xtensa: use the new byteorder headers
[pohmelfs.git] / drivers / rtc / rtc-cmos.c
blob5549231179a2dacb955357e69cd6b521d5e7954f
1 /*
2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5 * Copyright (C) 2006 David Brownell (convert to new framework)
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15 * That defined the register interface now provided by all PCs, some
16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
17 * integrate an MC146818 clone in their southbridge, and boards use
18 * that instead of discrete clones like the DS12887 or M48T86. There
19 * are also clones that connect using the LPC bus.
21 * That register API is also used directly by various other drivers
22 * (notably for integrated NVRAM), infrastructure (x86 has code to
23 * bypass the RTC framework, directly reading the RTC during boot
24 * and updating minutes/seconds for systems using NTP synch) and
25 * utilities (like userspace 'hwclock', if no /dev node exists).
27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28 * interrupts disabled, holding the global rtc_lock, to exclude those
29 * other drivers and utilities on correctly configured systems.
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/interrupt.h>
35 #include <linux/spinlock.h>
36 #include <linux/platform_device.h>
37 #include <linux/mod_devicetable.h>
39 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
40 #include <asm-generic/rtc.h>
42 struct cmos_rtc {
43 struct rtc_device *rtc;
44 struct device *dev;
45 int irq;
46 struct resource *iomem;
48 void (*wake_on)(struct device *);
49 void (*wake_off)(struct device *);
51 u8 enabled_wake;
52 u8 suspend_ctrl;
54 /* newer hardware extends the original register set */
55 u8 day_alrm;
56 u8 mon_alrm;
57 u8 century;
60 /* both platform and pnp busses use negative numbers for invalid irqs */
61 #define is_valid_irq(n) ((n) >= 0)
63 static const char driver_name[] = "rtc_cmos";
65 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
66 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
67 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
69 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
71 static inline int is_intr(u8 rtc_intr)
73 if (!(rtc_intr & RTC_IRQF))
74 return 0;
75 return rtc_intr & RTC_IRQMASK;
78 /*----------------------------------------------------------------*/
80 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
81 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
82 * used in a broken "legacy replacement" mode. The breakage includes
83 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
84 * other (better) use.
86 * When that broken mode is in use, platform glue provides a partial
87 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
88 * want to use HPET for anything except those IRQs though...
90 #ifdef CONFIG_HPET_EMULATE_RTC
91 #include <asm/hpet.h>
92 #else
94 static inline int is_hpet_enabled(void)
96 return 0;
99 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
101 return 0;
104 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
106 return 0;
109 static inline int
110 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
112 return 0;
115 static inline int hpet_set_periodic_freq(unsigned long freq)
117 return 0;
120 static inline int hpet_rtc_dropped_irq(void)
122 return 0;
125 static inline int hpet_rtc_timer_init(void)
127 return 0;
130 extern irq_handler_t hpet_rtc_interrupt;
132 static inline int hpet_register_irq_handler(irq_handler_t handler)
134 return 0;
137 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
139 return 0;
142 #endif
144 /*----------------------------------------------------------------*/
146 #ifdef RTC_PORT
148 /* Most newer x86 systems have two register banks, the first used
149 * for RTC and NVRAM and the second only for NVRAM. Caller must
150 * own rtc_lock ... and we won't worry about access during NMI.
152 #define can_bank2 true
154 static inline unsigned char cmos_read_bank2(unsigned char addr)
156 outb(addr, RTC_PORT(2));
157 return inb(RTC_PORT(3));
160 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
162 outb(addr, RTC_PORT(2));
163 outb(val, RTC_PORT(2));
166 #else
168 #define can_bank2 false
170 static inline unsigned char cmos_read_bank2(unsigned char addr)
172 return 0;
175 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
179 #endif
181 /*----------------------------------------------------------------*/
183 static int cmos_read_time(struct device *dev, struct rtc_time *t)
185 /* REVISIT: if the clock has a "century" register, use
186 * that instead of the heuristic in get_rtc_time().
187 * That'll make Y3K compatility (year > 2070) easy!
189 get_rtc_time(t);
190 return 0;
193 static int cmos_set_time(struct device *dev, struct rtc_time *t)
195 /* REVISIT: set the "century" register if available
197 * NOTE: this ignores the issue whereby updating the seconds
198 * takes effect exactly 500ms after we write the register.
199 * (Also queueing and other delays before we get this far.)
201 return set_rtc_time(t);
204 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
206 struct cmos_rtc *cmos = dev_get_drvdata(dev);
207 unsigned char rtc_control;
209 if (!is_valid_irq(cmos->irq))
210 return -EIO;
212 /* Basic alarms only support hour, minute, and seconds fields.
213 * Some also support day and month, for alarms up to a year in
214 * the future.
216 t->time.tm_mday = -1;
217 t->time.tm_mon = -1;
219 spin_lock_irq(&rtc_lock);
220 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
221 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
222 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
224 if (cmos->day_alrm) {
225 /* ignore upper bits on readback per ACPI spec */
226 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
227 if (!t->time.tm_mday)
228 t->time.tm_mday = -1;
230 if (cmos->mon_alrm) {
231 t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
232 if (!t->time.tm_mon)
233 t->time.tm_mon = -1;
237 rtc_control = CMOS_READ(RTC_CONTROL);
238 spin_unlock_irq(&rtc_lock);
240 /* REVISIT this assumes PC style usage: always BCD */
242 if (((unsigned)t->time.tm_sec) < 0x60)
243 t->time.tm_sec = bcd2bin(t->time.tm_sec);
244 else
245 t->time.tm_sec = -1;
246 if (((unsigned)t->time.tm_min) < 0x60)
247 t->time.tm_min = bcd2bin(t->time.tm_min);
248 else
249 t->time.tm_min = -1;
250 if (((unsigned)t->time.tm_hour) < 0x24)
251 t->time.tm_hour = bcd2bin(t->time.tm_hour);
252 else
253 t->time.tm_hour = -1;
255 if (cmos->day_alrm) {
256 if (((unsigned)t->time.tm_mday) <= 0x31)
257 t->time.tm_mday = bcd2bin(t->time.tm_mday);
258 else
259 t->time.tm_mday = -1;
260 if (cmos->mon_alrm) {
261 if (((unsigned)t->time.tm_mon) <= 0x12)
262 t->time.tm_mon = bcd2bin(t->time.tm_mon) - 1;
263 else
264 t->time.tm_mon = -1;
267 t->time.tm_year = -1;
269 t->enabled = !!(rtc_control & RTC_AIE);
270 t->pending = 0;
272 return 0;
275 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
277 unsigned char rtc_intr;
279 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
280 * allegedly some older rtcs need that to handle irqs properly
282 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
284 if (is_hpet_enabled())
285 return;
287 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
288 if (is_intr(rtc_intr))
289 rtc_update_irq(cmos->rtc, 1, rtc_intr);
292 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
294 unsigned char rtc_control;
296 /* flush any pending IRQ status, notably for update irqs,
297 * before we enable new IRQs
299 rtc_control = CMOS_READ(RTC_CONTROL);
300 cmos_checkintr(cmos, rtc_control);
302 rtc_control |= mask;
303 CMOS_WRITE(rtc_control, RTC_CONTROL);
304 hpet_set_rtc_irq_bit(mask);
306 cmos_checkintr(cmos, rtc_control);
309 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
311 unsigned char rtc_control;
313 rtc_control = CMOS_READ(RTC_CONTROL);
314 rtc_control &= ~mask;
315 CMOS_WRITE(rtc_control, RTC_CONTROL);
316 hpet_mask_rtc_irq_bit(mask);
318 cmos_checkintr(cmos, rtc_control);
321 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
323 struct cmos_rtc *cmos = dev_get_drvdata(dev);
324 unsigned char mon, mday, hrs, min, sec;
326 if (!is_valid_irq(cmos->irq))
327 return -EIO;
329 /* REVISIT this assumes PC style usage: always BCD */
331 /* Writing 0xff means "don't care" or "match all". */
333 mon = t->time.tm_mon + 1;
334 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
336 mday = t->time.tm_mday;
337 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
339 hrs = t->time.tm_hour;
340 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
342 min = t->time.tm_min;
343 min = (min < 60) ? bin2bcd(min) : 0xff;
345 sec = t->time.tm_sec;
346 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
348 spin_lock_irq(&rtc_lock);
350 /* next rtc irq must not be from previous alarm setting */
351 cmos_irq_disable(cmos, RTC_AIE);
353 /* update alarm */
354 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
355 CMOS_WRITE(min, RTC_MINUTES_ALARM);
356 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
358 /* the system may support an "enhanced" alarm */
359 if (cmos->day_alrm) {
360 CMOS_WRITE(mday, cmos->day_alrm);
361 if (cmos->mon_alrm)
362 CMOS_WRITE(mon, cmos->mon_alrm);
365 /* FIXME the HPET alarm glue currently ignores day_alrm
366 * and mon_alrm ...
368 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
370 if (t->enabled)
371 cmos_irq_enable(cmos, RTC_AIE);
373 spin_unlock_irq(&rtc_lock);
375 return 0;
378 static int cmos_irq_set_freq(struct device *dev, int freq)
380 struct cmos_rtc *cmos = dev_get_drvdata(dev);
381 int f;
382 unsigned long flags;
384 if (!is_valid_irq(cmos->irq))
385 return -ENXIO;
387 /* 0 = no irqs; 1 = 2^15 Hz ... 15 = 2^0 Hz */
388 f = ffs(freq);
389 if (f-- > 16)
390 return -EINVAL;
391 f = 16 - f;
393 spin_lock_irqsave(&rtc_lock, flags);
394 hpet_set_periodic_freq(freq);
395 CMOS_WRITE(RTC_REF_CLCK_32KHZ | f, RTC_FREQ_SELECT);
396 spin_unlock_irqrestore(&rtc_lock, flags);
398 return 0;
401 static int cmos_irq_set_state(struct device *dev, int enabled)
403 struct cmos_rtc *cmos = dev_get_drvdata(dev);
404 unsigned long flags;
406 if (!is_valid_irq(cmos->irq))
407 return -ENXIO;
409 spin_lock_irqsave(&rtc_lock, flags);
411 if (enabled)
412 cmos_irq_enable(cmos, RTC_PIE);
413 else
414 cmos_irq_disable(cmos, RTC_PIE);
416 spin_unlock_irqrestore(&rtc_lock, flags);
417 return 0;
420 #if defined(CONFIG_RTC_INTF_DEV) || defined(CONFIG_RTC_INTF_DEV_MODULE)
422 static int
423 cmos_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
425 struct cmos_rtc *cmos = dev_get_drvdata(dev);
426 unsigned long flags;
428 switch (cmd) {
429 case RTC_AIE_OFF:
430 case RTC_AIE_ON:
431 case RTC_UIE_OFF:
432 case RTC_UIE_ON:
433 if (!is_valid_irq(cmos->irq))
434 return -EINVAL;
435 break;
436 /* PIE ON/OFF is handled by cmos_irq_set_state() */
437 default:
438 return -ENOIOCTLCMD;
441 spin_lock_irqsave(&rtc_lock, flags);
442 switch (cmd) {
443 case RTC_AIE_OFF: /* alarm off */
444 cmos_irq_disable(cmos, RTC_AIE);
445 break;
446 case RTC_AIE_ON: /* alarm on */
447 cmos_irq_enable(cmos, RTC_AIE);
448 break;
449 case RTC_UIE_OFF: /* update off */
450 cmos_irq_disable(cmos, RTC_UIE);
451 break;
452 case RTC_UIE_ON: /* update on */
453 cmos_irq_enable(cmos, RTC_UIE);
454 break;
456 spin_unlock_irqrestore(&rtc_lock, flags);
457 return 0;
460 #else
461 #define cmos_rtc_ioctl NULL
462 #endif
464 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
466 static int cmos_procfs(struct device *dev, struct seq_file *seq)
468 struct cmos_rtc *cmos = dev_get_drvdata(dev);
469 unsigned char rtc_control, valid;
471 spin_lock_irq(&rtc_lock);
472 rtc_control = CMOS_READ(RTC_CONTROL);
473 valid = CMOS_READ(RTC_VALID);
474 spin_unlock_irq(&rtc_lock);
476 /* NOTE: at least ICH6 reports battery status using a different
477 * (non-RTC) bit; and SQWE is ignored on many current systems.
479 return seq_printf(seq,
480 "periodic_IRQ\t: %s\n"
481 "update_IRQ\t: %s\n"
482 "HPET_emulated\t: %s\n"
483 // "square_wave\t: %s\n"
484 // "BCD\t\t: %s\n"
485 "DST_enable\t: %s\n"
486 "periodic_freq\t: %d\n"
487 "batt_status\t: %s\n",
488 (rtc_control & RTC_PIE) ? "yes" : "no",
489 (rtc_control & RTC_UIE) ? "yes" : "no",
490 is_hpet_enabled() ? "yes" : "no",
491 // (rtc_control & RTC_SQWE) ? "yes" : "no",
492 // (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
493 (rtc_control & RTC_DST_EN) ? "yes" : "no",
494 cmos->rtc->irq_freq,
495 (valid & RTC_VRT) ? "okay" : "dead");
498 #else
499 #define cmos_procfs NULL
500 #endif
502 static const struct rtc_class_ops cmos_rtc_ops = {
503 .ioctl = cmos_rtc_ioctl,
504 .read_time = cmos_read_time,
505 .set_time = cmos_set_time,
506 .read_alarm = cmos_read_alarm,
507 .set_alarm = cmos_set_alarm,
508 .proc = cmos_procfs,
509 .irq_set_freq = cmos_irq_set_freq,
510 .irq_set_state = cmos_irq_set_state,
513 /*----------------------------------------------------------------*/
516 * All these chips have at least 64 bytes of address space, shared by
517 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
518 * by boot firmware. Modern chips have 128 or 256 bytes.
521 #define NVRAM_OFFSET (RTC_REG_D + 1)
523 static ssize_t
524 cmos_nvram_read(struct kobject *kobj, struct bin_attribute *attr,
525 char *buf, loff_t off, size_t count)
527 int retval;
529 if (unlikely(off >= attr->size))
530 return 0;
531 if (unlikely(off < 0))
532 return -EINVAL;
533 if ((off + count) > attr->size)
534 count = attr->size - off;
536 off += NVRAM_OFFSET;
537 spin_lock_irq(&rtc_lock);
538 for (retval = 0; count; count--, off++, retval++) {
539 if (off < 128)
540 *buf++ = CMOS_READ(off);
541 else if (can_bank2)
542 *buf++ = cmos_read_bank2(off);
543 else
544 break;
546 spin_unlock_irq(&rtc_lock);
548 return retval;
551 static ssize_t
552 cmos_nvram_write(struct kobject *kobj, struct bin_attribute *attr,
553 char *buf, loff_t off, size_t count)
555 struct cmos_rtc *cmos;
556 int retval;
558 cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
559 if (unlikely(off >= attr->size))
560 return -EFBIG;
561 if (unlikely(off < 0))
562 return -EINVAL;
563 if ((off + count) > attr->size)
564 count = attr->size - off;
566 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
567 * checksum on part of the NVRAM data. That's currently ignored
568 * here. If userspace is smart enough to know what fields of
569 * NVRAM to update, updating checksums is also part of its job.
571 off += NVRAM_OFFSET;
572 spin_lock_irq(&rtc_lock);
573 for (retval = 0; count; count--, off++, retval++) {
574 /* don't trash RTC registers */
575 if (off == cmos->day_alrm
576 || off == cmos->mon_alrm
577 || off == cmos->century)
578 buf++;
579 else if (off < 128)
580 CMOS_WRITE(*buf++, off);
581 else if (can_bank2)
582 cmos_write_bank2(*buf++, off);
583 else
584 break;
586 spin_unlock_irq(&rtc_lock);
588 return retval;
591 static struct bin_attribute nvram = {
592 .attr = {
593 .name = "nvram",
594 .mode = S_IRUGO | S_IWUSR,
597 .read = cmos_nvram_read,
598 .write = cmos_nvram_write,
599 /* size gets set up later */
602 /*----------------------------------------------------------------*/
604 static struct cmos_rtc cmos_rtc;
606 static irqreturn_t cmos_interrupt(int irq, void *p)
608 u8 irqstat;
609 u8 rtc_control;
611 spin_lock(&rtc_lock);
613 /* When the HPET interrupt handler calls us, the interrupt
614 * status is passed as arg1 instead of the irq number. But
615 * always clear irq status, even when HPET is in the way.
617 * Note that HPET and RTC are almost certainly out of phase,
618 * giving different IRQ status ...
620 irqstat = CMOS_READ(RTC_INTR_FLAGS);
621 rtc_control = CMOS_READ(RTC_CONTROL);
622 if (is_hpet_enabled())
623 irqstat = (unsigned long)irq & 0xF0;
624 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
626 /* All Linux RTC alarms should be treated as if they were oneshot.
627 * Similar code may be needed in system wakeup paths, in case the
628 * alarm woke the system.
630 if (irqstat & RTC_AIE) {
631 rtc_control &= ~RTC_AIE;
632 CMOS_WRITE(rtc_control, RTC_CONTROL);
633 hpet_mask_rtc_irq_bit(RTC_AIE);
635 CMOS_READ(RTC_INTR_FLAGS);
637 spin_unlock(&rtc_lock);
639 if (is_intr(irqstat)) {
640 rtc_update_irq(p, 1, irqstat);
641 return IRQ_HANDLED;
642 } else
643 return IRQ_NONE;
646 #ifdef CONFIG_PNP
647 #define INITSECTION
649 #else
650 #define INITSECTION __init
651 #endif
653 static int INITSECTION
654 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
656 struct cmos_rtc_board_info *info = dev->platform_data;
657 int retval = 0;
658 unsigned char rtc_control;
659 unsigned address_space;
661 /* there can be only one ... */
662 if (cmos_rtc.dev)
663 return -EBUSY;
665 if (!ports)
666 return -ENODEV;
668 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
670 * REVISIT non-x86 systems may instead use memory space resources
671 * (needing ioremap etc), not i/o space resources like this ...
673 ports = request_region(ports->start,
674 ports->end + 1 - ports->start,
675 driver_name);
676 if (!ports) {
677 dev_dbg(dev, "i/o registers already in use\n");
678 return -EBUSY;
681 cmos_rtc.irq = rtc_irq;
682 cmos_rtc.iomem = ports;
684 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
685 * driver did, but don't reject unknown configs. Old hardware
686 * won't address 128 bytes. Newer chips have multiple banks,
687 * though they may not be listed in one I/O resource.
689 #if defined(CONFIG_ATARI)
690 address_space = 64;
691 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) || defined(__sparc__)
692 address_space = 128;
693 #else
694 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
695 address_space = 128;
696 #endif
697 if (can_bank2 && ports->end > (ports->start + 1))
698 address_space = 256;
700 /* For ACPI systems extension info comes from the FADT. On others,
701 * board specific setup provides it as appropriate. Systems where
702 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
703 * some almost-clones) can provide hooks to make that behave.
705 * Note that ACPI doesn't preclude putting these registers into
706 * "extended" areas of the chip, including some that we won't yet
707 * expect CMOS_READ and friends to handle.
709 if (info) {
710 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
711 cmos_rtc.day_alrm = info->rtc_day_alarm;
712 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
713 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
714 if (info->rtc_century && info->rtc_century < 128)
715 cmos_rtc.century = info->rtc_century;
717 if (info->wake_on && info->wake_off) {
718 cmos_rtc.wake_on = info->wake_on;
719 cmos_rtc.wake_off = info->wake_off;
723 cmos_rtc.rtc = rtc_device_register(driver_name, dev,
724 &cmos_rtc_ops, THIS_MODULE);
725 if (IS_ERR(cmos_rtc.rtc)) {
726 retval = PTR_ERR(cmos_rtc.rtc);
727 goto cleanup0;
730 cmos_rtc.dev = dev;
731 dev_set_drvdata(dev, &cmos_rtc);
732 rename_region(ports, cmos_rtc.rtc->dev.bus_id);
734 spin_lock_irq(&rtc_lock);
736 /* force periodic irq to CMOS reset default of 1024Hz;
738 * REVISIT it's been reported that at least one x86_64 ALI mobo
739 * doesn't use 32KHz here ... for portability we might need to
740 * do something about other clock frequencies.
742 cmos_rtc.rtc->irq_freq = 1024;
743 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
744 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
746 /* disable irqs */
747 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
749 rtc_control = CMOS_READ(RTC_CONTROL);
751 spin_unlock_irq(&rtc_lock);
753 /* FIXME teach the alarm code how to handle binary mode;
754 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
756 if (is_valid_irq(rtc_irq) &&
757 (!(rtc_control & RTC_24H) || (rtc_control & (RTC_DM_BINARY)))) {
758 dev_dbg(dev, "only 24-hr BCD mode supported\n");
759 retval = -ENXIO;
760 goto cleanup1;
763 if (is_valid_irq(rtc_irq)) {
764 irq_handler_t rtc_cmos_int_handler;
766 if (is_hpet_enabled()) {
767 int err;
769 rtc_cmos_int_handler = hpet_rtc_interrupt;
770 err = hpet_register_irq_handler(cmos_interrupt);
771 if (err != 0) {
772 printk(KERN_WARNING "hpet_register_irq_handler "
773 " failed in rtc_init().");
774 goto cleanup1;
776 } else
777 rtc_cmos_int_handler = cmos_interrupt;
779 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
780 IRQF_DISABLED, cmos_rtc.rtc->dev.bus_id,
781 cmos_rtc.rtc);
782 if (retval < 0) {
783 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
784 goto cleanup1;
787 hpet_rtc_timer_init();
789 /* export at least the first block of NVRAM */
790 nvram.size = address_space - NVRAM_OFFSET;
791 retval = sysfs_create_bin_file(&dev->kobj, &nvram);
792 if (retval < 0) {
793 dev_dbg(dev, "can't create nvram file? %d\n", retval);
794 goto cleanup2;
797 pr_info("%s: alarms up to one %s%s, %zd bytes nvram, %s irqs\n",
798 cmos_rtc.rtc->dev.bus_id,
799 is_valid_irq(rtc_irq)
800 ? (cmos_rtc.mon_alrm
801 ? "year"
802 : (cmos_rtc.day_alrm
803 ? "month" : "day"))
804 : "no",
805 cmos_rtc.century ? ", y3k" : "",
806 nvram.size,
807 is_hpet_enabled() ? ", hpet irqs" : "");
809 return 0;
811 cleanup2:
812 if (is_valid_irq(rtc_irq))
813 free_irq(rtc_irq, cmos_rtc.rtc);
814 cleanup1:
815 cmos_rtc.dev = NULL;
816 rtc_device_unregister(cmos_rtc.rtc);
817 cleanup0:
818 release_region(ports->start, ports->end + 1 - ports->start);
819 return retval;
822 static void cmos_do_shutdown(void)
824 spin_lock_irq(&rtc_lock);
825 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
826 spin_unlock_irq(&rtc_lock);
829 static void __exit cmos_do_remove(struct device *dev)
831 struct cmos_rtc *cmos = dev_get_drvdata(dev);
832 struct resource *ports;
834 cmos_do_shutdown();
836 sysfs_remove_bin_file(&dev->kobj, &nvram);
838 if (is_valid_irq(cmos->irq)) {
839 free_irq(cmos->irq, cmos->rtc);
840 hpet_unregister_irq_handler(cmos_interrupt);
843 rtc_device_unregister(cmos->rtc);
844 cmos->rtc = NULL;
846 ports = cmos->iomem;
847 release_region(ports->start, ports->end + 1 - ports->start);
848 cmos->iomem = NULL;
850 cmos->dev = NULL;
851 dev_set_drvdata(dev, NULL);
854 #ifdef CONFIG_PM
856 static int cmos_suspend(struct device *dev, pm_message_t mesg)
858 struct cmos_rtc *cmos = dev_get_drvdata(dev);
859 unsigned char tmp;
861 /* only the alarm might be a wakeup event source */
862 spin_lock_irq(&rtc_lock);
863 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
864 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
865 unsigned char mask;
867 if (device_may_wakeup(dev))
868 mask = RTC_IRQMASK & ~RTC_AIE;
869 else
870 mask = RTC_IRQMASK;
871 tmp &= ~mask;
872 CMOS_WRITE(tmp, RTC_CONTROL);
873 hpet_mask_rtc_irq_bit(mask);
875 cmos_checkintr(cmos, tmp);
877 spin_unlock_irq(&rtc_lock);
879 if (tmp & RTC_AIE) {
880 cmos->enabled_wake = 1;
881 if (cmos->wake_on)
882 cmos->wake_on(dev);
883 else
884 enable_irq_wake(cmos->irq);
887 pr_debug("%s: suspend%s, ctrl %02x\n",
888 cmos_rtc.rtc->dev.bus_id,
889 (tmp & RTC_AIE) ? ", alarm may wake" : "",
890 tmp);
892 return 0;
895 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
896 * after a detour through G3 "mechanical off", although the ACPI spec
897 * says wakeup should only work from G1/S4 "hibernate". To most users,
898 * distinctions between S4 and S5 are pointless. So when the hardware
899 * allows, don't draw that distinction.
901 static inline int cmos_poweroff(struct device *dev)
903 return cmos_suspend(dev, PMSG_HIBERNATE);
906 static int cmos_resume(struct device *dev)
908 struct cmos_rtc *cmos = dev_get_drvdata(dev);
909 unsigned char tmp = cmos->suspend_ctrl;
911 /* re-enable any irqs previously active */
912 if (tmp & RTC_IRQMASK) {
913 unsigned char mask;
915 if (cmos->enabled_wake) {
916 if (cmos->wake_off)
917 cmos->wake_off(dev);
918 else
919 disable_irq_wake(cmos->irq);
920 cmos->enabled_wake = 0;
923 spin_lock_irq(&rtc_lock);
924 do {
925 CMOS_WRITE(tmp, RTC_CONTROL);
926 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
928 mask = CMOS_READ(RTC_INTR_FLAGS);
929 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
930 if (!is_hpet_enabled() || !is_intr(mask))
931 break;
933 /* force one-shot behavior if HPET blocked
934 * the wake alarm's irq
936 rtc_update_irq(cmos->rtc, 1, mask);
937 tmp &= ~RTC_AIE;
938 hpet_mask_rtc_irq_bit(RTC_AIE);
939 } while (mask & RTC_AIE);
940 spin_unlock_irq(&rtc_lock);
943 pr_debug("%s: resume, ctrl %02x\n",
944 cmos_rtc.rtc->dev.bus_id,
945 tmp);
947 return 0;
950 #else
951 #define cmos_suspend NULL
952 #define cmos_resume NULL
954 static inline int cmos_poweroff(struct device *dev)
956 return -ENOSYS;
959 #endif
961 /*----------------------------------------------------------------*/
963 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
964 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
965 * probably list them in similar PNPBIOS tables; so PNP is more common.
967 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
968 * predate even PNPBIOS should set up platform_bus devices.
971 #ifdef CONFIG_ACPI
973 #include <linux/acpi.h>
975 #ifdef CONFIG_PM
976 static u32 rtc_handler(void *context)
978 acpi_clear_event(ACPI_EVENT_RTC);
979 acpi_disable_event(ACPI_EVENT_RTC, 0);
980 return ACPI_INTERRUPT_HANDLED;
983 static inline void rtc_wake_setup(void)
985 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, NULL);
987 * After the RTC handler is installed, the Fixed_RTC event should
988 * be disabled. Only when the RTC alarm is set will it be enabled.
990 acpi_clear_event(ACPI_EVENT_RTC);
991 acpi_disable_event(ACPI_EVENT_RTC, 0);
994 static void rtc_wake_on(struct device *dev)
996 acpi_clear_event(ACPI_EVENT_RTC);
997 acpi_enable_event(ACPI_EVENT_RTC, 0);
1000 static void rtc_wake_off(struct device *dev)
1002 acpi_disable_event(ACPI_EVENT_RTC, 0);
1004 #else
1005 #define rtc_wake_setup() do{}while(0)
1006 #define rtc_wake_on NULL
1007 #define rtc_wake_off NULL
1008 #endif
1010 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
1011 * its device node and pass extra config data. This helps its driver use
1012 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1013 * that this board's RTC is wakeup-capable (per ACPI spec).
1015 static struct cmos_rtc_board_info acpi_rtc_info;
1017 static void __devinit
1018 cmos_wake_setup(struct device *dev)
1020 if (acpi_disabled)
1021 return;
1023 rtc_wake_setup();
1024 acpi_rtc_info.wake_on = rtc_wake_on;
1025 acpi_rtc_info.wake_off = rtc_wake_off;
1027 /* workaround bug in some ACPI tables */
1028 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1029 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1030 acpi_gbl_FADT.month_alarm);
1031 acpi_gbl_FADT.month_alarm = 0;
1034 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1035 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1036 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1038 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
1039 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1040 dev_info(dev, "RTC can wake from S4\n");
1042 dev->platform_data = &acpi_rtc_info;
1044 /* RTC always wakes from S1/S2/S3, and often S4/STD */
1045 device_init_wakeup(dev, 1);
1048 #else
1050 static void __devinit
1051 cmos_wake_setup(struct device *dev)
1055 #endif
1057 #ifdef CONFIG_PNP
1059 #include <linux/pnp.h>
1061 static int __devinit
1062 cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1064 cmos_wake_setup(&pnp->dev);
1066 if (pnp_port_start(pnp,0) == 0x70 && !pnp_irq_valid(pnp,0))
1067 /* Some machines contain a PNP entry for the RTC, but
1068 * don't define the IRQ. It should always be safe to
1069 * hardcode it in these cases
1071 return cmos_do_probe(&pnp->dev,
1072 pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
1073 else
1074 return cmos_do_probe(&pnp->dev,
1075 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1076 pnp_irq(pnp, 0));
1079 static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
1081 cmos_do_remove(&pnp->dev);
1084 #ifdef CONFIG_PM
1086 static int cmos_pnp_suspend(struct pnp_dev *pnp, pm_message_t mesg)
1088 return cmos_suspend(&pnp->dev, mesg);
1091 static int cmos_pnp_resume(struct pnp_dev *pnp)
1093 return cmos_resume(&pnp->dev);
1096 #else
1097 #define cmos_pnp_suspend NULL
1098 #define cmos_pnp_resume NULL
1099 #endif
1101 static void cmos_pnp_shutdown(struct device *pdev)
1103 if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(pdev))
1104 return;
1106 cmos_do_shutdown();
1109 static const struct pnp_device_id rtc_ids[] = {
1110 { .id = "PNP0b00", },
1111 { .id = "PNP0b01", },
1112 { .id = "PNP0b02", },
1113 { },
1115 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1117 static struct pnp_driver cmos_pnp_driver = {
1118 .name = (char *) driver_name,
1119 .id_table = rtc_ids,
1120 .probe = cmos_pnp_probe,
1121 .remove = __exit_p(cmos_pnp_remove),
1123 /* flag ensures resume() gets called, and stops syslog spam */
1124 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1125 .suspend = cmos_pnp_suspend,
1126 .resume = cmos_pnp_resume,
1127 .driver = {
1128 .name = (char *)driver_name,
1129 .shutdown = cmos_pnp_shutdown,
1133 #endif /* CONFIG_PNP */
1135 /*----------------------------------------------------------------*/
1137 /* Platform setup should have set up an RTC device, when PNP is
1138 * unavailable ... this could happen even on (older) PCs.
1141 static int __init cmos_platform_probe(struct platform_device *pdev)
1143 cmos_wake_setup(&pdev->dev);
1144 return cmos_do_probe(&pdev->dev,
1145 platform_get_resource(pdev, IORESOURCE_IO, 0),
1146 platform_get_irq(pdev, 0));
1149 static int __exit cmos_platform_remove(struct platform_device *pdev)
1151 cmos_do_remove(&pdev->dev);
1152 return 0;
1155 static void cmos_platform_shutdown(struct platform_device *pdev)
1157 if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pdev->dev))
1158 return;
1160 cmos_do_shutdown();
1163 /* work with hotplug and coldplug */
1164 MODULE_ALIAS("platform:rtc_cmos");
1166 static struct platform_driver cmos_platform_driver = {
1167 .remove = __exit_p(cmos_platform_remove),
1168 .shutdown = cmos_platform_shutdown,
1169 .driver = {
1170 .name = (char *) driver_name,
1171 .suspend = cmos_suspend,
1172 .resume = cmos_resume,
1176 static int __init cmos_init(void)
1178 int retval = 0;
1180 #ifdef CONFIG_PNP
1181 pnp_register_driver(&cmos_pnp_driver);
1182 #endif
1184 if (!cmos_rtc.dev)
1185 retval = platform_driver_probe(&cmos_platform_driver,
1186 cmos_platform_probe);
1188 if (retval == 0)
1189 return 0;
1191 #ifdef CONFIG_PNP
1192 pnp_unregister_driver(&cmos_pnp_driver);
1193 #endif
1194 return retval;
1196 module_init(cmos_init);
1198 static void __exit cmos_exit(void)
1200 #ifdef CONFIG_PNP
1201 pnp_unregister_driver(&cmos_pnp_driver);
1202 #endif
1203 platform_driver_unregister(&cmos_platform_driver);
1205 module_exit(cmos_exit);
1208 MODULE_AUTHOR("David Brownell");
1209 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1210 MODULE_LICENSE("GPL");