, const char *unused_dev_name,
1476 void *data)
1478 struct cgroup_sb_opts opts;
1479 struct cgroupfs_root *root;
1480 int ret = 0;
1481 struct super_block *sb;
1482 struct cgroupfs_root *new_root;
1484 /* First find the desired set of subsystems */
1485 mutex_lock(&cgroup_mutex);
1486 ret = parse_cgroupfs_options(data, &opts);
1487 mutex_unlock(&cgroup_mutex);
1488 if (ret)
1489 goto out_err;
1492 * Allocate a new cgroup root. We may not need it if we're
1493 * reusing an existing hierarchy.
1495 new_root = cgroup_root_from_opts(&opts);
1496 if (IS_ERR(new_root)) {
1497 ret = PTR_ERR(new_root);
1498 goto drop_modules;
1500 opts.new_root = new_root;
1502 /* Locate an existing or new sb for this hierarchy */
1503 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1504 if (IS_ERR(sb)) {
1505 ret = PTR_ERR(sb);
1506 cgroup_drop_root(opts.new_root);
1507 goto drop_modules;
1510 root = sb->s_fs_info;
1511 BUG_ON(!root);
1512 if (root == opts.new_root) {
1513 /* We used the new root structure, so this is a new hierarchy */
1514 struct list_head tmp_cg_links;
1515 struct cgroup *root_cgrp = &root->top_cgroup;
1516 struct inode *inode;
1517 struct cgroupfs_root *existing_root;
1518 int i;
1520 BUG_ON(sb->s_root != NULL);
1522 ret = cgroup_get_rootdir(sb);
1523 if (ret)
1524 goto drop_new_super;
1525 inode = sb->s_root->d_inode;
1527 mutex_lock(&inode->i_mutex);
1528 mutex_lock(&cgroup_mutex);
1530 if (strlen(root->name)) {
1531 /* Check for name clashes with existing mounts */
1532 for_each_active_root(existing_root) {
1533 if (!strcmp(existing_root->name, root->name)) {
1534 ret = -EBUSY;
1535 mutex_unlock(&cgroup_mutex);
1536 mutex_unlock(&inode->i_mutex);
1537 goto drop_new_super;
1543 * We're accessing css_set_count without locking
1544 * css_set_lock here, but that's OK - it can only be
1545 * increased by someone holding cgroup_lock, and
1546 * that's us. The worst that can happen is that we
1547 * have some link structures left over
1549 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1550 if (ret) {
1551 mutex_unlock(&cgroup_mutex);
1552 mutex_unlock(&inode->i_mutex);
1553 goto drop_new_super;
1556 ret = rebind_subsystems(root, root->subsys_bits);
1557 if (ret == -EBUSY) {
1558 mutex_unlock(&cgroup_mutex);
1559 mutex_unlock(&inode->i_mutex);
1560 free_cg_links(&tmp_cg_links);
1561 goto drop_new_super;
1564 * There must be no failure case after here, since rebinding
1565 * takes care of subsystems' refcounts, which are explicitly
1566 * dropped in the failure exit path.
1569 /* EBUSY should be the only error here */
1570 BUG_ON(ret);
1572 list_add(&root->root_list, &roots);
1573 root_count++;
1575 sb->s_root->d_fsdata = root_cgrp;
1576 root->top_cgroup.dentry = sb->s_root;
1578 /* Link the top cgroup in this hierarchy into all
1579 * the css_set objects */
1580 write_lock(&css_set_lock);
1581 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1582 struct hlist_head *hhead = &css_set_table[i];
1583 struct hlist_node *node;
1584 struct css_set *cg;
1586 hlist_for_each_entry(cg, node, hhead, hlist)
1587 link_css_set(&tmp_cg_links, cg, root_cgrp);
1589 write_unlock(&css_set_lock);
1591 free_cg_links(&tmp_cg_links);
1593 BUG_ON(!list_empty(&root_cgrp->sibling));
1594 BUG_ON(!list_empty(&root_cgrp->children));
1595 BUG_ON(root->number_of_cgroups != 1);
1597 cgroup_populate_dir(root_cgrp);
1598 mutex_unlock(&cgroup_mutex);
1599 mutex_unlock(&inode->i_mutex);
1600 } else {
1602 * We re-used an existing hierarchy - the new root (if
1603 * any) is not needed
1605 cgroup_drop_root(opts.new_root);
1606 /* no subsys rebinding, so refcounts don't change */
1607 drop_parsed_module_refcounts(opts.subsys_bits);
1610 kfree(opts.release_agent);
1611 kfree(opts.name);
1612 return dget(sb->s_root);
1614 drop_new_super:
1615 deactivate_locked_super(sb);
1616 drop_modules:
1617 drop_parsed_module_refcounts(opts.subsys_bits);
1618 out_err:
1619 kfree(opts.release_agent);
1620 kfree(opts.name);
1621 return ERR_PTR(ret);
1624 static void cgroup_kill_sb(struct super_block *sb) {
1625 struct cgroupfs_root *root = sb->s_fs_info;
1626 struct cgroup *cgrp = &root->top_cgroup;
1627 int ret;
1628 struct cg_cgroup_link *link;
1629 struct cg_cgroup_link *saved_link;
1631 BUG_ON(!root);
1633 BUG_ON(root->number_of_cgroups != 1);
1634 BUG_ON(!list_empty(&cgrp->children));
1635 BUG_ON(!list_empty(&cgrp->sibling));
1637 mutex_lock(&cgroup_mutex);
1639 /* Rebind all subsystems back to the default hierarchy */
1640 ret = rebind_subsystems(root, 0);
1641 /* Shouldn't be able to fail ... */
1642 BUG_ON(ret);
1645 * Release all the links from css_sets to this hierarchy's
1646 * root cgroup
1648 write_lock(&css_set_lock);
1650 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1651 cgrp_link_list) {
1652 list_del(&link->cg_link_list);
1653 list_del(&link->cgrp_link_list);
1654 kfree(link);
1656 write_unlock(&css_set_lock);
1658 if (!list_empty(&root->root_list)) {
1659 list_del(&root->root_list);
1660 root_count--;
1663 mutex_unlock(&cgroup_mutex);
1665 kill_litter_super(sb);
1666 cgroup_drop_root(root);
1669 static struct file_system_type cgroup_fs_type = {
1670 .name = "cgroup",
1671 .mount = cgroup_mount,
1672 .kill_sb = cgroup_kill_sb,
1675 static struct kobject *cgroup_kobj;
1677 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1679 return dentry->d_fsdata;
1682 static inline struct cftype *__d_cft(struct dentry *dentry)
1684 return dentry->d_fsdata;
1688 * cgroup_path - generate the path of a cgroup
1689 * @cgrp: the cgroup in question
1690 * @buf: the buffer to write the path into
1691 * @buflen: the length of the buffer
1693 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1694 * reference. Writes path of cgroup into buf. Returns 0 on success,
1695 * -errno on error.
1697 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1699 char *start;
1700 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1701 rcu_read_lock_held() ||
1702 cgroup_lock_is_held());
1704 if (!dentry || cgrp == dummytop) {
1706 * Inactive subsystems have no dentry for their root
1707 * cgroup
1709 strcpy(buf, "/");
1710 return 0;
1713 start = buf + buflen;
1715 *--start = '\0';
1716 for (;;) {
1717 int len = dentry->d_name.len;
1719 if ((start -= len) < buf)
1720 return -ENAMETOOLONG;
1721 memcpy(start, dentry->d_name.name, len);
1722 cgrp = cgrp->parent;
1723 if (!cgrp)
1724 break;
1726 dentry = rcu_dereference_check(cgrp->dentry,
1727 rcu_read_lock_held() ||
1728 cgroup_lock_is_held());
1729 if (!cgrp->parent)
1730 continue;
1731 if (--start < buf)
1732 return -ENAMETOOLONG;
1733 *start = '/';
1735 memmove(buf, start, buf + buflen - start);
1736 return 0;
1738 EXPORT_SYMBOL_GPL(cgroup_path);
1741 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1742 * @cgrp: the cgroup the task is attaching to
1743 * @tsk: the task to be attached
1745 * Call holding cgroup_mutex. May take task_lock of
1746 * the task 'tsk' during call.
1748 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1750 int retval = 0;
1751 struct cgroup_subsys *ss, *failed_ss = NULL;
1752 struct cgroup *oldcgrp;
1753 struct css_set *cg;
1754 struct css_set *newcg;
1755 struct cgroupfs_root *root = cgrp->root;
1757 /* Nothing to do if the task is already in that cgroup */
1758 oldcgrp = task_cgroup_from_root(tsk, root);
1759 if (cgrp == oldcgrp)
1760 return 0;
1762 for_each_subsys(root, ss) {
1763 if (ss->can_attach) {
1764 retval = ss->can_attach(ss, cgrp, tsk, false);
1765 if (retval) {
1767 * Remember on which subsystem the can_attach()
1768 * failed, so that we only call cancel_attach()
1769 * against the subsystems whose can_attach()
1770 * succeeded. (See below)
1772 failed_ss = ss;
1773 goto out;
1778 task_lock(tsk);
1779 cg = tsk->cgroups;
1780 get_css_set(cg);
1781 task_unlock(tsk);
1783 * Locate or allocate a new css_set for this task,
1784 * based on its final set of cgroups
1786 newcg = find_css_set(cg, cgrp);
1787 put_css_set(cg);
1788 if (!newcg) {
1789 retval = -ENOMEM;
1790 goto out;
1793 task_lock(tsk);
1794 if (tsk->flags & PF_EXITING) {
1795 task_unlock(tsk);
1796 put_css_set(newcg);
1797 retval = -ESRCH;
1798 goto out;
1800 rcu_assign_pointer(tsk->cgroups, newcg);
1801 task_unlock(tsk);
1803 /* Update the css_set linked lists if we're using them */
1804 write_lock(&css_set_lock);
1805 if (!list_empty(&tsk->cg_list)) {
1806 list_del(&tsk->cg_list);
1807 list_add(&tsk->cg_list, &newcg->tasks);
1809 write_unlock(&css_set_lock);
1811 for_each_subsys(root, ss) {
1812 if (ss->attach)
1813 ss->attach(ss, cgrp, oldcgrp, tsk, false);
1815 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1816 synchronize_rcu();
1817 put_css_set(cg);
1820 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1821 * is no longer empty.
1823 cgroup_wakeup_rmdir_waiter(cgrp);
1824 out:
1825 if (retval) {
1826 for_each_subsys(root, ss) {
1827 if (ss == failed_ss)
1829 * This subsystem was the one that failed the
1830 * can_attach() check earlier, so we don't need
1831 * to call cancel_attach() against it or any
1832 * remaining subsystems.
1834 break;
1835 if (ss->cancel_attach)
1836 ss->cancel_attach(ss, cgrp, tsk, false);
1839 return retval;
1843 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1844 * @from: attach to all cgroups of a given task
1845 * @tsk: the task to be attached
1847 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
1849 struct cgroupfs_root *root;
1850 int retval = 0;
1852 cgroup_lock();
1853 for_each_active_root(root) {
1854 struct cgroup *from_cg = task_cgroup_from_root(from, root);
1856 retval = cgroup_attach_task(from_cg, tsk);
1857 if (retval)
1858 break;
1860 cgroup_unlock();
1862 return retval;
1864 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
1867 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1868 * held. May take task_lock of task
1870 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1872 struct task_struct *tsk;
1873 const struct cred *cred = current_cred(), *tcred;
1874 int ret;
1876 if (pid) {
1877 rcu_read_lock();
1878 tsk = find_task_by_vpid(pid);
1879 if (!tsk || tsk->flags & PF_EXITING) {
1880 rcu_read_unlock();
1881 return -ESRCH;
1884 tcred = __task_cred(tsk);
1885 if (cred->euid &&
1886 cred->euid != tcred->uid &&
1887 cred->euid != tcred->suid) {
1888 rcu_read_unlock();
1889 return -EACCES;
1891 get_task_struct(tsk);
1892 rcu_read_unlock();
1893 } else {
1894 tsk = current;
1895 get_task_struct(tsk);
1898 ret = cgroup_attach_task(cgrp, tsk);
1899 put_task_struct(tsk);
1900 return ret;
1903 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
1905 int ret;
1906 if (!cgroup_lock_live_group(cgrp))
1907 return -ENODEV;
1908 ret = attach_task_by_pid(cgrp, pid);
1909 cgroup_unlock();
1910 return ret;
1914 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1915 * @cgrp: the cgroup to be checked for liveness
1917 * On success, returns true; the lock should be later released with
1918 * cgroup_unlock(). On failure returns false with no lock held.
1920 bool cgroup_lock_live_group(struct cgroup *cgrp)
1922 mutex_lock(&cgroup_mutex);
1923 if (cgroup_is_removed(cgrp)) {
1924 mutex_unlock(&cgroup_mutex);
1925 return false;
1927 return true;
1929 EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
1931 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
1932 const char *buffer)
1934 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1935 if (strlen(buffer) >= PATH_MAX)
1936 return -EINVAL;
1937 if (!cgroup_lock_live_group(cgrp))
1938 return -ENODEV;
1939 strcpy(cgrp->root->release_agent_path, buffer);
1940 cgroup_unlock();
1941 return 0;
1944 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
1945 struct seq_file *seq)
1947 if (!cgroup_lock_live_group(cgrp))
1948 return -ENODEV;
1949 seq_puts(seq, cgrp->root->release_agent_path);
1950 seq_putc(seq, '\n');
1951 cgroup_unlock();
1952 return 0;
1955 /* A buffer size big enough for numbers or short strings */
1956 #define CGROUP_LOCAL_BUFFER_SIZE 64
1958 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1959 struct file *file,
1960 const char __user *userbuf,
1961 size_t nbytes, loff_t *unused_ppos)
1963 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1964 int retval = 0;
1965 char *end;
1967 if (!nbytes)
1968 return -EINVAL;
1969 if (nbytes >= sizeof(buffer))
1970 return -E2BIG;
1971 if (copy_from_user(buffer, userbuf, nbytes))
1972 return -EFAULT;
1974 buffer[nbytes] = 0; /* nul-terminate */
1975 if (cft->write_u64) {
1976 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
1977 if (*end)
1978 return -EINVAL;
1979 retval = cft->write_u64(cgrp, cft, val);
1980 } else {
1981 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
1982 if (*end)
1983 return -EINVAL;
1984 retval = cft->write_s64(cgrp, cft, val);
1986 if (!retval)
1987 retval = nbytes;
1988 return retval;
1991 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
1992 struct file *file,
1993 const char __user *userbuf,
1994 size_t nbytes, loff_t *unused_ppos)
1996 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
1997 int retval = 0;
1998 size_t max_bytes = cft->max_write_len;
1999 char *buffer = local_buffer;
2001 if (!max_bytes)
2002 max_bytes = sizeof(local_buffer) - 1;
2003 if (nbytes >= max_bytes)
2004 return -E2BIG;
2005 /* Allocate a dynamic buffer if we need one */
2006 if (nbytes >= sizeof(local_buffer)) {
2007 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2008 if (buffer == NULL)
2009 return -ENOMEM;
2011 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2012 retval = -EFAULT;
2013 goto out;
2016 buffer[nbytes] = 0; /* nul-terminate */
2017 retval = cft->write_string(cgrp, cft, strstrip(buffer));
2018 if (!retval)
2019 retval = nbytes;
2020 out:
2021 if (buffer != local_buffer)
2022 kfree(buffer);
2023 return retval;
2026 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2027 size_t nbytes, loff_t *ppos)
2029 struct cftype *cft = __d_cft(file->f_dentry);
2030 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2032 if (cgroup_is_removed(cgrp))
2033 return -ENODEV;
2034 if (cft->write)
2035 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2036 if (cft->write_u64 || cft->write_s64)
2037 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2038 if (cft->write_string)
2039 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2040 if (cft->trigger) {
2041 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2042 return ret ? ret : nbytes;
2044 return -EINVAL;
2047 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2048 struct file *file,
2049 char __user *buf, size_t nbytes,
2050 loff_t *ppos)
2052 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2053 u64 val = cft->read_u64(cgrp, cft);
2054 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2056 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2059 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2060 struct file *file,
2061 char __user *buf, size_t nbytes,
2062 loff_t *ppos)
2064 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2065 s64 val = cft->read_s64(cgrp, cft);
2066 int len = sprintf(tmp, "%lld\n", (long long) val);
2068 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2071 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2072 size_t nbytes, loff_t *ppos)
2074 struct cftype *cft = __d_cft(file->f_dentry);
2075 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2077 if (cgroup_is_removed(cgrp))
2078 return -ENODEV;
2080 if (cft->read)
2081 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2082 if (cft->read_u64)
2083 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2084 if (cft->read_s64)
2085 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2086 return -EINVAL;
2090 * seqfile ops/methods for returning structured data. Currently just
2091 * supports string->u64 maps, but can be extended in future.
2094 struct cgroup_seqfile_state {
2095 struct cftype *cft;
2096 struct cgroup *cgroup;
2099 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2101 struct seq_file *sf = cb->state;
2102 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2105 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2107 struct cgroup_seqfile_state *state = m->private;
2108 struct cftype *cft = state->cft;
2109 if (cft->read_map) {
2110 struct cgroup_map_cb cb = {
2111 .fill = cgroup_map_add,
2112 .state = m,
2114 return cft->read_map(state->cgroup, cft, &cb);
2116 return cft->read_seq_string(state->cgroup, cft, m);
2119 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2121 struct seq_file *seq = file->private_data;
2122 kfree(seq->private);
2123 return single_release(inode, file);
2126 static const struct file_operations cgroup_seqfile_operations = {
2127 .read = seq_read,
2128 .write = cgroup_file_write,
2129 .llseek = seq_lseek,
2130 .release = cgroup_seqfile_release,
2133 static int cgroup_file_open(struct inode *inode, struct file *file)
2135 int err;
2136 struct cftype *cft;
2138 err = generic_file_open(inode, file);
2139 if (err)
2140 return err;
2141 cft = __d_cft(file->f_dentry);
2143 if (cft->read_map || cft->read_seq_string) {
2144 struct cgroup_seqfile_state *state =
2145 kzalloc(sizeof(*state), GFP_USER);
2146 if (!state)
2147 return -ENOMEM;
2148 state->cft = cft;
2149 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2150 file->f_op = &cgroup_seqfile_operations;
2151 err = single_open(file, cgroup_seqfile_show, state);
2152 if (err < 0)
2153 kfree(state);
2154 } else if (cft->open)
2155 err = cft->open(inode, file);
2156 else
2157 err = 0;
2159 return err;
2162 static int cgroup_file_release(struct inode *inode, struct file *file)
2164 struct cftype *cft = __d_cft(file->f_dentry);
2165 if (cft->release)
2166 return cft->release(inode, file);
2167 return 0;
2171 * cgroup_rename - Only allow simple rename of directories in place.
2173 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2174 struct inode *new_dir, struct dentry *new_dentry)
2176 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2177 return -ENOTDIR;
2178 if (new_dentry->d_inode)
2179 return -EEXIST;
2180 if (old_dir != new_dir)
2181 return -EIO;
2182 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2185 static const struct file_operations cgroup_file_operations = {
2186 .read = cgroup_file_read,
2187 .write = cgroup_file_write,
2188 .llseek = generic_file_llseek,
2189 .open = cgroup_file_open,
2190 .release = cgroup_file_release,
2193 static const struct inode_operations cgroup_dir_inode_operations = {
2194 .lookup = cgroup_lookup,
2195 .mkdir = cgroup_mkdir,
2196 .rmdir = cgroup_rmdir,
2197 .rename = cgroup_rename,
2201 * Check if a file is a control file
2203 static inline struct cftype *__file_cft(struct file *file)
2205 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2206 return ERR_PTR(-EINVAL);
2207 return __d_cft(file->f_dentry);
2210 static int cgroup_delete_dentry(const struct dentry *dentry)
2212 return 1;
2215 static struct dentry *cgroup_lookup(struct inode *dir,
2216 struct dentry *dentry, struct nameidata *nd)
2218 static const struct dentry_operations cgroup_dentry_operations = {
2219 .d_delete = cgroup_delete_dentry,
2220 .d_iput = cgroup_diput,
2223 if (dentry->d_name.len > NAME_MAX)
2224 return ERR_PTR(-ENAMETOOLONG);
2225 d_set_d_op(dentry, &cgroup_dentry_operations);
2226 d_add(dentry, NULL);
2227 return NULL;
2230 static int cgroup_create_file(struct dentry *dentry, mode_t mode,
2231 struct super_block *sb)
2233 struct inode *inode;
2235 if (!dentry)
2236 return -ENOENT;
2237 if (dentry->d_inode)
2238 return -EEXIST;
2240 inode = cgroup_new_inode(mode, sb);
2241 if (!inode)
2242 return -ENOMEM;
2244 if (S_ISDIR(mode)) {
2245 inode->i_op = &cgroup_dir_inode_operations;
2246 inode->i_fop = &simple_dir_operations;
2248 /* start off with i_nlink == 2 (for "." entry) */
2249 inc_nlink(inode);
2251 /* start with the directory inode held, so that we can
2252 * populate it without racing with another mkdir */
2253 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2254 } else if (S_ISREG(mode)) {
2255 inode->i_size = 0;
2256 inode->i_fop = &cgroup_file_operations;
2258 d_instantiate(dentry, inode);
2259 dget(dentry); /* Extra count - pin the dentry in core */
2260 return 0;
2264 * cgroup_create_dir - create a directory for an object.
2265 * @cgrp: the cgroup we create the directory for. It must have a valid
2266 * ->parent field. And we are going to fill its ->dentry field.
2267 * @dentry: dentry of the new cgroup
2268 * @mode: mode to set on new directory.
2270 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
2271 mode_t mode)
2273 struct dentry *parent;
2274 int error = 0;
2276 parent = cgrp->parent->dentry;
2277 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2278 if (!error) {
2279 dentry->d_fsdata = cgrp;
2280 inc_nlink(parent->d_inode);
2281 rcu_assign_pointer(cgrp->dentry, dentry);
2282 dget(dentry);
2284 dput(dentry);
2286 return error;
2290 * cgroup_file_mode - deduce file mode of a control file
2291 * @cft: the control file in question
2293 * returns cft->mode if ->mode is not 0
2294 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2295 * returns S_IRUGO if it has only a read handler
2296 * returns S_IWUSR if it has only a write hander
2298 static mode_t cgroup_file_mode(const struct cftype *cft)
2300 mode_t mode = 0;
2302 if (cft->mode)
2303 return cft->mode;
2305 if (cft->read || cft->read_u64 || cft->read_s64 ||
2306 cft->read_map || cft->read_seq_string)
2307 mode |= S_IRUGO;
2309 if (cft->write || cft->write_u64 || cft->write_s64 ||
2310 cft->write_string || cft->trigger)
2311 mode |= S_IWUSR;
2313 return mode;
2316 int cgroup_add_file(struct cgroup *cgrp,
2317 struct cgroup_subsys *subsys,
2318 const struct cftype *cft)
2320 struct dentry *dir = cgrp->dentry;
2321 struct dentry *dentry;
2322 int error;
2323 mode_t mode;
2325 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2326 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2327 strcpy(name, subsys->name);
2328 strcat(name, ".");
2330 strcat(name, cft->name);
2331 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2332 dentry = lookup_one_len(name, dir, strlen(name));
2333 if (!IS_ERR(dentry)) {
2334 mode = cgroup_file_mode(cft);
2335 error = cgroup_create_file(dentry, mode | S_IFREG,
2336 cgrp->root->sb);
2337 if (!error)
2338 dentry->d_fsdata = (void *)cft;
2339 dput(dentry);
2340 } else
2341 error = PTR_ERR(dentry);
2342 return error;
2344 EXPORT_SYMBOL_GPL(cgroup_add_file);
2346 int cgroup_add_files(struct cgroup *cgrp,
2347 struct cgroup_subsys *subsys,
2348 const struct cftype cft[],
2349 int count)
2351 int i, err;
2352 for (i = 0; i < count; i++) {
2353 err = cgroup_add_file(cgrp, subsys, &cft[i]);
2354 if (err)
2355 return err;
2357 return 0;
2359 EXPORT_SYMBOL_GPL(cgroup_add_files);
2362 * cgroup_task_count - count the number of tasks in a cgroup.
2363 * @cgrp: the cgroup in question
2365 * Return the number of tasks in the cgroup.
2367 int cgroup_task_count(const struct cgroup *cgrp)
2369 int count = 0;
2370 struct cg_cgroup_link *link;
2372 read_lock(&css_set_lock);
2373 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2374 count += atomic_read(&link->cg->refcount);
2376 read_unlock(&css_set_lock);
2377 return count;
2381 * Advance a list_head iterator. The iterator should be positioned at
2382 * the start of a css_set
2384 static void cgroup_advance_iter(struct cgroup *cgrp,
2385 struct cgroup_iter *it)
2387 struct list_head *l = it->cg_link;
2388 struct cg_cgroup_link *link;
2389 struct css_set *cg;
2391 /* Advance to the next non-empty css_set */
2392 do {
2393 l = l->next;
2394 if (l == &cgrp->css_sets) {
2395 it->cg_link = NULL;
2396 return;
2398 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2399 cg = link->cg;
2400 } while (list_empty(&cg->tasks));
2401 it->cg_link = l;
2402 it->task = cg->tasks.next;
2406 * To reduce the fork() overhead for systems that are not actually
2407 * using their cgroups capability, we don't maintain the lists running
2408 * through each css_set to its tasks until we see the list actually
2409 * used - in other words after the first call to cgroup_iter_start().
2411 * The tasklist_lock is not held here, as do_each_thread() and
2412 * while_each_thread() are protected by RCU.
2414 static void cgroup_enable_task_cg_lists(void)
2416 struct task_struct *p, *g;
2417 write_lock(&css_set_lock);
2418 use_task_css_set_links = 1;
2419 do_each_thread(g, p) {
2420 task_lock(p);
2422 * We should check if the process is exiting, otherwise
2423 * it will race with cgroup_exit() in that the list
2424 * entry won't be deleted though the process has exited.
2426 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2427 list_add(&p->cg_list, &p->cgroups->tasks);
2428 task_unlock(p);
2429 } while_each_thread(g, p);
2430 write_unlock(&css_set_lock);
2433 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2436 * The first time anyone tries to iterate across a cgroup,
2437 * we need to enable the list linking each css_set to its
2438 * tasks, and fix up all existing tasks.
2440 if (!use_task_css_set_links)
2441 cgroup_enable_task_cg_lists();
2443 read_lock(&css_set_lock);
2444 it->cg_link = &cgrp->css_sets;
2445 cgroup_advance_iter(cgrp, it);
2448 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2449 struct cgroup_iter *it)
2451 struct task_struct *res;
2452 struct list_head *l = it->task;
2453 struct cg_cgroup_link *link;
2455 /* If the iterator cg is NULL, we have no tasks */
2456 if (!it->cg_link)
2457 return NULL;
2458 res = list_entry(l, struct task_struct, cg_list);
2459 /* Advance iterator to find next entry */
2460 l = l->next;
2461 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2462 if (l == &link->cg->tasks) {
2463 /* We reached the end of this task list - move on to
2464 * the next cg_cgroup_link */
2465 cgroup_advance_iter(cgrp, it);
2466 } else {
2467 it->task = l;
2469 return res;
2472 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2474 read_unlock(&css_set_lock);
2477 static inline int started_after_time(struct task_struct *t1,
2478 struct timespec *time,
2479 struct task_struct *t2)
2481 int start_diff = timespec_compare(&t1->start_time, time);
2482 if (start_diff > 0) {
2483 return 1;
2484 } else if (start_diff < 0) {
2485 return 0;
2486 } else {
2488 * Arbitrarily, if two processes started at the same
2489 * time, we'll say that the lower pointer value
2490 * started first. Note that t2 may have exited by now
2491 * so this may not be a valid pointer any longer, but
2492 * that's fine - it still serves to distinguish
2493 * between two tasks started (effectively) simultaneously.
2495 return t1 > t2;
2500 * This function is a callback from heap_insert() and is used to order
2501 * the heap.
2502 * In this case we order the heap in descending task start time.
2504 static inline int started_after(void *p1, void *p2)
2506 struct task_struct *t1 = p1;
2507 struct task_struct *t2 = p2;
2508 return started_after_time(t1, &t2->start_time, t2);
2512 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2513 * @scan: struct cgroup_scanner containing arguments for the scan
2515 * Arguments include pointers to callback functions test_task() and
2516 * process_task().
2517 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2518 * and if it returns true, call process_task() for it also.
2519 * The test_task pointer may be NULL, meaning always true (select all tasks).
2520 * Effectively duplicates cgroup_iter_{start,next,end}()
2521 * but does not lock css_set_lock for the call to process_task().
2522 * The struct cgroup_scanner may be embedded in any structure of the caller's
2523 * creation.
2524 * It is guaranteed that process_task() will act on every task that
2525 * is a member of the cgroup for the duration of this call. This
2526 * function may or may not call process_task() for tasks that exit
2527 * or move to a different cgroup during the call, or are forked or
2528 * move into the cgroup during the call.
2530 * Note that test_task() may be called with locks held, and may in some
2531 * situations be called multiple times for the same task, so it should
2532 * be cheap.
2533 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2534 * pre-allocated and will be used for heap operations (and its "gt" member will
2535 * be overwritten), else a temporary heap will be used (allocation of which
2536 * may cause this function to fail).
2538 int cgroup_scan_tasks(struct cgroup_scanner *scan)
2540 int retval, i;
2541 struct cgroup_iter it;
2542 struct task_struct *p, *dropped;
2543 /* Never dereference latest_task, since it's not refcounted */
2544 struct task_struct *latest_task = NULL;
2545 struct ptr_heap tmp_heap;
2546 struct ptr_heap *heap;
2547 struct timespec latest_time = { 0, 0 };
2549 if (scan->heap) {
2550 /* The caller supplied our heap and pre-allocated its memory */
2551 heap = scan->heap;
2552 heap->gt = &started_after;
2553 } else {
2554 /* We need to allocate our own heap memory */
2555 heap = &tmp_heap;
2556 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2557 if (retval)
2558 /* cannot allocate the heap */
2559 return retval;
2562 again:
2564 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2565 * to determine which are of interest, and using the scanner's
2566 * "process_task" callback to process any of them that need an update.
2567 * Since we don't want to hold any locks during the task updates,
2568 * gather tasks to be processed in a heap structure.
2569 * The heap is sorted by descending task start time.
2570 * If the statically-sized heap fills up, we overflow tasks that
2571 * started later, and in future iterations only consider tasks that
2572 * started after the latest task in the previous pass. This
2573 * guarantees forward progress and that we don't miss any tasks.
2575 heap->size = 0;
2576 cgroup_iter_start(scan->cg, &it);
2577 while ((p = cgroup_iter_next(scan->cg, &it))) {
2579 * Only affect tasks that qualify per the caller's callback,
2580 * if he provided one
2582 if (scan->test_task && !scan->test_task(p, scan))
2583 continue;
2585 * Only process tasks that started after the last task
2586 * we processed
2588 if (!started_after_time(p, &latest_time, latest_task))
2589 continue;
2590 dropped = heap_insert(heap, p);
2591 if (dropped == NULL) {
2593 * The new task was inserted; the heap wasn't
2594 * previously full
2596 get_task_struct(p);
2597 } else if (dropped != p) {
2599 * The new task was inserted, and pushed out a
2600 * different task
2602 get_task_struct(p);
2603 put_task_struct(dropped);
2606 * Else the new task was newer than anything already in
2607 * the heap and wasn't inserted
2610 cgroup_iter_end(scan->cg, &it);
2612 if (heap->size) {
2613 for (i = 0; i < heap->size; i++) {
2614 struct task_struct *q = heap->ptrs[i];
2615 if (i == 0) {
2616 latest_time = q->start_time;
2617 latest_task = q;
2619 /* Process the task per the caller's callback */
2620 scan->process_task(q, scan);
2621 put_task_struct(q);
2624 * If we had to process any tasks at all, scan again
2625 * in case some of them were in the middle of forking
2626 * children that didn't get processed.
2627 * Not the most efficient way to do it, but it avoids
2628 * having to take callback_mutex in the fork path
2630 goto again;
2632 if (heap == &tmp_heap)
2633 heap_free(&tmp_heap);
2634 return 0;
2638 * Stuff for reading the 'tasks'/'procs' files.
2640 * Reading this file can return large amounts of data if a cgroup has
2641 * *lots* of attached tasks. So it may need several calls to read(),
2642 * but we cannot guarantee that the information we produce is correct
2643 * unless we produce it entirely atomically.
2648 * The following two functions "fix" the issue where there are more pids
2649 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2650 * TODO: replace with a kernel-wide solution to this problem
2652 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2653 static void *pidlist_allocate(int count)
2655 if (PIDLIST_TOO_LARGE(count))
2656 return vmalloc(count * sizeof(pid_t));
2657 else
2658 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
2660 static void pidlist_free(void *p)
2662 if (is_vmalloc_addr(p))
2663 vfree(p);
2664 else
2665 kfree(p);
2667 static void *pidlist_resize(void *p, int newcount)
2669 void *newlist;
2670 /* note: if new alloc fails, old p will still be valid either way */
2671 if (is_vmalloc_addr(p)) {
2672 newlist = vmalloc(newcount * sizeof(pid_t));
2673 if (!newlist)
2674 return NULL;
2675 memcpy(newlist, p, newcount * sizeof(pid_t));
2676 vfree(p);
2677 } else {
2678 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
2680 return newlist;
2684 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
2685 * If the new stripped list is sufficiently smaller and there's enough memory
2686 * to allocate a new buffer, will let go of the unneeded memory. Returns the
2687 * number of unique elements.
2689 /* is the size difference enough that we should re-allocate the array? */
2690 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
2691 static int pidlist_uniq(pid_t **p, int length)
2693 int src, dest = 1;
2694 pid_t *list = *p;
2695 pid_t *newlist;
2698 * we presume the 0th element is unique, so i starts at 1. trivial
2699 * edge cases first; no work needs to be done for either
2701 if (length == 0 || length == 1)
2702 return length;
2703 /* src and dest walk down the list; dest counts unique elements */
2704 for (src = 1; src < length; src++) {
2705 /* find next unique element */
2706 while (list[src] == list[src-1]) {
2707 src++;
2708 if (src == length)
2709 goto after;
2711 /* dest always points to where the next unique element goes */
2712 list[dest] = list[src];
2713 dest++;
2715 after:
2717 * if the length difference is large enough, we want to allocate a
2718 * smaller buffer to save memory. if this fails due to out of memory,
2719 * we'll just stay with what we've got.
2721 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
2722 newlist = pidlist_resize(list, dest);
2723 if (newlist)
2724 *p = newlist;
2726 return dest;
2729 static int cmppid(const void *a, const void *b)
2731 return *(pid_t *)a - *(pid_t *)b;
2735 * find the appropriate pidlist for our purpose (given procs vs tasks)
2736 * returns with the lock on that pidlist already held, and takes care
2737 * of the use count, or returns NULL with no locks held if we're out of
2738 * memory.
2740 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
2741 enum cgroup_filetype type)
2743 struct cgroup_pidlist *l;
2744 /* don't need task_nsproxy() if we're looking at ourself */
2745 struct pid_namespace *ns = current->nsproxy->pid_ns;
2748 * We can't drop the pidlist_mutex before taking the l->mutex in case
2749 * the last ref-holder is trying to remove l from the list at the same
2750 * time. Holding the pidlist_mutex precludes somebody taking whichever
2751 * list we find out from under us - compare release_pid_array().
2753 mutex_lock(&cgrp->pidlist_mutex);
2754 list_for_each_entry(l, &cgrp->pidlists, links) {
2755 if (l->key.type == type && l->key.ns == ns) {
2756 /* make sure l doesn't vanish out from under us */
2757 down_write(&l->mutex);
2758 mutex_unlock(&cgrp->pidlist_mutex);
2759 return l;
2762 /* entry not found; create a new one */
2763 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
2764 if (!l) {
2765 mutex_unlock(&cgrp->pidlist_mutex);
2766 return l;
2768 init_rwsem(&l->mutex);
2769 down_write(&l->mutex);
2770 l->key.type = type;
2771 l->key.ns = get_pid_ns(ns);
2772 l->use_count = 0; /* don't increment here */
2773 l->list = NULL;
2774 l->owner = cgrp;
2775 list_add(&l->links, &cgrp->pidlists);
2776 mutex_unlock(&cgrp->pidlist_mutex);
2777 return l;
2781 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
2783 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
2784 struct cgroup_pidlist **lp)
2786 pid_t *array;
2787 int length;
2788 int pid, n = 0; /* used for populating the array */
2789 struct cgroup_iter it;
2790 struct task_struct *tsk;
2791 struct cgroup_pidlist *l;
2794 * If cgroup gets more users after we read count, we won't have
2795 * enough space - tough. This race is indistinguishable to the
2796 * caller from the case that the additional cgroup users didn't
2797 * show up until sometime later on.
2799 length = cgroup_task_count(cgrp);
2800 array = pidlist_allocate(length);
2801 if (!array)
2802 return -ENOMEM;
2803 /* now, populate the array */
2804 cgroup_iter_start(cgrp, &it);
2805 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2806 if (unlikely(n == length))
2807 break;
2808 /* get tgid or pid for procs or tasks file respectively */
2809 if (type == CGROUP_FILE_PROCS)
2810 pid = task_tgid_vnr(tsk);
2811 else
2812 pid = task_pid_vnr(tsk);
2813 if (pid > 0) /* make sure to only use valid results */
2814 array[n++] = pid;
2816 cgroup_iter_end(cgrp, &it);
2817 length = n;
2818 /* now sort & (if procs) strip out duplicates */
2819 sort(array, length, sizeof(pid_t), cmppid, NULL);
2820 if (type == CGROUP_FILE_PROCS)
2821 length = pidlist_uniq(&array, length);
2822 l = cgroup_pidlist_find(cgrp, type);
2823 if (!l) {
2824 pidlist_free(array);
2825 return -ENOMEM;
2827 /* store array, freeing old if necessary - lock already held */
2828 pidlist_free(l->list);
2829 l->list = array;
2830 l->length = length;
2831 l->use_count++;
2832 up_write(&l->mutex);
2833 *lp = l;
2834 return 0;
2838 * cgroupstats_build - build and fill cgroupstats
2839 * @stats: cgroupstats to fill information into
2840 * @dentry: A dentry entry belonging to the cgroup for which stats have
2841 * been requested.
2843 * Build and fill cgroupstats so that taskstats can export it to user
2844 * space.
2846 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2848 int ret = -EINVAL;
2849 struct cgroup *cgrp;
2850 struct cgroup_iter it;
2851 struct task_struct *tsk;
2854 * Validate dentry by checking the superblock operations,
2855 * and make sure it's a directory.
2857 if (dentry->d_sb->s_op != &cgroup_ops ||
2858 !S_ISDIR(dentry->d_inode->i_mode))
2859 goto err;
2861 ret = 0;
2862 cgrp = dentry->d_fsdata;
2864 cgroup_iter_start(cgrp, &it);
2865 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2866 switch (tsk->state) {
2867 case TASK_RUNNING:
2868 stats->nr_running++;
2869 break;
2870 case TASK_INTERRUPTIBLE:
2871 stats->nr_sleeping++;
2872 break;
2873 case TASK_UNINTERRUPTIBLE:
2874 stats->nr_uninterruptible++;
2875 break;
2876 case TASK_STOPPED:
2877 stats->nr_stopped++;
2878 break;
2879 default:
2880 if (delayacct_is_task_waiting_on_io(tsk))
2881 stats->nr_io_wait++;
2882 break;
2885 cgroup_iter_end(cgrp, &it);
2887 err:
2888 return ret;
2893 * seq_file methods for the tasks/procs files. The seq_file position is the
2894 * next pid to display; the seq_file iterator is a pointer to the pid
2895 * in the cgroup->l->list array.
2898 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
2901 * Initially we receive a position value that corresponds to
2902 * one more than the last pid shown (or 0 on the first call or
2903 * after a seek to the start). Use a binary-search to find the
2904 * next pid to display, if any
2906 struct cgroup_pidlist *l = s->private;
2907 int index = 0, pid = *pos;
2908 int *iter;
2910 down_read(&l->mutex);
2911 if (pid) {
2912 int end = l->length;
2914 while (index < end) {
2915 int mid = (index + end) / 2;
2916 if (l->list[mid] == pid) {
2917 index = mid;
2918 break;
2919 } else if (l->list[mid] <= pid)
2920 index = mid + 1;
2921 else
2922 end = mid;
2925 /* If we're off the end of the array, we're done */
2926 if (index >= l->length)
2927 return NULL;
2928 /* Update the abstract position to be the actual pid that we found */
2929 iter = l->list + index;
2930 *pos = *iter;
2931 return iter;
2934 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
2936 struct cgroup_pidlist *l = s->private;
2937 up_read(&l->mutex);
2940 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
2942 struct cgroup_pidlist *l = s->private;
2943 pid_t *p = v;
2944 pid_t *end = l->list + l->length;
2946 * Advance to the next pid in the array. If this goes off the
2947 * end, we're done
2949 p++;
2950 if (p >= end) {
2951 return NULL;
2952 } else {
2953 *pos = *p;
2954 return p;
2958 static int cgroup_pidlist_show(struct seq_file *s, void *v)
2960 return seq_printf(s, "%d\n", *(int *)v);
2964 * seq_operations functions for iterating on pidlists through seq_file -
2965 * independent of whether it's tasks or procs
2967 static const struct seq_operations cgroup_pidlist_seq_operations = {
2968 .start = cgroup_pidlist_start,
2969 .stop = cgroup_pidlist_stop,
2970 .next = cgroup_pidlist_next,
2971 .show = cgroup_pidlist_show,
2974 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
2977 * the case where we're the last user of this particular pidlist will
2978 * have us remove it from the cgroup's list, which entails taking the
2979 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
2980 * pidlist_mutex, we have to take pidlist_mutex first.
2982 mutex_lock(&l->owner->pidlist_mutex);
2983 down_write(&l->mutex);
2984 BUG_ON(!l->use_count);
2985 if (!--l->use_count) {
2986 /* we're the last user if refcount is 0; remove and free */
2987 list_del(&l->links);
2988 mutex_unlock(&l->owner->pidlist_mutex);
2989 pidlist_free(l->list);
2990 put_pid_ns(l->key.ns);
2991 up_write(&l->mutex);
2992 kfree(l);
2993 return;
2995 mutex_unlock(&l->owner->pidlist_mutex);
2996 up_write(&l->mutex);
2999 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3001 struct cgroup_pidlist *l;
3002 if (!(file->f_mode & FMODE_READ))
3003 return 0;
3005 * the seq_file will only be initialized if the file was opened for
3006 * reading; hence we check if it's not null only in that case.
3008 l = ((struct seq_file *)file->private_data)->private;
3009 cgroup_release_pid_array(l);
3010 return seq_release(inode, file);
3013 static const struct file_operations cgroup_pidlist_operations = {
3014 .read = seq_read,
3015 .llseek = seq_lseek,
3016 .write = cgroup_file_write,
3017 .release = cgroup_pidlist_release,
3021 * The following functions handle opens on a file that displays a pidlist
3022 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3023 * in the cgroup.
3025 /* helper function for the two below it */
3026 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3028 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3029 struct cgroup_pidlist *l;
3030 int retval;
3032 /* Nothing to do for write-only files */
3033 if (!(file->f_mode & FMODE_READ))
3034 return 0;
3036 /* have the array populated */
3037 retval = pidlist_array_load(cgrp, type, &l);
3038 if (retval)
3039 return retval;
3040 /* configure file information */
3041 file->f_op = &cgroup_pidlist_operations;
3043 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3044 if (retval) {
3045 cgroup_release_pid_array(l);
3046 return retval;
3048 ((struct seq_file *)file->private_data)->private = l;
3049 return 0;
3051 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3053 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3055 static int cgroup_procs_open(struct inode *unused, struct file *file)
3057 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3060 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3061 struct cftype *cft)
3063 return notify_on_release(cgrp);
3066 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3067 struct cftype *cft,
3068 u64 val)
3070 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3071 if (val)
3072 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3073 else
3074 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3075 return 0;
3079 * Unregister event and free resources.
3081 * Gets called from workqueue.
3083 static void cgroup_event_remove(struct work_struct *work)
3085 struct cgroup_event *event = container_of(work, struct cgroup_event,
3086 remove);
3087 struct cgroup *cgrp = event->cgrp;
3089 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3091 eventfd_ctx_put(event->eventfd);
3092 kfree(event);
3093 dput(cgrp->dentry);
3097 * Gets called on POLLHUP on eventfd when user closes it.
3099 * Called with wqh->lock held and interrupts disabled.
3101 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3102 int sync, void *key)
3104 struct cgroup_event *event = container_of(wait,
3105 struct cgroup_event, wait);
3106 struct cgroup *cgrp = event->cgrp;
3107 unsigned long flags = (unsigned long)key;
3109 if (flags & POLLHUP) {
3110 __remove_wait_queue(event->wqh, &event->wait);
3111 spin_lock(&cgrp->event_list_lock);
3112 list_del(&event->list);
3113 spin_unlock(&cgrp->event_list_lock);
3115 * We are in atomic context, but cgroup_event_remove() may
3116 * sleep, so we have to call it in workqueue.
3118 schedule_work(&event->remove);
3121 return 0;
3124 static void cgroup_event_ptable_queue_proc(struct file *file,
3125 wait_queue_head_t *wqh, poll_table *pt)
3127 struct cgroup_event *event = container_of(pt,
3128 struct cgroup_event, pt);
3130 event->wqh = wqh;
3131 add_wait_queue(wqh, &event->wait);
3135 * Parse input and register new cgroup event handler.
3137 * Input must be in format '<event_fd> <control_fd> <args>'.
3138 * Interpretation of args is defined by control file implementation.
3140 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3141 const char *buffer)
3143 struct cgroup_event *event = NULL;
3144 unsigned int efd, cfd;
3145 struct file *efile = NULL;
3146 struct file *cfile = NULL;
3147 char *endp;
3148 int ret;
3150 efd = simple_strtoul(buffer, &endp, 10);
3151 if (*endp != ' ')
3152 return -EINVAL;
3153 buffer = endp + 1;
3155 cfd = simple_strtoul(buffer, &endp, 10);
3156 if ((*endp != ' ') && (*endp != '\0'))
3157 return -EINVAL;
3158 buffer = endp + 1;
3160 event = kzalloc(sizeof(*event), GFP_KERNEL);
3161 if (!event)
3162 return -ENOMEM;
3163 event->cgrp = cgrp;
3164 INIT_LIST_HEAD(&event->list);
3165 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3166 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3167 INIT_WORK(&event->remove, cgroup_event_remove);
3169 efile = eventfd_fget(efd);
3170 if (IS_ERR(efile)) {
3171 ret = PTR_ERR(efile);
3172 goto fail;
3175 event->eventfd = eventfd_ctx_fileget(efile);
3176 if (IS_ERR(event->eventfd)) {
3177 ret = PTR_ERR(event->eventfd);
3178 goto fail;
3181 cfile = fget(cfd);
3182 if (!cfile) {
3183 ret = -EBADF;
3184 goto fail;
3187 /* the process need read permission on control file */
3188 ret = file_permission(cfile, MAY_READ);
3189 if (ret < 0)
3190 goto fail;
3192 event->cft = __file_cft(cfile);
3193 if (IS_ERR(event->cft)) {
3194 ret = PTR_ERR(event->cft);
3195 goto fail;
3198 if (!event->cft->register_event || !event->cft->unregister_event) {
3199 ret = -EINVAL;
3200 goto fail;
3203 ret = event->cft->register_event(cgrp, event->cft,
3204 event->eventfd, buffer);
3205 if (ret)
3206 goto fail;
3208 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3209 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3210 ret = 0;
3211 goto fail;
3215 * Events should be removed after rmdir of cgroup directory, but before
3216 * destroying subsystem state objects. Let's take reference to cgroup
3217 * directory dentry to do that.
3219 dget(cgrp->dentry);
3221 spin_lock(&cgrp->event_list_lock);
3222 list_add(&event->list, &cgrp->event_list);
3223 spin_unlock(&cgrp->event_list_lock);
3225 fput(cfile);
3226 fput(efile);
3228 return 0;
3230 fail:
3231 if (cfile)
3232 fput(cfile);
3234 if (event && event->eventfd && !IS_ERR(event->eventfd))
3235 eventfd_ctx_put(event->eventfd);
3237 if (!IS_ERR_OR_NULL(efile))
3238 fput(efile);
3240 kfree(event);
3242 return ret;
3245 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3246 struct cftype *cft)
3248 return clone_children(cgrp);
3251 static int cgroup_clone_children_write(struct cgroup *cgrp,
3252 struct cftype *cft,
3253 u64 val)
3255 if (val)
3256 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3257 else
3258 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3259 return 0;
3263 * for the common functions, 'private' gives the type of file
3265 /* for hysterical raisins, we can't put this on the older files */
3266 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3267 static struct cftype files[] = {
3269 .name = "tasks",
3270 .open = cgroup_tasks_open,
3271 .write_u64 = cgroup_tasks_write,
3272 .release = cgroup_pidlist_release,
3273 .mode = S_IRUGO | S_IWUSR,
3276 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3277 .open = cgroup_procs_open,
3278 /* .write_u64 = cgroup_procs_write, TODO */
3279 .release = cgroup_pidlist_release,
3280 .mode = S_IRUGO,
3283 .name = "notify_on_release",
3284 .read_u64 = cgroup_read_notify_on_release,
3285 .write_u64 = cgroup_write_notify_on_release,
3288 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3289 .write_string = cgroup_write_event_control,
3290 .mode = S_IWUGO,
3293 .name = "cgroup.clone_children",
3294 .read_u64 = cgroup_clone_children_read,
3295 .write_u64 = cgroup_clone_children_write,
3299 static struct cftype cft_release_agent = {
3300 .name = "release_agent",
3301 .read_seq_string = cgroup_release_agent_show,
3302 .write_string = cgroup_release_agent_write,
3303 .max_write_len = PATH_MAX,
3306 static int cgroup_populate_dir(struct cgroup *cgrp)
3308 int err;
3309 struct cgroup_subsys *ss;
3311 /* First clear out any existing files */
3312 cgroup_clear_directory(cgrp->dentry);
3314 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
3315 if (err < 0)
3316 return err;
3318 if (cgrp == cgrp->top_cgroup) {
3319 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
3320 return err;
3323 for_each_subsys(cgrp->root, ss) {
3324 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
3325 return err;
3327 /* This cgroup is ready now */
3328 for_each_subsys(cgrp->root, ss) {
3329 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3331 * Update id->css pointer and make this css visible from
3332 * CSS ID functions. This pointer will be dereferened
3333 * from RCU-read-side without locks.
3335 if (css->id)
3336 rcu_assign_pointer(css->id->css, css);
3339 return 0;
3342 static void init_cgroup_css(struct cgroup_subsys_state *css,
3343 struct cgroup_subsys *ss,
3344 struct cgroup *cgrp)
3346 css->cgroup = cgrp;
3347 atomic_set(&css->refcnt, 1);
3348 css->flags = 0;
3349 css->id = NULL;
3350 if (cgrp == dummytop)
3351 set_bit(CSS_ROOT, &css->flags);
3352 BUG_ON(cgrp->subsys[ss->subsys_id]);
3353 cgrp->subsys[ss->subsys_id] = css;
3356 static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
3358 /* We need to take each hierarchy_mutex in a consistent order */
3359 int i;
3362 * No worry about a race with rebind_subsystems that might mess up the
3363 * locking order, since both parties are under cgroup_mutex.
3365 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3366 struct cgroup_subsys *ss = subsys[i];
3367 if (ss == NULL)
3368 continue;
3369 if (ss->root == root)
3370 mutex_lock(&ss->hierarchy_mutex);
3374 static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
3376 int i;
3378 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3379 struct cgroup_subsys *ss = subsys[i];
3380 if (ss == NULL)
3381 continue;
3382 if (ss->root == root)
3383 mutex_unlock(&ss->hierarchy_mutex);
3388 * cgroup_create - create a cgroup
3389 * @parent: cgroup that will be parent of the new cgroup
3390 * @dentry: dentry of the new cgroup
3391 * @mode: mode to set on new inode
3393 * Must be called with the mutex on the parent inode held
3395 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
3396 mode_t mode)
3398 struct cgroup *cgrp;
3399 struct cgroupfs_root *root = parent->root;
3400 int err = 0;
3401 struct cgroup_subsys *ss;
3402 struct super_block *sb = root->sb;
3404 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3405 if (!cgrp)
3406 return -ENOMEM;
3408 /* Grab a reference on the superblock so the hierarchy doesn't
3409 * get deleted on unmount if there are child cgroups. This
3410 * can be done outside cgroup_mutex, since the sb can't
3411 * disappear while someone has an open control file on the
3412 * fs */
3413 atomic_inc(&sb->s_active);
3415 mutex_lock(&cgroup_mutex);
3417 init_cgroup_housekeeping(cgrp);
3419 cgrp->parent = parent;
3420 cgrp->root = parent->root;
3421 cgrp->top_cgroup = parent->top_cgroup;
3423 if (notify_on_release(parent))
3424 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3426 if (clone_children(parent))
3427 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3429 for_each_subsys(root, ss) {
3430 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
3432 if (IS_ERR(css)) {
3433 err = PTR_ERR(css);
3434 goto err_destroy;
3436 init_cgroup_css(css, ss, cgrp);
3437 if (ss->use_id) {
3438 err = alloc_css_id(ss, parent, cgrp);
3439 if (err)
3440 goto err_destroy;
3442 /* At error, ->destroy() callback has to free assigned ID. */
3443 if (clone_children(parent) && ss->post_clone)
3444 ss->post_clone(ss, cgrp);
3447 cgroup_lock_hierarchy(root);
3448 list_add(&cgrp->sibling, &cgrp->parent->children);
3449 cgroup_unlock_hierarchy(root);
3450 root->number_of_cgroups++;
3452 err = cgroup_create_dir(cgrp, dentry, mode);
3453 if (err < 0)
3454 goto err_remove;
3456 /* The cgroup directory was pre-locked for us */
3457 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
3459 err = cgroup_populate_dir(cgrp);
3460 /* If err < 0, we have a half-filled directory - oh well ;) */
3462 mutex_unlock(&cgroup_mutex);
3463 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
3465 return 0;
3467 err_remove:
3469 cgroup_lock_hierarchy(root);
3470 list_del(&cgrp->sibling);
3471 cgroup_unlock_hierarchy(root);
3472 root->number_of_cgroups--;
3474 err_destroy:
3476 for_each_subsys(root, ss) {
3477 if (cgrp->subsys[ss->subsys_id])
3478 ss->destroy(ss, cgrp);
3481 mutex_unlock(&cgroup_mutex);
3483 /* Release the reference count that we took on the superblock */
3484 deactivate_super(sb);
3486 kfree(cgrp);
3487 return err;
3490 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3492 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
3494 /* the vfs holds inode->i_mutex already */
3495 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
3498 static int cgroup_has_css_refs(struct cgroup *cgrp)
3500 /* Check the reference count on each subsystem. Since we
3501 * already established that there are no tasks in the
3502 * cgroup, if the css refcount is also 1, then there should
3503 * be no outstanding references, so the subsystem is safe to
3504 * destroy. We scan across all subsystems rather than using
3505 * the per-hierarchy linked list of mounted subsystems since
3506 * we can be called via check_for_release() with no
3507 * synchronization other than RCU, and the subsystem linked
3508 * list isn't RCU-safe */
3509 int i;
3511 * We won't need to lock the subsys array, because the subsystems
3512 * we're concerned about aren't going anywhere since our cgroup root
3513 * has a reference on them.
3515 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3516 struct cgroup_subsys *ss = subsys[i];
3517 struct cgroup_subsys_state *css;
3518 /* Skip subsystems not present or not in this hierarchy */
3519 if (ss == NULL || ss->root != cgrp->root)
3520 continue;
3521 css = cgrp->subsys[ss->subsys_id];
3522 /* When called from check_for_release() it's possible
3523 * that by this point the cgroup has been removed
3524 * and the css deleted. But a false-positive doesn't
3525 * matter, since it can only happen if the cgroup
3526 * has been deleted and hence no longer needs the
3527 * release agent to be called anyway. */
3528 if (css && (atomic_read(&css->refcnt) > 1))
3529 return 1;
3531 return 0;
3535 * Atomically mark all (or else none) of the cgroup's CSS objects as
3536 * CSS_REMOVED. Return true on success, or false if the cgroup has
3537 * busy subsystems. Call with cgroup_mutex held
3540 static int cgroup_clear_css_refs(struct cgroup *cgrp)
3542 struct cgroup_subsys *ss;
3543 unsigned long flags;
3544 bool failed = false;
3545 local_irq_save(flags);
3546 for_each_subsys(cgrp->root, ss) {
3547 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3548 int refcnt;
3549 while (1) {
3550 /* We can only remove a CSS with a refcnt==1 */
3551 refcnt = atomic_read(&css->refcnt);
3552 if (refcnt > 1) {
3553 failed = true;
3554 goto done;
3556 BUG_ON(!refcnt);
3558 * Drop the refcnt to 0 while we check other
3559 * subsystems. This will cause any racing
3560 * css_tryget() to spin until we set the
3561 * CSS_REMOVED bits or abort
3563 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
3564 break;
3565 cpu_relax();
3568 done:
3569 for_each_subsys(cgrp->root, ss) {
3570 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3571 if (failed) {
3573 * Restore old refcnt if we previously managed
3574 * to clear it from 1 to 0
3576 if (!atomic_read(&css->refcnt))
3577 atomic_set(&css->refcnt, 1);
3578 } else {
3579 /* Commit the fact that the CSS is removed */
3580 set_bit(CSS_REMOVED, &css->flags);
3583 local_irq_restore(flags);
3584 return !failed;
3587 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
3589 struct cgroup *cgrp = dentry->d_fsdata;
3590 struct dentry *d;
3591 struct cgroup *parent;
3592 DEFINE_WAIT(wait);
3593 struct cgroup_event *event, *tmp;
3594 int ret;
3596 /* the vfs holds both inode->i_mutex already */
3597 again:
3598 mutex_lock(&cgroup_mutex);
3599 if (atomic_read(&cgrp->count) != 0) {
3600 mutex_unlock(&cgroup_mutex);
3601 return -EBUSY;
3603 if (!list_empty(&cgrp->children)) {
3604 mutex_unlock(&cgroup_mutex);
3605 return -EBUSY;
3607 mutex_unlock(&cgroup_mutex);
3610 * In general, subsystem has no css->refcnt after pre_destroy(). But
3611 * in racy cases, subsystem may have to get css->refcnt after
3612 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
3613 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
3614 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
3615 * and subsystem's reference count handling. Please see css_get/put
3616 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
3618 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3621 * Call pre_destroy handlers of subsys. Notify subsystems
3622 * that rmdir() request comes.
3624 ret = cgroup_call_pre_destroy(cgrp);
3625 if (ret) {
3626 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3627 return ret;
3630 mutex_lock(&cgroup_mutex);
3631 parent = cgrp->parent;
3632 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
3633 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3634 mutex_unlock(&cgroup_mutex);
3635 return -EBUSY;
3637 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
3638 if (!cgroup_clear_css_refs(cgrp)) {
3639 mutex_unlock(&cgroup_mutex);
3641 * Because someone may call cgroup_wakeup_rmdir_waiter() before
3642 * prepare_to_wait(), we need to check this flag.
3644 if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
3645 schedule();
3646 finish_wait(&cgroup_rmdir_waitq, &wait);
3647 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3648 if (signal_pending(current))
3649 return -EINTR;
3650 goto again;
3652 /* NO css_tryget() can success after here. */
3653 finish_wait(&cgroup_rmdir_waitq, &wait);
3654 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3656 spin_lock(&release_list_lock);
3657 set_bit(CGRP_REMOVED, &cgrp->flags);
3658 if (!list_empty(&cgrp->release_list))
3659 list_del(&cgrp->release_list);
3660 spin_unlock(&release_list_lock);
3662 cgroup_lock_hierarchy(cgrp->root);
3663 /* delete this cgroup from parent->children */
3664 list_del(&cgrp->sibling);
3665 cgroup_unlock_hierarchy(cgrp->root);
3667 d = dget(cgrp->dentry);
3669 cgroup_d_remove_dir(d);
3670 dput(d);
3672 set_bit(CGRP_RELEASABLE, &parent->flags);
3673 check_for_release(parent);
3676 * Unregister events and notify userspace.
3677 * Notify userspace about cgroup removing only after rmdir of cgroup
3678 * directory to avoid race between userspace and kernelspace
3680 spin_lock(&cgrp->event_list_lock);
3681 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
3682 list_del(&event->list);
3683 remove_wait_queue(event->wqh, &event->wait);
3684 eventfd_signal(event->eventfd, 1);
3685 schedule_work(&event->remove);
3687 spin_unlock(&cgrp->event_list_lock);
3689 mutex_unlock(&cgroup_mutex);
3690 return 0;
3693 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
3695 struct cgroup_subsys_state *css;
3697 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
3699 /* Create the top cgroup state for this subsystem */
3700 list_add(&ss->sibling, &rootnode.subsys_list);
3701 ss->root = &rootnode;
3702 css = ss->create(ss, dummytop);
3703 /* We don't handle early failures gracefully */
3704 BUG_ON(IS_ERR(css));
3705 init_cgroup_css(css, ss, dummytop);
3707 /* Update the init_css_set to contain a subsys
3708 * pointer to this state - since the subsystem is
3709 * newly registered, all tasks and hence the
3710 * init_css_set is in the subsystem's top cgroup. */
3711 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
3713 need_forkexit_callback |= ss->fork || ss->exit;
3715 /* At system boot, before all subsystems have been
3716 * registered, no tasks have been forked, so we don't
3717 * need to invoke fork callbacks here. */
3718 BUG_ON(!list_empty(&init_task.tasks));
3720 mutex_init(&ss->hierarchy_mutex);
3721 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
3722 ss->active = 1;
3724 /* this function shouldn't be used with modular subsystems, since they
3725 * need to register a subsys_id, among other things */
3726 BUG_ON(ss->module);
3730 * cgroup_load_subsys: load and register a modular subsystem at runtime
3731 * @ss: the subsystem to load
3733 * This function should be called in a modular subsystem's initcall. If the
3734 * subsystem is built as a module, it will be assigned a new subsys_id and set
3735 * up for use. If the subsystem is built-in anyway, work is delegated to the
3736 * simpler cgroup_init_subsys.
3738 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
3740 int i;
3741 struct cgroup_subsys_state *css;
3743 /* check name and function validity */
3744 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
3745 ss->create == NULL || ss->destroy == NULL)
3746 return -EINVAL;
3749 * we don't support callbacks in modular subsystems. this check is
3750 * before the ss->module check for consistency; a subsystem that could
3751 * be a module should still have no callbacks even if the user isn't
3752 * compiling it as one.
3754 if (ss->fork || ss->exit)
3755 return -EINVAL;
3758 * an optionally modular subsystem is built-in: we want to do nothing,
3759 * since cgroup_init_subsys will have already taken care of it.
3761 if (ss->module == NULL) {
3762 /* a few sanity checks */
3763 BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
3764 BUG_ON(subsys[ss->subsys_id] != ss);
3765 return 0;
3769 * need to register a subsys id before anything else - for example,
3770 * init_cgroup_css needs it.
3772 mutex_lock(&cgroup_mutex);
3773 /* find the first empty slot in the array */
3774 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
3775 if (subsys[i] == NULL)
3776 break;
3778 if (i == CGROUP_SUBSYS_COUNT) {
3779 /* maximum number of subsystems already registered! */
3780 mutex_unlock(&cgroup_mutex);
3781 return -EBUSY;
3783 /* assign ourselves the subsys_id */
3784 ss->subsys_id = i;
3785 subsys[i] = ss;
3788 * no ss->create seems to need anything important in the ss struct, so
3789 * this can happen first (i.e. before the rootnode attachment).
3791 css = ss->create(ss, dummytop);
3792 if (IS_ERR(css)) {
3793 /* failure case - need to deassign the subsys[] slot. */
3794 subsys[i] = NULL;
3795 mutex_unlock(&cgroup_mutex);
3796 return PTR_ERR(css);
3799 list_add(&ss->sibling, &rootnode.subsys_list);
3800 ss->root = &rootnode;
3802 /* our new subsystem will be attached to the dummy hierarchy. */
3803 init_cgroup_css(css, ss, dummytop);
3804 /* init_idr must be after init_cgroup_css because it sets css->id. */
3805 if (ss->use_id) {
3806 int ret = cgroup_init_idr(ss, css);
3807 if (ret) {
3808 dummytop->subsys[ss->subsys_id] = NULL;
3809 ss->destroy(ss, dummytop);
3810 subsys[i] = NULL;
3811 mutex_unlock(&cgroup_mutex);
3812 return ret;
3817 * Now we need to entangle the css into the existing css_sets. unlike
3818 * in cgroup_init_subsys, there are now multiple css_sets, so each one
3819 * will need a new pointer to it; done by iterating the css_set_table.
3820 * furthermore, modifying the existing css_sets will corrupt the hash
3821 * table state, so each changed css_set will need its hash recomputed.
3822 * this is all done under the css_set_lock.
3824 write_lock(&css_set_lock);
3825 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
3826 struct css_set *cg;
3827 struct hlist_node *node, *tmp;
3828 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
3830 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
3831 /* skip entries that we already rehashed */
3832 if (cg->subsys[ss->subsys_id])
3833 continue;
3834 /* remove existing entry */
3835 hlist_del(&cg->hlist);
3836 /* set new value */
3837 cg->subsys[ss->subsys_id] = css;
3838 /* recompute hash and restore entry */
3839 new_bucket = css_set_hash(cg->subsys);
3840 hlist_add_head(&cg->hlist, new_bucket);
3843 write_unlock(&css_set_lock);
3845 mutex_init(&ss->hierarchy_mutex);
3846 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
3847 ss->active = 1;
3849 /* success! */
3850 mutex_unlock(&cgroup_mutex);
3851 return 0;
3853 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
3856 * cgroup_unload_subsys: unload a modular subsystem
3857 * @ss: the subsystem to unload
3859 * This function should be called in a modular subsystem's exitcall. When this
3860 * function is invoked, the refcount on the subsystem's module will be 0, so
3861 * the subsystem will not be attached to any hierarchy.
3863 void cgroup_unload_subsys(struct cgroup_subsys *ss)
3865 struct cg_cgroup_link *link;
3866 struct hlist_head *hhead;
3868 BUG_ON(ss->module == NULL);
3871 * we shouldn't be called if the subsystem is in use, and the use of
3872 * try_module_get in parse_cgroupfs_options should ensure that it
3873 * doesn't start being used while we're killing it off.
3875 BUG_ON(ss->root != &rootnode);
3877 mutex_lock(&cgroup_mutex);
3878 /* deassign the subsys_id */
3879 BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
3880 subsys[ss->subsys_id] = NULL;
3882 /* remove subsystem from rootnode's list of subsystems */
3883 list_del(&ss->sibling);
3886 * disentangle the css from all css_sets attached to the dummytop. as
3887 * in loading, we need to pay our respects to the hashtable gods.
3889 write_lock(&css_set_lock);
3890 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
3891 struct css_set *cg = link->cg;
3893 hlist_del(&cg->hlist);
3894 BUG_ON(!cg->subsys[ss->subsys_id]);
3895 cg->subsys[ss->subsys_id] = NULL;
3896 hhead = css_set_hash(cg->subsys);
3897 hlist_add_head(&cg->hlist, hhead);
3899 write_unlock(&css_set_lock);
3902 * remove subsystem's css from the dummytop and free it - need to free
3903 * before marking as null because ss->destroy needs the cgrp->subsys
3904 * pointer to find their state. note that this also takes care of
3905 * freeing the css_id.
3907 ss->destroy(ss, dummytop);
3908 dummytop->subsys[ss->subsys_id] = NULL;
3910 mutex_unlock(&cgroup_mutex);
3912 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
3915 * cgroup_init_early - cgroup initialization at system boot
3917 * Initialize cgroups at system boot, and initialize any
3918 * subsystems that request early init.
3920 int __init cgroup_init_early(void)
3922 int i;
3923 atomic_set(&init_css_set.refcount, 1);
3924 INIT_LIST_HEAD(&init_css_set.cg_links);
3925 INIT_LIST_HEAD(&init_css_set.tasks);
3926 INIT_HLIST_NODE(&init_css_set.hlist);
3927 css_set_count = 1;
3928 init_cgroup_root(&rootnode);
3929 root_count = 1;
3930 init_task.cgroups = &init_css_set;
3932 init_css_set_link.cg = &init_css_set;
3933 init_css_set_link.cgrp = dummytop;
3934 list_add(&init_css_set_link.cgrp_link_list,
3935 &rootnode.top_cgroup.css_sets);
3936 list_add(&init_css_set_link.cg_link_list,
3937 &init_css_set.cg_links);
3939 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
3940 INIT_HLIST_HEAD(&css_set_table[i]);
3942 /* at bootup time, we don't worry about modular subsystems */
3943 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
3944 struct cgroup_subsys *ss = subsys[i];
3946 BUG_ON(!ss->name);
3947 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
3948 BUG_ON(!ss->create);
3949 BUG_ON(!ss->destroy);
3950 if (ss->subsys_id != i) {
3951 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
3952 ss->name, ss->subsys_id);
3953 BUG();
3956 if (ss->early_init)
3957 cgroup_init_subsys(ss);
3959 return 0;
3963 * cgroup_init - cgroup initialization
3965 * Register cgroup filesystem and /proc file, and initialize
3966 * any subsystems that didn't request early init.
3968 int __init cgroup_init(void)
3970 int err;
3971 int i;
3972 struct hlist_head *hhead;
3974 err = bdi_init(&cgroup_backing_dev_info);
3975 if (err)
3976 return err;
3978 /* at bootup time, we don't worry about modular subsystems */
3979 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
3980 struct cgroup_subsys *ss = subsys[i];
3981 if (!ss->early_init)
3982 cgroup_init_subsys(ss);
3983 if (ss->use_id)
3984 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
3987 /* Add init_css_set to the hash table */
3988 hhead = css_set_hash(init_css_set.subsys);
3989 hlist_add_head(&init_css_set.hlist, hhead);
3990 BUG_ON(!init_root_id(&rootnode));
3992 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
3993 if (!cgroup_kobj) {
3994 err = -ENOMEM;
3995 goto out;
3998 err = register_filesystem(&cgroup_fs_type);
3999 if (err < 0) {
4000 kobject_put(cgroup_kobj);
4001 goto out;
4004 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4006 out:
4007 if (err)
4008 bdi_destroy(&cgroup_backing_dev_info);
4010 return err;
4014 * proc_cgroup_show()
4015 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4016 * - Used for /proc/<pid>/cgroup.
4017 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4018 * doesn't really matter if tsk->cgroup changes after we read it,
4019 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4020 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4021 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4022 * cgroup to top_cgroup.
4025 /* TODO: Use a proper seq_file iterator */
4026 static int proc_cgroup_show(struct seq_file *m, void *v)
4028 struct pid *pid;
4029 struct task_struct *tsk;
4030 char *buf;
4031 int retval;
4032 struct cgroupfs_root *root;
4034 retval = -ENOMEM;
4035 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4036 if (!buf)
4037 goto out;
4039 retval = -ESRCH;
4040 pid = m->private;
4041 tsk = get_pid_task(pid, PIDTYPE_PID);
4042 if (!tsk)
4043 goto out_free;
4045 retval = 0;
4047 mutex_lock(&cgroup_mutex);
4049 for_each_active_root(root) {
4050 struct cgroup_subsys *ss;
4051 struct cgroup *cgrp;
4052 int count = 0;
4054 seq_printf(m, "%d:", root->hierarchy_id);
4055 for_each_subsys(root, ss)
4056 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4057 if (strlen(root->name))
4058 seq_printf(m, "%sname=%s", count ? "," : "",
4059 root->name);
4060 seq_putc(m, ':');
4061 cgrp = task_cgroup_from_root(tsk, root);
4062 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4063 if (retval < 0)
4064 goto out_unlock;
4065 seq_puts(m, buf);
4066 seq_putc(m, '\n');
4069 out_unlock:
4070 mutex_unlock(&cgroup_mutex);
4071 put_task_struct(tsk);
4072 out_free:
4073 kfree(buf);
4074 out:
4075 return retval;
4078 static int cgroup_open(struct inode *inode, struct file *file)
4080 struct pid *pid = PROC_I(inode)->pid;
4081 return single_open(file, proc_cgroup_show, pid);
4084 const struct file_operations proc_cgroup_operations = {
4085 .open = cgroup_open,
4086 .read = seq_read,
4087 .llseek = seq_lseek,
4088 .release = single_release,
4091 /* Display information about each subsystem and each hierarchy */
4092 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4094 int i;
4096 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4098 * ideally we don't want subsystems moving around while we do this.
4099 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4100 * subsys/hierarchy state.
4102 mutex_lock(&cgroup_mutex);
4103 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4104 struct cgroup_subsys *ss = subsys[i];
4105 if (ss == NULL)
4106 continue;
4107 seq_printf(m, "%s\t%d\t%d\t%d\n",
4108 ss->name, ss->root->hierarchy_id,
4109 ss->root->number_of_cgroups, !ss->disabled);
4111 mutex_unlock(&cgroup_mutex);
4112 return 0;
4115 static int cgroupstats_open(struct inode *inode, struct file *file)
4117 return single_open(file, proc_cgroupstats_show, NULL);
4120 static const struct file_operations proc_cgroupstats_operations = {
4121 .open = cgroupstats_open,
4122 .read = seq_read,
4123 .llseek = seq_lseek,
4124 .release = single_release,
4128 * cgroup_fork - attach newly forked task to its parents cgroup.
4129 * @child: pointer to task_struct of forking parent process.
4131 * Description: A task inherits its parent's cgroup at fork().
4133 * A pointer to the shared css_set was automatically copied in
4134 * fork.c by dup_task_struct(). However, we ignore that copy, since
4135 * it was not made under the protection of RCU or cgroup_mutex, so
4136 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4137 * have already changed current->cgroups, allowing the previously
4138 * referenced cgroup group to be removed and freed.
4140 * At the point that cgroup_fork() is called, 'current' is the parent
4141 * task, and the passed argument 'child' points to the child task.
4143 void cgroup_fork(struct task_struct *child)
4145 task_lock(current);
4146 child->cgroups = current->cgroups;
4147 get_css_set(child->cgroups);
4148 task_unlock(current);
4149 INIT_LIST_HEAD(&child->cg_list);
4153 * cgroup_fork_callbacks - run fork callbacks
4154 * @child: the new task
4156 * Called on a new task very soon before adding it to the
4157 * tasklist. No need to take any locks since no-one can
4158 * be operating on this task.
4160 void cgroup_fork_callbacks(struct task_struct *child)
4162 if (need_forkexit_callback) {
4163 int i;
4165 * forkexit callbacks are only supported for builtin
4166 * subsystems, and the builtin section of the subsys array is
4167 * immutable, so we don't need to lock the subsys array here.
4169 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4170 struct cgroup_subsys *ss = subsys[i];
4171 if (ss->fork)
4172 ss->fork(ss, child);
4178 * cgroup_post_fork - called on a new task after adding it to the task list
4179 * @child: the task in question
4181 * Adds the task to the list running through its css_set if necessary.
4182 * Has to be after the task is visible on the task list in case we race
4183 * with the first call to cgroup_iter_start() - to guarantee that the
4184 * new task ends up on its list.
4186 void cgroup_post_fork(struct task_struct *child)
4188 if (use_task_css_set_links) {
4189 write_lock(&css_set_lock);
4190 task_lock(child);
4191 if (list_empty(&child->cg_list))
4192 list_add(&child->cg_list, &child->cgroups->tasks);
4193 task_unlock(child);
4194 write_unlock(&css_set_lock);
4198 * cgroup_exit - detach cgroup from exiting task
4199 * @tsk: pointer to task_struct of exiting process
4200 * @run_callback: run exit callbacks?
4202 * Description: Detach cgroup from @tsk and release it.
4204 * Note that cgroups marked notify_on_release force every task in
4205 * them to take the global cgroup_mutex mutex when exiting.
4206 * This could impact scaling on very large systems. Be reluctant to
4207 * use notify_on_release cgroups where very high task exit scaling
4208 * is required on large systems.
4210 * the_top_cgroup_hack:
4212 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4214 * We call cgroup_exit() while the task is still competent to
4215 * handle notify_on_release(), then leave the task attached to the
4216 * root cgroup in each hierarchy for the remainder of its exit.
4218 * To do this properly, we would increment the reference count on
4219 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4220 * code we would add a second cgroup function call, to drop that
4221 * reference. This would just create an unnecessary hot spot on
4222 * the top_cgroup reference count, to no avail.
4224 * Normally, holding a reference to a cgroup without bumping its
4225 * count is unsafe. The cgroup could go away, or someone could
4226 * attach us to a different cgroup, decrementing the count on
4227 * the first cgroup that we never incremented. But in this case,
4228 * top_cgroup isn't going away, and either task has PF_EXITING set,
4229 * which wards off any cgroup_attach_task() attempts, or task is a failed
4230 * fork, never visible to cgroup_attach_task.
4232 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4234 int i;
4235 struct css_set *cg;
4237 if (run_callbacks && need_forkexit_callback) {
4239 * modular subsystems can't use callbacks, so no need to lock
4240 * the subsys array
4242 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4243 struct cgroup_subsys *ss = subsys[i];
4244 if (ss->exit)
4245 ss->exit(ss, tsk);
4250 * Unlink from the css_set task list if necessary.
4251 * Optimistically check cg_list before taking
4252 * css_set_lock
4254 if (!list_empty(&tsk->cg_list)) {
4255 write_lock(&css_set_lock);
4256 if (!list_empty(&tsk->cg_list))
4257 list_del(&tsk->cg_list);
4258 write_unlock(&css_set_lock);
4261 /* Reassign the task to the init_css_set. */
4262 task_lock(tsk);
4263 cg = tsk->cgroups;
4264 tsk->cgroups = &init_css_set;
4265 task_unlock(tsk);
4266 if (cg)
4267 put_css_set_taskexit(cg);
4271 * cgroup_clone - clone the cgroup the given subsystem is attached to
4272 * @tsk: the task to be moved
4273 * @subsys: the given subsystem
4274 * @nodename: the name for the new cgroup
4276 * Duplicate the current cgroup in the hierarchy that the given
4277 * subsystem is attached to, and move this task into the new
4278 * child.
4280 int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
4281 char *nodename)
4283 struct dentry *dentry;
4284 int ret = 0;
4285 struct cgroup *parent, *child;
4286 struct inode *inode;
4287 struct css_set *cg;
4288 struct cgroupfs_root *root;
4289 struct cgroup_subsys *ss;
4291 /* We shouldn't be called by an unregistered subsystem */
4292 BUG_ON(!subsys->active);
4294 /* First figure out what hierarchy and cgroup we're dealing
4295 * with, and pin them so we can drop cgroup_mutex */
4296 mutex_lock(&cgroup_mutex);
4297 again:
4298 root = subsys->root;
4299 if (root == &rootnode) {
4300 mutex_unlock(&cgroup_mutex);
4301 return 0;
4304 /* Pin the hierarchy */
4305 if (!atomic_inc_not_zero(&root->sb->s_active)) {
4306 /* We race with the final deactivate_super() */
4307 mutex_unlock(&cgroup_mutex);
4308 return 0;
4311 /* Keep the cgroup alive */
4312 task_lock(tsk);
4313 parent = task_cgroup(tsk, subsys->subsys_id);
4314 cg = tsk->cgroups;
4315 get_css_set(cg);
4316 task_unlock(tsk);
4318 mutex_unlock(&cgroup_mutex);
4320 /* Now do the VFS work to create a cgroup */
4321 inode = parent->dentry->d_inode;
4323 /* Hold the parent directory mutex across this operation to
4324 * stop anyone else deleting the new cgroup */
4325 mutex_lock(&inode->i_mutex);
4326 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
4327 if (IS_ERR(dentry)) {
4328 printk(KERN_INFO
4329 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
4330 PTR_ERR(dentry));
4331 ret = PTR_ERR(dentry);
4332 goto out_release;
4335 /* Create the cgroup directory, which also creates the cgroup */
4336 ret = vfs_mkdir(inode, dentry, 0755);
4337 child = __d_cgrp(dentry);
4338 dput(dentry);
4339 if (ret) {
4340 printk(KERN_INFO
4341 "Failed to create cgroup %s: %d\n", nodename,
4342 ret);
4343 goto out_release;
4346 /* The cgroup now exists. Retake cgroup_mutex and check
4347 * that we're still in the same state that we thought we
4348 * were. */
4349 mutex_lock(&cgroup_mutex);
4350 if ((root != subsys->root) ||
4351 (parent != task_cgroup(tsk, subsys->subsys_id))) {
4352 /* Aargh, we raced ... */
4353 mutex_unlock(&inode->i_mutex);
4354 put_css_set(cg);
4356 deactivate_super(root->sb);
4357 /* The cgroup is still accessible in the VFS, but
4358 * we're not going to try to rmdir() it at this
4359 * point. */
4360 printk(KERN_INFO
4361 "Race in cgroup_clone() - leaking cgroup %s\n",
4362 nodename);
4363 goto again;
4366 /* do any required auto-setup */
4367 for_each_subsys(root, ss) {
4368 if (ss->post_clone)
4369 ss->post_clone(ss, child);
4372 /* All seems fine. Finish by moving the task into the new cgroup */
4373 ret = cgroup_attach_task(child, tsk);
4374 mutex_unlock(&cgroup_mutex);
4376 out_release:
4377 mutex_unlock(&inode->i_mutex);
4379 mutex_lock(&cgroup_mutex);
4380 put_css_set(cg);
4381 mutex_unlock(&cgroup_mutex);
4382 deactivate_super(root->sb);
4383 return ret;
4387 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4388 * @cgrp: the cgroup in question
4389 * @task: the task in question
4391 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4392 * hierarchy.
4394 * If we are sending in dummytop, then presumably we are creating
4395 * the top cgroup in the subsystem.
4397 * Called only by the ns (nsproxy) cgroup.
4399 int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4401 int ret;
4402 struct cgroup *target;
4404 if (cgrp == dummytop)
4405 return 1;
4407 target = task_cgroup_from_root(task, cgrp->root);
4408 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4409 cgrp = cgrp->parent;
4410 ret = (cgrp == target);
4411 return ret;
4414 static void check_for_release(struct cgroup *cgrp)
4416 /* All of these checks rely on RCU to keep the cgroup
4417 * structure alive */
4418 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4419 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4420 /* Control Group is currently removeable. If it's not
4421 * already queued for a userspace notification, queue
4422 * it now */
4423 int need_schedule_work = 0;
4424 spin_lock(&release_list_lock);
4425 if (!cgroup_is_removed(cgrp) &&
4426 list_empty(&cgrp->release_list)) {
4427 list_add(&cgrp->release_list, &release_list);
4428 need_schedule_work = 1;
4430 spin_unlock(&release_list_lock);
4431 if (need_schedule_work)
4432 schedule_work(&release_agent_work);
4436 /* Caller must verify that the css is not for root cgroup */
4437 void __css_put(struct cgroup_subsys_state *css, int count)
4439 struct cgroup *cgrp = css->cgroup;
4440 int val;
4441 rcu_read_lock();
4442 val = atomic_sub_return(count, &css->refcnt);
4443 if (val == 1) {
4444 if (notify_on_release(cgrp)) {
4445 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4446 check_for_release(cgrp);
4448 cgroup_wakeup_rmdir_waiter(cgrp);
4450 rcu_read_unlock();
4451 WARN_ON_ONCE(val < 1);
4453 EXPORT_SYMBOL_GPL(__css_put);
4456 * Notify userspace when a cgroup is released, by running the
4457 * configured release agent with the name of the cgroup (path
4458 * relative to the root of cgroup file system) as the argument.
4460 * Most likely, this user command will try to rmdir this cgroup.
4462 * This races with the possibility that some other task will be
4463 * attached to this cgroup before it is removed, or that some other
4464 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4465 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4466 * unused, and this cgroup will be reprieved from its death sentence,
4467 * to continue to serve a useful existence. Next time it's released,
4468 * we will get notified again, if it still has 'notify_on_release' set.
4470 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4471 * means only wait until the task is successfully execve()'d. The
4472 * separate release agent task is forked by call_usermodehelper(),
4473 * then control in this thread returns here, without waiting for the
4474 * release agent task. We don't bother to wait because the caller of
4475 * this routine has no use for the exit status of the release agent
4476 * task, so no sense holding our caller up for that.
4478 static void cgroup_release_agent(struct work_struct *work)
4480 BUG_ON(work != &release_agent_work);
4481 mutex_lock(&cgroup_mutex);
4482 spin_lock(&release_list_lock);
4483 while (!list_empty(&release_list)) {
4484 char *argv[3], *envp[3];
4485 int i;
4486 char *pathbuf = NULL, *agentbuf = NULL;
4487 struct cgroup *cgrp = list_entry(release_list.next,
4488 struct cgroup,
4489 release_list);
4490 list_del_init(&cgrp->release_list);
4491 spin_unlock(&release_list_lock);
4492 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4493 if (!pathbuf)
4494 goto continue_free;
4495 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4496 goto continue_free;
4497 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4498 if (!agentbuf)
4499 goto continue_free;
4501 i = 0;
4502 argv[i++] = agentbuf;
4503 argv[i++] = pathbuf;
4504 argv[i] = NULL;
4506 i = 0;
4507 /* minimal command environment */
4508 envp[i++] = "HOME=/";
4509 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4510 envp[i] = NULL;
4512 /* Drop the lock while we invoke the usermode helper,
4513 * since the exec could involve hitting disk and hence
4514 * be a slow process */
4515 mutex_unlock(&cgroup_mutex);
4516 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
4517 mutex_lock(&cgroup_mutex);
4518 continue_free:
4519 kfree(pathbuf);
4520 kfree(agentbuf);
4521 spin_lock(&release_list_lock);
4523 spin_unlock(&release_list_lock);
4524 mutex_unlock(&cgroup_mutex);
4527 static int __init cgroup_disable(char *str)
4529 int i;
4530 char *token;
4532 while ((token = strsep(&str, ",")) != NULL) {
4533 if (!*token)
4534 continue;
4536 * cgroup_disable, being at boot time, can't know about module
4537 * subsystems, so we don't worry about them.
4539 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4540 struct cgroup_subsys *ss = subsys[i];
4542 if (!strcmp(token, ss->name)) {
4543 ss->disabled = 1;
4544 printk(KERN_INFO "Disabling %s control group"
4545 " subsystem\n", ss->name);
4546 break;
4550 return 1;
4552 __setup("cgroup_disable=", cgroup_disable);
4555 * Functons for CSS ID.
4559 *To get ID other than 0, this should be called when !cgroup_is_removed().
4561 unsigned short css_id(struct cgroup_subsys_state *css)
4563 struct css_id *cssid;
4566 * This css_id() can return correct value when somone has refcnt
4567 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4568 * it's unchanged until freed.
4570 cssid = rcu_dereference_check(css->id,
4571 rcu_read_lock_held() || atomic_read(&css->refcnt));
4573 if (cssid)
4574 return cssid->id;
4575 return 0;
4577 EXPORT_SYMBOL_GPL(css_id);
4579 unsigned short css_depth(struct cgroup_subsys_state *css)
4581 struct css_id *cssid;
4583 cssid = rcu_dereference_check(css->id,
4584 rcu_read_lock_held() || atomic_read(&css->refcnt));
4586 if (cssid)
4587 return cssid->depth;
4588 return 0;
4590 EXPORT_SYMBOL_GPL(css_depth);
4593 * css_is_ancestor - test "root" css is an ancestor of "child"
4594 * @child: the css to be tested.
4595 * @root: the css supporsed to be an ancestor of the child.
4597 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4598 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4599 * But, considering usual usage, the csses should be valid objects after test.
4600 * Assuming that the caller will do some action to the child if this returns
4601 * returns true, the caller must take "child";s reference count.
4602 * If "child" is valid object and this returns true, "root" is valid, too.
4605 bool css_is_ancestor(struct cgroup_subsys_state *child,
4606 const struct cgroup_subsys_state *root)
4608 struct css_id *child_id;
4609 struct css_id *root_id;
4610 bool ret = true;
4612 rcu_read_lock();
4613 child_id = rcu_dereference(child->id);
4614 root_id = rcu_dereference(root->id);
4615 if (!child_id
4616 || !root_id
4617 || (child_id->depth < root_id->depth)
4618 || (child_id->stack[root_id->depth] != root_id->id))
4619 ret = false;
4620 rcu_read_unlock();
4621 return ret;
4624 static void __free_css_id_cb(struct rcu_head *head)
4626 struct css_id *id;
4628 id = container_of(head, struct css_id, rcu_head);
4629 kfree(id);
4632 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
4634 struct css_id *id = css->id;
4635 /* When this is called before css_id initialization, id can be NULL */
4636 if (!id)
4637 return;
4639 BUG_ON(!ss->use_id);
4641 rcu_assign_pointer(id->css, NULL);
4642 rcu_assign_pointer(css->id, NULL);
4643 spin_lock(&ss->id_lock);
4644 idr_remove(&ss->idr, id->id);
4645 spin_unlock(&ss->id_lock);
4646 call_rcu(&id->rcu_head, __free_css_id_cb);
4648 EXPORT_SYMBOL_GPL(free_css_id);
4651 * This is called by init or create(). Then, calls to this function are
4652 * always serialized (By cgroup_mutex() at create()).
4655 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
4657 struct css_id *newid;
4658 int myid, error, size;
4660 BUG_ON(!ss->use_id);
4662 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
4663 newid = kzalloc(size, GFP_KERNEL);
4664 if (!newid)
4665 return ERR_PTR(-ENOMEM);
4666 /* get id */
4667 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
4668 error = -ENOMEM;
4669 goto err_out;
4671 spin_lock(&ss->id_lock);
4672 /* Don't use 0. allocates an ID of 1-65535 */
4673 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
4674 spin_unlock(&ss->id_lock);
4676 /* Returns error when there are no free spaces for new ID.*/
4677 if (error) {
4678 error = -ENOSPC;
4679 goto err_out;
4681 if (myid > CSS_ID_MAX)
4682 goto remove_idr;
4684 newid->id = myid;
4685 newid->depth = depth;
4686 return newid;
4687 remove_idr:
4688 error = -ENOSPC;
4689 spin_lock(&ss->id_lock);
4690 idr_remove(&ss->idr, myid);
4691 spin_unlock(&ss->id_lock);
4692 err_out:
4693 kfree(newid);
4694 return ERR_PTR(error);
4698 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
4699 struct cgroup_subsys_state *rootcss)
4701 struct css_id *newid;
4703 spin_lock_init(&ss->id_lock);
4704 idr_init(&ss->idr);
4706 newid = get_new_cssid(ss, 0);
4707 if (IS_ERR(newid))
4708 return PTR_ERR(newid);
4710 newid->stack[0] = newid->id;
4711 newid->css = rootcss;
4712 rootcss->id = newid;
4713 return 0;
4716 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
4717 struct cgroup *child)
4719 int subsys_id, i, depth = 0;
4720 struct cgroup_subsys_state *parent_css, *child_css;
4721 struct css_id *child_id, *parent_id;
4723 subsys_id = ss->subsys_id;
4724 parent_css = parent->subsys[subsys_id];
4725 child_css = child->subsys[subsys_id];
4726 parent_id = parent_css->id;
4727 depth = parent_id->depth + 1;
4729 child_id = get_new_cssid(ss, depth);
4730 if (IS_ERR(child_id))
4731 return PTR_ERR(child_id);
4733 for (i = 0; i < depth; i++)
4734 child_id->stack[i] = parent_id->stack[i];
4735 child_id->stack[depth] = child_id->id;
4737 * child_id->css pointer will be set after this cgroup is available
4738 * see cgroup_populate_dir()
4740 rcu_assign_pointer(child_css->id, child_id);
4742 return 0;
4746 * css_lookup - lookup css by id
4747 * @ss: cgroup subsys to be looked into.
4748 * @id: the id
4750 * Returns pointer to cgroup_subsys_state if there is valid one with id.
4751 * NULL if not. Should be called under rcu_read_lock()
4753 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
4755 struct css_id *cssid = NULL;
4757 BUG_ON(!ss->use_id);
4758 cssid = idr_find(&ss->idr, id);
4760 if (unlikely(!cssid))
4761 return NULL;
4763 return rcu_dereference(cssid->css);
4765 EXPORT_SYMBOL_GPL(css_lookup);
4768 * css_get_next - lookup next cgroup under specified hierarchy.
4769 * @ss: pointer to subsystem
4770 * @id: current position of iteration.
4771 * @root: pointer to css. search tree under this.
4772 * @foundid: position of found object.
4774 * Search next css under the specified hierarchy of rootid. Calling under
4775 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
4777 struct cgroup_subsys_state *
4778 css_get_next(struct cgroup_subsys *ss, int id,
4779 struct cgroup_subsys_state *root, int *foundid)
4781 struct cgroup_subsys_state *ret = NULL;
4782 struct css_id *tmp;
4783 int tmpid;
4784 int rootid = css_id(root);
4785 int depth = css_depth(root);
4787 if (!rootid)
4788 return NULL;
4790 BUG_ON(!ss->use_id);
4791 /* fill start point for scan */
4792 tmpid = id;
4793 while (1) {
4795 * scan next entry from bitmap(tree), tmpid is updated after
4796 * idr_get_next().
4798 spin_lock(&ss->id_lock);
4799 tmp = idr_get_next(&ss->idr, &tmpid);
4800 spin_unlock(&ss->id_lock);
4802 if (!tmp)
4803 break;
4804 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
4805 ret = rcu_dereference(tmp->css);
4806 if (ret) {
4807 *foundid = tmpid;
4808 break;
4811 /* continue to scan from next id */
4812 tmpid = tmpid + 1;
4814 return ret;
4817 #ifdef CONFIG_CGROUP_DEBUG
4818 static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
4819 struct cgroup *cont)
4821 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
4823 if (!css)
4824 return ERR_PTR(-ENOMEM);
4826 return css;
4829 static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
4831 kfree(cont->subsys[debug_subsys_id]);
4834 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
4836 return atomic_read(&cont->count);
4839 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
4841 return cgroup_task_count(cont);
4844 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
4846 return (u64)(unsigned long)current->cgroups;
4849 static u64 current_css_set_refcount_read(struct cgroup *cont,
4850 struct cftype *cft)
4852 u64 count;
4854 rcu_read_lock();
4855 count = atomic_read(&current->cgroups->refcount);
4856 rcu_read_unlock();
4857 return count;
4860 static int current_css_set_cg_links_read(struct cgroup *cont,
4861 struct cftype *cft,
4862 struct seq_file *seq)
4864 struct cg_cgroup_link *link;
4865 struct css_set *cg;
4867 read_lock(&css_set_lock);
4868 rcu_read_lock();
4869 cg = rcu_dereference(current->cgroups);
4870 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
4871 struct cgroup *c = link->cgrp;
4872 const char *name;
4874 if (c->dentry)
4875 name = c->dentry->d_name.name;
4876 else
4877 name = "?";
4878 seq_printf(seq, "Root %d group %s\n",
4879 c->root->hierarchy_id, name);
4881 rcu_read_unlock();
4882 read_unlock(&css_set_lock);
4883 return 0;
4886 #define MAX_TASKS_SHOWN_PER_CSS 25
4887 static int cgroup_css_links_read(struct cgroup *cont,
4888 struct cftype *cft,
4889 struct seq_file *seq)
4891 struct cg_cgroup_link *link;
4893 read_lock(&css_set_lock);
4894 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
4895 struct css_set *cg = link->cg;
4896 struct task_struct *task;
4897 int count = 0;
4898 seq_printf(seq, "css_set %p\n", cg);
4899 list_for_each_entry(task, &cg->tasks, cg_list) {
4900 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
4901 seq_puts(seq, " ...\n");
4902 break;
4903 } else {
4904 seq_printf(seq, " task %d\n",
4905 task_pid_vnr(task));
4909 read_unlock(&css_set_lock);
4910 return 0;
4913 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
4915 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
4918 static struct cftype debug_files[] = {
4920 .name = "cgroup_refcount",
4921 .read_u64 = cgroup_refcount_read,
4924 .name = "taskcount",
4925 .read_u64 = debug_taskcount_read,
4929 .name = "current_css_set",
4930 .read_u64 = current_css_set_read,
4934 .name = "current_css_set_refcount",
4935 .read_u64 = current_css_set_refcount_read,
4939 .name = "current_css_set_cg_links",
4940 .read_seq_string = current_css_set_cg_links_read,
4944 .name = "cgroup_css_links",
4945 .read_seq_string = cgroup_css_links_read,
4949 .name = "releasable",
4950 .read_u64 = releasable_read,
4954 static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
4956 return cgroup_add_files(cont, ss, debug_files,
4957 ARRAY_SIZE(debug_files));
4960 struct cgroup_subsys debug_subsys = {
4961 .name = "debug",
4962 .create = debug_create,
4963 .destroy = debug_destroy,
4964 .populate = debug_populate,
4965 .subsys_id = debug_subsys_id,
4967 #endif /* CONFIG_CGROUP_DEBUG */