2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 * The full GNU General Public License is iin this distribution in the
23 * file called COPYING.
25 * Documentation: ARM DDI 0196G == PL080
26 * Documentation: ARM DDI 0218E == PL081
28 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to
31 * The PL080 has 8 channels available for simultaneous use, and the PL081
32 * has only two channels. So on these DMA controllers the number of channels
33 * and the number of incoming DMA signals are two totally different things.
34 * It is usually not possible to theoretically handle all physical signals,
35 * so a multiplexing scheme with possible denial of use is necessary.
37 * The PL080 has a dual bus master, PL081 has a single master.
39 * Memory to peripheral transfer may be visualized as
40 * Get data from memory to DMAC
42 * On burst request from peripheral
43 * Destination burst from DMAC to peripheral
45 * Raise terminal count interrupt
47 * For peripherals with a FIFO:
48 * Source burst size == half the depth of the peripheral FIFO
49 * Destination burst size == the depth of the peripheral FIFO
51 * (Bursts are irrelevant for mem to mem transfers - there are no burst
52 * signals, the DMA controller will simply facilitate its AHB master.)
54 * ASSUMES default (little) endianness for DMA transfers
56 * Only DMAC flow control is implemented
59 * - Break out common code from arch/arm/mach-s3c64xx and share
61 #include <linux/device.h>
62 #include <linux/init.h>
63 #include <linux/module.h>
64 #include <linux/pci.h>
65 #include <linux/interrupt.h>
66 #include <linux/slab.h>
67 #include <linux/dmapool.h>
68 #include <linux/amba/bus.h>
69 #include <linux/dmaengine.h>
70 #include <linux/amba/pl08x.h>
71 #include <linux/debugfs.h>
72 #include <linux/seq_file.h>
74 #include <asm/hardware/pl080.h>
76 #include <asm/mach/dma.h>
77 #include <asm/atomic.h>
78 #include <asm/processor.h>
79 #include <asm/cacheflush.h>
81 #define DRIVER_NAME "pl08xdmac"
84 * struct vendor_data - vendor-specific config parameters
86 * @name: the name of this specific variant
87 * @channels: the number of channels available in this variant
88 * @dualmaster: whether this version supports dual AHB masters
98 * PL08X private data structures
99 * An LLI struct - see pl08x TRM
100 * Note that next uses bit[0] as a bus bit,
101 * start & end do not - their bus bit info
112 * struct pl08x_driver_data - the local state holder for the PL08x
113 * @slave: slave engine for this instance
114 * @memcpy: memcpy engine for this instance
115 * @base: virtual memory base (remapped) for the PL08x
116 * @adev: the corresponding AMBA (PrimeCell) bus entry
117 * @vd: vendor data for this PL08x variant
118 * @pd: platform data passed in from the platform/machine
119 * @phy_chans: array of data for the physical channels
120 * @pool: a pool for the LLI descriptors
121 * @pool_ctr: counter of LLIs in the pool
122 * @lock: a spinlock for this struct
124 struct pl08x_driver_data
{
125 struct dma_device slave
;
126 struct dma_device memcpy
;
128 struct amba_device
*adev
;
129 struct vendor_data
*vd
;
130 struct pl08x_platform_data
*pd
;
131 struct pl08x_phy_chan
*phy_chans
;
132 struct dma_pool
*pool
;
138 * PL08X specific defines
142 * Memory boundaries: the manual for PL08x says that the controller
143 * cannot read past a 1KiB boundary, so these defines are used to
144 * create transfer LLIs that do not cross such boundaries.
146 #define PL08X_BOUNDARY_SHIFT (10) /* 1KB 0x400 */
147 #define PL08X_BOUNDARY_SIZE (1 << PL08X_BOUNDARY_SHIFT)
149 /* Minimum period between work queue runs */
150 #define PL08X_WQ_PERIODMIN 20
152 /* Size (bytes) of each LLI buffer allocated for one transfer */
153 # define PL08X_LLI_TSFR_SIZE 0x2000
155 /* Maximimum times we call dma_pool_alloc on this pool without freeing */
156 #define PL08X_MAX_ALLOCS 0x40
157 #define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct lli))
158 #define PL08X_ALIGN 8
160 static inline struct pl08x_dma_chan
*to_pl08x_chan(struct dma_chan
*chan
)
162 return container_of(chan
, struct pl08x_dma_chan
, chan
);
166 * Physical channel handling
169 /* Whether a certain channel is busy or not */
170 static int pl08x_phy_channel_busy(struct pl08x_phy_chan
*ch
)
174 val
= readl(ch
->base
+ PL080_CH_CONFIG
);
175 return val
& PL080_CONFIG_ACTIVE
;
179 * Set the initial DMA register values i.e. those for the first LLI
180 * The next lli pointer and the configuration interrupt bit have
181 * been set when the LLIs were constructed
183 static void pl08x_set_cregs(struct pl08x_driver_data
*pl08x
,
184 struct pl08x_phy_chan
*ch
)
186 /* Wait for channel inactive */
187 while (pl08x_phy_channel_busy(ch
))
190 dev_vdbg(&pl08x
->adev
->dev
,
191 "WRITE channel %d: csrc=%08x, cdst=%08x, "
192 "cctl=%08x, clli=%08x, ccfg=%08x\n",
200 writel(ch
->csrc
, ch
->base
+ PL080_CH_SRC_ADDR
);
201 writel(ch
->cdst
, ch
->base
+ PL080_CH_DST_ADDR
);
202 writel(ch
->clli
, ch
->base
+ PL080_CH_LLI
);
203 writel(ch
->cctl
, ch
->base
+ PL080_CH_CONTROL
);
204 writel(ch
->ccfg
, ch
->base
+ PL080_CH_CONFIG
);
207 static inline void pl08x_config_phychan_for_txd(struct pl08x_dma_chan
*plchan
)
209 struct pl08x_channel_data
*cd
= plchan
->cd
;
210 struct pl08x_phy_chan
*phychan
= plchan
->phychan
;
211 struct pl08x_txd
*txd
= plchan
->at
;
213 /* Copy the basic control register calculated at transfer config */
214 phychan
->csrc
= txd
->csrc
;
215 phychan
->cdst
= txd
->cdst
;
216 phychan
->clli
= txd
->clli
;
217 phychan
->cctl
= txd
->cctl
;
219 /* Assign the signal to the proper control registers */
220 phychan
->ccfg
= cd
->ccfg
;
221 phychan
->ccfg
&= ~PL080_CONFIG_SRC_SEL_MASK
;
222 phychan
->ccfg
&= ~PL080_CONFIG_DST_SEL_MASK
;
223 /* If it wasn't set from AMBA, ignore it */
224 if (txd
->direction
== DMA_TO_DEVICE
)
225 /* Select signal as destination */
227 (phychan
->signal
<< PL080_CONFIG_DST_SEL_SHIFT
);
228 else if (txd
->direction
== DMA_FROM_DEVICE
)
229 /* Select signal as source */
231 (phychan
->signal
<< PL080_CONFIG_SRC_SEL_SHIFT
);
232 /* Always enable error interrupts */
233 phychan
->ccfg
|= PL080_CONFIG_ERR_IRQ_MASK
;
234 /* Always enable terminal interrupts */
235 phychan
->ccfg
|= PL080_CONFIG_TC_IRQ_MASK
;
239 * Enable the DMA channel
240 * Assumes all other configuration bits have been set
241 * as desired before this code is called
243 static void pl08x_enable_phy_chan(struct pl08x_driver_data
*pl08x
,
244 struct pl08x_phy_chan
*ch
)
249 * Do not access config register until channel shows as disabled
251 while (readl(pl08x
->base
+ PL080_EN_CHAN
) & (1 << ch
->id
))
255 * Do not access config register until channel shows as inactive
257 val
= readl(ch
->base
+ PL080_CH_CONFIG
);
258 while ((val
& PL080_CONFIG_ACTIVE
) || (val
& PL080_CONFIG_ENABLE
))
259 val
= readl(ch
->base
+ PL080_CH_CONFIG
);
261 writel(val
| PL080_CONFIG_ENABLE
, ch
->base
+ PL080_CH_CONFIG
);
265 * Overall DMAC remains enabled always.
267 * Disabling individual channels could lose data.
269 * Disable the peripheral DMA after disabling the DMAC
270 * in order to allow the DMAC FIFO to drain, and
271 * hence allow the channel to show inactive
274 static void pl08x_pause_phy_chan(struct pl08x_phy_chan
*ch
)
278 /* Set the HALT bit and wait for the FIFO to drain */
279 val
= readl(ch
->base
+ PL080_CH_CONFIG
);
280 val
|= PL080_CONFIG_HALT
;
281 writel(val
, ch
->base
+ PL080_CH_CONFIG
);
283 /* Wait for channel inactive */
284 while (pl08x_phy_channel_busy(ch
))
288 static void pl08x_resume_phy_chan(struct pl08x_phy_chan
*ch
)
292 /* Clear the HALT bit */
293 val
= readl(ch
->base
+ PL080_CH_CONFIG
);
294 val
&= ~PL080_CONFIG_HALT
;
295 writel(val
, ch
->base
+ PL080_CH_CONFIG
);
299 /* Stops the channel */
300 static void pl08x_stop_phy_chan(struct pl08x_phy_chan
*ch
)
304 pl08x_pause_phy_chan(ch
);
306 /* Disable channel */
307 val
= readl(ch
->base
+ PL080_CH_CONFIG
);
308 val
&= ~PL080_CONFIG_ENABLE
;
309 val
&= ~PL080_CONFIG_ERR_IRQ_MASK
;
310 val
&= ~PL080_CONFIG_TC_IRQ_MASK
;
311 writel(val
, ch
->base
+ PL080_CH_CONFIG
);
314 static inline u32
get_bytes_in_cctl(u32 cctl
)
316 /* The source width defines the number of bytes */
317 u32 bytes
= cctl
& PL080_CONTROL_TRANSFER_SIZE_MASK
;
319 switch (cctl
>> PL080_CONTROL_SWIDTH_SHIFT
) {
320 case PL080_WIDTH_8BIT
:
322 case PL080_WIDTH_16BIT
:
325 case PL080_WIDTH_32BIT
:
332 /* The channel should be paused when calling this */
333 static u32
pl08x_getbytes_chan(struct pl08x_dma_chan
*plchan
)
335 struct pl08x_phy_chan
*ch
;
336 struct pl08x_txd
*txdi
= NULL
;
337 struct pl08x_txd
*txd
;
341 spin_lock_irqsave(&plchan
->lock
, flags
);
343 ch
= plchan
->phychan
;
347 * Next follow the LLIs to get the number of pending bytes in the
348 * currently active transaction.
351 struct lli
*llis_va
= txd
->llis_va
;
352 struct lli
*llis_bus
= (struct lli
*) txd
->llis_bus
;
353 u32 clli
= readl(ch
->base
+ PL080_CH_LLI
);
355 /* First get the bytes in the current active LLI */
356 bytes
= get_bytes_in_cctl(readl(ch
->base
+ PL080_CH_CONTROL
));
361 /* Forward to the LLI pointed to by clli */
362 while ((clli
!= (u32
) &(llis_bus
[i
])) &&
363 (i
< MAX_NUM_TSFR_LLIS
))
367 bytes
+= get_bytes_in_cctl(llis_va
[i
].cctl
);
369 * A clli of 0x00000000 will terminate the
372 clli
= llis_va
[i
].next
;
378 /* Sum up all queued transactions */
379 if (!list_empty(&plchan
->desc_list
)) {
380 list_for_each_entry(txdi
, &plchan
->desc_list
, node
) {
386 spin_unlock_irqrestore(&plchan
->lock
, flags
);
392 * Allocate a physical channel for a virtual channel
394 static struct pl08x_phy_chan
*
395 pl08x_get_phy_channel(struct pl08x_driver_data
*pl08x
,
396 struct pl08x_dma_chan
*virt_chan
)
398 struct pl08x_phy_chan
*ch
= NULL
;
403 * Try to locate a physical channel to be used for
404 * this transfer. If all are taken return NULL and
405 * the requester will have to cope by using some fallback
406 * PIO mode or retrying later.
408 for (i
= 0; i
< pl08x
->vd
->channels
; i
++) {
409 ch
= &pl08x
->phy_chans
[i
];
411 spin_lock_irqsave(&ch
->lock
, flags
);
414 ch
->serving
= virt_chan
;
416 spin_unlock_irqrestore(&ch
->lock
, flags
);
420 spin_unlock_irqrestore(&ch
->lock
, flags
);
423 if (i
== pl08x
->vd
->channels
) {
424 /* No physical channel available, cope with it */
431 static inline void pl08x_put_phy_channel(struct pl08x_driver_data
*pl08x
,
432 struct pl08x_phy_chan
*ch
)
436 /* Stop the channel and clear its interrupts */
437 pl08x_stop_phy_chan(ch
);
438 writel((1 << ch
->id
), pl08x
->base
+ PL080_ERR_CLEAR
);
439 writel((1 << ch
->id
), pl08x
->base
+ PL080_TC_CLEAR
);
441 /* Mark it as free */
442 spin_lock_irqsave(&ch
->lock
, flags
);
444 spin_unlock_irqrestore(&ch
->lock
, flags
);
451 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded
)
454 case PL080_WIDTH_8BIT
:
456 case PL080_WIDTH_16BIT
:
458 case PL080_WIDTH_32BIT
:
467 static inline u32
pl08x_cctl_bits(u32 cctl
, u8 srcwidth
, u8 dstwidth
,
472 /* Remove all src, dst and transfersize bits */
473 retbits
&= ~PL080_CONTROL_DWIDTH_MASK
;
474 retbits
&= ~PL080_CONTROL_SWIDTH_MASK
;
475 retbits
&= ~PL080_CONTROL_TRANSFER_SIZE_MASK
;
477 /* Then set the bits according to the parameters */
480 retbits
|= PL080_WIDTH_8BIT
<< PL080_CONTROL_SWIDTH_SHIFT
;
483 retbits
|= PL080_WIDTH_16BIT
<< PL080_CONTROL_SWIDTH_SHIFT
;
486 retbits
|= PL080_WIDTH_32BIT
<< PL080_CONTROL_SWIDTH_SHIFT
;
495 retbits
|= PL080_WIDTH_8BIT
<< PL080_CONTROL_DWIDTH_SHIFT
;
498 retbits
|= PL080_WIDTH_16BIT
<< PL080_CONTROL_DWIDTH_SHIFT
;
501 retbits
|= PL080_WIDTH_32BIT
<< PL080_CONTROL_DWIDTH_SHIFT
;
508 retbits
|= tsize
<< PL080_CONTROL_TRANSFER_SIZE_SHIFT
;
513 * Autoselect a master bus to use for the transfer
514 * this prefers the destination bus if both available
515 * if fixed address on one bus the other will be chosen
517 void pl08x_choose_master_bus(struct pl08x_bus_data
*src_bus
,
518 struct pl08x_bus_data
*dst_bus
, struct pl08x_bus_data
**mbus
,
519 struct pl08x_bus_data
**sbus
, u32 cctl
)
521 if (!(cctl
& PL080_CONTROL_DST_INCR
)) {
524 } else if (!(cctl
& PL080_CONTROL_SRC_INCR
)) {
528 if (dst_bus
->buswidth
== 4) {
531 } else if (src_bus
->buswidth
== 4) {
534 } else if (dst_bus
->buswidth
== 2) {
537 } else if (src_bus
->buswidth
== 2) {
541 /* src_bus->buswidth == 1 */
549 * Fills in one LLI for a certain transfer descriptor
550 * and advance the counter
552 int pl08x_fill_lli_for_desc(struct pl08x_driver_data
*pl08x
,
553 struct pl08x_txd
*txd
, int num_llis
, int len
,
554 u32 cctl
, u32
*remainder
)
556 struct lli
*llis_va
= txd
->llis_va
;
557 struct lli
*llis_bus
= (struct lli
*) txd
->llis_bus
;
559 BUG_ON(num_llis
>= MAX_NUM_TSFR_LLIS
);
561 llis_va
[num_llis
].cctl
= cctl
;
562 llis_va
[num_llis
].src
= txd
->srcbus
.addr
;
563 llis_va
[num_llis
].dst
= txd
->dstbus
.addr
;
566 * On versions with dual masters, you can optionally AND on
567 * PL080_LLI_LM_AHB2 to the LLI to tell the hardware to read
568 * in new LLIs with that controller, but we always try to
569 * choose AHB1 to point into memory. The idea is to have AHB2
570 * fixed on the peripheral and AHB1 messing around in the
571 * memory. So we don't manipulate this bit currently.
574 llis_va
[num_llis
].next
=
575 (dma_addr_t
)((u32
) &(llis_bus
[num_llis
+ 1]));
577 if (cctl
& PL080_CONTROL_SRC_INCR
)
578 txd
->srcbus
.addr
+= len
;
579 if (cctl
& PL080_CONTROL_DST_INCR
)
580 txd
->dstbus
.addr
+= len
;
588 * Return number of bytes to fill to boundary, or len
590 static inline u32
pl08x_pre_boundary(u32 addr
, u32 len
)
594 boundary
= ((addr
>> PL08X_BOUNDARY_SHIFT
) + 1)
595 << PL08X_BOUNDARY_SHIFT
;
597 if (boundary
< addr
+ len
)
598 return boundary
- addr
;
604 * This fills in the table of LLIs for the transfer descriptor
605 * Note that we assume we never have to change the burst sizes
608 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data
*pl08x
,
609 struct pl08x_txd
*txd
)
611 struct pl08x_channel_data
*cd
= txd
->cd
;
612 struct pl08x_bus_data
*mbus
, *sbus
;
616 int max_bytes_per_lli
;
619 struct lli
*llis_bus
;
622 dev_err(&pl08x
->adev
->dev
, "%s no descriptor\n", __func__
);
626 txd
->llis_va
= dma_pool_alloc(pl08x
->pool
, GFP_NOWAIT
,
629 dev_err(&pl08x
->adev
->dev
, "%s no memory for llis\n", __func__
);
636 * Initialize bus values for this transfer
637 * from the passed optimal values
640 dev_err(&pl08x
->adev
->dev
, "%s no channel data\n", __func__
);
644 /* Get the default CCTL from the platform data */
648 * On the PL080 we have two bus masters and we
649 * should select one for source and one for
650 * destination. We try to use AHB2 for the
651 * bus which does not increment (typically the
652 * peripheral) else we just choose something.
654 cctl
&= ~(PL080_CONTROL_DST_AHB2
| PL080_CONTROL_SRC_AHB2
);
655 if (pl08x
->vd
->dualmaster
) {
656 if (cctl
& PL080_CONTROL_SRC_INCR
)
657 /* Source increments, use AHB2 for destination */
658 cctl
|= PL080_CONTROL_DST_AHB2
;
659 else if (cctl
& PL080_CONTROL_DST_INCR
)
660 /* Destination increments, use AHB2 for source */
661 cctl
|= PL080_CONTROL_SRC_AHB2
;
663 /* Just pick something, source AHB1 dest AHB2 */
664 cctl
|= PL080_CONTROL_DST_AHB2
;
667 /* Find maximum width of the source bus */
668 txd
->srcbus
.maxwidth
=
669 pl08x_get_bytes_for_cctl((cctl
& PL080_CONTROL_SWIDTH_MASK
) >>
670 PL080_CONTROL_SWIDTH_SHIFT
);
672 /* Find maximum width of the destination bus */
673 txd
->dstbus
.maxwidth
=
674 pl08x_get_bytes_for_cctl((cctl
& PL080_CONTROL_DWIDTH_MASK
) >>
675 PL080_CONTROL_DWIDTH_SHIFT
);
677 /* Set up the bus widths to the maximum */
678 txd
->srcbus
.buswidth
= txd
->srcbus
.maxwidth
;
679 txd
->dstbus
.buswidth
= txd
->dstbus
.maxwidth
;
680 dev_vdbg(&pl08x
->adev
->dev
,
681 "%s source bus is %d bytes wide, dest bus is %d bytes wide\n",
682 __func__
, txd
->srcbus
.buswidth
, txd
->dstbus
.buswidth
);
686 * Bytes transferred == tsize * MIN(buswidths), not max(buswidths)
688 max_bytes_per_lli
= min(txd
->srcbus
.buswidth
, txd
->dstbus
.buswidth
) *
689 PL080_CONTROL_TRANSFER_SIZE_MASK
;
690 dev_vdbg(&pl08x
->adev
->dev
,
691 "%s max bytes per lli = %d\n",
692 __func__
, max_bytes_per_lli
);
694 /* We need to count this down to zero */
695 remainder
= txd
->len
;
696 dev_vdbg(&pl08x
->adev
->dev
,
697 "%s remainder = %d\n",
698 __func__
, remainder
);
701 * Choose bus to align to
702 * - prefers destination bus if both available
703 * - if fixed address on one bus chooses other
704 * - modifies cctl to choose an apropriate master
706 pl08x_choose_master_bus(&txd
->srcbus
, &txd
->dstbus
,
711 * The lowest bit of the LLI register
712 * is also used to indicate which master to
713 * use for reading the LLIs.
716 if (txd
->len
< mbus
->buswidth
) {
718 * Less than a bus width available
719 * - send as single bytes
722 dev_vdbg(&pl08x
->adev
->dev
,
723 "%s single byte LLIs for a transfer of "
724 "less than a bus width (remain %08x)\n",
725 __func__
, remainder
);
726 cctl
= pl08x_cctl_bits(cctl
, 1, 1, 1);
728 pl08x_fill_lli_for_desc(pl08x
, txd
, num_llis
, 1,
734 * Make one byte LLIs until master bus is aligned
735 * - slave will then be aligned also
737 while ((mbus
->addr
) % (mbus
->buswidth
)) {
738 dev_vdbg(&pl08x
->adev
->dev
,
739 "%s adjustment lli for less than bus width "
741 __func__
, remainder
);
742 cctl
= pl08x_cctl_bits(cctl
, 1, 1, 1);
743 num_llis
= pl08x_fill_lli_for_desc
744 (pl08x
, txd
, num_llis
, 1, cctl
, &remainder
);
750 * - if slave is not then we must set its width down
752 if (sbus
->addr
% sbus
->buswidth
) {
753 dev_dbg(&pl08x
->adev
->dev
,
754 "%s set down bus width to one byte\n",
761 * Make largest possible LLIs until less than one bus
764 while (remainder
> (mbus
->buswidth
- 1)) {
765 int lli_len
, target_len
;
770 * If enough left try to send max possible,
771 * otherwise try to send the remainder
773 target_len
= remainder
;
774 if (remainder
> max_bytes_per_lli
)
775 target_len
= max_bytes_per_lli
;
778 * Set bus lengths for incrementing busses
779 * to number of bytes which fill to next memory
782 if (cctl
& PL080_CONTROL_SRC_INCR
)
783 txd
->srcbus
.fill_bytes
=
788 txd
->srcbus
.fill_bytes
=
791 if (cctl
& PL080_CONTROL_DST_INCR
)
792 txd
->dstbus
.fill_bytes
=
797 txd
->dstbus
.fill_bytes
=
803 lli_len
= min(txd
->srcbus
.fill_bytes
,
804 txd
->dstbus
.fill_bytes
);
806 BUG_ON(lli_len
> remainder
);
809 dev_err(&pl08x
->adev
->dev
,
810 "%s lli_len is %d, <= 0\n",
815 if (lli_len
== target_len
) {
817 * Can send what we wanted
822 lli_len
= (lli_len
/mbus
->buswidth
) *
827 * So now we know how many bytes to transfer
828 * to get to the nearest boundary
829 * The next lli will past the boundary
830 * - however we may be working to a boundary
832 * We need to ensure the master stays aligned
834 odd_bytes
= lli_len
% mbus
->buswidth
;
836 * - and that we are working in multiples
839 lli_len
-= odd_bytes
;
845 * Check against minimum bus alignment:
846 * Calculate actual transfer size in relation
847 * to bus width an get a maximum remainder of
848 * the smallest bus width - 1
850 /* FIXME: use round_down()? */
851 tsize
= lli_len
/ min(mbus
->buswidth
,
853 lli_len
= tsize
* min(mbus
->buswidth
,
856 if (target_len
!= lli_len
) {
857 dev_vdbg(&pl08x
->adev
->dev
,
858 "%s can't send what we want. Desired %08x, lli of %08x bytes in txd of %08x\n",
859 __func__
, target_len
, lli_len
, txd
->len
);
862 cctl
= pl08x_cctl_bits(cctl
,
863 txd
->srcbus
.buswidth
,
864 txd
->dstbus
.buswidth
,
867 dev_vdbg(&pl08x
->adev
->dev
,
868 "%s fill lli with single lli chunk of size %08x (remainder %08x)\n",
869 __func__
, lli_len
, remainder
);
870 num_llis
= pl08x_fill_lli_for_desc(pl08x
, txd
,
871 num_llis
, lli_len
, cctl
,
873 total_bytes
+= lli_len
;
879 * Creep past the boundary,
880 * maintaining master alignment
883 for (j
= 0; (j
< mbus
->buswidth
)
884 && (remainder
); j
++) {
885 cctl
= pl08x_cctl_bits(cctl
, 1, 1, 1);
886 dev_vdbg(&pl08x
->adev
->dev
,
887 "%s align with boundardy, single byte (remain %08x)\n",
888 __func__
, remainder
);
890 pl08x_fill_lli_for_desc(pl08x
,
902 dev_err(&pl08x
->adev
->dev
, "%s remainder not fitted 0x%08x bytes\n",
903 __func__
, remainder
);
908 cctl
= pl08x_cctl_bits(cctl
, 1, 1, 1);
909 dev_vdbg(&pl08x
->adev
->dev
,
910 "%s align with boundardy, single odd byte (remain %d)\n",
911 __func__
, remainder
);
912 num_llis
= pl08x_fill_lli_for_desc(pl08x
, txd
, num_llis
,
913 1, cctl
, &remainder
);
917 if (total_bytes
!= txd
->len
) {
918 dev_err(&pl08x
->adev
->dev
,
919 "%s size of encoded lli:s don't match total txd, transferred 0x%08x from size 0x%08x\n",
920 __func__
, total_bytes
, txd
->len
);
924 if (num_llis
>= MAX_NUM_TSFR_LLIS
) {
925 dev_err(&pl08x
->adev
->dev
,
926 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
927 __func__
, (u32
) MAX_NUM_TSFR_LLIS
);
931 * Decide whether this is a loop or a terminated transfer
933 llis_va
= txd
->llis_va
;
934 llis_bus
= (struct lli
*) txd
->llis_bus
;
936 if (cd
->circular_buffer
) {
938 * Loop the circular buffer so that the next element
939 * points back to the beginning of the LLI.
941 llis_va
[num_llis
- 1].next
=
942 (dma_addr_t
)((unsigned int)&(llis_bus
[0]));
945 * On non-circular buffers, the final LLI terminates
948 llis_va
[num_llis
- 1].next
= 0;
950 * The final LLI element shall also fire an interrupt
952 llis_va
[num_llis
- 1].cctl
|= PL080_CONTROL_TC_IRQ_EN
;
955 /* Now store the channel register values */
956 txd
->csrc
= llis_va
[0].src
;
957 txd
->cdst
= llis_va
[0].dst
;
959 txd
->clli
= llis_va
[0].next
;
963 txd
->cctl
= llis_va
[0].cctl
;
964 /* ccfg will be set at physical channel allocation time */
970 for (i
= 0; i
< num_llis
; i
++) {
971 dev_vdbg(&pl08x
->adev
->dev
,
972 "lli %d @%p: csrc=%08x, cdst=%08x, cctl=%08x, clli=%08x\n",
987 /* You should call this with the struct pl08x lock held */
988 static void pl08x_free_txd(struct pl08x_driver_data
*pl08x
,
989 struct pl08x_txd
*txd
)
992 dev_err(&pl08x
->adev
->dev
,
993 "%s no descriptor to free\n",
997 dma_pool_free(pl08x
->pool
, txd
->llis_va
,
1005 static void pl08x_free_txd_list(struct pl08x_driver_data
*pl08x
,
1006 struct pl08x_dma_chan
*plchan
)
1008 struct pl08x_txd
*txdi
= NULL
;
1009 struct pl08x_txd
*next
;
1011 if (!list_empty(&plchan
->desc_list
)) {
1012 list_for_each_entry_safe(txdi
,
1013 next
, &plchan
->desc_list
, node
) {
1014 list_del(&txdi
->node
);
1015 pl08x_free_txd(pl08x
, txdi
);
1022 * The DMA ENGINE API
1024 static int pl08x_alloc_chan_resources(struct dma_chan
*chan
)
1029 static void pl08x_free_chan_resources(struct dma_chan
*chan
)
1034 * This should be called with the channel plchan->lock held
1036 static int prep_phy_channel(struct pl08x_dma_chan
*plchan
,
1037 struct pl08x_txd
*txd
)
1039 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1040 struct pl08x_phy_chan
*ch
;
1043 /* Check if we already have a channel */
1044 if (plchan
->phychan
)
1047 ch
= pl08x_get_phy_channel(pl08x
, plchan
);
1049 /* No physical channel available, cope with it */
1050 dev_dbg(&pl08x
->adev
->dev
, "no physical channel available for xfer on %s\n", plchan
->name
);
1055 * OK we have a physical channel: for memcpy() this is all we
1056 * need, but for slaves the physical signals may be muxed!
1057 * Can the platform allow us to use this channel?
1059 if (plchan
->slave
&&
1061 pl08x
->pd
->get_signal
) {
1062 ret
= pl08x
->pd
->get_signal(plchan
);
1064 dev_dbg(&pl08x
->adev
->dev
,
1065 "unable to use physical channel %d for transfer on %s due to platform restrictions\n",
1066 ch
->id
, plchan
->name
);
1067 /* Release physical channel & return */
1068 pl08x_put_phy_channel(pl08x
, ch
);
1074 dev_dbg(&pl08x
->adev
->dev
, "allocated physical channel %d and signal %d for xfer on %s\n",
1079 plchan
->phychan
= ch
;
1084 static dma_cookie_t
pl08x_tx_submit(struct dma_async_tx_descriptor
*tx
)
1086 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(tx
->chan
);
1088 atomic_inc(&plchan
->last_issued
);
1089 tx
->cookie
= atomic_read(&plchan
->last_issued
);
1090 /* This unlock follows the lock in the prep() function */
1091 spin_unlock_irqrestore(&plchan
->lock
, plchan
->lockflags
);
1096 static struct dma_async_tx_descriptor
*pl08x_prep_dma_interrupt(
1097 struct dma_chan
*chan
, unsigned long flags
)
1099 struct dma_async_tx_descriptor
*retval
= NULL
;
1105 * Code accessing dma_async_is_complete() in a tight loop
1106 * may give problems - could schedule where indicated.
1107 * If slaves are relying on interrupts to signal completion this
1108 * function must not be called with interrupts disabled
1110 static enum dma_status
1111 pl08x_dma_tx_status(struct dma_chan
*chan
,
1112 dma_cookie_t cookie
,
1113 struct dma_tx_state
*txstate
)
1115 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1116 dma_cookie_t last_used
;
1117 dma_cookie_t last_complete
;
1118 enum dma_status ret
;
1121 last_used
= atomic_read(&plchan
->last_issued
);
1122 last_complete
= plchan
->lc
;
1124 ret
= dma_async_is_complete(cookie
, last_complete
, last_used
);
1125 if (ret
== DMA_SUCCESS
) {
1126 dma_set_tx_state(txstate
, last_complete
, last_used
, 0);
1131 * schedule(); could be inserted here
1135 * This cookie not complete yet
1137 last_used
= atomic_read(&plchan
->last_issued
);
1138 last_complete
= plchan
->lc
;
1140 /* Get number of bytes left in the active transactions and queue */
1141 bytesleft
= pl08x_getbytes_chan(plchan
);
1143 dma_set_tx_state(txstate
, last_complete
, last_used
,
1146 if (plchan
->state
== PL08X_CHAN_PAUSED
)
1149 /* Whether waiting or running, we're in progress */
1150 return DMA_IN_PROGRESS
;
1153 /* PrimeCell DMA extension */
1154 struct burst_table
{
1159 static const struct burst_table burst_sizes
[] = {
1162 .reg
= (PL080_BSIZE_256
<< PL080_CONTROL_SB_SIZE_SHIFT
) |
1163 (PL080_BSIZE_256
<< PL080_CONTROL_DB_SIZE_SHIFT
),
1167 .reg
= (PL080_BSIZE_128
<< PL080_CONTROL_SB_SIZE_SHIFT
) |
1168 (PL080_BSIZE_128
<< PL080_CONTROL_DB_SIZE_SHIFT
),
1172 .reg
= (PL080_BSIZE_64
<< PL080_CONTROL_SB_SIZE_SHIFT
) |
1173 (PL080_BSIZE_64
<< PL080_CONTROL_DB_SIZE_SHIFT
),
1177 .reg
= (PL080_BSIZE_32
<< PL080_CONTROL_SB_SIZE_SHIFT
) |
1178 (PL080_BSIZE_32
<< PL080_CONTROL_DB_SIZE_SHIFT
),
1182 .reg
= (PL080_BSIZE_16
<< PL080_CONTROL_SB_SIZE_SHIFT
) |
1183 (PL080_BSIZE_16
<< PL080_CONTROL_DB_SIZE_SHIFT
),
1187 .reg
= (PL080_BSIZE_8
<< PL080_CONTROL_SB_SIZE_SHIFT
) |
1188 (PL080_BSIZE_8
<< PL080_CONTROL_DB_SIZE_SHIFT
),
1192 .reg
= (PL080_BSIZE_4
<< PL080_CONTROL_SB_SIZE_SHIFT
) |
1193 (PL080_BSIZE_4
<< PL080_CONTROL_DB_SIZE_SHIFT
),
1197 .reg
= (PL080_BSIZE_1
<< PL080_CONTROL_SB_SIZE_SHIFT
) |
1198 (PL080_BSIZE_1
<< PL080_CONTROL_DB_SIZE_SHIFT
),
1202 static void dma_set_runtime_config(struct dma_chan
*chan
,
1203 struct dma_slave_config
*config
)
1205 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1206 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1207 struct pl08x_channel_data
*cd
= plchan
->cd
;
1208 enum dma_slave_buswidth addr_width
;
1211 /* Mask out all except src and dst channel */
1212 u32 ccfg
= cd
->ccfg
& 0x000003DEU
;
1215 /* Transfer direction */
1216 plchan
->runtime_direction
= config
->direction
;
1217 if (config
->direction
== DMA_TO_DEVICE
) {
1218 plchan
->runtime_addr
= config
->dst_addr
;
1219 cctl
|= PL080_CONTROL_SRC_INCR
;
1220 ccfg
|= PL080_FLOW_MEM2PER
<< PL080_CONFIG_FLOW_CONTROL_SHIFT
;
1221 addr_width
= config
->dst_addr_width
;
1222 maxburst
= config
->dst_maxburst
;
1223 } else if (config
->direction
== DMA_FROM_DEVICE
) {
1224 plchan
->runtime_addr
= config
->src_addr
;
1225 cctl
|= PL080_CONTROL_DST_INCR
;
1226 ccfg
|= PL080_FLOW_PER2MEM
<< PL080_CONFIG_FLOW_CONTROL_SHIFT
;
1227 addr_width
= config
->src_addr_width
;
1228 maxburst
= config
->src_maxburst
;
1230 dev_err(&pl08x
->adev
->dev
,
1231 "bad runtime_config: alien transfer direction\n");
1235 switch (addr_width
) {
1236 case DMA_SLAVE_BUSWIDTH_1_BYTE
:
1237 cctl
|= (PL080_WIDTH_8BIT
<< PL080_CONTROL_SWIDTH_SHIFT
) |
1238 (PL080_WIDTH_8BIT
<< PL080_CONTROL_DWIDTH_SHIFT
);
1240 case DMA_SLAVE_BUSWIDTH_2_BYTES
:
1241 cctl
|= (PL080_WIDTH_16BIT
<< PL080_CONTROL_SWIDTH_SHIFT
) |
1242 (PL080_WIDTH_16BIT
<< PL080_CONTROL_DWIDTH_SHIFT
);
1244 case DMA_SLAVE_BUSWIDTH_4_BYTES
:
1245 cctl
|= (PL080_WIDTH_32BIT
<< PL080_CONTROL_SWIDTH_SHIFT
) |
1246 (PL080_WIDTH_32BIT
<< PL080_CONTROL_DWIDTH_SHIFT
);
1249 dev_err(&pl08x
->adev
->dev
,
1250 "bad runtime_config: alien address width\n");
1255 * Now decide on a maxburst:
1256 * If this channel will only request single transfers, set
1257 * this down to ONE element.
1259 if (plchan
->cd
->single
) {
1260 cctl
|= (PL080_BSIZE_1
<< PL080_CONTROL_SB_SIZE_SHIFT
) |
1261 (PL080_BSIZE_1
<< PL080_CONTROL_DB_SIZE_SHIFT
);
1263 while (i
< ARRAY_SIZE(burst_sizes
)) {
1264 if (burst_sizes
[i
].burstwords
<= maxburst
)
1268 cctl
|= burst_sizes
[i
].reg
;
1271 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1272 cctl
&= ~PL080_CONTROL_PROT_MASK
;
1273 cctl
|= PL080_CONTROL_PROT_SYS
;
1275 /* Modify the default channel data to fit PrimeCell request */
1279 dev_dbg(&pl08x
->adev
->dev
,
1280 "configured channel %s (%s) for %s, data width %d, "
1281 "maxburst %d words, LE, CCTL=%08x, CCFG=%08x\n",
1282 dma_chan_name(chan
), plchan
->name
,
1283 (config
->direction
== DMA_FROM_DEVICE
) ? "RX" : "TX",
1290 * Slave transactions callback to the slave device to allow
1291 * synchronization of slave DMA signals with the DMAC enable
1293 static void pl08x_issue_pending(struct dma_chan
*chan
)
1295 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1296 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1297 unsigned long flags
;
1299 spin_lock_irqsave(&plchan
->lock
, flags
);
1300 /* Something is already active */
1302 spin_unlock_irqrestore(&plchan
->lock
, flags
);
1306 /* Didn't get a physical channel so waiting for it ... */
1307 if (plchan
->state
== PL08X_CHAN_WAITING
)
1310 /* Take the first element in the queue and execute it */
1311 if (!list_empty(&plchan
->desc_list
)) {
1312 struct pl08x_txd
*next
;
1314 next
= list_first_entry(&plchan
->desc_list
,
1317 list_del(&next
->node
);
1319 plchan
->state
= PL08X_CHAN_RUNNING
;
1321 /* Configure the physical channel for the active txd */
1322 pl08x_config_phychan_for_txd(plchan
);
1323 pl08x_set_cregs(pl08x
, plchan
->phychan
);
1324 pl08x_enable_phy_chan(pl08x
, plchan
->phychan
);
1327 spin_unlock_irqrestore(&plchan
->lock
, flags
);
1330 static int pl08x_prep_channel_resources(struct pl08x_dma_chan
*plchan
,
1331 struct pl08x_txd
*txd
)
1334 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1337 num_llis
= pl08x_fill_llis_for_desc(pl08x
, txd
);
1342 spin_lock_irqsave(&plchan
->lock
, plchan
->lockflags
);
1345 * If this device is not using a circular buffer then
1346 * queue this new descriptor for transfer.
1347 * The descriptor for a circular buffer continues
1348 * to be used until the channel is freed.
1350 if (txd
->cd
->circular_buffer
)
1351 dev_err(&pl08x
->adev
->dev
,
1352 "%s attempting to queue a circular buffer\n",
1355 list_add_tail(&txd
->node
,
1356 &plchan
->desc_list
);
1359 * See if we already have a physical channel allocated,
1360 * else this is the time to try to get one.
1362 ret
= prep_phy_channel(plchan
, txd
);
1365 * No physical channel available, we will
1366 * stack up the memcpy channels until there is a channel
1367 * available to handle it whereas slave transfers may
1368 * have been denied due to platform channel muxing restrictions
1369 * and since there is no guarantee that this will ever be
1370 * resolved, and since the signal must be aquired AFTER
1371 * aquiring the physical channel, we will let them be NACK:ed
1372 * with -EBUSY here. The drivers can alway retry the prep()
1373 * call if they are eager on doing this using DMA.
1375 if (plchan
->slave
) {
1376 pl08x_free_txd_list(pl08x
, plchan
);
1377 spin_unlock_irqrestore(&plchan
->lock
, plchan
->lockflags
);
1380 /* Do this memcpy whenever there is a channel ready */
1381 plchan
->state
= PL08X_CHAN_WAITING
;
1382 plchan
->waiting
= txd
;
1385 * Else we're all set, paused and ready to roll,
1386 * status will switch to PL08X_CHAN_RUNNING when
1387 * we call issue_pending(). If there is something
1388 * running on the channel already we don't change
1391 if (plchan
->state
== PL08X_CHAN_IDLE
)
1392 plchan
->state
= PL08X_CHAN_PAUSED
;
1395 * Notice that we leave plchan->lock locked on purpose:
1396 * it will be unlocked in the subsequent tx_submit()
1397 * call. This is a consequence of the current API.
1404 * Initialize a descriptor to be used by memcpy submit
1406 static struct dma_async_tx_descriptor
*pl08x_prep_dma_memcpy(
1407 struct dma_chan
*chan
, dma_addr_t dest
, dma_addr_t src
,
1408 size_t len
, unsigned long flags
)
1410 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1411 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1412 struct pl08x_txd
*txd
;
1415 txd
= kzalloc(sizeof(struct pl08x_txd
), GFP_NOWAIT
);
1417 dev_err(&pl08x
->adev
->dev
,
1418 "%s no memory for descriptor\n", __func__
);
1422 dma_async_tx_descriptor_init(&txd
->tx
, chan
);
1423 txd
->direction
= DMA_NONE
;
1424 txd
->srcbus
.addr
= src
;
1425 txd
->dstbus
.addr
= dest
;
1427 /* Set platform data for m2m */
1428 txd
->cd
= &pl08x
->pd
->memcpy_channel
;
1429 /* Both to be incremented or the code will break */
1430 txd
->cd
->cctl
|= PL080_CONTROL_SRC_INCR
| PL080_CONTROL_DST_INCR
;
1431 txd
->tx
.tx_submit
= pl08x_tx_submit
;
1432 txd
->tx
.callback
= NULL
;
1433 txd
->tx
.callback_param
= NULL
;
1436 INIT_LIST_HEAD(&txd
->node
);
1437 ret
= pl08x_prep_channel_resources(plchan
, txd
);
1441 * NB: the channel lock is held at this point so tx_submit()
1442 * must be called in direct succession.
1448 struct dma_async_tx_descriptor
*pl08x_prep_slave_sg(
1449 struct dma_chan
*chan
, struct scatterlist
*sgl
,
1450 unsigned int sg_len
, enum dma_data_direction direction
,
1451 unsigned long flags
)
1453 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1454 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1455 struct pl08x_txd
*txd
;
1459 * Current implementation ASSUMES only one sg
1462 dev_err(&pl08x
->adev
->dev
, "%s prepared too long sglist\n",
1467 dev_dbg(&pl08x
->adev
->dev
, "%s prepare transaction of %d bytes from %s\n",
1468 __func__
, sgl
->length
, plchan
->name
);
1470 txd
= kzalloc(sizeof(struct pl08x_txd
), GFP_NOWAIT
);
1472 dev_err(&pl08x
->adev
->dev
, "%s no txd\n", __func__
);
1476 dma_async_tx_descriptor_init(&txd
->tx
, chan
);
1478 if (direction
!= plchan
->runtime_direction
)
1479 dev_err(&pl08x
->adev
->dev
, "%s DMA setup does not match "
1480 "the direction configured for the PrimeCell\n",
1484 * Set up addresses, the PrimeCell configured address
1485 * will take precedence since this may configure the
1486 * channel target address dynamically at runtime.
1488 txd
->direction
= direction
;
1489 if (direction
== DMA_TO_DEVICE
) {
1490 txd
->srcbus
.addr
= sgl
->dma_address
;
1491 if (plchan
->runtime_addr
)
1492 txd
->dstbus
.addr
= plchan
->runtime_addr
;
1494 txd
->dstbus
.addr
= plchan
->cd
->addr
;
1495 } else if (direction
== DMA_FROM_DEVICE
) {
1496 if (plchan
->runtime_addr
)
1497 txd
->srcbus
.addr
= plchan
->runtime_addr
;
1499 txd
->srcbus
.addr
= plchan
->cd
->addr
;
1500 txd
->dstbus
.addr
= sgl
->dma_address
;
1502 dev_err(&pl08x
->adev
->dev
,
1503 "%s direction unsupported\n", __func__
);
1506 txd
->cd
= plchan
->cd
;
1507 txd
->tx
.tx_submit
= pl08x_tx_submit
;
1508 txd
->tx
.callback
= NULL
;
1509 txd
->tx
.callback_param
= NULL
;
1510 txd
->len
= sgl
->length
;
1511 INIT_LIST_HEAD(&txd
->node
);
1513 ret
= pl08x_prep_channel_resources(plchan
, txd
);
1517 * NB: the channel lock is held at this point so tx_submit()
1518 * must be called in direct succession.
1524 static int pl08x_control(struct dma_chan
*chan
, enum dma_ctrl_cmd cmd
,
1527 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1528 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1529 unsigned long flags
;
1532 /* Controls applicable to inactive channels */
1533 if (cmd
== DMA_SLAVE_CONFIG
) {
1534 dma_set_runtime_config(chan
,
1535 (struct dma_slave_config
*)
1541 * Anything succeeds on channels with no physical allocation and
1542 * no queued transfers.
1544 spin_lock_irqsave(&plchan
->lock
, flags
);
1545 if (!plchan
->phychan
&& !plchan
->at
) {
1546 spin_unlock_irqrestore(&plchan
->lock
, flags
);
1551 case DMA_TERMINATE_ALL
:
1552 plchan
->state
= PL08X_CHAN_IDLE
;
1554 if (plchan
->phychan
) {
1555 pl08x_stop_phy_chan(plchan
->phychan
);
1558 * Mark physical channel as free and free any slave
1561 if ((plchan
->phychan
->signal
>= 0) &&
1562 pl08x
->pd
->put_signal
) {
1563 pl08x
->pd
->put_signal(plchan
);
1564 plchan
->phychan
->signal
= -1;
1566 pl08x_put_phy_channel(pl08x
, plchan
->phychan
);
1567 plchan
->phychan
= NULL
;
1569 /* Stop any pending tasklet */
1570 tasklet_disable(&plchan
->tasklet
);
1571 /* Dequeue jobs and free LLIs */
1573 pl08x_free_txd(pl08x
, plchan
->at
);
1576 /* Dequeue jobs not yet fired as well */
1577 pl08x_free_txd_list(pl08x
, plchan
);
1580 pl08x_pause_phy_chan(plchan
->phychan
);
1581 plchan
->state
= PL08X_CHAN_PAUSED
;
1584 pl08x_resume_phy_chan(plchan
->phychan
);
1585 plchan
->state
= PL08X_CHAN_RUNNING
;
1588 /* Unknown command */
1593 spin_unlock_irqrestore(&plchan
->lock
, flags
);
1598 bool pl08x_filter_id(struct dma_chan
*chan
, void *chan_id
)
1600 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1601 char *name
= chan_id
;
1603 /* Check that the channel is not taken! */
1604 if (!strcmp(plchan
->name
, name
))
1611 * Just check that the device is there and active
1612 * TODO: turn this bit on/off depending on the number of
1613 * physical channels actually used, if it is zero... well
1614 * shut it off. That will save some power. Cut the clock
1617 static void pl08x_ensure_on(struct pl08x_driver_data
*pl08x
)
1621 val
= readl(pl08x
->base
+ PL080_CONFIG
);
1622 val
&= ~(PL080_CONFIG_M2_BE
| PL080_CONFIG_M1_BE
| PL080_CONFIG_ENABLE
);
1623 /* We implictly clear bit 1 and that means little-endian mode */
1624 val
|= PL080_CONFIG_ENABLE
;
1625 writel(val
, pl08x
->base
+ PL080_CONFIG
);
1628 static void pl08x_tasklet(unsigned long data
)
1630 struct pl08x_dma_chan
*plchan
= (struct pl08x_dma_chan
*) data
;
1631 struct pl08x_phy_chan
*phychan
= plchan
->phychan
;
1632 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1637 spin_lock(&plchan
->lock
);
1640 dma_async_tx_callback callback
=
1641 plchan
->at
->tx
.callback
;
1642 void *callback_param
=
1643 plchan
->at
->tx
.callback_param
;
1646 * Update last completed
1649 (plchan
->at
->tx
.cookie
);
1652 * Callback to signal completion
1655 callback(callback_param
);
1658 * Device callbacks should NOT clear
1659 * the current transaction on the channel
1660 * Linus: sometimes they should?
1666 * Free the descriptor if it's not for a device
1667 * using a circular buffer
1669 if (!plchan
->at
->cd
->circular_buffer
) {
1670 pl08x_free_txd(pl08x
, plchan
->at
);
1674 * else descriptor for circular
1675 * buffers only freed when
1676 * client has disabled dma
1680 * If a new descriptor is queued, set it up
1681 * plchan->at is NULL here
1683 if (!list_empty(&plchan
->desc_list
)) {
1684 struct pl08x_txd
*next
;
1686 next
= list_first_entry(&plchan
->desc_list
,
1689 list_del(&next
->node
);
1691 /* Configure the physical channel for the next txd */
1692 pl08x_config_phychan_for_txd(plchan
);
1693 pl08x_set_cregs(pl08x
, plchan
->phychan
);
1694 pl08x_enable_phy_chan(pl08x
, plchan
->phychan
);
1696 struct pl08x_dma_chan
*waiting
= NULL
;
1699 * No more jobs, so free up the physical channel
1700 * Free any allocated signal on slave transfers too
1702 if ((phychan
->signal
>= 0) && pl08x
->pd
->put_signal
) {
1703 pl08x
->pd
->put_signal(plchan
);
1704 phychan
->signal
= -1;
1706 pl08x_put_phy_channel(pl08x
, phychan
);
1707 plchan
->phychan
= NULL
;
1708 plchan
->state
= PL08X_CHAN_IDLE
;
1711 * And NOW before anyone else can grab that free:d
1712 * up physical channel, see if there is some memcpy
1713 * pending that seriously needs to start because of
1714 * being stacked up while we were choking the
1715 * physical channels with data.
1717 list_for_each_entry(waiting
, &pl08x
->memcpy
.channels
,
1719 if (waiting
->state
== PL08X_CHAN_WAITING
&&
1720 waiting
->waiting
!= NULL
) {
1723 /* This should REALLY not fail now */
1724 ret
= prep_phy_channel(waiting
,
1727 waiting
->state
= PL08X_CHAN_RUNNING
;
1728 waiting
->waiting
= NULL
;
1729 pl08x_issue_pending(&waiting
->chan
);
1735 spin_unlock(&plchan
->lock
);
1738 static irqreturn_t
pl08x_irq(int irq
, void *dev
)
1740 struct pl08x_driver_data
*pl08x
= dev
;
1745 val
= readl(pl08x
->base
+ PL080_ERR_STATUS
);
1748 * An error interrupt (on one or more channels)
1750 dev_err(&pl08x
->adev
->dev
,
1751 "%s error interrupt, register value 0x%08x\n",
1754 * Simply clear ALL PL08X error interrupts,
1755 * regardless of channel and cause
1756 * FIXME: should be 0x00000003 on PL081 really.
1758 writel(0x000000FF, pl08x
->base
+ PL080_ERR_CLEAR
);
1760 val
= readl(pl08x
->base
+ PL080_INT_STATUS
);
1761 for (i
= 0; i
< pl08x
->vd
->channels
; i
++) {
1762 if ((1 << i
) & val
) {
1763 /* Locate physical channel */
1764 struct pl08x_phy_chan
*phychan
= &pl08x
->phy_chans
[i
];
1765 struct pl08x_dma_chan
*plchan
= phychan
->serving
;
1767 /* Schedule tasklet on this channel */
1768 tasklet_schedule(&plchan
->tasklet
);
1774 * Clear only the terminal interrupts on channels we processed
1776 writel(mask
, pl08x
->base
+ PL080_TC_CLEAR
);
1778 return mask
? IRQ_HANDLED
: IRQ_NONE
;
1782 * Initialise the DMAC memcpy/slave channels.
1783 * Make a local wrapper to hold required data
1785 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data
*pl08x
,
1786 struct dma_device
*dmadev
,
1787 unsigned int channels
,
1790 struct pl08x_dma_chan
*chan
;
1793 INIT_LIST_HEAD(&dmadev
->channels
);
1795 * Register as many many memcpy as we have physical channels,
1796 * we won't always be able to use all but the code will have
1797 * to cope with that situation.
1799 for (i
= 0; i
< channels
; i
++) {
1800 chan
= kzalloc(sizeof(struct pl08x_dma_chan
), GFP_KERNEL
);
1802 dev_err(&pl08x
->adev
->dev
,
1803 "%s no memory for channel\n", __func__
);
1808 chan
->state
= PL08X_CHAN_IDLE
;
1812 chan
->name
= pl08x
->pd
->slave_channels
[i
].bus_id
;
1813 chan
->cd
= &pl08x
->pd
->slave_channels
[i
];
1815 chan
->cd
= &pl08x
->pd
->memcpy_channel
;
1816 chan
->name
= kasprintf(GFP_KERNEL
, "memcpy%d", i
);
1822 dev_info(&pl08x
->adev
->dev
,
1823 "initialize virtual channel \"%s\"\n",
1826 chan
->chan
.device
= dmadev
;
1827 atomic_set(&chan
->last_issued
, 0);
1828 chan
->lc
= atomic_read(&chan
->last_issued
);
1830 spin_lock_init(&chan
->lock
);
1831 INIT_LIST_HEAD(&chan
->desc_list
);
1832 tasklet_init(&chan
->tasklet
, pl08x_tasklet
,
1833 (unsigned long) chan
);
1835 list_add_tail(&chan
->chan
.device_node
, &dmadev
->channels
);
1837 dev_info(&pl08x
->adev
->dev
, "initialized %d virtual %s channels\n",
1838 i
, slave
? "slave" : "memcpy");
1842 static void pl08x_free_virtual_channels(struct dma_device
*dmadev
)
1844 struct pl08x_dma_chan
*chan
= NULL
;
1845 struct pl08x_dma_chan
*next
;
1847 list_for_each_entry_safe(chan
,
1848 next
, &dmadev
->channels
, chan
.device_node
) {
1849 list_del(&chan
->chan
.device_node
);
1854 #ifdef CONFIG_DEBUG_FS
1855 static const char *pl08x_state_str(enum pl08x_dma_chan_state state
)
1858 case PL08X_CHAN_IDLE
:
1860 case PL08X_CHAN_RUNNING
:
1862 case PL08X_CHAN_PAUSED
:
1864 case PL08X_CHAN_WAITING
:
1869 return "UNKNOWN STATE";
1872 static int pl08x_debugfs_show(struct seq_file
*s
, void *data
)
1874 struct pl08x_driver_data
*pl08x
= s
->private;
1875 struct pl08x_dma_chan
*chan
;
1876 struct pl08x_phy_chan
*ch
;
1877 unsigned long flags
;
1880 seq_printf(s
, "PL08x physical channels:\n");
1881 seq_printf(s
, "CHANNEL:\tUSER:\n");
1882 seq_printf(s
, "--------\t-----\n");
1883 for (i
= 0; i
< pl08x
->vd
->channels
; i
++) {
1884 struct pl08x_dma_chan
*virt_chan
;
1886 ch
= &pl08x
->phy_chans
[i
];
1888 spin_lock_irqsave(&ch
->lock
, flags
);
1889 virt_chan
= ch
->serving
;
1891 seq_printf(s
, "%d\t\t%s\n",
1892 ch
->id
, virt_chan
? virt_chan
->name
: "(none)");
1894 spin_unlock_irqrestore(&ch
->lock
, flags
);
1897 seq_printf(s
, "\nPL08x virtual memcpy channels:\n");
1898 seq_printf(s
, "CHANNEL:\tSTATE:\n");
1899 seq_printf(s
, "--------\t------\n");
1900 list_for_each_entry(chan
, &pl08x
->memcpy
.channels
, chan
.device_node
) {
1901 seq_printf(s
, "%s\t\t\%s\n", chan
->name
,
1902 pl08x_state_str(chan
->state
));
1905 seq_printf(s
, "\nPL08x virtual slave channels:\n");
1906 seq_printf(s
, "CHANNEL:\tSTATE:\n");
1907 seq_printf(s
, "--------\t------\n");
1908 list_for_each_entry(chan
, &pl08x
->slave
.channels
, chan
.device_node
) {
1909 seq_printf(s
, "%s\t\t\%s\n", chan
->name
,
1910 pl08x_state_str(chan
->state
));
1916 static int pl08x_debugfs_open(struct inode
*inode
, struct file
*file
)
1918 return single_open(file
, pl08x_debugfs_show
, inode
->i_private
);
1921 static const struct file_operations pl08x_debugfs_operations
= {
1922 .open
= pl08x_debugfs_open
,
1924 .llseek
= seq_lseek
,
1925 .release
= single_release
,
1928 static void init_pl08x_debugfs(struct pl08x_driver_data
*pl08x
)
1930 /* Expose a simple debugfs interface to view all clocks */
1931 (void) debugfs_create_file(dev_name(&pl08x
->adev
->dev
), S_IFREG
| S_IRUGO
,
1933 &pl08x_debugfs_operations
);
1937 static inline void init_pl08x_debugfs(struct pl08x_driver_data
*pl08x
)
1942 static int pl08x_probe(struct amba_device
*adev
, struct amba_id
*id
)
1944 struct pl08x_driver_data
*pl08x
;
1945 struct vendor_data
*vd
= id
->data
;
1949 ret
= amba_request_regions(adev
, NULL
);
1953 /* Create the driver state holder */
1954 pl08x
= kzalloc(sizeof(struct pl08x_driver_data
), GFP_KERNEL
);
1960 /* Initialize memcpy engine */
1961 dma_cap_set(DMA_MEMCPY
, pl08x
->memcpy
.cap_mask
);
1962 pl08x
->memcpy
.dev
= &adev
->dev
;
1963 pl08x
->memcpy
.device_alloc_chan_resources
= pl08x_alloc_chan_resources
;
1964 pl08x
->memcpy
.device_free_chan_resources
= pl08x_free_chan_resources
;
1965 pl08x
->memcpy
.device_prep_dma_memcpy
= pl08x_prep_dma_memcpy
;
1966 pl08x
->memcpy
.device_prep_dma_interrupt
= pl08x_prep_dma_interrupt
;
1967 pl08x
->memcpy
.device_tx_status
= pl08x_dma_tx_status
;
1968 pl08x
->memcpy
.device_issue_pending
= pl08x_issue_pending
;
1969 pl08x
->memcpy
.device_control
= pl08x_control
;
1971 /* Initialize slave engine */
1972 dma_cap_set(DMA_SLAVE
, pl08x
->slave
.cap_mask
);
1973 pl08x
->slave
.dev
= &adev
->dev
;
1974 pl08x
->slave
.device_alloc_chan_resources
= pl08x_alloc_chan_resources
;
1975 pl08x
->slave
.device_free_chan_resources
= pl08x_free_chan_resources
;
1976 pl08x
->slave
.device_prep_dma_interrupt
= pl08x_prep_dma_interrupt
;
1977 pl08x
->slave
.device_tx_status
= pl08x_dma_tx_status
;
1978 pl08x
->slave
.device_issue_pending
= pl08x_issue_pending
;
1979 pl08x
->slave
.device_prep_slave_sg
= pl08x_prep_slave_sg
;
1980 pl08x
->slave
.device_control
= pl08x_control
;
1982 /* Get the platform data */
1983 pl08x
->pd
= dev_get_platdata(&adev
->dev
);
1985 dev_err(&adev
->dev
, "no platform data supplied\n");
1986 goto out_no_platdata
;
1989 /* Assign useful pointers to the driver state */
1993 /* A DMA memory pool for LLIs, align on 1-byte boundary */
1994 pl08x
->pool
= dma_pool_create(DRIVER_NAME
, &pl08x
->adev
->dev
,
1995 PL08X_LLI_TSFR_SIZE
, PL08X_ALIGN
, 0);
1998 goto out_no_lli_pool
;
2001 spin_lock_init(&pl08x
->lock
);
2003 pl08x
->base
= ioremap(adev
->res
.start
, resource_size(&adev
->res
));
2006 goto out_no_ioremap
;
2009 /* Turn on the PL08x */
2010 pl08x_ensure_on(pl08x
);
2013 * Attach the interrupt handler
2015 writel(0x000000FF, pl08x
->base
+ PL080_ERR_CLEAR
);
2016 writel(0x000000FF, pl08x
->base
+ PL080_TC_CLEAR
);
2018 ret
= request_irq(adev
->irq
[0], pl08x_irq
, IRQF_DISABLED
,
2021 dev_err(&adev
->dev
, "%s failed to request interrupt %d\n",
2022 __func__
, adev
->irq
[0]);
2026 /* Initialize physical channels */
2027 pl08x
->phy_chans
= kmalloc((vd
->channels
* sizeof(struct pl08x_phy_chan
)),
2029 if (!pl08x
->phy_chans
) {
2030 dev_err(&adev
->dev
, "%s failed to allocate "
2031 "physical channel holders\n",
2033 goto out_no_phychans
;
2036 for (i
= 0; i
< vd
->channels
; i
++) {
2037 struct pl08x_phy_chan
*ch
= &pl08x
->phy_chans
[i
];
2040 ch
->base
= pl08x
->base
+ PL080_Cx_BASE(i
);
2041 spin_lock_init(&ch
->lock
);
2044 dev_info(&adev
->dev
,
2045 "physical channel %d is %s\n", i
,
2046 pl08x_phy_channel_busy(ch
) ? "BUSY" : "FREE");
2049 /* Register as many memcpy channels as there are physical channels */
2050 ret
= pl08x_dma_init_virtual_channels(pl08x
, &pl08x
->memcpy
,
2051 pl08x
->vd
->channels
, false);
2053 dev_warn(&pl08x
->adev
->dev
,
2054 "%s failed to enumerate memcpy channels - %d\n",
2058 pl08x
->memcpy
.chancnt
= ret
;
2060 /* Register slave channels */
2061 ret
= pl08x_dma_init_virtual_channels(pl08x
, &pl08x
->slave
,
2062 pl08x
->pd
->num_slave_channels
,
2065 dev_warn(&pl08x
->adev
->dev
,
2066 "%s failed to enumerate slave channels - %d\n",
2070 pl08x
->slave
.chancnt
= ret
;
2072 ret
= dma_async_device_register(&pl08x
->memcpy
);
2074 dev_warn(&pl08x
->adev
->dev
,
2075 "%s failed to register memcpy as an async device - %d\n",
2077 goto out_no_memcpy_reg
;
2080 ret
= dma_async_device_register(&pl08x
->slave
);
2082 dev_warn(&pl08x
->adev
->dev
,
2083 "%s failed to register slave as an async device - %d\n",
2085 goto out_no_slave_reg
;
2088 amba_set_drvdata(adev
, pl08x
);
2089 init_pl08x_debugfs(pl08x
);
2090 dev_info(&pl08x
->adev
->dev
, "ARM(R) %s DMA block initialized @%08x\n",
2091 vd
->name
, adev
->res
.start
);
2095 dma_async_device_unregister(&pl08x
->memcpy
);
2097 pl08x_free_virtual_channels(&pl08x
->slave
);
2099 pl08x_free_virtual_channels(&pl08x
->memcpy
);
2101 kfree(pl08x
->phy_chans
);
2103 free_irq(adev
->irq
[0], pl08x
);
2105 iounmap(pl08x
->base
);
2107 dma_pool_destroy(pl08x
->pool
);
2112 amba_release_regions(adev
);
2116 /* PL080 has 8 channels and the PL080 have just 2 */
2117 static struct vendor_data vendor_pl080
= {
2123 static struct vendor_data vendor_pl081
= {
2126 .dualmaster
= false,
2129 static struct amba_id pl08x_ids
[] = {
2134 .data
= &vendor_pl080
,
2140 .data
= &vendor_pl081
,
2142 /* Nomadik 8815 PL080 variant */
2146 .data
= &vendor_pl080
,
2151 static struct amba_driver pl08x_amba_driver
= {
2152 .drv
.name
= DRIVER_NAME
,
2153 .id_table
= pl08x_ids
,
2154 .probe
= pl08x_probe
,
2157 static int __init
pl08x_init(void)
2160 retval
= amba_driver_register(&pl08x_amba_driver
);
2162 printk(KERN_WARNING DRIVER_NAME
2163 "failed to register as an amba device (%d)\n",
2167 subsys_initcall(pl08x_init
);