Add undefine macro.
[plumiferos.git] / extern / ffmpeg / libavcodec / fdctref.c
blob5eff36849132c264671e19b94a64753b39839483
1 /**
2 * @file fdctref.c
3 * forward discrete cosine transform, double precision.
4 */
6 /* Copyright (C) 1996, MPEG Software Simulation Group. All Rights Reserved. */
8 /*
9 * Disclaimer of Warranty
11 * These software programs are available to the user without any license fee or
12 * royalty on an "as is" basis. The MPEG Software Simulation Group disclaims
13 * any and all warranties, whether express, implied, or statuary, including any
14 * implied warranties or merchantability or of fitness for a particular
15 * purpose. In no event shall the copyright-holder be liable for any
16 * incidental, punitive, or consequential damages of any kind whatsoever
17 * arising from the use of these programs.
19 * This disclaimer of warranty extends to the user of these programs and user's
20 * customers, employees, agents, transferees, successors, and assigns.
22 * The MPEG Software Simulation Group does not represent or warrant that the
23 * programs furnished hereunder are free of infringement of any third-party
24 * patents.
26 * Commercial implementations of MPEG-1 and MPEG-2 video, including shareware,
27 * are subject to royalty fees to patent holders. Many of these patents are
28 * general enough such that they are unavoidable regardless of implementation
29 * design.
33 #include <math.h>
35 #ifndef PI
36 # ifdef M_PI
37 # define PI M_PI
38 # else
39 # define PI 3.14159265358979323846
40 # endif
41 #endif
43 /* global declarations */
44 void init_fdct (void);
45 void fdct (short *block);
47 /* private data */
48 static double c[8][8]; /* transform coefficients */
50 void init_fdct()
52 int i, j;
53 double s;
55 for (i=0; i<8; i++)
57 s = (i==0) ? sqrt(0.125) : 0.5;
59 for (j=0; j<8; j++)
60 c[i][j] = s * cos((PI/8.0)*i*(j+0.5));
64 void fdct(block)
65 short *block;
67 register int i, j;
68 double s;
69 double tmp[64];
71 for(i = 0; i < 8; i++)
72 for(j = 0; j < 8; j++)
74 s = 0.0;
77 * for(k = 0; k < 8; k++)
78 * s += c[j][k] * block[8 * i + k];
80 s += c[j][0] * block[8 * i + 0];
81 s += c[j][1] * block[8 * i + 1];
82 s += c[j][2] * block[8 * i + 2];
83 s += c[j][3] * block[8 * i + 3];
84 s += c[j][4] * block[8 * i + 4];
85 s += c[j][5] * block[8 * i + 5];
86 s += c[j][6] * block[8 * i + 6];
87 s += c[j][7] * block[8 * i + 7];
89 tmp[8 * i + j] = s;
92 for(j = 0; j < 8; j++)
93 for(i = 0; i < 8; i++)
95 s = 0.0;
98 * for(k = 0; k < 8; k++)
99 * s += c[i][k] * tmp[8 * k + j];
101 s += c[i][0] * tmp[8 * 0 + j];
102 s += c[i][1] * tmp[8 * 1 + j];
103 s += c[i][2] * tmp[8 * 2 + j];
104 s += c[i][3] * tmp[8 * 3 + j];
105 s += c[i][4] * tmp[8 * 4 + j];
106 s += c[i][5] * tmp[8 * 5 + j];
107 s += c[i][6] * tmp[8 * 6 + j];
108 s += c[i][7] * tmp[8 * 7 + j];
109 s*=8.0;
111 block[8 * i + j] = (short)floor(s + 0.499999);
113 * reason for adding 0.499999 instead of 0.5:
114 * s is quite often x.5 (at least for i and/or j = 0 or 4)
115 * and setting the rounding threshold exactly to 0.5 leads to an
116 * extremely high arithmetic implementation dependency of the result;
117 * s being between x.5 and x.500001 (which is now incorrectly rounded
118 * downwards instead of upwards) is assumed to occur less often
119 * (if at all)
124 /* perform IDCT matrix multiply for 8x8 coefficient block */
126 void idct(block)
127 short *block;
129 int i, j, k, v;
130 double partial_product;
131 double tmp[64];
133 for (i=0; i<8; i++)
134 for (j=0; j<8; j++)
136 partial_product = 0.0;
138 for (k=0; k<8; k++)
139 partial_product+= c[k][j]*block[8*i+k];
141 tmp[8*i+j] = partial_product;
144 /* Transpose operation is integrated into address mapping by switching
145 loop order of i and j */
147 for (j=0; j<8; j++)
148 for (i=0; i<8; i++)
150 partial_product = 0.0;
152 for (k=0; k<8; k++)
153 partial_product+= c[k][i]*tmp[8*k+j];
155 v = (int) floor(partial_product+0.5);
156 block[8*i+j] = v;