Add undefine macro.
[plumiferos.git] / extern / ffmpeg / libavcodec / jfdctfst.c
blob804fd5766ed3c3b24403f6b687051445569b1350
1 /*
2 * jfdctfst.c
4 * Copyright (C) 1994-1996, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
8 * This file contains a fast, not so accurate integer implementation of the
9 * forward DCT (Discrete Cosine Transform).
11 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
12 * on each column. Direct algorithms are also available, but they are
13 * much more complex and seem not to be any faster when reduced to code.
15 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
16 * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
17 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
18 * JPEG textbook (see REFERENCES section in file README). The following code
19 * is based directly on figure 4-8 in P&M.
20 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
21 * possible to arrange the computation so that many of the multiplies are
22 * simple scalings of the final outputs. These multiplies can then be
23 * folded into the multiplications or divisions by the JPEG quantization
24 * table entries. The AA&N method leaves only 5 multiplies and 29 adds
25 * to be done in the DCT itself.
26 * The primary disadvantage of this method is that with fixed-point math,
27 * accuracy is lost due to imprecise representation of the scaled
28 * quantization values. The smaller the quantization table entry, the less
29 * precise the scaled value, so this implementation does worse with high-
30 * quality-setting files than with low-quality ones.
33 /**
34 * @file jfdctfst.c
35 * Independent JPEG Group's fast AAN dct.
38 #include <stdlib.h>
39 #include <stdio.h>
40 #include "common.h"
41 #include "dsputil.h"
43 #define DCTSIZE 8
44 #define GLOBAL(x) x
45 #define RIGHT_SHIFT(x, n) ((x) >> (n))
46 #define SHIFT_TEMPS
49 * This module is specialized to the case DCTSIZE = 8.
52 #if DCTSIZE != 8
53 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
54 #endif
57 /* Scaling decisions are generally the same as in the LL&M algorithm;
58 * see jfdctint.c for more details. However, we choose to descale
59 * (right shift) multiplication products as soon as they are formed,
60 * rather than carrying additional fractional bits into subsequent additions.
61 * This compromises accuracy slightly, but it lets us save a few shifts.
62 * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
63 * everywhere except in the multiplications proper; this saves a good deal
64 * of work on 16-bit-int machines.
66 * Again to save a few shifts, the intermediate results between pass 1 and
67 * pass 2 are not upscaled, but are represented only to integral precision.
69 * A final compromise is to represent the multiplicative constants to only
70 * 8 fractional bits, rather than 13. This saves some shifting work on some
71 * machines, and may also reduce the cost of multiplication (since there
72 * are fewer one-bits in the constants).
75 #define CONST_BITS 8
78 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
79 * causing a lot of useless floating-point operations at run time.
80 * To get around this we use the following pre-calculated constants.
81 * If you change CONST_BITS you may want to add appropriate values.
82 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
85 #if CONST_BITS == 8
86 #define FIX_0_382683433 ((int32_t) 98) /* FIX(0.382683433) */
87 #define FIX_0_541196100 ((int32_t) 139) /* FIX(0.541196100) */
88 #define FIX_0_707106781 ((int32_t) 181) /* FIX(0.707106781) */
89 #define FIX_1_306562965 ((int32_t) 334) /* FIX(1.306562965) */
90 #else
91 #define FIX_0_382683433 FIX(0.382683433)
92 #define FIX_0_541196100 FIX(0.541196100)
93 #define FIX_0_707106781 FIX(0.707106781)
94 #define FIX_1_306562965 FIX(1.306562965)
95 #endif
98 /* We can gain a little more speed, with a further compromise in accuracy,
99 * by omitting the addition in a descaling shift. This yields an incorrectly
100 * rounded result half the time...
103 #ifndef USE_ACCURATE_ROUNDING
104 #undef DESCALE
105 #define DESCALE(x,n) RIGHT_SHIFT(x, n)
106 #endif
109 /* Multiply a DCTELEM variable by an int32_t constant, and immediately
110 * descale to yield a DCTELEM result.
113 #define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
115 static always_inline void row_fdct(DCTELEM * data){
116 int_fast16_t tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
117 int_fast16_t tmp10, tmp11, tmp12, tmp13;
118 int_fast16_t z1, z2, z3, z4, z5, z11, z13;
119 DCTELEM *dataptr;
120 int ctr;
121 SHIFT_TEMPS
123 /* Pass 1: process rows. */
125 dataptr = data;
126 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
127 tmp0 = dataptr[0] + dataptr[7];
128 tmp7 = dataptr[0] - dataptr[7];
129 tmp1 = dataptr[1] + dataptr[6];
130 tmp6 = dataptr[1] - dataptr[6];
131 tmp2 = dataptr[2] + dataptr[5];
132 tmp5 = dataptr[2] - dataptr[5];
133 tmp3 = dataptr[3] + dataptr[4];
134 tmp4 = dataptr[3] - dataptr[4];
136 /* Even part */
138 tmp10 = tmp0 + tmp3; /* phase 2 */
139 tmp13 = tmp0 - tmp3;
140 tmp11 = tmp1 + tmp2;
141 tmp12 = tmp1 - tmp2;
143 dataptr[0] = tmp10 + tmp11; /* phase 3 */
144 dataptr[4] = tmp10 - tmp11;
146 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
147 dataptr[2] = tmp13 + z1; /* phase 5 */
148 dataptr[6] = tmp13 - z1;
150 /* Odd part */
152 tmp10 = tmp4 + tmp5; /* phase 2 */
153 tmp11 = tmp5 + tmp6;
154 tmp12 = tmp6 + tmp7;
156 /* The rotator is modified from fig 4-8 to avoid extra negations. */
157 z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
158 z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
159 z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
160 z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
162 z11 = tmp7 + z3; /* phase 5 */
163 z13 = tmp7 - z3;
165 dataptr[5] = z13 + z2; /* phase 6 */
166 dataptr[3] = z13 - z2;
167 dataptr[1] = z11 + z4;
168 dataptr[7] = z11 - z4;
170 dataptr += DCTSIZE; /* advance pointer to next row */
175 * Perform the forward DCT on one block of samples.
178 GLOBAL(void)
179 fdct_ifast (DCTELEM * data)
181 int_fast16_t tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
182 int_fast16_t tmp10, tmp11, tmp12, tmp13;
183 int_fast16_t z1, z2, z3, z4, z5, z11, z13;
184 DCTELEM *dataptr;
185 int ctr;
186 SHIFT_TEMPS
188 row_fdct(data);
190 /* Pass 2: process columns. */
192 dataptr = data;
193 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
194 tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
195 tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
196 tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
197 tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
198 tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
199 tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
200 tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
201 tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
203 /* Even part */
205 tmp10 = tmp0 + tmp3; /* phase 2 */
206 tmp13 = tmp0 - tmp3;
207 tmp11 = tmp1 + tmp2;
208 tmp12 = tmp1 - tmp2;
210 dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
211 dataptr[DCTSIZE*4] = tmp10 - tmp11;
213 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
214 dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
215 dataptr[DCTSIZE*6] = tmp13 - z1;
217 /* Odd part */
219 tmp10 = tmp4 + tmp5; /* phase 2 */
220 tmp11 = tmp5 + tmp6;
221 tmp12 = tmp6 + tmp7;
223 /* The rotator is modified from fig 4-8 to avoid extra negations. */
224 z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
225 z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
226 z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
227 z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
229 z11 = tmp7 + z3; /* phase 5 */
230 z13 = tmp7 - z3;
232 dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
233 dataptr[DCTSIZE*3] = z13 - z2;
234 dataptr[DCTSIZE*1] = z11 + z4;
235 dataptr[DCTSIZE*7] = z11 - z4;
237 dataptr++; /* advance pointer to next column */
242 * Perform the forward 2-4-8 DCT on one block of samples.
245 GLOBAL(void)
246 fdct_ifast248 (DCTELEM * data)
248 int_fast16_t tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
249 int_fast16_t tmp10, tmp11, tmp12, tmp13;
250 int_fast16_t z1;
251 DCTELEM *dataptr;
252 int ctr;
253 SHIFT_TEMPS
255 row_fdct(data);
257 /* Pass 2: process columns. */
259 dataptr = data;
260 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
261 tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*1];
262 tmp1 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3];
263 tmp2 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5];
264 tmp3 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7];
265 tmp4 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*1];
266 tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3];
267 tmp6 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5];
268 tmp7 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7];
270 /* Even part */
272 tmp10 = tmp0 + tmp3;
273 tmp11 = tmp1 + tmp2;
274 tmp12 = tmp1 - tmp2;
275 tmp13 = tmp0 - tmp3;
277 dataptr[DCTSIZE*0] = tmp10 + tmp11;
278 dataptr[DCTSIZE*4] = tmp10 - tmp11;
280 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781);
281 dataptr[DCTSIZE*2] = tmp13 + z1;
282 dataptr[DCTSIZE*6] = tmp13 - z1;
284 tmp10 = tmp4 + tmp7;
285 tmp11 = tmp5 + tmp6;
286 tmp12 = tmp5 - tmp6;
287 tmp13 = tmp4 - tmp7;
289 dataptr[DCTSIZE*1] = tmp10 + tmp11;
290 dataptr[DCTSIZE*5] = tmp10 - tmp11;
292 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781);
293 dataptr[DCTSIZE*3] = tmp13 + z1;
294 dataptr[DCTSIZE*7] = tmp13 - z1;
296 dataptr++; /* advance pointer to next column */
301 #undef GLOBAL
302 #undef CONST_BITS
303 #undef DESCALE
304 #undef FIX_0_541196100
305 #undef FIX_1_306562965