Merge branch 'for-next' into for-linus
[pohmelfs.git] / drivers / net / wimax / i2400m / fw.c
blob25c24f0368d8d4c921cacb60582e21708ef66cc9
1 /*
2 * Intel Wireless WiMAX Connection 2400m
3 * Firmware uploader
6 * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
12 * * Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * * Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 * * Neither the name of Intel Corporation nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 * Intel Corporation <linux-wimax@intel.com>
36 * Yanir Lubetkin <yanirx.lubetkin@intel.com>
37 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
38 * - Initial implementation
41 * THE PROCEDURE
43 * The 2400m and derived devices work in two modes: boot-mode or
44 * normal mode. In boot mode we can execute only a handful of commands
45 * targeted at uploading the firmware and launching it.
47 * The 2400m enters boot mode when it is first connected to the
48 * system, when it crashes and when you ask it to reboot. There are
49 * two submodes of the boot mode: signed and non-signed. Signed takes
50 * firmwares signed with a certain private key, non-signed takes any
51 * firmware. Normal hardware takes only signed firmware.
53 * On boot mode, in USB, we write to the device using the bulk out
54 * endpoint and read from it in the notification endpoint. In SDIO we
55 * talk to it via the write address and read from the read address.
57 * Upon entrance to boot mode, the device sends (preceeded with a few
58 * zero length packets (ZLPs) on the notification endpoint in USB) a
59 * reboot barker (4 le32 words with the same value). We ack it by
60 * sending the same barker to the device. The device acks with a
61 * reboot ack barker (4 le32 words with value I2400M_ACK_BARKER) and
62 * then is fully booted. At this point we can upload the firmware.
64 * Note that different iterations of the device and EEPROM
65 * configurations will send different [re]boot barkers; these are
66 * collected in i2400m_barker_db along with the firmware
67 * characteristics they require.
69 * This process is accomplished by the i2400m_bootrom_init()
70 * function. All the device interaction happens through the
71 * i2400m_bm_cmd() [boot mode command]. Special return values will
72 * indicate if the device did reset during the process.
74 * After this, we read the MAC address and then (if needed)
75 * reinitialize the device. We need to read it ahead of time because
76 * in the future, we might not upload the firmware until userspace
77 * 'ifconfig up's the device.
79 * We can then upload the firmware file. The file is composed of a BCF
80 * header (basic data, keys and signatures) and a list of write
81 * commands and payloads. Optionally more BCF headers might follow the
82 * main payload. We first upload the header [i2400m_dnload_init()] and
83 * then pass the commands and payloads verbatim to the i2400m_bm_cmd()
84 * function [i2400m_dnload_bcf()]. Then we tell the device to jump to
85 * the new firmware [i2400m_dnload_finalize()].
87 * Once firmware is uploaded, we are good to go :)
89 * When we don't know in which mode we are, we first try by sending a
90 * warm reset request that will take us to boot-mode. If we time out
91 * waiting for a reboot barker, that means maybe we are already in
92 * boot mode, so we send a reboot barker.
94 * COMMAND EXECUTION
96 * This code (and process) is single threaded; for executing commands,
97 * we post a URB to the notification endpoint, post the command, wait
98 * for data on the notification buffer. We don't need to worry about
99 * others as we know we are the only ones in there.
101 * BACKEND IMPLEMENTATION
103 * This code is bus-generic; the bus-specific driver provides back end
104 * implementations to send a boot mode command to the device and to
105 * read an acknolwedgement from it (or an asynchronous notification)
106 * from it.
108 * FIRMWARE LOADING
110 * Note that in some cases, we can't just load a firmware file (for
111 * example, when resuming). For that, we might cache the firmware
112 * file. Thus, when doing the bootstrap, if there is a cache firmware
113 * file, it is used; if not, loading from disk is attempted.
115 * ROADMAP
117 * i2400m_barker_db_init Called by i2400m_driver_init()
118 * i2400m_barker_db_add
120 * i2400m_barker_db_exit Called by i2400m_driver_exit()
122 * i2400m_dev_bootstrap Called by __i2400m_dev_start()
123 * request_firmware
124 * i2400m_fw_bootstrap
125 * i2400m_fw_check
126 * i2400m_fw_hdr_check
127 * i2400m_fw_dnload
128 * release_firmware
130 * i2400m_fw_dnload
131 * i2400m_bootrom_init
132 * i2400m_bm_cmd
133 * i2400m_reset
134 * i2400m_dnload_init
135 * i2400m_dnload_init_signed
136 * i2400m_dnload_init_nonsigned
137 * i2400m_download_chunk
138 * i2400m_bm_cmd
139 * i2400m_dnload_bcf
140 * i2400m_bm_cmd
141 * i2400m_dnload_finalize
142 * i2400m_bm_cmd
144 * i2400m_bm_cmd
145 * i2400m->bus_bm_cmd_send()
146 * i2400m->bus_bm_wait_for_ack
147 * __i2400m_bm_ack_verify
148 * i2400m_is_boot_barker
150 * i2400m_bm_cmd_prepare Used by bus-drivers to prep
151 * commands before sending
153 * i2400m_pm_notifier Called on Power Management events
154 * i2400m_fw_cache
155 * i2400m_fw_uncache
157 #include <linux/firmware.h>
158 #include <linux/sched.h>
159 #include <linux/usb.h>
160 #include "i2400m.h"
163 #define D_SUBMODULE fw
164 #include "debug-levels.h"
167 static const __le32 i2400m_ACK_BARKER[4] = {
168 cpu_to_le32(I2400M_ACK_BARKER),
169 cpu_to_le32(I2400M_ACK_BARKER),
170 cpu_to_le32(I2400M_ACK_BARKER),
171 cpu_to_le32(I2400M_ACK_BARKER)
176 * Prepare a boot-mode command for delivery
178 * @cmd: pointer to bootrom header to prepare
180 * Computes checksum if so needed. After calling this function, DO NOT
181 * modify the command or header as the checksum won't work anymore.
183 * We do it from here because some times we cannot do it in the
184 * original context the command was sent (it is a const), so when we
185 * copy it to our staging buffer, we add the checksum there.
187 void i2400m_bm_cmd_prepare(struct i2400m_bootrom_header *cmd)
189 if (i2400m_brh_get_use_checksum(cmd)) {
190 int i;
191 u32 checksum = 0;
192 const u32 *checksum_ptr = (void *) cmd->payload;
193 for (i = 0; i < cmd->data_size / 4; i++)
194 checksum += cpu_to_le32(*checksum_ptr++);
195 checksum += cmd->command + cmd->target_addr + cmd->data_size;
196 cmd->block_checksum = cpu_to_le32(checksum);
199 EXPORT_SYMBOL_GPL(i2400m_bm_cmd_prepare);
203 * Database of known barkers.
205 * A barker is what the device sends indicating he is ready to be
206 * bootloaded. Different versions of the device will send different
207 * barkers. Depending on the barker, it might mean the device wants
208 * some kind of firmware or the other.
210 static struct i2400m_barker_db {
211 __le32 data[4];
212 } *i2400m_barker_db;
213 static size_t i2400m_barker_db_used, i2400m_barker_db_size;
216 static
217 int i2400m_zrealloc_2x(void **ptr, size_t *_count, size_t el_size,
218 gfp_t gfp_flags)
220 size_t old_count = *_count,
221 new_count = old_count ? 2 * old_count : 2,
222 old_size = el_size * old_count,
223 new_size = el_size * new_count;
224 void *nptr = krealloc(*ptr, new_size, gfp_flags);
225 if (nptr) {
226 /* zero the other half or the whole thing if old_count
227 * was zero */
228 if (old_size == 0)
229 memset(nptr, 0, new_size);
230 else
231 memset(nptr + old_size, 0, old_size);
232 *_count = new_count;
233 *ptr = nptr;
234 return 0;
235 } else
236 return -ENOMEM;
241 * Add a barker to the database
243 * This cannot used outside of this module and only at at module_init
244 * time. This is to avoid the need to do locking.
246 static
247 int i2400m_barker_db_add(u32 barker_id)
249 int result;
251 struct i2400m_barker_db *barker;
252 if (i2400m_barker_db_used >= i2400m_barker_db_size) {
253 result = i2400m_zrealloc_2x(
254 (void **) &i2400m_barker_db, &i2400m_barker_db_size,
255 sizeof(i2400m_barker_db[0]), GFP_KERNEL);
256 if (result < 0)
257 return result;
259 barker = i2400m_barker_db + i2400m_barker_db_used++;
260 barker->data[0] = le32_to_cpu(barker_id);
261 barker->data[1] = le32_to_cpu(barker_id);
262 barker->data[2] = le32_to_cpu(barker_id);
263 barker->data[3] = le32_to_cpu(barker_id);
264 return 0;
268 void i2400m_barker_db_exit(void)
270 kfree(i2400m_barker_db);
271 i2400m_barker_db = NULL;
272 i2400m_barker_db_size = 0;
273 i2400m_barker_db_used = 0;
278 * Helper function to add all the known stable barkers to the barker
279 * database.
281 static
282 int i2400m_barker_db_known_barkers(void)
284 int result;
286 result = i2400m_barker_db_add(I2400M_NBOOT_BARKER);
287 if (result < 0)
288 goto error_add;
289 result = i2400m_barker_db_add(I2400M_SBOOT_BARKER);
290 if (result < 0)
291 goto error_add;
292 result = i2400m_barker_db_add(I2400M_SBOOT_BARKER_6050);
293 if (result < 0)
294 goto error_add;
295 error_add:
296 return result;
301 * Initialize the barker database
303 * This can only be used from the module_init function for this
304 * module; this is to avoid the need to do locking.
306 * @options: command line argument with extra barkers to
307 * recognize. This is a comma-separated list of 32-bit hex
308 * numbers. They are appended to the existing list. Setting 0
309 * cleans the existing list and starts a new one.
311 int i2400m_barker_db_init(const char *_options)
313 int result;
314 char *options = NULL, *options_orig, *token;
316 i2400m_barker_db = NULL;
317 i2400m_barker_db_size = 0;
318 i2400m_barker_db_used = 0;
320 result = i2400m_barker_db_known_barkers();
321 if (result < 0)
322 goto error_add;
323 /* parse command line options from i2400m.barkers */
324 if (_options != NULL) {
325 unsigned barker;
327 options_orig = kstrdup(_options, GFP_KERNEL);
328 if (options_orig == NULL)
329 goto error_parse;
330 options = options_orig;
332 while ((token = strsep(&options, ",")) != NULL) {
333 if (*token == '\0') /* eat joint commas */
334 continue;
335 if (sscanf(token, "%x", &barker) != 1
336 || barker > 0xffffffff) {
337 printk(KERN_ERR "%s: can't recognize "
338 "i2400m.barkers value '%s' as "
339 "a 32-bit number\n",
340 __func__, token);
341 result = -EINVAL;
342 goto error_parse;
344 if (barker == 0) {
345 /* clean list and start new */
346 i2400m_barker_db_exit();
347 continue;
349 result = i2400m_barker_db_add(barker);
350 if (result < 0)
351 goto error_add;
353 kfree(options_orig);
355 return 0;
357 error_parse:
358 error_add:
359 kfree(i2400m_barker_db);
360 return result;
365 * Recognize a boot barker
367 * @buf: buffer where the boot barker.
368 * @buf_size: size of the buffer (has to be 16 bytes). It is passed
369 * here so the function can check it for the caller.
371 * Note that as a side effect, upon identifying the obtained boot
372 * barker, this function will set i2400m->barker to point to the right
373 * barker database entry. Subsequent calls to the function will result
374 * in verifying that the same type of boot barker is returned when the
375 * device [re]boots (as long as the same device instance is used).
377 * Return: 0 if @buf matches a known boot barker. -ENOENT if the
378 * buffer in @buf doesn't match any boot barker in the database or
379 * -EILSEQ if the buffer doesn't have the right size.
381 int i2400m_is_boot_barker(struct i2400m *i2400m,
382 const void *buf, size_t buf_size)
384 int result;
385 struct device *dev = i2400m_dev(i2400m);
386 struct i2400m_barker_db *barker;
387 int i;
389 result = -ENOENT;
390 if (buf_size != sizeof(i2400m_barker_db[i].data))
391 return result;
393 /* Short circuit if we have already discovered the barker
394 * associated with the device. */
395 if (i2400m->barker
396 && !memcmp(buf, i2400m->barker, sizeof(i2400m->barker->data))) {
397 unsigned index = (i2400m->barker - i2400m_barker_db)
398 / sizeof(*i2400m->barker);
399 d_printf(2, dev, "boot barker cache-confirmed #%u/%08x\n",
400 index, le32_to_cpu(i2400m->barker->data[0]));
401 return 0;
404 for (i = 0; i < i2400m_barker_db_used; i++) {
405 barker = &i2400m_barker_db[i];
406 BUILD_BUG_ON(sizeof(barker->data) != 16);
407 if (memcmp(buf, barker->data, sizeof(barker->data)))
408 continue;
410 if (i2400m->barker == NULL) {
411 i2400m->barker = barker;
412 d_printf(1, dev, "boot barker set to #%u/%08x\n",
413 i, le32_to_cpu(barker->data[0]));
414 if (barker->data[0] == le32_to_cpu(I2400M_NBOOT_BARKER))
415 i2400m->sboot = 0;
416 else
417 i2400m->sboot = 1;
418 } else if (i2400m->barker != barker) {
419 dev_err(dev, "HW inconsistency: device "
420 "reports a different boot barker "
421 "than set (from %08x to %08x)\n",
422 le32_to_cpu(i2400m->barker->data[0]),
423 le32_to_cpu(barker->data[0]));
424 result = -EIO;
425 } else
426 d_printf(2, dev, "boot barker confirmed #%u/%08x\n",
427 i, le32_to_cpu(barker->data[0]));
428 result = 0;
429 break;
431 return result;
433 EXPORT_SYMBOL_GPL(i2400m_is_boot_barker);
437 * Verify the ack data received
439 * Given a reply to a boot mode command, chew it and verify everything
440 * is ok.
442 * @opcode: opcode which generated this ack. For error messages.
443 * @ack: pointer to ack data we received
444 * @ack_size: size of that data buffer
445 * @flags: I2400M_BM_CMD_* flags we called the command with.
447 * Way too long function -- maybe it should be further split
449 static
450 ssize_t __i2400m_bm_ack_verify(struct i2400m *i2400m, int opcode,
451 struct i2400m_bootrom_header *ack,
452 size_t ack_size, int flags)
454 ssize_t result = -ENOMEM;
455 struct device *dev = i2400m_dev(i2400m);
457 d_fnstart(8, dev, "(i2400m %p opcode %d ack %p size %zu)\n",
458 i2400m, opcode, ack, ack_size);
459 if (ack_size < sizeof(*ack)) {
460 result = -EIO;
461 dev_err(dev, "boot-mode cmd %d: HW BUG? notification didn't "
462 "return enough data (%zu bytes vs %zu expected)\n",
463 opcode, ack_size, sizeof(*ack));
464 goto error_ack_short;
466 result = i2400m_is_boot_barker(i2400m, ack, ack_size);
467 if (result >= 0) {
468 result = -ERESTARTSYS;
469 d_printf(6, dev, "boot-mode cmd %d: HW boot barker\n", opcode);
470 goto error_reboot;
472 if (ack_size == sizeof(i2400m_ACK_BARKER)
473 && memcmp(ack, i2400m_ACK_BARKER, sizeof(*ack)) == 0) {
474 result = -EISCONN;
475 d_printf(3, dev, "boot-mode cmd %d: HW reboot ack barker\n",
476 opcode);
477 goto error_reboot_ack;
479 result = 0;
480 if (flags & I2400M_BM_CMD_RAW)
481 goto out_raw;
482 ack->data_size = le32_to_cpu(ack->data_size);
483 ack->target_addr = le32_to_cpu(ack->target_addr);
484 ack->block_checksum = le32_to_cpu(ack->block_checksum);
485 d_printf(5, dev, "boot-mode cmd %d: notification for opcode %u "
486 "response %u csum %u rr %u da %u\n",
487 opcode, i2400m_brh_get_opcode(ack),
488 i2400m_brh_get_response(ack),
489 i2400m_brh_get_use_checksum(ack),
490 i2400m_brh_get_response_required(ack),
491 i2400m_brh_get_direct_access(ack));
492 result = -EIO;
493 if (i2400m_brh_get_signature(ack) != 0xcbbc) {
494 dev_err(dev, "boot-mode cmd %d: HW BUG? wrong signature "
495 "0x%04x\n", opcode, i2400m_brh_get_signature(ack));
496 goto error_ack_signature;
498 if (opcode != -1 && opcode != i2400m_brh_get_opcode(ack)) {
499 dev_err(dev, "boot-mode cmd %d: HW BUG? "
500 "received response for opcode %u, expected %u\n",
501 opcode, i2400m_brh_get_opcode(ack), opcode);
502 goto error_ack_opcode;
504 if (i2400m_brh_get_response(ack) != 0) { /* failed? */
505 dev_err(dev, "boot-mode cmd %d: error; hw response %u\n",
506 opcode, i2400m_brh_get_response(ack));
507 goto error_ack_failed;
509 if (ack_size < ack->data_size + sizeof(*ack)) {
510 dev_err(dev, "boot-mode cmd %d: SW BUG "
511 "driver provided only %zu bytes for %zu bytes "
512 "of data\n", opcode, ack_size,
513 (size_t) le32_to_cpu(ack->data_size) + sizeof(*ack));
514 goto error_ack_short_buffer;
516 result = ack_size;
517 /* Don't you love this stack of empty targets? Well, I don't
518 * either, but it helps track exactly who comes in here and
519 * why :) */
520 error_ack_short_buffer:
521 error_ack_failed:
522 error_ack_opcode:
523 error_ack_signature:
524 out_raw:
525 error_reboot_ack:
526 error_reboot:
527 error_ack_short:
528 d_fnend(8, dev, "(i2400m %p opcode %d ack %p size %zu) = %d\n",
529 i2400m, opcode, ack, ack_size, (int) result);
530 return result;
535 * i2400m_bm_cmd - Execute a boot mode command
537 * @cmd: buffer containing the command data (pointing at the header).
538 * This data can be ANYWHERE (for USB, we will copy it to an
539 * specific buffer). Make sure everything is in proper little
540 * endian.
542 * A raw buffer can be also sent, just cast it and set flags to
543 * I2400M_BM_CMD_RAW.
545 * This function will generate a checksum for you if the
546 * checksum bit in the command is set (unless I2400M_BM_CMD_RAW
547 * is set).
549 * You can use the i2400m->bm_cmd_buf to stage your commands and
550 * send them.
552 * If NULL, no command is sent (we just wait for an ack).
554 * @cmd_size: size of the command. Will be auto padded to the
555 * bus-specific drivers padding requirements.
557 * @ack: buffer where to place the acknowledgement. If it is a regular
558 * command response, all fields will be returned with the right,
559 * native endianess.
561 * You *cannot* use i2400m->bm_ack_buf for this buffer.
563 * @ack_size: size of @ack, 16 aligned; you need to provide at least
564 * sizeof(*ack) bytes and then enough to contain the return data
565 * from the command
567 * @flags: see I2400M_BM_CMD_* above.
569 * @returns: bytes received by the notification; if < 0, an errno code
570 * denoting an error or:
572 * -ERESTARTSYS The device has rebooted
574 * Executes a boot-mode command and waits for a response, doing basic
575 * validation on it; if a zero length response is received, it retries
576 * waiting for a response until a non-zero one is received (timing out
577 * after %I2400M_BOOT_RETRIES retries).
579 static
580 ssize_t i2400m_bm_cmd(struct i2400m *i2400m,
581 const struct i2400m_bootrom_header *cmd, size_t cmd_size,
582 struct i2400m_bootrom_header *ack, size_t ack_size,
583 int flags)
585 ssize_t result = -ENOMEM, rx_bytes;
586 struct device *dev = i2400m_dev(i2400m);
587 int opcode = cmd == NULL ? -1 : i2400m_brh_get_opcode(cmd);
589 d_fnstart(6, dev, "(i2400m %p cmd %p size %zu ack %p size %zu)\n",
590 i2400m, cmd, cmd_size, ack, ack_size);
591 BUG_ON(ack_size < sizeof(*ack));
592 BUG_ON(i2400m->boot_mode == 0);
594 if (cmd != NULL) { /* send the command */
595 result = i2400m->bus_bm_cmd_send(i2400m, cmd, cmd_size, flags);
596 if (result < 0)
597 goto error_cmd_send;
598 if ((flags & I2400M_BM_CMD_RAW) == 0)
599 d_printf(5, dev,
600 "boot-mode cmd %d csum %u rr %u da %u: "
601 "addr 0x%04x size %u block csum 0x%04x\n",
602 opcode, i2400m_brh_get_use_checksum(cmd),
603 i2400m_brh_get_response_required(cmd),
604 i2400m_brh_get_direct_access(cmd),
605 cmd->target_addr, cmd->data_size,
606 cmd->block_checksum);
608 result = i2400m->bus_bm_wait_for_ack(i2400m, ack, ack_size);
609 if (result < 0) {
610 dev_err(dev, "boot-mode cmd %d: error waiting for an ack: %d\n",
611 opcode, (int) result); /* bah, %zd doesn't work */
612 goto error_wait_for_ack;
614 rx_bytes = result;
615 /* verify the ack and read more if necessary [result is the
616 * final amount of bytes we get in the ack] */
617 result = __i2400m_bm_ack_verify(i2400m, opcode, ack, ack_size, flags);
618 if (result < 0)
619 goto error_bad_ack;
620 /* Don't you love this stack of empty targets? Well, I don't
621 * either, but it helps track exactly who comes in here and
622 * why :) */
623 result = rx_bytes;
624 error_bad_ack:
625 error_wait_for_ack:
626 error_cmd_send:
627 d_fnend(6, dev, "(i2400m %p cmd %p size %zu ack %p size %zu) = %d\n",
628 i2400m, cmd, cmd_size, ack, ack_size, (int) result);
629 return result;
634 * i2400m_download_chunk - write a single chunk of data to the device's memory
636 * @i2400m: device descriptor
637 * @buf: the buffer to write
638 * @buf_len: length of the buffer to write
639 * @addr: address in the device memory space
640 * @direct: bootrom write mode
641 * @do_csum: should a checksum validation be performed
643 static int i2400m_download_chunk(struct i2400m *i2400m, const void *chunk,
644 size_t __chunk_len, unsigned long addr,
645 unsigned int direct, unsigned int do_csum)
647 int ret;
648 size_t chunk_len = ALIGN(__chunk_len, I2400M_PL_ALIGN);
649 struct device *dev = i2400m_dev(i2400m);
650 struct {
651 struct i2400m_bootrom_header cmd;
652 u8 cmd_payload[chunk_len];
653 } __attribute__((packed)) *buf;
654 struct i2400m_bootrom_header ack;
656 d_fnstart(5, dev, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
657 "direct %u do_csum %u)\n", i2400m, chunk, __chunk_len,
658 addr, direct, do_csum);
659 buf = i2400m->bm_cmd_buf;
660 memcpy(buf->cmd_payload, chunk, __chunk_len);
661 memset(buf->cmd_payload + __chunk_len, 0xad, chunk_len - __chunk_len);
663 buf->cmd.command = i2400m_brh_command(I2400M_BRH_WRITE,
664 __chunk_len & 0x3 ? 0 : do_csum,
665 __chunk_len & 0xf ? 0 : direct);
666 buf->cmd.target_addr = cpu_to_le32(addr);
667 buf->cmd.data_size = cpu_to_le32(__chunk_len);
668 ret = i2400m_bm_cmd(i2400m, &buf->cmd, sizeof(buf->cmd) + chunk_len,
669 &ack, sizeof(ack), 0);
670 if (ret >= 0)
671 ret = 0;
672 d_fnend(5, dev, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
673 "direct %u do_csum %u) = %d\n", i2400m, chunk, __chunk_len,
674 addr, direct, do_csum, ret);
675 return ret;
680 * Download a BCF file's sections to the device
682 * @i2400m: device descriptor
683 * @bcf: pointer to firmware data (first header followed by the
684 * payloads). Assumed verified and consistent.
685 * @bcf_len: length (in bytes) of the @bcf buffer.
687 * Returns: < 0 errno code on error or the offset to the jump instruction.
689 * Given a BCF file, downloads each section (a command and a payload)
690 * to the device's address space. Actually, it just executes each
691 * command i the BCF file.
693 * The section size has to be aligned to 4 bytes AND the padding has
694 * to be taken from the firmware file, as the signature takes it into
695 * account.
697 static
698 ssize_t i2400m_dnload_bcf(struct i2400m *i2400m,
699 const struct i2400m_bcf_hdr *bcf, size_t bcf_len)
701 ssize_t ret;
702 struct device *dev = i2400m_dev(i2400m);
703 size_t offset, /* iterator offset */
704 data_size, /* Size of the data payload */
705 section_size, /* Size of the whole section (cmd + payload) */
706 section = 1;
707 const struct i2400m_bootrom_header *bh;
708 struct i2400m_bootrom_header ack;
710 d_fnstart(3, dev, "(i2400m %p bcf %p bcf_len %zu)\n",
711 i2400m, bcf, bcf_len);
712 /* Iterate over the command blocks in the BCF file that start
713 * after the header */
714 offset = le32_to_cpu(bcf->header_len) * sizeof(u32);
715 while (1) { /* start sending the file */
716 bh = (void *) bcf + offset;
717 data_size = le32_to_cpu(bh->data_size);
718 section_size = ALIGN(sizeof(*bh) + data_size, 4);
719 d_printf(7, dev,
720 "downloading section #%zu (@%zu %zu B) to 0x%08x\n",
721 section, offset, sizeof(*bh) + data_size,
722 le32_to_cpu(bh->target_addr));
724 * We look for JUMP cmd from the bootmode header,
725 * either I2400M_BRH_SIGNED_JUMP for secure boot
726 * or I2400M_BRH_JUMP for unsecure boot, the last chunk
727 * should be the bootmode header with JUMP cmd.
729 if (i2400m_brh_get_opcode(bh) == I2400M_BRH_SIGNED_JUMP ||
730 i2400m_brh_get_opcode(bh) == I2400M_BRH_JUMP) {
731 d_printf(5, dev, "jump found @%zu\n", offset);
732 break;
734 if (offset + section_size > bcf_len) {
735 dev_err(dev, "fw %s: bad section #%zu, "
736 "end (@%zu) beyond EOF (@%zu)\n",
737 i2400m->fw_name, section,
738 offset + section_size, bcf_len);
739 ret = -EINVAL;
740 goto error_section_beyond_eof;
742 __i2400m_msleep(20);
743 ret = i2400m_bm_cmd(i2400m, bh, section_size,
744 &ack, sizeof(ack), I2400M_BM_CMD_RAW);
745 if (ret < 0) {
746 dev_err(dev, "fw %s: section #%zu (@%zu %zu B) "
747 "failed %d\n", i2400m->fw_name, section,
748 offset, sizeof(*bh) + data_size, (int) ret);
749 goto error_send;
751 offset += section_size;
752 section++;
754 ret = offset;
755 error_section_beyond_eof:
756 error_send:
757 d_fnend(3, dev, "(i2400m %p bcf %p bcf_len %zu) = %d\n",
758 i2400m, bcf, bcf_len, (int) ret);
759 return ret;
764 * Indicate if the device emitted a reboot barker that indicates
765 * "signed boot"
767 static
768 unsigned i2400m_boot_is_signed(struct i2400m *i2400m)
770 return likely(i2400m->sboot);
775 * Do the final steps of uploading firmware
777 * @bcf_hdr: BCF header we are actually using
778 * @bcf: pointer to the firmware image (which matches the first header
779 * that is followed by the actual payloads).
780 * @offset: [byte] offset into @bcf for the command we need to send.
782 * Depending on the boot mode (signed vs non-signed), different
783 * actions need to be taken.
785 static
786 int i2400m_dnload_finalize(struct i2400m *i2400m,
787 const struct i2400m_bcf_hdr *bcf_hdr,
788 const struct i2400m_bcf_hdr *bcf, size_t offset)
790 int ret = 0;
791 struct device *dev = i2400m_dev(i2400m);
792 struct i2400m_bootrom_header *cmd, ack;
793 struct {
794 struct i2400m_bootrom_header cmd;
795 u8 cmd_pl[0];
796 } __attribute__((packed)) *cmd_buf;
797 size_t signature_block_offset, signature_block_size;
799 d_fnstart(3, dev, "offset %zu\n", offset);
800 cmd = (void *) bcf + offset;
801 if (i2400m_boot_is_signed(i2400m) == 0) {
802 struct i2400m_bootrom_header jump_ack;
803 d_printf(1, dev, "unsecure boot, jumping to 0x%08x\n",
804 le32_to_cpu(cmd->target_addr));
805 cmd_buf = i2400m->bm_cmd_buf;
806 memcpy(&cmd_buf->cmd, cmd, sizeof(*cmd));
807 cmd = &cmd_buf->cmd;
808 /* now cmd points to the actual bootrom_header in cmd_buf */
809 i2400m_brh_set_opcode(cmd, I2400M_BRH_JUMP);
810 cmd->data_size = 0;
811 ret = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
812 &jump_ack, sizeof(jump_ack), 0);
813 } else {
814 d_printf(1, dev, "secure boot, jumping to 0x%08x\n",
815 le32_to_cpu(cmd->target_addr));
816 cmd_buf = i2400m->bm_cmd_buf;
817 memcpy(&cmd_buf->cmd, cmd, sizeof(*cmd));
818 signature_block_offset =
819 sizeof(*bcf_hdr)
820 + le32_to_cpu(bcf_hdr->key_size) * sizeof(u32)
821 + le32_to_cpu(bcf_hdr->exponent_size) * sizeof(u32);
822 signature_block_size =
823 le32_to_cpu(bcf_hdr->modulus_size) * sizeof(u32);
824 memcpy(cmd_buf->cmd_pl,
825 (void *) bcf_hdr + signature_block_offset,
826 signature_block_size);
827 ret = i2400m_bm_cmd(i2400m, &cmd_buf->cmd,
828 sizeof(cmd_buf->cmd) + signature_block_size,
829 &ack, sizeof(ack), I2400M_BM_CMD_RAW);
831 d_fnend(3, dev, "returning %d\n", ret);
832 return ret;
837 * i2400m_bootrom_init - Reboots a powered device into boot mode
839 * @i2400m: device descriptor
840 * @flags:
841 * I2400M_BRI_SOFT: a reboot barker has been seen
842 * already, so don't wait for it.
844 * I2400M_BRI_NO_REBOOT: Don't send a reboot command, but wait
845 * for a reboot barker notification. This is a one shot; if
846 * the state machine needs to send a reboot command it will.
848 * Returns:
850 * < 0 errno code on error, 0 if ok.
852 * Description:
854 * Tries hard enough to put the device in boot-mode. There are two
855 * main phases to this:
857 * a. (1) send a reboot command and (2) get a reboot barker
859 * b. (1) echo/ack the reboot sending the reboot barker back and (2)
860 * getting an ack barker in return
862 * We want to skip (a) in some cases [soft]. The state machine is
863 * horrible, but it is basically: on each phase, send what has to be
864 * sent (if any), wait for the answer and act on the answer. We might
865 * have to backtrack and retry, so we keep a max tries counter for
866 * that.
868 * It sucks because we don't know ahead of time which is going to be
869 * the reboot barker (the device might send different ones depending
870 * on its EEPROM config) and once the device reboots and waits for the
871 * echo/ack reboot barker being sent back, it doesn't understand
872 * anything else. So we can be left at the point where we don't know
873 * what to send to it -- cold reset and bus reset seem to have little
874 * effect. So the function iterates (in this case) through all the
875 * known barkers and tries them all until an ACK is
876 * received. Otherwise, it gives up.
878 * If we get a timeout after sending a warm reset, we do it again.
880 int i2400m_bootrom_init(struct i2400m *i2400m, enum i2400m_bri flags)
882 int result;
883 struct device *dev = i2400m_dev(i2400m);
884 struct i2400m_bootrom_header *cmd;
885 struct i2400m_bootrom_header ack;
886 int count = i2400m->bus_bm_retries;
887 int ack_timeout_cnt = 1;
888 unsigned i;
890 BUILD_BUG_ON(sizeof(*cmd) != sizeof(i2400m_barker_db[0].data));
891 BUILD_BUG_ON(sizeof(ack) != sizeof(i2400m_ACK_BARKER));
893 d_fnstart(4, dev, "(i2400m %p flags 0x%08x)\n", i2400m, flags);
894 result = -ENOMEM;
895 cmd = i2400m->bm_cmd_buf;
896 if (flags & I2400M_BRI_SOFT)
897 goto do_reboot_ack;
898 do_reboot:
899 ack_timeout_cnt = 1;
900 if (--count < 0)
901 goto error_timeout;
902 d_printf(4, dev, "device reboot: reboot command [%d # left]\n",
903 count);
904 if ((flags & I2400M_BRI_NO_REBOOT) == 0)
905 i2400m_reset(i2400m, I2400M_RT_WARM);
906 result = i2400m_bm_cmd(i2400m, NULL, 0, &ack, sizeof(ack),
907 I2400M_BM_CMD_RAW);
908 flags &= ~I2400M_BRI_NO_REBOOT;
909 switch (result) {
910 case -ERESTARTSYS:
912 * at this point, i2400m_bm_cmd(), through
913 * __i2400m_bm_ack_process(), has updated
914 * i2400m->barker and we are good to go.
916 d_printf(4, dev, "device reboot: got reboot barker\n");
917 break;
918 case -EISCONN: /* we don't know how it got here...but we follow it */
919 d_printf(4, dev, "device reboot: got ack barker - whatever\n");
920 goto do_reboot;
921 case -ETIMEDOUT:
923 * Device has timed out, we might be in boot mode
924 * already and expecting an ack; if we don't know what
925 * the barker is, we just send them all. Cold reset
926 * and bus reset don't work. Beats me.
928 if (i2400m->barker != NULL) {
929 dev_err(dev, "device boot: reboot barker timed out, "
930 "trying (set) %08x echo/ack\n",
931 le32_to_cpu(i2400m->barker->data[0]));
932 goto do_reboot_ack;
934 for (i = 0; i < i2400m_barker_db_used; i++) {
935 struct i2400m_barker_db *barker = &i2400m_barker_db[i];
936 memcpy(cmd, barker->data, sizeof(barker->data));
937 result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
938 &ack, sizeof(ack),
939 I2400M_BM_CMD_RAW);
940 if (result == -EISCONN) {
941 dev_warn(dev, "device boot: got ack barker "
942 "after sending echo/ack barker "
943 "#%d/%08x; rebooting j.i.c.\n",
944 i, le32_to_cpu(barker->data[0]));
945 flags &= ~I2400M_BRI_NO_REBOOT;
946 goto do_reboot;
949 dev_err(dev, "device boot: tried all the echo/acks, could "
950 "not get device to respond; giving up");
951 result = -ESHUTDOWN;
952 case -EPROTO:
953 case -ESHUTDOWN: /* dev is gone */
954 case -EINTR: /* user cancelled */
955 goto error_dev_gone;
956 default:
957 dev_err(dev, "device reboot: error %d while waiting "
958 "for reboot barker - rebooting\n", result);
959 d_dump(1, dev, &ack, result);
960 goto do_reboot;
962 /* At this point we ack back with 4 REBOOT barkers and expect
963 * 4 ACK barkers. This is ugly, as we send a raw command --
964 * hence the cast. _bm_cmd() will catch the reboot ack
965 * notification and report it as -EISCONN. */
966 do_reboot_ack:
967 d_printf(4, dev, "device reboot ack: sending ack [%d # left]\n", count);
968 memcpy(cmd, i2400m->barker->data, sizeof(i2400m->barker->data));
969 result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
970 &ack, sizeof(ack), I2400M_BM_CMD_RAW);
971 switch (result) {
972 case -ERESTARTSYS:
973 d_printf(4, dev, "reboot ack: got reboot barker - retrying\n");
974 if (--count < 0)
975 goto error_timeout;
976 goto do_reboot_ack;
977 case -EISCONN:
978 d_printf(4, dev, "reboot ack: got ack barker - good\n");
979 break;
980 case -ETIMEDOUT: /* no response, maybe it is the other type? */
981 if (ack_timeout_cnt-- < 0) {
982 d_printf(4, dev, "reboot ack timedout: retrying\n");
983 goto do_reboot_ack;
984 } else {
985 dev_err(dev, "reboot ack timedout too long: "
986 "trying reboot\n");
987 goto do_reboot;
989 break;
990 case -EPROTO:
991 case -ESHUTDOWN: /* dev is gone */
992 goto error_dev_gone;
993 default:
994 dev_err(dev, "device reboot ack: error %d while waiting for "
995 "reboot ack barker - rebooting\n", result);
996 goto do_reboot;
998 d_printf(2, dev, "device reboot ack: got ack barker - boot done\n");
999 result = 0;
1000 exit_timeout:
1001 error_dev_gone:
1002 d_fnend(4, dev, "(i2400m %p flags 0x%08x) = %d\n",
1003 i2400m, flags, result);
1004 return result;
1006 error_timeout:
1007 dev_err(dev, "Timed out waiting for reboot ack\n");
1008 result = -ETIMEDOUT;
1009 goto exit_timeout;
1014 * Read the MAC addr
1016 * The position this function reads is fixed in device memory and
1017 * always available, even without firmware.
1019 * Note we specify we want to read only six bytes, but provide space
1020 * for 16, as we always get it rounded up.
1022 int i2400m_read_mac_addr(struct i2400m *i2400m)
1024 int result;
1025 struct device *dev = i2400m_dev(i2400m);
1026 struct net_device *net_dev = i2400m->wimax_dev.net_dev;
1027 struct i2400m_bootrom_header *cmd;
1028 struct {
1029 struct i2400m_bootrom_header ack;
1030 u8 ack_pl[16];
1031 } __attribute__((packed)) ack_buf;
1033 d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1034 cmd = i2400m->bm_cmd_buf;
1035 cmd->command = i2400m_brh_command(I2400M_BRH_READ, 0, 1);
1036 cmd->target_addr = cpu_to_le32(0x00203fe8);
1037 cmd->data_size = cpu_to_le32(6);
1038 result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
1039 &ack_buf.ack, sizeof(ack_buf), 0);
1040 if (result < 0) {
1041 dev_err(dev, "BM: read mac addr failed: %d\n", result);
1042 goto error_read_mac;
1044 d_printf(2, dev, "mac addr is %pM\n", ack_buf.ack_pl);
1045 if (i2400m->bus_bm_mac_addr_impaired == 1) {
1046 ack_buf.ack_pl[0] = 0x00;
1047 ack_buf.ack_pl[1] = 0x16;
1048 ack_buf.ack_pl[2] = 0xd3;
1049 get_random_bytes(&ack_buf.ack_pl[3], 3);
1050 dev_err(dev, "BM is MAC addr impaired, faking MAC addr to "
1051 "mac addr is %pM\n", ack_buf.ack_pl);
1052 result = 0;
1054 net_dev->addr_len = ETH_ALEN;
1055 memcpy(net_dev->perm_addr, ack_buf.ack_pl, ETH_ALEN);
1056 memcpy(net_dev->dev_addr, ack_buf.ack_pl, ETH_ALEN);
1057 error_read_mac:
1058 d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, result);
1059 return result;
1064 * Initialize a non signed boot
1066 * This implies sending some magic values to the device's memory. Note
1067 * we convert the values to little endian in the same array
1068 * declaration.
1070 static
1071 int i2400m_dnload_init_nonsigned(struct i2400m *i2400m)
1073 unsigned i = 0;
1074 int ret = 0;
1075 struct device *dev = i2400m_dev(i2400m);
1076 d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1077 if (i2400m->bus_bm_pokes_table) {
1078 while (i2400m->bus_bm_pokes_table[i].address) {
1079 ret = i2400m_download_chunk(
1080 i2400m,
1081 &i2400m->bus_bm_pokes_table[i].data,
1082 sizeof(i2400m->bus_bm_pokes_table[i].data),
1083 i2400m->bus_bm_pokes_table[i].address, 1, 1);
1084 if (ret < 0)
1085 break;
1086 i++;
1089 d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1090 return ret;
1095 * Initialize the signed boot process
1097 * @i2400m: device descriptor
1099 * @bcf_hdr: pointer to the firmware header; assumes it is fully in
1100 * memory (it has gone through basic validation).
1102 * Returns: 0 if ok, < 0 errno code on error, -ERESTARTSYS if the hw
1103 * rebooted.
1105 * This writes the firmware BCF header to the device using the
1106 * HASH_PAYLOAD_ONLY command.
1108 static
1109 int i2400m_dnload_init_signed(struct i2400m *i2400m,
1110 const struct i2400m_bcf_hdr *bcf_hdr)
1112 int ret;
1113 struct device *dev = i2400m_dev(i2400m);
1114 struct {
1115 struct i2400m_bootrom_header cmd;
1116 struct i2400m_bcf_hdr cmd_pl;
1117 } __attribute__((packed)) *cmd_buf;
1118 struct i2400m_bootrom_header ack;
1120 d_fnstart(5, dev, "(i2400m %p bcf_hdr %p)\n", i2400m, bcf_hdr);
1121 cmd_buf = i2400m->bm_cmd_buf;
1122 cmd_buf->cmd.command =
1123 i2400m_brh_command(I2400M_BRH_HASH_PAYLOAD_ONLY, 0, 0);
1124 cmd_buf->cmd.target_addr = 0;
1125 cmd_buf->cmd.data_size = cpu_to_le32(sizeof(cmd_buf->cmd_pl));
1126 memcpy(&cmd_buf->cmd_pl, bcf_hdr, sizeof(*bcf_hdr));
1127 ret = i2400m_bm_cmd(i2400m, &cmd_buf->cmd, sizeof(*cmd_buf),
1128 &ack, sizeof(ack), 0);
1129 if (ret >= 0)
1130 ret = 0;
1131 d_fnend(5, dev, "(i2400m %p bcf_hdr %p) = %d\n", i2400m, bcf_hdr, ret);
1132 return ret;
1137 * Initialize the firmware download at the device size
1139 * Multiplex to the one that matters based on the device's mode
1140 * (signed or non-signed).
1142 static
1143 int i2400m_dnload_init(struct i2400m *i2400m,
1144 const struct i2400m_bcf_hdr *bcf_hdr)
1146 int result;
1147 struct device *dev = i2400m_dev(i2400m);
1149 if (i2400m_boot_is_signed(i2400m)) {
1150 d_printf(1, dev, "signed boot\n");
1151 result = i2400m_dnload_init_signed(i2400m, bcf_hdr);
1152 if (result == -ERESTARTSYS)
1153 return result;
1154 if (result < 0)
1155 dev_err(dev, "firmware %s: signed boot download "
1156 "initialization failed: %d\n",
1157 i2400m->fw_name, result);
1158 } else {
1159 /* non-signed boot process without pokes */
1160 d_printf(1, dev, "non-signed boot\n");
1161 result = i2400m_dnload_init_nonsigned(i2400m);
1162 if (result == -ERESTARTSYS)
1163 return result;
1164 if (result < 0)
1165 dev_err(dev, "firmware %s: non-signed download "
1166 "initialization failed: %d\n",
1167 i2400m->fw_name, result);
1169 return result;
1174 * Run consistency tests on the firmware file and load up headers
1176 * Check for the firmware being made for the i2400m device,
1177 * etc...These checks are mostly informative, as the device will make
1178 * them too; but the driver's response is more informative on what
1179 * went wrong.
1181 * This will also look at all the headers present on the firmware
1182 * file, and update i2400m->fw_bcf_hdr to point to them.
1184 static
1185 int i2400m_fw_hdr_check(struct i2400m *i2400m,
1186 const struct i2400m_bcf_hdr *bcf_hdr,
1187 size_t index, size_t offset)
1189 struct device *dev = i2400m_dev(i2400m);
1191 unsigned module_type, header_len, major_version, minor_version,
1192 module_id, module_vendor, date, size;
1194 module_type = bcf_hdr->module_type;
1195 header_len = sizeof(u32) * le32_to_cpu(bcf_hdr->header_len);
1196 major_version = (le32_to_cpu(bcf_hdr->header_version) & 0xffff0000)
1197 >> 16;
1198 minor_version = le32_to_cpu(bcf_hdr->header_version) & 0x0000ffff;
1199 module_id = le32_to_cpu(bcf_hdr->module_id);
1200 module_vendor = le32_to_cpu(bcf_hdr->module_vendor);
1201 date = le32_to_cpu(bcf_hdr->date);
1202 size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1204 d_printf(1, dev, "firmware %s #%zd@%08zx: BCF header "
1205 "type:vendor:id 0x%x:%x:%x v%u.%u (%u/%u B) built %08x\n",
1206 i2400m->fw_name, index, offset,
1207 module_type, module_vendor, module_id,
1208 major_version, minor_version, header_len, size, date);
1210 /* Hard errors */
1211 if (major_version != 1) {
1212 dev_err(dev, "firmware %s #%zd@%08zx: major header version "
1213 "v%u.%u not supported\n",
1214 i2400m->fw_name, index, offset,
1215 major_version, minor_version);
1216 return -EBADF;
1219 if (module_type != 6) { /* built for the right hardware? */
1220 dev_err(dev, "firmware %s #%zd@%08zx: unexpected module "
1221 "type 0x%x; aborting\n",
1222 i2400m->fw_name, index, offset,
1223 module_type);
1224 return -EBADF;
1227 if (module_vendor != 0x8086) {
1228 dev_err(dev, "firmware %s #%zd@%08zx: unexpected module "
1229 "vendor 0x%x; aborting\n",
1230 i2400m->fw_name, index, offset, module_vendor);
1231 return -EBADF;
1234 if (date < 0x20080300)
1235 dev_warn(dev, "firmware %s #%zd@%08zx: build date %08x "
1236 "too old; unsupported\n",
1237 i2400m->fw_name, index, offset, date);
1238 return 0;
1243 * Run consistency tests on the firmware file and load up headers
1245 * Check for the firmware being made for the i2400m device,
1246 * etc...These checks are mostly informative, as the device will make
1247 * them too; but the driver's response is more informative on what
1248 * went wrong.
1250 * This will also look at all the headers present on the firmware
1251 * file, and update i2400m->fw_hdrs to point to them.
1253 static
1254 int i2400m_fw_check(struct i2400m *i2400m, const void *bcf, size_t bcf_size)
1256 int result;
1257 struct device *dev = i2400m_dev(i2400m);
1258 size_t headers = 0;
1259 const struct i2400m_bcf_hdr *bcf_hdr;
1260 const void *itr, *next, *top;
1261 size_t slots = 0, used_slots = 0;
1263 for (itr = bcf, top = itr + bcf_size;
1264 itr < top;
1265 headers++, itr = next) {
1266 size_t leftover, offset, header_len, size;
1268 leftover = top - itr;
1269 offset = itr - (const void *) bcf;
1270 if (leftover <= sizeof(*bcf_hdr)) {
1271 dev_err(dev, "firmware %s: %zu B left at @%zx, "
1272 "not enough for BCF header\n",
1273 i2400m->fw_name, leftover, offset);
1274 break;
1276 bcf_hdr = itr;
1277 /* Only the first header is supposed to be followed by
1278 * payload */
1279 header_len = sizeof(u32) * le32_to_cpu(bcf_hdr->header_len);
1280 size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1281 if (headers == 0)
1282 next = itr + size;
1283 else
1284 next = itr + header_len;
1286 result = i2400m_fw_hdr_check(i2400m, bcf_hdr, headers, offset);
1287 if (result < 0)
1288 continue;
1289 if (used_slots + 1 >= slots) {
1290 /* +1 -> we need to account for the one we'll
1291 * occupy and at least an extra one for
1292 * always being NULL */
1293 result = i2400m_zrealloc_2x(
1294 (void **) &i2400m->fw_hdrs, &slots,
1295 sizeof(i2400m->fw_hdrs[0]),
1296 GFP_KERNEL);
1297 if (result < 0)
1298 goto error_zrealloc;
1300 i2400m->fw_hdrs[used_slots] = bcf_hdr;
1301 used_slots++;
1303 if (headers == 0) {
1304 dev_err(dev, "firmware %s: no usable headers found\n",
1305 i2400m->fw_name);
1306 result = -EBADF;
1307 } else
1308 result = 0;
1309 error_zrealloc:
1310 return result;
1315 * Match a barker to a BCF header module ID
1317 * The device sends a barker which tells the firmware loader which
1318 * header in the BCF file has to be used. This does the matching.
1320 static
1321 unsigned i2400m_bcf_hdr_match(struct i2400m *i2400m,
1322 const struct i2400m_bcf_hdr *bcf_hdr)
1324 u32 barker = le32_to_cpu(i2400m->barker->data[0])
1325 & 0x7fffffff;
1326 u32 module_id = le32_to_cpu(bcf_hdr->module_id)
1327 & 0x7fffffff; /* high bit used for something else */
1329 /* special case for 5x50 */
1330 if (barker == I2400M_SBOOT_BARKER && module_id == 0)
1331 return 1;
1332 if (module_id == barker)
1333 return 1;
1334 return 0;
1337 static
1338 const struct i2400m_bcf_hdr *i2400m_bcf_hdr_find(struct i2400m *i2400m)
1340 struct device *dev = i2400m_dev(i2400m);
1341 const struct i2400m_bcf_hdr **bcf_itr, *bcf_hdr;
1342 unsigned i = 0;
1343 u32 barker = le32_to_cpu(i2400m->barker->data[0]);
1345 d_printf(2, dev, "finding BCF header for barker %08x\n", barker);
1346 if (barker == I2400M_NBOOT_BARKER) {
1347 bcf_hdr = i2400m->fw_hdrs[0];
1348 d_printf(1, dev, "using BCF header #%u/%08x for non-signed "
1349 "barker\n", 0, le32_to_cpu(bcf_hdr->module_id));
1350 return bcf_hdr;
1352 for (bcf_itr = i2400m->fw_hdrs; *bcf_itr != NULL; bcf_itr++, i++) {
1353 bcf_hdr = *bcf_itr;
1354 if (i2400m_bcf_hdr_match(i2400m, bcf_hdr)) {
1355 d_printf(1, dev, "hit on BCF hdr #%u/%08x\n",
1356 i, le32_to_cpu(bcf_hdr->module_id));
1357 return bcf_hdr;
1358 } else
1359 d_printf(1, dev, "miss on BCF hdr #%u/%08x\n",
1360 i, le32_to_cpu(bcf_hdr->module_id));
1362 dev_err(dev, "cannot find a matching BCF header for barker %08x\n",
1363 barker);
1364 return NULL;
1369 * Download the firmware to the device
1371 * @i2400m: device descriptor
1372 * @bcf: pointer to loaded (and minimally verified for consistency)
1373 * firmware
1374 * @bcf_size: size of the @bcf buffer (header plus payloads)
1376 * The process for doing this is described in this file's header.
1378 * Note we only reinitialize boot-mode if the flags say so. Some hw
1379 * iterations need it, some don't. In any case, if we loop, we always
1380 * need to reinitialize the boot room, hence the flags modification.
1382 static
1383 int i2400m_fw_dnload(struct i2400m *i2400m, const struct i2400m_bcf_hdr *bcf,
1384 size_t fw_size, enum i2400m_bri flags)
1386 int ret = 0;
1387 struct device *dev = i2400m_dev(i2400m);
1388 int count = i2400m->bus_bm_retries;
1389 const struct i2400m_bcf_hdr *bcf_hdr;
1390 size_t bcf_size;
1392 d_fnstart(5, dev, "(i2400m %p bcf %p fw size %zu)\n",
1393 i2400m, bcf, fw_size);
1394 i2400m->boot_mode = 1;
1395 wmb(); /* Make sure other readers see it */
1396 hw_reboot:
1397 if (count-- == 0) {
1398 ret = -ERESTARTSYS;
1399 dev_err(dev, "device rebooted too many times, aborting\n");
1400 goto error_too_many_reboots;
1402 if (flags & I2400M_BRI_MAC_REINIT) {
1403 ret = i2400m_bootrom_init(i2400m, flags);
1404 if (ret < 0) {
1405 dev_err(dev, "bootrom init failed: %d\n", ret);
1406 goto error_bootrom_init;
1409 flags |= I2400M_BRI_MAC_REINIT;
1412 * Initialize the download, push the bytes to the device and
1413 * then jump to the new firmware. Note @ret is passed with the
1414 * offset of the jump instruction to _dnload_finalize()
1416 * Note we need to use the BCF header in the firmware image
1417 * that matches the barker that the device sent when it
1418 * rebooted, so it has to be passed along.
1420 ret = -EBADF;
1421 bcf_hdr = i2400m_bcf_hdr_find(i2400m);
1422 if (bcf_hdr == NULL)
1423 goto error_bcf_hdr_find;
1425 ret = i2400m_dnload_init(i2400m, bcf_hdr);
1426 if (ret == -ERESTARTSYS)
1427 goto error_dev_rebooted;
1428 if (ret < 0)
1429 goto error_dnload_init;
1432 * bcf_size refers to one header size plus the fw sections size
1433 * indicated by the header,ie. if there are other extended headers
1434 * at the tail, they are not counted
1436 bcf_size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1437 ret = i2400m_dnload_bcf(i2400m, bcf, bcf_size);
1438 if (ret == -ERESTARTSYS)
1439 goto error_dev_rebooted;
1440 if (ret < 0) {
1441 dev_err(dev, "fw %s: download failed: %d\n",
1442 i2400m->fw_name, ret);
1443 goto error_dnload_bcf;
1446 ret = i2400m_dnload_finalize(i2400m, bcf_hdr, bcf, ret);
1447 if (ret == -ERESTARTSYS)
1448 goto error_dev_rebooted;
1449 if (ret < 0) {
1450 dev_err(dev, "fw %s: "
1451 "download finalization failed: %d\n",
1452 i2400m->fw_name, ret);
1453 goto error_dnload_finalize;
1456 d_printf(2, dev, "fw %s successfully uploaded\n",
1457 i2400m->fw_name);
1458 i2400m->boot_mode = 0;
1459 wmb(); /* Make sure i2400m_msg_to_dev() sees boot_mode */
1460 error_dnload_finalize:
1461 error_dnload_bcf:
1462 error_dnload_init:
1463 error_bcf_hdr_find:
1464 error_bootrom_init:
1465 error_too_many_reboots:
1466 d_fnend(5, dev, "(i2400m %p bcf %p size %zu) = %d\n",
1467 i2400m, bcf, fw_size, ret);
1468 return ret;
1470 error_dev_rebooted:
1471 dev_err(dev, "device rebooted, %d tries left\n", count);
1472 /* we got the notification already, no need to wait for it again */
1473 flags |= I2400M_BRI_SOFT;
1474 goto hw_reboot;
1477 static
1478 int i2400m_fw_bootstrap(struct i2400m *i2400m, const struct firmware *fw,
1479 enum i2400m_bri flags)
1481 int ret;
1482 struct device *dev = i2400m_dev(i2400m);
1483 const struct i2400m_bcf_hdr *bcf; /* Firmware data */
1485 d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1486 bcf = (void *) fw->data;
1487 ret = i2400m_fw_check(i2400m, bcf, fw->size);
1488 if (ret >= 0)
1489 ret = i2400m_fw_dnload(i2400m, bcf, fw->size, flags);
1490 if (ret < 0)
1491 dev_err(dev, "%s: cannot use: %d, skipping\n",
1492 i2400m->fw_name, ret);
1493 kfree(i2400m->fw_hdrs);
1494 i2400m->fw_hdrs = NULL;
1495 d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1496 return ret;
1500 /* Refcounted container for firmware data */
1501 struct i2400m_fw {
1502 struct kref kref;
1503 const struct firmware *fw;
1507 static
1508 void i2400m_fw_destroy(struct kref *kref)
1510 struct i2400m_fw *i2400m_fw =
1511 container_of(kref, struct i2400m_fw, kref);
1512 release_firmware(i2400m_fw->fw);
1513 kfree(i2400m_fw);
1517 static
1518 struct i2400m_fw *i2400m_fw_get(struct i2400m_fw *i2400m_fw)
1520 if (i2400m_fw != NULL && i2400m_fw != (void *) ~0)
1521 kref_get(&i2400m_fw->kref);
1522 return i2400m_fw;
1526 static
1527 void i2400m_fw_put(struct i2400m_fw *i2400m_fw)
1529 kref_put(&i2400m_fw->kref, i2400m_fw_destroy);
1534 * i2400m_dev_bootstrap - Bring the device to a known state and upload firmware
1536 * @i2400m: device descriptor
1538 * Returns: >= 0 if ok, < 0 errno code on error.
1540 * This sets up the firmware upload environment, loads the firmware
1541 * file from disk, verifies and then calls the firmware upload process
1542 * per se.
1544 * Can be called either from probe, or after a warm reset. Can not be
1545 * called from within an interrupt. All the flow in this code is
1546 * single-threade; all I/Os are synchronous.
1548 int i2400m_dev_bootstrap(struct i2400m *i2400m, enum i2400m_bri flags)
1550 int ret, itr;
1551 struct device *dev = i2400m_dev(i2400m);
1552 struct i2400m_fw *i2400m_fw;
1553 const struct i2400m_bcf_hdr *bcf; /* Firmware data */
1554 const struct firmware *fw;
1555 const char *fw_name;
1557 d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1559 ret = -ENODEV;
1560 spin_lock(&i2400m->rx_lock);
1561 i2400m_fw = i2400m_fw_get(i2400m->fw_cached);
1562 spin_unlock(&i2400m->rx_lock);
1563 if (i2400m_fw == (void *) ~0) {
1564 dev_err(dev, "can't load firmware now!");
1565 goto out;
1566 } else if (i2400m_fw != NULL) {
1567 dev_info(dev, "firmware %s: loading from cache\n",
1568 i2400m->fw_name);
1569 ret = i2400m_fw_bootstrap(i2400m, i2400m_fw->fw, flags);
1570 i2400m_fw_put(i2400m_fw);
1571 goto out;
1574 /* Load firmware files to memory. */
1575 for (itr = 0, bcf = NULL, ret = -ENOENT; ; itr++) {
1576 fw_name = i2400m->bus_fw_names[itr];
1577 if (fw_name == NULL) {
1578 dev_err(dev, "Could not find a usable firmware image\n");
1579 break;
1581 d_printf(1, dev, "trying firmware %s (%d)\n", fw_name, itr);
1582 ret = request_firmware(&fw, fw_name, dev);
1583 if (ret < 0) {
1584 dev_err(dev, "fw %s: cannot load file: %d\n",
1585 fw_name, ret);
1586 continue;
1588 i2400m->fw_name = fw_name;
1589 ret = i2400m_fw_bootstrap(i2400m, fw, flags);
1590 release_firmware(fw);
1591 if (ret >= 0) /* firmware loaded succesfully */
1592 break;
1593 i2400m->fw_name = NULL;
1595 out:
1596 d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1597 return ret;
1599 EXPORT_SYMBOL_GPL(i2400m_dev_bootstrap);
1602 void i2400m_fw_cache(struct i2400m *i2400m)
1604 int result;
1605 struct i2400m_fw *i2400m_fw;
1606 struct device *dev = i2400m_dev(i2400m);
1608 /* if there is anything there, free it -- now, this'd be weird */
1609 spin_lock(&i2400m->rx_lock);
1610 i2400m_fw = i2400m->fw_cached;
1611 spin_unlock(&i2400m->rx_lock);
1612 if (i2400m_fw != NULL && i2400m_fw != (void *) ~0) {
1613 i2400m_fw_put(i2400m_fw);
1614 WARN(1, "%s:%u: still cached fw still present?\n",
1615 __func__, __LINE__);
1618 if (i2400m->fw_name == NULL) {
1619 dev_err(dev, "firmware n/a: can't cache\n");
1620 i2400m_fw = (void *) ~0;
1621 goto out;
1624 i2400m_fw = kzalloc(sizeof(*i2400m_fw), GFP_ATOMIC);
1625 if (i2400m_fw == NULL)
1626 goto out;
1627 kref_init(&i2400m_fw->kref);
1628 result = request_firmware(&i2400m_fw->fw, i2400m->fw_name, dev);
1629 if (result < 0) {
1630 dev_err(dev, "firmware %s: failed to cache: %d\n",
1631 i2400m->fw_name, result);
1632 kfree(i2400m_fw);
1633 i2400m_fw = (void *) ~0;
1634 } else
1635 dev_info(dev, "firmware %s: cached\n", i2400m->fw_name);
1636 out:
1637 spin_lock(&i2400m->rx_lock);
1638 i2400m->fw_cached = i2400m_fw;
1639 spin_unlock(&i2400m->rx_lock);
1643 void i2400m_fw_uncache(struct i2400m *i2400m)
1645 struct i2400m_fw *i2400m_fw;
1647 spin_lock(&i2400m->rx_lock);
1648 i2400m_fw = i2400m->fw_cached;
1649 i2400m->fw_cached = NULL;
1650 spin_unlock(&i2400m->rx_lock);
1652 if (i2400m_fw != NULL && i2400m_fw != (void *) ~0)
1653 i2400m_fw_put(i2400m_fw);