amd64_edac: Rework printk macros
[pohmelfs.git] / drivers / edac / amd64_edac.c
blob84c565d4f56b503527927709ff19a454d422fccb
1 #include "amd64_edac.h"
2 #include <asm/amd_nb.h>
4 static struct edac_pci_ctl_info *amd64_ctl_pci;
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
9 /*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
16 static struct msr __percpu *msrs;
18 /* Lookup table for all possible MC control instances */
19 struct amd64_pvt;
20 static struct mem_ctl_info *mci_lookup[EDAC_MAX_NUMNODES];
21 static struct amd64_pvt *pvt_lookup[EDAC_MAX_NUMNODES];
24 * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
25 * later.
27 static int ddr2_dbam_revCG[] = {
28 [0] = 32,
29 [1] = 64,
30 [2] = 128,
31 [3] = 256,
32 [4] = 512,
33 [5] = 1024,
34 [6] = 2048,
37 static int ddr2_dbam_revD[] = {
38 [0] = 32,
39 [1] = 64,
40 [2 ... 3] = 128,
41 [4] = 256,
42 [5] = 512,
43 [6] = 256,
44 [7] = 512,
45 [8 ... 9] = 1024,
46 [10] = 2048,
49 static int ddr2_dbam[] = { [0] = 128,
50 [1] = 256,
51 [2 ... 4] = 512,
52 [5 ... 6] = 1024,
53 [7 ... 8] = 2048,
54 [9 ... 10] = 4096,
55 [11] = 8192,
58 static int ddr3_dbam[] = { [0] = -1,
59 [1] = 256,
60 [2] = 512,
61 [3 ... 4] = -1,
62 [5 ... 6] = 1024,
63 [7 ... 8] = 2048,
64 [9 ... 10] = 4096,
65 [11] = 8192,
69 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
70 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
71 * or higher value'.
73 *FIXME: Produce a better mapping/linearisation.
76 struct scrubrate scrubrates[] = {
77 { 0x01, 1600000000UL},
78 { 0x02, 800000000UL},
79 { 0x03, 400000000UL},
80 { 0x04, 200000000UL},
81 { 0x05, 100000000UL},
82 { 0x06, 50000000UL},
83 { 0x07, 25000000UL},
84 { 0x08, 12284069UL},
85 { 0x09, 6274509UL},
86 { 0x0A, 3121951UL},
87 { 0x0B, 1560975UL},
88 { 0x0C, 781440UL},
89 { 0x0D, 390720UL},
90 { 0x0E, 195300UL},
91 { 0x0F, 97650UL},
92 { 0x10, 48854UL},
93 { 0x11, 24427UL},
94 { 0x12, 12213UL},
95 { 0x13, 6101UL},
96 { 0x14, 3051UL},
97 { 0x15, 1523UL},
98 { 0x16, 761UL},
99 { 0x00, 0UL}, /* scrubbing off */
103 * Memory scrubber control interface. For K8, memory scrubbing is handled by
104 * hardware and can involve L2 cache, dcache as well as the main memory. With
105 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
106 * functionality.
108 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
109 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
110 * bytes/sec for the setting.
112 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
113 * other archs, we might not have access to the caches directly.
117 * scan the scrub rate mapping table for a close or matching bandwidth value to
118 * issue. If requested is too big, then use last maximum value found.
120 static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
122 u32 scrubval;
123 int i;
126 * map the configured rate (new_bw) to a value specific to the AMD64
127 * memory controller and apply to register. Search for the first
128 * bandwidth entry that is greater or equal than the setting requested
129 * and program that. If at last entry, turn off DRAM scrubbing.
131 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
133 * skip scrub rates which aren't recommended
134 * (see F10 BKDG, F3x58)
136 if (scrubrates[i].scrubval < min_rate)
137 continue;
139 if (scrubrates[i].bandwidth <= new_bw)
140 break;
143 * if no suitable bandwidth found, turn off DRAM scrubbing
144 * entirely by falling back to the last element in the
145 * scrubrates array.
149 scrubval = scrubrates[i].scrubval;
150 if (scrubval)
151 amd64_info("Setting scrub rate bandwidth: %u\n",
152 scrubrates[i].bandwidth);
153 else
154 amd64_info("Turning scrubbing off.\n");
156 pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
158 return 0;
161 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
163 struct amd64_pvt *pvt = mci->pvt_info;
165 return __amd64_set_scrub_rate(pvt->F3, bw, pvt->min_scrubrate);
168 static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
170 struct amd64_pvt *pvt = mci->pvt_info;
171 u32 scrubval = 0;
172 int status = -1, i;
174 amd64_read_pci_cfg(pvt->F3, K8_SCRCTRL, &scrubval);
176 scrubval = scrubval & 0x001F;
178 amd64_debug("pci-read, sdram scrub control value: %d\n", scrubval);
180 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
181 if (scrubrates[i].scrubval == scrubval) {
182 *bw = scrubrates[i].bandwidth;
183 status = 0;
184 break;
188 return status;
191 /* Map from a CSROW entry to the mask entry that operates on it */
192 static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
194 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F)
195 return csrow;
196 else
197 return csrow >> 1;
200 /* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
201 static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
203 if (dct == 0)
204 return pvt->dcsb0[csrow];
205 else
206 return pvt->dcsb1[csrow];
210 * Return the 'mask' address the i'th CS entry. This function is needed because
211 * there number of DCSM registers on Rev E and prior vs Rev F and later is
212 * different.
214 static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
216 if (dct == 0)
217 return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
218 else
219 return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
224 * In *base and *limit, pass back the full 40-bit base and limit physical
225 * addresses for the node given by node_id. This information is obtained from
226 * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
227 * base and limit addresses are of type SysAddr, as defined at the start of
228 * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
229 * in the address range they represent.
231 static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
232 u64 *base, u64 *limit)
234 *base = pvt->dram_base[node_id];
235 *limit = pvt->dram_limit[node_id];
239 * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
240 * with node_id
242 static int amd64_base_limit_match(struct amd64_pvt *pvt,
243 u64 sys_addr, int node_id)
245 u64 base, limit, addr;
247 amd64_get_base_and_limit(pvt, node_id, &base, &limit);
249 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
250 * all ones if the most significant implemented address bit is 1.
251 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
252 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
253 * Application Programming.
255 addr = sys_addr & 0x000000ffffffffffull;
257 return (addr >= base) && (addr <= limit);
261 * Attempt to map a SysAddr to a node. On success, return a pointer to the
262 * mem_ctl_info structure for the node that the SysAddr maps to.
264 * On failure, return NULL.
266 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
267 u64 sys_addr)
269 struct amd64_pvt *pvt;
270 int node_id;
271 u32 intlv_en, bits;
274 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
275 * 3.4.4.2) registers to map the SysAddr to a node ID.
277 pvt = mci->pvt_info;
280 * The value of this field should be the same for all DRAM Base
281 * registers. Therefore we arbitrarily choose to read it from the
282 * register for node 0.
284 intlv_en = pvt->dram_IntlvEn[0];
286 if (intlv_en == 0) {
287 for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
288 if (amd64_base_limit_match(pvt, sys_addr, node_id))
289 goto found;
291 goto err_no_match;
294 if (unlikely((intlv_en != 0x01) &&
295 (intlv_en != 0x03) &&
296 (intlv_en != 0x07))) {
297 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
298 return NULL;
301 bits = (((u32) sys_addr) >> 12) & intlv_en;
303 for (node_id = 0; ; ) {
304 if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
305 break; /* intlv_sel field matches */
307 if (++node_id >= DRAM_REG_COUNT)
308 goto err_no_match;
311 /* sanity test for sys_addr */
312 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
313 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
314 "range for node %d with node interleaving enabled.\n",
315 __func__, sys_addr, node_id);
316 return NULL;
319 found:
320 return edac_mc_find(node_id);
322 err_no_match:
323 debugf2("sys_addr 0x%lx doesn't match any node\n",
324 (unsigned long)sys_addr);
326 return NULL;
330 * Extract the DRAM CS base address from selected csrow register.
332 static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
334 return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
335 pvt->dcs_shift;
339 * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
341 static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
343 u64 dcsm_bits, other_bits;
344 u64 mask;
346 /* Extract bits from DRAM CS Mask. */
347 dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
349 other_bits = pvt->dcsm_mask;
350 other_bits = ~(other_bits << pvt->dcs_shift);
353 * The extracted bits from DCSM belong in the spaces represented by
354 * the cleared bits in other_bits.
356 mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
358 return mask;
362 * @input_addr is an InputAddr associated with the node given by mci. Return the
363 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
365 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
367 struct amd64_pvt *pvt;
368 int csrow;
369 u64 base, mask;
371 pvt = mci->pvt_info;
374 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
375 * base/mask register pair, test the condition shown near the start of
376 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
378 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
380 /* This DRAM chip select is disabled on this node */
381 if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
382 continue;
384 base = base_from_dct_base(pvt, csrow);
385 mask = ~mask_from_dct_mask(pvt, csrow);
387 if ((input_addr & mask) == (base & mask)) {
388 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
389 (unsigned long)input_addr, csrow,
390 pvt->mc_node_id);
392 return csrow;
396 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
397 (unsigned long)input_addr, pvt->mc_node_id);
399 return -1;
403 * Return the base value defined by the DRAM Base register for the node
404 * represented by mci. This function returns the full 40-bit value despite the
405 * fact that the register only stores bits 39-24 of the value. See section
406 * 3.4.4.1 (BKDG #26094, K8, revA-E)
408 static inline u64 get_dram_base(struct mem_ctl_info *mci)
410 struct amd64_pvt *pvt = mci->pvt_info;
412 return pvt->dram_base[pvt->mc_node_id];
416 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
417 * for the node represented by mci. Info is passed back in *hole_base,
418 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
419 * info is invalid. Info may be invalid for either of the following reasons:
421 * - The revision of the node is not E or greater. In this case, the DRAM Hole
422 * Address Register does not exist.
424 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
425 * indicating that its contents are not valid.
427 * The values passed back in *hole_base, *hole_offset, and *hole_size are
428 * complete 32-bit values despite the fact that the bitfields in the DHAR
429 * only represent bits 31-24 of the base and offset values.
431 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
432 u64 *hole_offset, u64 *hole_size)
434 struct amd64_pvt *pvt = mci->pvt_info;
435 u64 base;
437 /* only revE and later have the DRAM Hole Address Register */
438 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
439 debugf1(" revision %d for node %d does not support DHAR\n",
440 pvt->ext_model, pvt->mc_node_id);
441 return 1;
444 /* only valid for Fam10h */
445 if (boot_cpu_data.x86 == 0x10 &&
446 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
447 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
448 return 1;
451 if ((pvt->dhar & DHAR_VALID) == 0) {
452 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
453 pvt->mc_node_id);
454 return 1;
457 /* This node has Memory Hoisting */
459 /* +------------------+--------------------+--------------------+-----
460 * | memory | DRAM hole | relocated |
461 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
462 * | | | DRAM hole |
463 * | | | [0x100000000, |
464 * | | | (0x100000000+ |
465 * | | | (0xffffffff-x))] |
466 * +------------------+--------------------+--------------------+-----
468 * Above is a diagram of physical memory showing the DRAM hole and the
469 * relocated addresses from the DRAM hole. As shown, the DRAM hole
470 * starts at address x (the base address) and extends through address
471 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
472 * addresses in the hole so that they start at 0x100000000.
475 base = dhar_base(pvt->dhar);
477 *hole_base = base;
478 *hole_size = (0x1ull << 32) - base;
480 if (boot_cpu_data.x86 > 0xf)
481 *hole_offset = f10_dhar_offset(pvt->dhar);
482 else
483 *hole_offset = k8_dhar_offset(pvt->dhar);
485 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
486 pvt->mc_node_id, (unsigned long)*hole_base,
487 (unsigned long)*hole_offset, (unsigned long)*hole_size);
489 return 0;
491 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
494 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
495 * assumed that sys_addr maps to the node given by mci.
497 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
498 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
499 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
500 * then it is also involved in translating a SysAddr to a DramAddr. Sections
501 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
502 * These parts of the documentation are unclear. I interpret them as follows:
504 * When node n receives a SysAddr, it processes the SysAddr as follows:
506 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
507 * Limit registers for node n. If the SysAddr is not within the range
508 * specified by the base and limit values, then node n ignores the Sysaddr
509 * (since it does not map to node n). Otherwise continue to step 2 below.
511 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
512 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
513 * the range of relocated addresses (starting at 0x100000000) from the DRAM
514 * hole. If not, skip to step 3 below. Else get the value of the
515 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
516 * offset defined by this value from the SysAddr.
518 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
519 * Base register for node n. To obtain the DramAddr, subtract the base
520 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
522 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
524 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
525 int ret = 0;
527 dram_base = get_dram_base(mci);
529 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
530 &hole_size);
531 if (!ret) {
532 if ((sys_addr >= (1ull << 32)) &&
533 (sys_addr < ((1ull << 32) + hole_size))) {
534 /* use DHAR to translate SysAddr to DramAddr */
535 dram_addr = sys_addr - hole_offset;
537 debugf2("using DHAR to translate SysAddr 0x%lx to "
538 "DramAddr 0x%lx\n",
539 (unsigned long)sys_addr,
540 (unsigned long)dram_addr);
542 return dram_addr;
547 * Translate the SysAddr to a DramAddr as shown near the start of
548 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
549 * only deals with 40-bit values. Therefore we discard bits 63-40 of
550 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
551 * discard are all 1s. Otherwise the bits we discard are all 0s. See
552 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
553 * Programmer's Manual Volume 1 Application Programming.
555 dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
557 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
558 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
559 (unsigned long)dram_addr);
560 return dram_addr;
564 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
565 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
566 * for node interleaving.
568 static int num_node_interleave_bits(unsigned intlv_en)
570 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
571 int n;
573 BUG_ON(intlv_en > 7);
574 n = intlv_shift_table[intlv_en];
575 return n;
578 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
579 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
581 struct amd64_pvt *pvt;
582 int intlv_shift;
583 u64 input_addr;
585 pvt = mci->pvt_info;
588 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
589 * concerning translating a DramAddr to an InputAddr.
591 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
592 input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
593 (dram_addr & 0xfff);
595 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
596 intlv_shift, (unsigned long)dram_addr,
597 (unsigned long)input_addr);
599 return input_addr;
603 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
604 * assumed that @sys_addr maps to the node given by mci.
606 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
608 u64 input_addr;
610 input_addr =
611 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
613 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
614 (unsigned long)sys_addr, (unsigned long)input_addr);
616 return input_addr;
621 * @input_addr is an InputAddr associated with the node represented by mci.
622 * Translate @input_addr to a DramAddr and return the result.
624 static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
626 struct amd64_pvt *pvt;
627 int node_id, intlv_shift;
628 u64 bits, dram_addr;
629 u32 intlv_sel;
632 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
633 * shows how to translate a DramAddr to an InputAddr. Here we reverse
634 * this procedure. When translating from a DramAddr to an InputAddr, the
635 * bits used for node interleaving are discarded. Here we recover these
636 * bits from the IntlvSel field of the DRAM Limit register (section
637 * 3.4.4.2) for the node that input_addr is associated with.
639 pvt = mci->pvt_info;
640 node_id = pvt->mc_node_id;
641 BUG_ON((node_id < 0) || (node_id > 7));
643 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
645 if (intlv_shift == 0) {
646 debugf1(" InputAddr 0x%lx translates to DramAddr of "
647 "same value\n", (unsigned long)input_addr);
649 return input_addr;
652 bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
653 (input_addr & 0xfff);
655 intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
656 dram_addr = bits + (intlv_sel << 12);
658 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
659 "(%d node interleave bits)\n", (unsigned long)input_addr,
660 (unsigned long)dram_addr, intlv_shift);
662 return dram_addr;
666 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
667 * @dram_addr to a SysAddr.
669 static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
671 struct amd64_pvt *pvt = mci->pvt_info;
672 u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
673 int ret = 0;
675 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
676 &hole_size);
677 if (!ret) {
678 if ((dram_addr >= hole_base) &&
679 (dram_addr < (hole_base + hole_size))) {
680 sys_addr = dram_addr + hole_offset;
682 debugf1("using DHAR to translate DramAddr 0x%lx to "
683 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
684 (unsigned long)sys_addr);
686 return sys_addr;
690 amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
691 sys_addr = dram_addr + base;
694 * The sys_addr we have computed up to this point is a 40-bit value
695 * because the k8 deals with 40-bit values. However, the value we are
696 * supposed to return is a full 64-bit physical address. The AMD
697 * x86-64 architecture specifies that the most significant implemented
698 * address bit through bit 63 of a physical address must be either all
699 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
700 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
701 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
702 * Programming.
704 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
706 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
707 pvt->mc_node_id, (unsigned long)dram_addr,
708 (unsigned long)sys_addr);
710 return sys_addr;
714 * @input_addr is an InputAddr associated with the node given by mci. Translate
715 * @input_addr to a SysAddr.
717 static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
718 u64 input_addr)
720 return dram_addr_to_sys_addr(mci,
721 input_addr_to_dram_addr(mci, input_addr));
725 * Find the minimum and maximum InputAddr values that map to the given @csrow.
726 * Pass back these values in *input_addr_min and *input_addr_max.
728 static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
729 u64 *input_addr_min, u64 *input_addr_max)
731 struct amd64_pvt *pvt;
732 u64 base, mask;
734 pvt = mci->pvt_info;
735 BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
737 base = base_from_dct_base(pvt, csrow);
738 mask = mask_from_dct_mask(pvt, csrow);
740 *input_addr_min = base & ~mask;
741 *input_addr_max = base | mask | pvt->dcs_mask_notused;
744 /* Map the Error address to a PAGE and PAGE OFFSET. */
745 static inline void error_address_to_page_and_offset(u64 error_address,
746 u32 *page, u32 *offset)
748 *page = (u32) (error_address >> PAGE_SHIFT);
749 *offset = ((u32) error_address) & ~PAGE_MASK;
753 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
754 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
755 * of a node that detected an ECC memory error. mci represents the node that
756 * the error address maps to (possibly different from the node that detected
757 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
758 * error.
760 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
762 int csrow;
764 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
766 if (csrow == -1)
767 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
768 "address 0x%lx\n", (unsigned long)sys_addr);
769 return csrow;
772 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
774 static u16 extract_syndrome(struct err_regs *err)
776 return ((err->nbsh >> 15) & 0xff) | ((err->nbsl >> 16) & 0xff00);
780 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
781 * are ECC capable.
783 static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
785 int bit;
786 enum dev_type edac_cap = EDAC_FLAG_NONE;
788 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
789 ? 19
790 : 17;
792 if (pvt->dclr0 & BIT(bit))
793 edac_cap = EDAC_FLAG_SECDED;
795 return edac_cap;
799 static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
801 static void amd64_dump_dramcfg_low(u32 dclr, int chan)
803 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
805 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
806 (dclr & BIT(16)) ? "un" : "",
807 (dclr & BIT(19)) ? "yes" : "no");
809 debugf1(" PAR/ERR parity: %s\n",
810 (dclr & BIT(8)) ? "enabled" : "disabled");
812 debugf1(" DCT 128bit mode width: %s\n",
813 (dclr & BIT(11)) ? "128b" : "64b");
815 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
816 (dclr & BIT(12)) ? "yes" : "no",
817 (dclr & BIT(13)) ? "yes" : "no",
818 (dclr & BIT(14)) ? "yes" : "no",
819 (dclr & BIT(15)) ? "yes" : "no");
822 /* Display and decode various NB registers for debug purposes. */
823 static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
825 int ganged;
827 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
829 debugf1(" NB two channel DRAM capable: %s\n",
830 (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
832 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
833 (pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
834 (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");
836 amd64_dump_dramcfg_low(pvt->dclr0, 0);
838 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
840 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
841 "offset: 0x%08x\n",
842 pvt->dhar,
843 dhar_base(pvt->dhar),
844 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt->dhar)
845 : f10_dhar_offset(pvt->dhar));
847 debugf1(" DramHoleValid: %s\n",
848 (pvt->dhar & DHAR_VALID) ? "yes" : "no");
850 /* everything below this point is Fam10h and above */
851 if (boot_cpu_data.x86 == 0xf) {
852 amd64_debug_display_dimm_sizes(0, pvt);
853 return;
856 amd64_info("using %s syndromes.\n", ((pvt->syn_type == 8) ? "x8" : "x4"));
858 /* Only if NOT ganged does dclr1 have valid info */
859 if (!dct_ganging_enabled(pvt))
860 amd64_dump_dramcfg_low(pvt->dclr1, 1);
863 * Determine if ganged and then dump memory sizes for first controller,
864 * and if NOT ganged dump info for 2nd controller.
866 ganged = dct_ganging_enabled(pvt);
868 amd64_debug_display_dimm_sizes(0, pvt);
870 if (!ganged)
871 amd64_debug_display_dimm_sizes(1, pvt);
874 /* Read in both of DBAM registers */
875 static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
877 amd64_read_pci_cfg(pvt->F2, DBAM0, &pvt->dbam0);
879 if (boot_cpu_data.x86 >= 0x10)
880 amd64_read_pci_cfg(pvt->F2, DBAM1, &pvt->dbam1);
884 * NOTE: CPU Revision Dependent code: Rev E and Rev F
886 * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
887 * set the shift factor for the DCSB and DCSM values.
889 * ->dcs_mask_notused, RevE:
891 * To find the max InputAddr for the csrow, start with the base address and set
892 * all bits that are "don't care" bits in the test at the start of section
893 * 3.5.4 (p. 84).
895 * The "don't care" bits are all set bits in the mask and all bits in the gaps
896 * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
897 * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
898 * gaps.
900 * ->dcs_mask_notused, RevF and later:
902 * To find the max InputAddr for the csrow, start with the base address and set
903 * all bits that are "don't care" bits in the test at the start of NPT section
904 * 4.5.4 (p. 87).
906 * The "don't care" bits are all set bits in the mask and all bits in the gaps
907 * between bit ranges [36:27] and [21:13].
909 * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
910 * which are all bits in the above-mentioned gaps.
912 static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
915 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
916 pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
917 pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
918 pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
919 pvt->dcs_shift = REV_E_DCS_SHIFT;
920 pvt->cs_count = 8;
921 pvt->num_dcsm = 8;
922 } else {
923 pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
924 pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
925 pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
926 pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
927 pvt->cs_count = 8;
928 pvt->num_dcsm = 4;
933 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
935 static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
937 int cs, reg;
939 amd64_set_dct_base_and_mask(pvt);
941 for (cs = 0; cs < pvt->cs_count; cs++) {
942 reg = K8_DCSB0 + (cs * 4);
943 if (!amd64_read_pci_cfg(pvt->F2, reg, &pvt->dcsb0[cs]))
944 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
945 cs, pvt->dcsb0[cs], reg);
947 /* If DCT are NOT ganged, then read in DCT1's base */
948 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
949 reg = F10_DCSB1 + (cs * 4);
950 if (!amd64_read_pci_cfg(pvt->F2, reg,
951 &pvt->dcsb1[cs]))
952 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
953 cs, pvt->dcsb1[cs], reg);
954 } else {
955 pvt->dcsb1[cs] = 0;
959 for (cs = 0; cs < pvt->num_dcsm; cs++) {
960 reg = K8_DCSM0 + (cs * 4);
961 if (!amd64_read_pci_cfg(pvt->F2, reg, &pvt->dcsm0[cs]))
962 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
963 cs, pvt->dcsm0[cs], reg);
965 /* If DCT are NOT ganged, then read in DCT1's mask */
966 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
967 reg = F10_DCSM1 + (cs * 4);
968 if (!amd64_read_pci_cfg(pvt->F2, reg,
969 &pvt->dcsm1[cs]))
970 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
971 cs, pvt->dcsm1[cs], reg);
972 } else {
973 pvt->dcsm1[cs] = 0;
978 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
980 enum mem_type type;
982 if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
983 if (pvt->dchr0 & DDR3_MODE)
984 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
985 else
986 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
987 } else {
988 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
991 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
993 return type;
997 * Read the DRAM Configuration Low register. It differs between CG, D & E revs
998 * and the later RevF memory controllers (DDR vs DDR2)
1000 * Return:
1001 * number of memory channels in operation
1002 * Pass back:
1003 * contents of the DCL0_LOW register
1005 static int k8_early_channel_count(struct amd64_pvt *pvt)
1007 int flag, err = 0;
1009 err = amd64_read_pci_cfg(pvt->F2, F10_DCLR_0, &pvt->dclr0);
1010 if (err)
1011 return err;
1013 if (pvt->ext_model >= K8_REV_F)
1014 /* RevF (NPT) and later */
1015 flag = pvt->dclr0 & F10_WIDTH_128;
1016 else
1017 /* RevE and earlier */
1018 flag = pvt->dclr0 & REVE_WIDTH_128;
1020 /* not used */
1021 pvt->dclr1 = 0;
1023 return (flag) ? 2 : 1;
1026 /* extract the ERROR ADDRESS for the K8 CPUs */
1027 static u64 k8_get_error_address(struct mem_ctl_info *mci,
1028 struct err_regs *info)
1030 return (((u64) (info->nbeah & 0xff)) << 32) +
1031 (info->nbeal & ~0x03);
1035 * Read the Base and Limit registers for K8 based Memory controllers; extract
1036 * fields from the 'raw' reg into separate data fields
1038 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
1040 static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1042 u32 low;
1043 u32 off = dram << 3; /* 8 bytes between DRAM entries */
1045 amd64_read_pci_cfg(pvt->F1, K8_DRAM_BASE_LOW + off, &low);
1047 /* Extract parts into separate data entries */
1048 pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
1049 pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
1050 pvt->dram_rw_en[dram] = (low & 0x3);
1052 amd64_read_pci_cfg(pvt->F1, K8_DRAM_LIMIT_LOW + off, &low);
1055 * Extract parts into separate data entries. Limit is the HIGHEST memory
1056 * location of the region, so lower 24 bits need to be all ones
1058 pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
1059 pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
1060 pvt->dram_DstNode[dram] = (low & 0x7);
1063 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1064 struct err_regs *err_info, u64 sys_addr)
1066 struct mem_ctl_info *src_mci;
1067 int channel, csrow;
1068 u32 page, offset;
1069 u16 syndrome;
1071 syndrome = extract_syndrome(err_info);
1073 /* CHIPKILL enabled */
1074 if (err_info->nbcfg & K8_NBCFG_CHIPKILL) {
1075 channel = get_channel_from_ecc_syndrome(mci, syndrome);
1076 if (channel < 0) {
1078 * Syndrome didn't map, so we don't know which of the
1079 * 2 DIMMs is in error. So we need to ID 'both' of them
1080 * as suspect.
1082 amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
1083 "error reporting race\n", syndrome);
1084 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1085 return;
1087 } else {
1089 * non-chipkill ecc mode
1091 * The k8 documentation is unclear about how to determine the
1092 * channel number when using non-chipkill memory. This method
1093 * was obtained from email communication with someone at AMD.
1094 * (Wish the email was placed in this comment - norsk)
1096 channel = ((sys_addr & BIT(3)) != 0);
1100 * Find out which node the error address belongs to. This may be
1101 * different from the node that detected the error.
1103 src_mci = find_mc_by_sys_addr(mci, sys_addr);
1104 if (!src_mci) {
1105 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1106 (unsigned long)sys_addr);
1107 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1108 return;
1111 /* Now map the sys_addr to a CSROW */
1112 csrow = sys_addr_to_csrow(src_mci, sys_addr);
1113 if (csrow < 0) {
1114 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1115 } else {
1116 error_address_to_page_and_offset(sys_addr, &page, &offset);
1118 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1119 channel, EDAC_MOD_STR);
1123 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1125 int *dbam_map;
1127 if (pvt->ext_model >= K8_REV_F)
1128 dbam_map = ddr2_dbam;
1129 else if (pvt->ext_model >= K8_REV_D)
1130 dbam_map = ddr2_dbam_revD;
1131 else
1132 dbam_map = ddr2_dbam_revCG;
1134 return dbam_map[cs_mode];
1138 * Get the number of DCT channels in use.
1140 * Return:
1141 * number of Memory Channels in operation
1142 * Pass back:
1143 * contents of the DCL0_LOW register
1145 static int f10_early_channel_count(struct amd64_pvt *pvt)
1147 int dbams[] = { DBAM0, DBAM1 };
1148 int i, j, channels = 0;
1149 u32 dbam;
1151 /* If we are in 128 bit mode, then we are using 2 channels */
1152 if (pvt->dclr0 & F10_WIDTH_128) {
1153 channels = 2;
1154 return channels;
1158 * Need to check if in unganged mode: In such, there are 2 channels,
1159 * but they are not in 128 bit mode and thus the above 'dclr0' status
1160 * bit will be OFF.
1162 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1163 * their CSEnable bit on. If so, then SINGLE DIMM case.
1165 debugf0("Data width is not 128 bits - need more decoding\n");
1168 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1169 * is more than just one DIMM present in unganged mode. Need to check
1170 * both controllers since DIMMs can be placed in either one.
1172 for (i = 0; i < ARRAY_SIZE(dbams); i++) {
1173 if (amd64_read_pci_cfg(pvt->F2, dbams[i], &dbam))
1174 goto err_reg;
1176 for (j = 0; j < 4; j++) {
1177 if (DBAM_DIMM(j, dbam) > 0) {
1178 channels++;
1179 break;
1184 if (channels > 2)
1185 channels = 2;
1187 amd64_info("MCT channel count: %d\n", channels);
1189 return channels;
1191 err_reg:
1192 return -1;
1196 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1198 int *dbam_map;
1200 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1201 dbam_map = ddr3_dbam;
1202 else
1203 dbam_map = ddr2_dbam;
1205 return dbam_map[cs_mode];
1208 /* Enable extended configuration access via 0xCF8 feature */
1209 static void amd64_setup(struct amd64_pvt *pvt)
1211 u32 reg;
1213 amd64_read_pci_cfg(pvt->F3, F10_NB_CFG_HIGH, &reg);
1215 pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
1216 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1217 pci_write_config_dword(pvt->F3, F10_NB_CFG_HIGH, reg);
1220 /* Restore the extended configuration access via 0xCF8 feature */
1221 static void amd64_teardown(struct amd64_pvt *pvt)
1223 u32 reg;
1225 amd64_read_pci_cfg(pvt->F3, F10_NB_CFG_HIGH, &reg);
1227 reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1228 if (pvt->flags.cf8_extcfg)
1229 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1230 pci_write_config_dword(pvt->F3, F10_NB_CFG_HIGH, reg);
1233 static u64 f10_get_error_address(struct mem_ctl_info *mci,
1234 struct err_regs *info)
1236 return (((u64) (info->nbeah & 0xffff)) << 32) +
1237 (info->nbeal & ~0x01);
1241 * Read the Base and Limit registers for F10 based Memory controllers. Extract
1242 * fields from the 'raw' reg into separate data fields.
1244 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
1246 static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1248 u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
1250 low_offset = K8_DRAM_BASE_LOW + (dram << 3);
1251 high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
1253 /* read the 'raw' DRAM BASE Address register */
1254 amd64_read_pci_cfg(pvt->F1, low_offset, &low_base);
1256 /* Read from the ECS data register */
1257 amd64_read_pci_cfg(pvt->F1, high_offset, &high_base);
1259 /* Extract parts into separate data entries */
1260 pvt->dram_rw_en[dram] = (low_base & 0x3);
1262 if (pvt->dram_rw_en[dram] == 0)
1263 return;
1265 pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
1267 pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
1268 (((u64)low_base & 0xFFFF0000) << 8);
1270 low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
1271 high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
1273 /* read the 'raw' LIMIT registers */
1274 amd64_read_pci_cfg(pvt->F1, low_offset, &low_limit);
1276 /* Read from the ECS data register for the HIGH portion */
1277 amd64_read_pci_cfg(pvt->F1, high_offset, &high_limit);
1279 pvt->dram_DstNode[dram] = (low_limit & 0x7);
1280 pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
1283 * Extract address values and form a LIMIT address. Limit is the HIGHEST
1284 * memory location of the region, so low 24 bits need to be all ones.
1286 pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
1287 (((u64) low_limit & 0xFFFF0000) << 8) |
1288 0x00FFFFFF;
1291 static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1294 if (!amd64_read_pci_cfg(pvt->F2, F10_DCTL_SEL_LOW,
1295 &pvt->dram_ctl_select_low)) {
1296 debugf0("F2x110 (DCTL Sel. Low): 0x%08x, "
1297 "High range addresses at: 0x%x\n",
1298 pvt->dram_ctl_select_low,
1299 dct_sel_baseaddr(pvt));
1301 debugf0(" DCT mode: %s, All DCTs on: %s\n",
1302 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
1303 (dct_dram_enabled(pvt) ? "yes" : "no"));
1305 if (!dct_ganging_enabled(pvt))
1306 debugf0(" Address range split per DCT: %s\n",
1307 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1309 debugf0(" DCT data interleave for ECC: %s, "
1310 "DRAM cleared since last warm reset: %s\n",
1311 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1312 (dct_memory_cleared(pvt) ? "yes" : "no"));
1314 debugf0(" DCT channel interleave: %s, "
1315 "DCT interleave bits selector: 0x%x\n",
1316 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1317 dct_sel_interleave_addr(pvt));
1320 amd64_read_pci_cfg(pvt->F2, F10_DCTL_SEL_HIGH,
1321 &pvt->dram_ctl_select_high);
1325 * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1326 * Interleaving Modes.
1328 static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1329 int hi_range_sel, u32 intlv_en)
1331 u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
1333 if (dct_ganging_enabled(pvt))
1334 cs = 0;
1335 else if (hi_range_sel)
1336 cs = dct_sel_high;
1337 else if (dct_interleave_enabled(pvt)) {
1339 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1341 if (dct_sel_interleave_addr(pvt) == 0)
1342 cs = sys_addr >> 6 & 1;
1343 else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
1344 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1346 if (dct_sel_interleave_addr(pvt) & 1)
1347 cs = (sys_addr >> 9 & 1) ^ temp;
1348 else
1349 cs = (sys_addr >> 6 & 1) ^ temp;
1350 } else if (intlv_en & 4)
1351 cs = sys_addr >> 15 & 1;
1352 else if (intlv_en & 2)
1353 cs = sys_addr >> 14 & 1;
1354 else if (intlv_en & 1)
1355 cs = sys_addr >> 13 & 1;
1356 else
1357 cs = sys_addr >> 12 & 1;
1358 } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
1359 cs = ~dct_sel_high & 1;
1360 else
1361 cs = 0;
1363 return cs;
1366 static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
1368 if (intlv_en == 1)
1369 return 1;
1370 else if (intlv_en == 3)
1371 return 2;
1372 else if (intlv_en == 7)
1373 return 3;
1375 return 0;
1378 /* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
1379 static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
1380 u32 dct_sel_base_addr,
1381 u64 dct_sel_base_off,
1382 u32 hole_valid, u32 hole_off,
1383 u64 dram_base)
1385 u64 chan_off;
1387 if (hi_range_sel) {
1388 if (!(dct_sel_base_addr & 0xFFFF0000) &&
1389 hole_valid && (sys_addr >= 0x100000000ULL))
1390 chan_off = hole_off << 16;
1391 else
1392 chan_off = dct_sel_base_off;
1393 } else {
1394 if (hole_valid && (sys_addr >= 0x100000000ULL))
1395 chan_off = hole_off << 16;
1396 else
1397 chan_off = dram_base & 0xFFFFF8000000ULL;
1400 return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
1401 (chan_off & 0x0000FFFFFF800000ULL);
1404 /* Hack for the time being - Can we get this from BIOS?? */
1405 #define CH0SPARE_RANK 0
1406 #define CH1SPARE_RANK 1
1409 * checks if the csrow passed in is marked as SPARED, if so returns the new
1410 * spare row
1412 static inline int f10_process_possible_spare(int csrow,
1413 u32 cs, struct amd64_pvt *pvt)
1415 u32 swap_done;
1416 u32 bad_dram_cs;
1418 /* Depending on channel, isolate respective SPARING info */
1419 if (cs) {
1420 swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
1421 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
1422 if (swap_done && (csrow == bad_dram_cs))
1423 csrow = CH1SPARE_RANK;
1424 } else {
1425 swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
1426 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
1427 if (swap_done && (csrow == bad_dram_cs))
1428 csrow = CH0SPARE_RANK;
1430 return csrow;
1434 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1435 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1437 * Return:
1438 * -EINVAL: NOT FOUND
1439 * 0..csrow = Chip-Select Row
1441 static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
1443 struct mem_ctl_info *mci;
1444 struct amd64_pvt *pvt;
1445 u32 cs_base, cs_mask;
1446 int cs_found = -EINVAL;
1447 int csrow;
1449 mci = mci_lookup[nid];
1450 if (!mci)
1451 return cs_found;
1453 pvt = mci->pvt_info;
1455 debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
1457 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
1459 cs_base = amd64_get_dct_base(pvt, cs, csrow);
1460 if (!(cs_base & K8_DCSB_CS_ENABLE))
1461 continue;
1464 * We have an ENABLED CSROW, Isolate just the MASK bits of the
1465 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
1466 * of the actual address.
1468 cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
1471 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
1472 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
1474 cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
1476 debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
1477 csrow, cs_base, cs_mask);
1479 cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
1481 debugf1(" Final CSMask=0x%x\n", cs_mask);
1482 debugf1(" (InputAddr & ~CSMask)=0x%x "
1483 "(CSBase & ~CSMask)=0x%x\n",
1484 (in_addr & ~cs_mask), (cs_base & ~cs_mask));
1486 if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
1487 cs_found = f10_process_possible_spare(csrow, cs, pvt);
1489 debugf1(" MATCH csrow=%d\n", cs_found);
1490 break;
1493 return cs_found;
1496 /* For a given @dram_range, check if @sys_addr falls within it. */
1497 static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
1498 u64 sys_addr, int *nid, int *chan_sel)
1500 int node_id, cs_found = -EINVAL, high_range = 0;
1501 u32 intlv_en, intlv_sel, intlv_shift, hole_off;
1502 u32 hole_valid, tmp, dct_sel_base, channel;
1503 u64 dram_base, chan_addr, dct_sel_base_off;
1505 dram_base = pvt->dram_base[dram_range];
1506 intlv_en = pvt->dram_IntlvEn[dram_range];
1508 node_id = pvt->dram_DstNode[dram_range];
1509 intlv_sel = pvt->dram_IntlvSel[dram_range];
1511 debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
1512 dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
1515 * This assumes that one node's DHAR is the same as all the other
1516 * nodes' DHAR.
1518 hole_off = (pvt->dhar & 0x0000FF80);
1519 hole_valid = (pvt->dhar & 0x1);
1520 dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
1522 debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
1523 hole_off, hole_valid, intlv_sel);
1525 if (intlv_en &&
1526 (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1527 return -EINVAL;
1529 dct_sel_base = dct_sel_baseaddr(pvt);
1532 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1533 * select between DCT0 and DCT1.
1535 if (dct_high_range_enabled(pvt) &&
1536 !dct_ganging_enabled(pvt) &&
1537 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1538 high_range = 1;
1540 channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
1542 chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
1543 dct_sel_base_off, hole_valid,
1544 hole_off, dram_base);
1546 intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
1548 /* remove Node ID (in case of memory interleaving) */
1549 tmp = chan_addr & 0xFC0;
1551 chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
1553 /* remove channel interleave and hash */
1554 if (dct_interleave_enabled(pvt) &&
1555 !dct_high_range_enabled(pvt) &&
1556 !dct_ganging_enabled(pvt)) {
1557 if (dct_sel_interleave_addr(pvt) != 1)
1558 chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
1559 else {
1560 tmp = chan_addr & 0xFC0;
1561 chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
1562 | tmp;
1566 debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
1567 chan_addr, (u32)(chan_addr >> 8));
1569 cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
1571 if (cs_found >= 0) {
1572 *nid = node_id;
1573 *chan_sel = channel;
1575 return cs_found;
1578 static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1579 int *node, int *chan_sel)
1581 int dram_range, cs_found = -EINVAL;
1582 u64 dram_base, dram_limit;
1584 for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
1586 if (!pvt->dram_rw_en[dram_range])
1587 continue;
1589 dram_base = pvt->dram_base[dram_range];
1590 dram_limit = pvt->dram_limit[dram_range];
1592 if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
1594 cs_found = f10_match_to_this_node(pvt, dram_range,
1595 sys_addr, node,
1596 chan_sel);
1597 if (cs_found >= 0)
1598 break;
1601 return cs_found;
1605 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1606 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1608 * The @sys_addr is usually an error address received from the hardware
1609 * (MCX_ADDR).
1611 static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1612 struct err_regs *err_info,
1613 u64 sys_addr)
1615 struct amd64_pvt *pvt = mci->pvt_info;
1616 u32 page, offset;
1617 int nid, csrow, chan = 0;
1618 u16 syndrome;
1620 csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1622 if (csrow < 0) {
1623 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1624 return;
1627 error_address_to_page_and_offset(sys_addr, &page, &offset);
1629 syndrome = extract_syndrome(err_info);
1632 * We need the syndromes for channel detection only when we're
1633 * ganged. Otherwise @chan should already contain the channel at
1634 * this point.
1636 if (dct_ganging_enabled(pvt) && (pvt->nbcfg & K8_NBCFG_CHIPKILL))
1637 chan = get_channel_from_ecc_syndrome(mci, syndrome);
1639 if (chan >= 0)
1640 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1641 EDAC_MOD_STR);
1642 else
1644 * Channel unknown, report all channels on this CSROW as failed.
1646 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
1647 edac_mc_handle_ce(mci, page, offset, syndrome,
1648 csrow, chan, EDAC_MOD_STR);
1652 * debug routine to display the memory sizes of all logical DIMMs and its
1653 * CSROWs as well
1655 static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
1657 int dimm, size0, size1, factor = 0;
1658 u32 dbam;
1659 u32 *dcsb;
1661 if (boot_cpu_data.x86 == 0xf) {
1662 if (pvt->dclr0 & F10_WIDTH_128)
1663 factor = 1;
1665 /* K8 families < revF not supported yet */
1666 if (pvt->ext_model < K8_REV_F)
1667 return;
1668 else
1669 WARN_ON(ctrl != 0);
1672 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1673 ctrl, ctrl ? pvt->dbam1 : pvt->dbam0);
1675 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1676 dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
1678 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1680 /* Dump memory sizes for DIMM and its CSROWs */
1681 for (dimm = 0; dimm < 4; dimm++) {
1683 size0 = 0;
1684 if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
1685 size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
1687 size1 = 0;
1688 if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
1689 size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
1691 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1692 dimm * 2, size0 << factor,
1693 dimm * 2 + 1, size1 << factor);
1697 static struct amd64_family_type amd64_family_types[] = {
1698 [K8_CPUS] = {
1699 .ctl_name = "K8",
1700 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1701 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1702 .ops = {
1703 .early_channel_count = k8_early_channel_count,
1704 .get_error_address = k8_get_error_address,
1705 .read_dram_base_limit = k8_read_dram_base_limit,
1706 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1707 .dbam_to_cs = k8_dbam_to_chip_select,
1710 [F10_CPUS] = {
1711 .ctl_name = "F10h",
1712 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1713 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1714 .ops = {
1715 .early_channel_count = f10_early_channel_count,
1716 .get_error_address = f10_get_error_address,
1717 .read_dram_base_limit = f10_read_dram_base_limit,
1718 .read_dram_ctl_register = f10_read_dram_ctl_register,
1719 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1720 .dbam_to_cs = f10_dbam_to_chip_select,
1725 static struct pci_dev *pci_get_related_function(unsigned int vendor,
1726 unsigned int device,
1727 struct pci_dev *related)
1729 struct pci_dev *dev = NULL;
1731 dev = pci_get_device(vendor, device, dev);
1732 while (dev) {
1733 if ((dev->bus->number == related->bus->number) &&
1734 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1735 break;
1736 dev = pci_get_device(vendor, device, dev);
1739 return dev;
1743 * These are tables of eigenvectors (one per line) which can be used for the
1744 * construction of the syndrome tables. The modified syndrome search algorithm
1745 * uses those to find the symbol in error and thus the DIMM.
1747 * Algorithm courtesy of Ross LaFetra from AMD.
1749 static u16 x4_vectors[] = {
1750 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1751 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1752 0x0001, 0x0002, 0x0004, 0x0008,
1753 0x1013, 0x3032, 0x4044, 0x8088,
1754 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1755 0x4857, 0xc4fe, 0x13cc, 0x3288,
1756 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1757 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1758 0x15c1, 0x2a42, 0x89ac, 0x4758,
1759 0x2b03, 0x1602, 0x4f0c, 0xca08,
1760 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1761 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1762 0x2b87, 0x164e, 0x642c, 0xdc18,
1763 0x40b9, 0x80de, 0x1094, 0x20e8,
1764 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1765 0x11c1, 0x2242, 0x84ac, 0x4c58,
1766 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1767 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1768 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1769 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1770 0x16b3, 0x3d62, 0x4f34, 0x8518,
1771 0x1e2f, 0x391a, 0x5cac, 0xf858,
1772 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1773 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1774 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1775 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1776 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1777 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1778 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1779 0x185d, 0x2ca6, 0x7914, 0x9e28,
1780 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1781 0x4199, 0x82ee, 0x19f4, 0x2e58,
1782 0x4807, 0xc40e, 0x130c, 0x3208,
1783 0x1905, 0x2e0a, 0x5804, 0xac08,
1784 0x213f, 0x132a, 0xadfc, 0x5ba8,
1785 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1788 static u16 x8_vectors[] = {
1789 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1790 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1791 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1792 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1793 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1794 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1795 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1796 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1797 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1798 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1799 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1800 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1801 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1802 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1803 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1804 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1805 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1806 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1807 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1810 static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
1811 int v_dim)
1813 unsigned int i, err_sym;
1815 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1816 u16 s = syndrome;
1817 int v_idx = err_sym * v_dim;
1818 int v_end = (err_sym + 1) * v_dim;
1820 /* walk over all 16 bits of the syndrome */
1821 for (i = 1; i < (1U << 16); i <<= 1) {
1823 /* if bit is set in that eigenvector... */
1824 if (v_idx < v_end && vectors[v_idx] & i) {
1825 u16 ev_comp = vectors[v_idx++];
1827 /* ... and bit set in the modified syndrome, */
1828 if (s & i) {
1829 /* remove it. */
1830 s ^= ev_comp;
1832 if (!s)
1833 return err_sym;
1836 } else if (s & i)
1837 /* can't get to zero, move to next symbol */
1838 break;
1842 debugf0("syndrome(%x) not found\n", syndrome);
1843 return -1;
1846 static int map_err_sym_to_channel(int err_sym, int sym_size)
1848 if (sym_size == 4)
1849 switch (err_sym) {
1850 case 0x20:
1851 case 0x21:
1852 return 0;
1853 break;
1854 case 0x22:
1855 case 0x23:
1856 return 1;
1857 break;
1858 default:
1859 return err_sym >> 4;
1860 break;
1862 /* x8 symbols */
1863 else
1864 switch (err_sym) {
1865 /* imaginary bits not in a DIMM */
1866 case 0x10:
1867 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1868 err_sym);
1869 return -1;
1870 break;
1872 case 0x11:
1873 return 0;
1874 break;
1875 case 0x12:
1876 return 1;
1877 break;
1878 default:
1879 return err_sym >> 3;
1880 break;
1882 return -1;
1885 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1887 struct amd64_pvt *pvt = mci->pvt_info;
1888 int err_sym = -1;
1890 if (pvt->syn_type == 8)
1891 err_sym = decode_syndrome(syndrome, x8_vectors,
1892 ARRAY_SIZE(x8_vectors),
1893 pvt->syn_type);
1894 else if (pvt->syn_type == 4)
1895 err_sym = decode_syndrome(syndrome, x4_vectors,
1896 ARRAY_SIZE(x4_vectors),
1897 pvt->syn_type);
1898 else {
1899 amd64_warn("Illegal syndrome type: %u\n", pvt->syn_type);
1900 return err_sym;
1903 return map_err_sym_to_channel(err_sym, pvt->syn_type);
1907 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1908 * ADDRESS and process.
1910 static void amd64_handle_ce(struct mem_ctl_info *mci,
1911 struct err_regs *info)
1913 struct amd64_pvt *pvt = mci->pvt_info;
1914 u64 sys_addr;
1916 /* Ensure that the Error Address is VALID */
1917 if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) {
1918 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1919 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1920 return;
1923 sys_addr = pvt->ops->get_error_address(mci, info);
1925 amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
1927 pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
1930 /* Handle any Un-correctable Errors (UEs) */
1931 static void amd64_handle_ue(struct mem_ctl_info *mci,
1932 struct err_regs *info)
1934 struct amd64_pvt *pvt = mci->pvt_info;
1935 struct mem_ctl_info *log_mci, *src_mci = NULL;
1936 int csrow;
1937 u64 sys_addr;
1938 u32 page, offset;
1940 log_mci = mci;
1942 if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) {
1943 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1944 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1945 return;
1948 sys_addr = pvt->ops->get_error_address(mci, info);
1951 * Find out which node the error address belongs to. This may be
1952 * different from the node that detected the error.
1954 src_mci = find_mc_by_sys_addr(mci, sys_addr);
1955 if (!src_mci) {
1956 amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1957 (unsigned long)sys_addr);
1958 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1959 return;
1962 log_mci = src_mci;
1964 csrow = sys_addr_to_csrow(log_mci, sys_addr);
1965 if (csrow < 0) {
1966 amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1967 (unsigned long)sys_addr);
1968 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1969 } else {
1970 error_address_to_page_and_offset(sys_addr, &page, &offset);
1971 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
1975 static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
1976 struct err_regs *info)
1978 u32 ec = ERROR_CODE(info->nbsl);
1979 u32 xec = EXT_ERROR_CODE(info->nbsl);
1980 int ecc_type = (info->nbsh >> 13) & 0x3;
1982 /* Bail early out if this was an 'observed' error */
1983 if (PP(ec) == K8_NBSL_PP_OBS)
1984 return;
1986 /* Do only ECC errors */
1987 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
1988 return;
1990 if (ecc_type == 2)
1991 amd64_handle_ce(mci, info);
1992 else if (ecc_type == 1)
1993 amd64_handle_ue(mci, info);
1996 void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
1998 struct mem_ctl_info *mci = mci_lookup[node_id];
1999 struct err_regs regs;
2001 regs.nbsl = (u32) m->status;
2002 regs.nbsh = (u32)(m->status >> 32);
2003 regs.nbeal = (u32) m->addr;
2004 regs.nbeah = (u32)(m->addr >> 32);
2005 regs.nbcfg = nbcfg;
2007 __amd64_decode_bus_error(mci, &regs);
2010 * Check the UE bit of the NB status high register, if set generate some
2011 * logs. If NOT a GART error, then process the event as a NO-INFO event.
2012 * If it was a GART error, skip that process.
2014 * FIXME: this should go somewhere else, if at all.
2016 if (regs.nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
2017 edac_mc_handle_ue_no_info(mci, "UE bit is set");
2022 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
2023 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
2025 static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, u16 f1_id,
2026 u16 f3_id)
2028 /* Reserve the ADDRESS MAP Device */
2029 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
2030 if (!pvt->F1) {
2031 amd64_err("error address map device not found: "
2032 "vendor %x device 0x%x (broken BIOS?)\n",
2033 PCI_VENDOR_ID_AMD, f1_id);
2034 return -ENODEV;
2037 /* Reserve the MISC Device */
2038 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
2039 if (!pvt->F3) {
2040 pci_dev_put(pvt->F1);
2041 pvt->F1 = NULL;
2043 amd64_err("error F3 device not found: "
2044 "vendor %x device 0x%x (broken BIOS?)\n",
2045 PCI_VENDOR_ID_AMD, f3_id);
2047 return -ENODEV;
2049 debugf1("F1: %s\n", pci_name(pvt->F1));
2050 debugf1("F2: %s\n", pci_name(pvt->F2));
2051 debugf1("F3: %s\n", pci_name(pvt->F3));
2053 return 0;
2056 static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
2058 pci_dev_put(pvt->F1);
2059 pci_dev_put(pvt->F3);
2063 * Retrieve the hardware registers of the memory controller (this includes the
2064 * 'Address Map' and 'Misc' device regs)
2066 static void amd64_read_mc_registers(struct amd64_pvt *pvt)
2068 u64 msr_val;
2069 u32 tmp;
2070 int dram;
2073 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2074 * those are Read-As-Zero
2076 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2077 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
2079 /* check first whether TOP_MEM2 is enabled */
2080 rdmsrl(MSR_K8_SYSCFG, msr_val);
2081 if (msr_val & (1U << 21)) {
2082 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2083 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2084 } else
2085 debugf0(" TOP_MEM2 disabled.\n");
2087 amd64_read_pci_cfg(pvt->F3, K8_NBCAP, &pvt->nbcap);
2089 if (pvt->ops->read_dram_ctl_register)
2090 pvt->ops->read_dram_ctl_register(pvt);
2092 for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
2094 * Call CPU specific READ function to get the DRAM Base and
2095 * Limit values from the DCT.
2097 pvt->ops->read_dram_base_limit(pvt, dram);
2100 * Only print out debug info on rows with both R and W Enabled.
2101 * Normal processing, compiler should optimize this whole 'if'
2102 * debug output block away.
2104 if (pvt->dram_rw_en[dram] != 0) {
2105 debugf1(" DRAM-BASE[%d]: 0x%016llx "
2106 "DRAM-LIMIT: 0x%016llx\n",
2107 dram,
2108 pvt->dram_base[dram],
2109 pvt->dram_limit[dram]);
2111 debugf1(" IntlvEn=%s %s %s "
2112 "IntlvSel=%d DstNode=%d\n",
2113 pvt->dram_IntlvEn[dram] ?
2114 "Enabled" : "Disabled",
2115 (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
2116 (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
2117 pvt->dram_IntlvSel[dram],
2118 pvt->dram_DstNode[dram]);
2122 amd64_read_dct_base_mask(pvt);
2124 amd64_read_pci_cfg(pvt->F1, K8_DHAR, &pvt->dhar);
2125 amd64_read_dbam_reg(pvt);
2127 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2129 amd64_read_pci_cfg(pvt->F2, F10_DCLR_0, &pvt->dclr0);
2130 amd64_read_pci_cfg(pvt->F2, F10_DCHR_0, &pvt->dchr0);
2132 if (boot_cpu_data.x86 >= 0x10) {
2133 if (!dct_ganging_enabled(pvt)) {
2134 amd64_read_pci_cfg(pvt->F2, F10_DCLR_1, &pvt->dclr1);
2135 amd64_read_pci_cfg(pvt->F2, F10_DCHR_1, &pvt->dchr1);
2137 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
2140 if (boot_cpu_data.x86 == 0x10 &&
2141 boot_cpu_data.x86_model > 7 &&
2142 /* F3x180[EccSymbolSize]=1 => x8 symbols */
2143 tmp & BIT(25))
2144 pvt->syn_type = 8;
2145 else
2146 pvt->syn_type = 4;
2148 amd64_dump_misc_regs(pvt);
2152 * NOTE: CPU Revision Dependent code
2154 * Input:
2155 * @csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
2156 * k8 private pointer to -->
2157 * DRAM Bank Address mapping register
2158 * node_id
2159 * DCL register where dual_channel_active is
2161 * The DBAM register consists of 4 sets of 4 bits each definitions:
2163 * Bits: CSROWs
2164 * 0-3 CSROWs 0 and 1
2165 * 4-7 CSROWs 2 and 3
2166 * 8-11 CSROWs 4 and 5
2167 * 12-15 CSROWs 6 and 7
2169 * Values range from: 0 to 15
2170 * The meaning of the values depends on CPU revision and dual-channel state,
2171 * see relevant BKDG more info.
2173 * The memory controller provides for total of only 8 CSROWs in its current
2174 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2175 * single channel or two (2) DIMMs in dual channel mode.
2177 * The following code logic collapses the various tables for CSROW based on CPU
2178 * revision.
2180 * Returns:
2181 * The number of PAGE_SIZE pages on the specified CSROW number it
2182 * encompasses
2185 static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
2187 u32 cs_mode, nr_pages;
2190 * The math on this doesn't look right on the surface because x/2*4 can
2191 * be simplified to x*2 but this expression makes use of the fact that
2192 * it is integral math where 1/2=0. This intermediate value becomes the
2193 * number of bits to shift the DBAM register to extract the proper CSROW
2194 * field.
2196 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
2198 nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
2201 * If dual channel then double the memory size of single channel.
2202 * Channel count is 1 or 2
2204 nr_pages <<= (pvt->channel_count - 1);
2206 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
2207 debugf0(" nr_pages= %u channel-count = %d\n",
2208 nr_pages, pvt->channel_count);
2210 return nr_pages;
2214 * Initialize the array of csrow attribute instances, based on the values
2215 * from pci config hardware registers.
2217 static int amd64_init_csrows(struct mem_ctl_info *mci)
2219 struct csrow_info *csrow;
2220 struct amd64_pvt *pvt;
2221 u64 input_addr_min, input_addr_max, sys_addr;
2222 int i, empty = 1;
2224 pvt = mci->pvt_info;
2226 amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &pvt->nbcfg);
2228 debugf0("NBCFG= 0x%x CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
2229 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2230 (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
2233 for (i = 0; i < pvt->cs_count; i++) {
2234 csrow = &mci->csrows[i];
2236 if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
2237 debugf1("----CSROW %d EMPTY for node %d\n", i,
2238 pvt->mc_node_id);
2239 continue;
2242 debugf1("----CSROW %d VALID for MC node %d\n",
2243 i, pvt->mc_node_id);
2245 empty = 0;
2246 csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
2247 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2248 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2249 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2250 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2251 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2252 csrow->page_mask = ~mask_from_dct_mask(pvt, i);
2253 /* 8 bytes of resolution */
2255 csrow->mtype = amd64_determine_memory_type(pvt, i);
2257 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2258 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2259 (unsigned long)input_addr_min,
2260 (unsigned long)input_addr_max);
2261 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2262 (unsigned long)sys_addr, csrow->page_mask);
2263 debugf1(" nr_pages: %u first_page: 0x%lx "
2264 "last_page: 0x%lx\n",
2265 (unsigned)csrow->nr_pages,
2266 csrow->first_page, csrow->last_page);
2269 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2271 if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
2272 csrow->edac_mode =
2273 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
2274 EDAC_S4ECD4ED : EDAC_SECDED;
2275 else
2276 csrow->edac_mode = EDAC_NONE;
2279 return empty;
2282 /* get all cores on this DCT */
2283 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
2285 int cpu;
2287 for_each_online_cpu(cpu)
2288 if (amd_get_nb_id(cpu) == nid)
2289 cpumask_set_cpu(cpu, mask);
2292 /* check MCG_CTL on all the cpus on this node */
2293 static bool amd64_nb_mce_bank_enabled_on_node(int nid)
2295 cpumask_var_t mask;
2296 int cpu, nbe;
2297 bool ret = false;
2299 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2300 amd64_warn("%s: Error allocating mask\n", __func__);
2301 return false;
2304 get_cpus_on_this_dct_cpumask(mask, nid);
2306 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2308 for_each_cpu(cpu, mask) {
2309 struct msr *reg = per_cpu_ptr(msrs, cpu);
2310 nbe = reg->l & K8_MSR_MCGCTL_NBE;
2312 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2313 cpu, reg->q,
2314 (nbe ? "enabled" : "disabled"));
2316 if (!nbe)
2317 goto out;
2319 ret = true;
2321 out:
2322 free_cpumask_var(mask);
2323 return ret;
2326 static int amd64_toggle_ecc_err_reporting(struct amd64_pvt *pvt, bool on)
2328 cpumask_var_t cmask;
2329 int cpu;
2331 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2332 amd64_warn("%s: error allocating mask\n", __func__);
2333 return false;
2336 get_cpus_on_this_dct_cpumask(cmask, pvt->mc_node_id);
2338 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2340 for_each_cpu(cpu, cmask) {
2342 struct msr *reg = per_cpu_ptr(msrs, cpu);
2344 if (on) {
2345 if (reg->l & K8_MSR_MCGCTL_NBE)
2346 pvt->flags.nb_mce_enable = 1;
2348 reg->l |= K8_MSR_MCGCTL_NBE;
2349 } else {
2351 * Turn off NB MCE reporting only when it was off before
2353 if (!pvt->flags.nb_mce_enable)
2354 reg->l &= ~K8_MSR_MCGCTL_NBE;
2357 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2359 free_cpumask_var(cmask);
2361 return 0;
2364 static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
2366 struct amd64_pvt *pvt = mci->pvt_info;
2367 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2369 amd64_read_pci_cfg(pvt->F3, K8_NBCTL, &value);
2371 /* turn on UECCn and CECCEn bits */
2372 pvt->old_nbctl = value & mask;
2373 pvt->nbctl_mcgctl_saved = 1;
2375 value |= mask;
2376 pci_write_config_dword(pvt->F3, K8_NBCTL, value);
2378 if (amd64_toggle_ecc_err_reporting(pvt, ON))
2379 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2381 amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &value);
2383 debugf0("NBCFG(1)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2384 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2385 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2387 if (!(value & K8_NBCFG_ECC_ENABLE)) {
2388 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2390 pvt->flags.nb_ecc_prev = 0;
2392 /* Attempt to turn on DRAM ECC Enable */
2393 value |= K8_NBCFG_ECC_ENABLE;
2394 pci_write_config_dword(pvt->F3, K8_NBCFG, value);
2396 amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &value);
2398 if (!(value & K8_NBCFG_ECC_ENABLE)) {
2399 amd64_warn("Hardware rejected DRAM ECC enable,"
2400 "check memory DIMM configuration.\n");
2401 } else {
2402 amd64_info("Hardware accepted DRAM ECC Enable\n");
2404 } else {
2405 pvt->flags.nb_ecc_prev = 1;
2408 debugf0("NBCFG(2)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2409 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2410 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2412 pvt->ctl_error_info.nbcfg = value;
2415 static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
2417 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2419 if (!pvt->nbctl_mcgctl_saved)
2420 return;
2422 amd64_read_pci_cfg(pvt->F3, K8_NBCTL, &value);
2423 value &= ~mask;
2424 value |= pvt->old_nbctl;
2426 pci_write_config_dword(pvt->F3, K8_NBCTL, value);
2428 /* restore previous BIOS DRAM ECC "off" setting which we force-enabled */
2429 if (!pvt->flags.nb_ecc_prev) {
2430 amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &value);
2431 value &= ~K8_NBCFG_ECC_ENABLE;
2432 pci_write_config_dword(pvt->F3, K8_NBCFG, value);
2435 /* restore the NB Enable MCGCTL bit */
2436 if (amd64_toggle_ecc_err_reporting(pvt, OFF))
2437 amd64_warn("Error restoring NB MCGCTL settings!\n");
2441 * EDAC requires that the BIOS have ECC enabled before taking over the
2442 * processing of ECC errors. This is because the BIOS can properly initialize
2443 * the memory system completely. A command line option allows to force-enable
2444 * hardware ECC later in amd64_enable_ecc_error_reporting().
2446 static const char *ecc_msg =
2447 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2448 " Either enable ECC checking or force module loading by setting "
2449 "'ecc_enable_override'.\n"
2450 " (Note that use of the override may cause unknown side effects.)\n";
2452 static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
2454 u32 value;
2455 u8 ecc_enabled = 0;
2456 bool nb_mce_en = false;
2458 amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &value);
2460 ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
2461 amd64_info("DRAM ECC %s.\n", (ecc_enabled ? "enabled" : "disabled"));
2463 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(pvt->mc_node_id);
2464 if (!nb_mce_en)
2465 amd64_notice("NB MCE bank disabled, "
2466 "set MSR 0x%08x[4] on node %d to enable.\n",
2467 MSR_IA32_MCG_CTL, pvt->mc_node_id);
2469 if (!ecc_enabled || !nb_mce_en) {
2470 if (!ecc_enable_override) {
2471 amd64_notice("%s", ecc_msg);
2472 return -ENODEV;
2473 } else {
2474 amd64_warn("Forcing ECC on!\n");
2478 return 0;
2481 struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2482 ARRAY_SIZE(amd64_inj_attrs) +
2485 struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2487 static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
2489 unsigned int i = 0, j = 0;
2491 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2492 sysfs_attrs[i] = amd64_dbg_attrs[i];
2494 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2495 sysfs_attrs[i] = amd64_inj_attrs[j];
2497 sysfs_attrs[i] = terminator;
2499 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2502 static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
2504 struct amd64_pvt *pvt = mci->pvt_info;
2506 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2507 mci->edac_ctl_cap = EDAC_FLAG_NONE;
2509 if (pvt->nbcap & K8_NBCAP_SECDED)
2510 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2512 if (pvt->nbcap & K8_NBCAP_CHIPKILL)
2513 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2515 mci->edac_cap = amd64_determine_edac_cap(pvt);
2516 mci->mod_name = EDAC_MOD_STR;
2517 mci->mod_ver = EDAC_AMD64_VERSION;
2518 mci->ctl_name = pvt->ctl_name;
2519 mci->dev_name = pci_name(pvt->F2);
2520 mci->ctl_page_to_phys = NULL;
2522 /* memory scrubber interface */
2523 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2524 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2528 * returns a pointer to the family descriptor on success, NULL otherwise.
2530 static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
2532 u8 fam = boot_cpu_data.x86;
2533 struct amd64_family_type *fam_type = NULL;
2535 switch (fam) {
2536 case 0xf:
2537 fam_type = &amd64_family_types[K8_CPUS];
2538 pvt->ops = &amd64_family_types[K8_CPUS].ops;
2539 pvt->ctl_name = fam_type->ctl_name;
2540 pvt->min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
2541 break;
2542 case 0x10:
2543 fam_type = &amd64_family_types[F10_CPUS];
2544 pvt->ops = &amd64_family_types[F10_CPUS].ops;
2545 pvt->ctl_name = fam_type->ctl_name;
2546 pvt->min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
2547 break;
2549 default:
2550 amd64_err("Unsupported family!\n");
2551 return NULL;
2554 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2556 amd64_info("%s %sdetected (node %d).\n", pvt->ctl_name,
2557 (fam == 0xf ?
2558 (pvt->ext_model >= K8_REV_F ? "revF or later "
2559 : "revE or earlier ")
2560 : ""), pvt->mc_node_id);
2561 return fam_type;
2565 * Init stuff for this DRAM Controller device.
2567 * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
2568 * Space feature MUST be enabled on ALL Processors prior to actually reading
2569 * from the ECS registers. Since the loading of the module can occur on any
2570 * 'core', and cores don't 'see' all the other processors ECS data when the
2571 * others are NOT enabled. Our solution is to first enable ECS access in this
2572 * routine on all processors, gather some data in a amd64_pvt structure and
2573 * later come back in a finish-setup function to perform that final
2574 * initialization. See also amd64_init_2nd_stage() for that.
2576 static int amd64_probe_one_instance(struct pci_dev *F2)
2578 struct amd64_pvt *pvt = NULL;
2579 struct amd64_family_type *fam_type = NULL;
2580 int err = 0, ret;
2582 ret = -ENOMEM;
2583 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2584 if (!pvt)
2585 goto err_exit;
2587 pvt->mc_node_id = get_node_id(F2);
2588 pvt->F2 = F2;
2590 ret = -EINVAL;
2591 fam_type = amd64_per_family_init(pvt);
2592 if (!fam_type)
2593 goto err_free;
2595 ret = -ENODEV;
2596 err = amd64_reserve_mc_sibling_devices(pvt, fam_type->f1_id,
2597 fam_type->f3_id);
2598 if (err)
2599 goto err_free;
2601 ret = -EINVAL;
2602 err = amd64_check_ecc_enabled(pvt);
2603 if (err)
2604 goto err_put;
2607 * Key operation here: setup of HW prior to performing ops on it. Some
2608 * setup is required to access ECS data. After this is performed, the
2609 * 'teardown' function must be called upon error and normal exit paths.
2611 if (boot_cpu_data.x86 >= 0x10)
2612 amd64_setup(pvt);
2615 * Save the pointer to the private data for use in 2nd initialization
2616 * stage
2618 pvt_lookup[pvt->mc_node_id] = pvt;
2620 return 0;
2622 err_put:
2623 amd64_free_mc_sibling_devices(pvt);
2625 err_free:
2626 kfree(pvt);
2628 err_exit:
2629 return ret;
2633 * This is the finishing stage of the init code. Needs to be performed after all
2634 * MCs' hardware have been prepped for accessing extended config space.
2636 static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
2638 int node_id = pvt->mc_node_id;
2639 struct mem_ctl_info *mci;
2640 int ret = -ENODEV;
2642 amd64_read_mc_registers(pvt);
2645 * We need to determine how many memory channels there are. Then use
2646 * that information for calculating the size of the dynamic instance
2647 * tables in the 'mci' structure
2649 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2650 if (pvt->channel_count < 0)
2651 goto err_exit;
2653 ret = -ENOMEM;
2654 mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, node_id);
2655 if (!mci)
2656 goto err_exit;
2658 mci->pvt_info = pvt;
2660 mci->dev = &pvt->F2->dev;
2661 amd64_setup_mci_misc_attributes(mci);
2663 if (amd64_init_csrows(mci))
2664 mci->edac_cap = EDAC_FLAG_NONE;
2666 amd64_enable_ecc_error_reporting(mci);
2667 amd64_set_mc_sysfs_attributes(mci);
2669 ret = -ENODEV;
2670 if (edac_mc_add_mc(mci)) {
2671 debugf1("failed edac_mc_add_mc()\n");
2672 goto err_add_mc;
2675 mci_lookup[node_id] = mci;
2676 pvt_lookup[node_id] = NULL;
2678 /* register stuff with EDAC MCE */
2679 if (report_gart_errors)
2680 amd_report_gart_errors(true);
2682 amd_register_ecc_decoder(amd64_decode_bus_error);
2684 return 0;
2686 err_add_mc:
2687 edac_mc_free(mci);
2689 err_exit:
2690 debugf0("failure to init 2nd stage: ret=%d\n", ret);
2692 amd64_restore_ecc_error_reporting(pvt);
2694 if (boot_cpu_data.x86 > 0xf)
2695 amd64_teardown(pvt);
2697 amd64_free_mc_sibling_devices(pvt);
2699 kfree(pvt_lookup[pvt->mc_node_id]);
2700 pvt_lookup[node_id] = NULL;
2702 return ret;
2706 static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
2707 const struct pci_device_id *mc_type)
2709 int ret = 0;
2711 ret = pci_enable_device(pdev);
2712 if (ret < 0) {
2713 debugf0("ret=%d\n", ret);
2714 return -EIO;
2717 ret = amd64_probe_one_instance(pdev);
2718 if (ret < 0)
2719 amd64_err("Error probing instance: %d\n", get_node_id(pdev));
2721 return ret;
2724 static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2726 struct mem_ctl_info *mci;
2727 struct amd64_pvt *pvt;
2729 /* Remove from EDAC CORE tracking list */
2730 mci = edac_mc_del_mc(&pdev->dev);
2731 if (!mci)
2732 return;
2734 pvt = mci->pvt_info;
2736 amd64_restore_ecc_error_reporting(pvt);
2738 if (boot_cpu_data.x86 > 0xf)
2739 amd64_teardown(pvt);
2741 amd64_free_mc_sibling_devices(pvt);
2743 /* unregister from EDAC MCE */
2744 amd_report_gart_errors(false);
2745 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2747 /* Free the EDAC CORE resources */
2748 mci->pvt_info = NULL;
2749 mci_lookup[pvt->mc_node_id] = NULL;
2751 kfree(pvt);
2752 edac_mc_free(mci);
2756 * This table is part of the interface for loading drivers for PCI devices. The
2757 * PCI core identifies what devices are on a system during boot, and then
2758 * inquiry this table to see if this driver is for a given device found.
2760 static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2762 .vendor = PCI_VENDOR_ID_AMD,
2763 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2764 .subvendor = PCI_ANY_ID,
2765 .subdevice = PCI_ANY_ID,
2766 .class = 0,
2767 .class_mask = 0,
2770 .vendor = PCI_VENDOR_ID_AMD,
2771 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2772 .subvendor = PCI_ANY_ID,
2773 .subdevice = PCI_ANY_ID,
2774 .class = 0,
2775 .class_mask = 0,
2777 {0, }
2779 MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2781 static struct pci_driver amd64_pci_driver = {
2782 .name = EDAC_MOD_STR,
2783 .probe = amd64_init_one_instance,
2784 .remove = __devexit_p(amd64_remove_one_instance),
2785 .id_table = amd64_pci_table,
2788 static void amd64_setup_pci_device(void)
2790 struct mem_ctl_info *mci;
2791 struct amd64_pvt *pvt;
2793 if (amd64_ctl_pci)
2794 return;
2796 mci = mci_lookup[0];
2797 if (mci) {
2799 pvt = mci->pvt_info;
2800 amd64_ctl_pci =
2801 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2803 if (!amd64_ctl_pci) {
2804 pr_warning("%s(): Unable to create PCI control\n",
2805 __func__);
2807 pr_warning("%s(): PCI error report via EDAC not set\n",
2808 __func__);
2813 static int __init amd64_edac_init(void)
2815 int nb, err = -ENODEV;
2816 bool load_ok = false;
2818 edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
2820 opstate_init();
2822 if (amd_cache_northbridges() < 0)
2823 goto err_ret;
2825 msrs = msrs_alloc();
2826 if (!msrs)
2827 goto err_ret;
2829 err = pci_register_driver(&amd64_pci_driver);
2830 if (err)
2831 goto err_pci;
2834 * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
2835 * amd64_pvt structs. These will be used in the 2nd stage init function
2836 * to finish initialization of the MC instances.
2838 err = -ENODEV;
2839 for (nb = 0; nb < amd_nb_num(); nb++) {
2840 if (!pvt_lookup[nb])
2841 continue;
2843 err = amd64_init_2nd_stage(pvt_lookup[nb]);
2844 if (err)
2845 goto err_2nd_stage;
2847 load_ok = true;
2850 if (load_ok) {
2851 amd64_setup_pci_device();
2852 return 0;
2855 err_2nd_stage:
2856 pci_unregister_driver(&amd64_pci_driver);
2857 err_pci:
2858 msrs_free(msrs);
2859 msrs = NULL;
2860 err_ret:
2861 return err;
2864 static void __exit amd64_edac_exit(void)
2866 if (amd64_ctl_pci)
2867 edac_pci_release_generic_ctl(amd64_ctl_pci);
2869 pci_unregister_driver(&amd64_pci_driver);
2871 msrs_free(msrs);
2872 msrs = NULL;
2875 module_init(amd64_edac_init);
2876 module_exit(amd64_edac_exit);
2878 MODULE_LICENSE("GPL");
2879 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2880 "Dave Peterson, Thayne Harbaugh");
2881 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2882 EDAC_AMD64_VERSION);
2884 module_param(edac_op_state, int, 0444);
2885 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");