[#8596] curve editing is unstable
[plumiferos.git] / source / blender / blenkernel / intern / curve.c
blobe0daa70ebf5cd525fb2bc8c4cfa7f7ce6711375e
2 /* curve.c
3 *
4 *
5 * $Id: curve.c 13209 2008-01-11 18:02:28Z campbellbarton $
7 * ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version 2
12 * of the License, or (at your option) any later version. The Blender
13 * Foundation also sells licenses for use in proprietary software under
14 * the Blender License. See http://www.blender.org/BL/ for information
15 * about this.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software Foundation,
24 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
27 * All rights reserved.
29 * The Original Code is: all of this file.
31 * Contributor(s): none yet.
33 * ***** END GPL/BL DUAL LICENSE BLOCK *****
36 #include <math.h> // floor
37 #include <string.h>
38 #include <stdlib.h>
40 #ifdef HAVE_CONFIG_H
41 #include <config.h>
42 #endif
44 #include "MEM_guardedalloc.h"
45 #include "BLI_blenlib.h"
46 #include "BLI_arithb.h"
48 #include "DNA_object_types.h"
49 #include "DNA_curve_types.h"
50 #include "DNA_material_types.h"
52 /* for dereferencing pointers */
53 #include "DNA_ID.h"
54 #include "DNA_vfont_types.h"
55 #include "DNA_key_types.h"
56 #include "DNA_ipo_types.h"
58 #include "BKE_global.h"
59 #include "BKE_main.h"
60 #include "BKE_utildefines.h" // VECCOPY
61 #include "BKE_object.h"
62 #include "BKE_mesh.h"
63 #include "BKE_curve.h"
64 #include "BKE_displist.h"
65 #include "BKE_ipo.h"
66 #include "BKE_anim.h"
67 #include "BKE_library.h"
68 #include "BKE_key.h"
71 /* globals */
73 extern ListBase editNurb; /* editcurve.c */
75 /* local */
76 int cu_isectLL(float *v1, float *v2, float *v3, float *v4,
77 short cox, short coy,
78 float *labda, float *mu, float *vec);
80 void unlink_curve(Curve *cu)
82 int a;
84 for(a=0; a<cu->totcol; a++) {
85 if(cu->mat[a]) cu->mat[a]->id.us--;
86 cu->mat[a]= 0;
88 if(cu->vfont) cu->vfont->id.us--;
89 cu->vfont= 0;
90 if(cu->key) cu->key->id.us--;
91 cu->key= 0;
92 if(cu->ipo) cu->ipo->id.us--;
93 cu->ipo= 0;
97 /* niet curve zelf vrijgeven */
98 void free_curve(Curve *cu)
101 freeNurblist(&cu->nurb);
102 BLI_freelistN(&cu->bev);
103 freedisplist(&cu->disp);
105 unlink_curve(cu);
107 if(cu->mat) MEM_freeN(cu->mat);
108 if(cu->str) MEM_freeN(cu->str);
109 if(cu->strinfo) MEM_freeN(cu->strinfo);
110 if(cu->bb) MEM_freeN(cu->bb);
111 if(cu->path) free_path(cu->path);
112 if(cu->tb) MEM_freeN(cu->tb);
115 Curve *add_curve(char *name, int type)
117 Curve *cu;
119 cu= alloc_libblock(&G.main->curve, ID_CU, name);
121 cu->size[0]= cu->size[1]= cu->size[2]= 1.0;
122 cu->flag= CU_FRONT+CU_BACK;
123 cu->pathlen= 100;
124 cu->resolu= cu->resolv= 12;
125 cu->width= 1.0;
126 cu->wordspace = 1.0;
127 cu->spacing= cu->linedist= 1.0;
128 cu->fsize= 1.0;
129 cu->ulheight = 0.05;
130 cu->texflag= CU_AUTOSPACE;
132 cu->bb= unit_boundbox();
134 return cu;
137 Curve *copy_curve(Curve *cu)
139 Curve *cun;
140 int a;
142 cun= copy_libblock(cu);
143 cun->nurb.first= cun->nurb.last= 0;
144 duplicateNurblist( &(cun->nurb), &(cu->nurb));
146 cun->mat= MEM_dupallocN(cu->mat);
147 for(a=0; a<cun->totcol; a++) {
148 id_us_plus((ID *)cun->mat[a]);
151 cun->str= MEM_dupallocN(cu->str);
152 cun->strinfo= MEM_dupallocN(cu->strinfo);
153 cun->tb= MEM_dupallocN(cu->tb);
154 cun->bb= MEM_dupallocN(cu->bb);
156 cun->key= copy_key(cu->key);
157 if(cun->key) cun->key->from= (ID *)cun;
159 cun->disp.first= cun->disp.last= 0;
160 cun->bev.first= cun->bev.last= 0;
161 cun->path= 0;
163 /* single user ipo too */
164 if(cun->ipo) cun->ipo= copy_ipo(cun->ipo);
166 id_us_plus((ID *)cun->vfont);
167 id_us_plus((ID *)cun->vfontb);
168 id_us_plus((ID *)cun->vfonti);
169 id_us_plus((ID *)cun->vfontbi);
171 return cun;
174 void make_local_curve(Curve *cu)
176 Object *ob = 0;
177 Curve *cun;
178 int local=0, lib=0;
180 /* - when there are only lib users: don't do
181 * - when there are only local users: set flag
182 * - mixed: do a copy
185 if(cu->id.lib==0) return;
187 if(cu->vfont) cu->vfont->id.lib= 0;
189 if(cu->id.us==1) {
190 cu->id.lib= 0;
191 cu->id.flag= LIB_LOCAL;
192 new_id(0, (ID *)cu, 0);
193 return;
196 ob= G.main->object.first;
197 while(ob) {
198 if(ob->data==cu) {
199 if(ob->id.lib) lib= 1;
200 else local= 1;
202 ob= ob->id.next;
205 if(local && lib==0) {
206 cu->id.lib= 0;
207 cu->id.flag= LIB_LOCAL;
208 new_id(0, (ID *)cu, 0);
210 else if(local && lib) {
211 cun= copy_curve(cu);
212 cun->id.us= 0;
214 ob= G.main->object.first;
215 while(ob) {
216 if(ob->data==cu) {
218 if(ob->id.lib==0) {
219 ob->data= cun;
220 cun->id.us++;
221 cu->id.us--;
224 ob= ob->id.next;
229 short curve_type(Curve *cu)
231 Nurb *nu;
232 if(cu->vfont) {
233 return OB_FONT;
235 for (nu= cu->nurb.first; nu; nu= nu->next) {
236 if(nu->pntsv>1) {
237 return OB_SURF;
241 return OB_CURVE;
244 void test_curve_type(Object *ob)
246 ob->type = curve_type(ob->data);
249 void tex_space_curve(Curve *cu)
251 DispList *dl;
252 BoundBox *bb;
253 float *data, min[3], max[3], loc[3], size[3];
254 int tot, doit= 0;
256 if(cu->bb==NULL) cu->bb= MEM_callocN(sizeof(BoundBox), "boundbox");
257 bb= cu->bb;
259 INIT_MINMAX(min, max);
261 dl= cu->disp.first;
262 while(dl) {
264 if(dl->type==DL_INDEX3 || dl->type==DL_INDEX3) tot= dl->nr;
265 else tot= dl->nr*dl->parts;
267 if(tot) doit= 1;
268 data= dl->verts;
269 while(tot--) {
270 DO_MINMAX(data, min, max);
271 data+= 3;
273 dl= dl->next;
276 if(!doit) {
277 min[0] = min[1] = min[2] = -1.0f;
278 max[0] = max[1] = max[2] = 1.0f;
281 loc[0]= (min[0]+max[0])/2.0f;
282 loc[1]= (min[1]+max[1])/2.0f;
283 loc[2]= (min[2]+max[2])/2.0f;
285 size[0]= (max[0]-min[0])/2.0f;
286 size[1]= (max[1]-min[1])/2.0f;
287 size[2]= (max[2]-min[2])/2.0f;
289 boundbox_set_from_min_max(bb, min, max);
291 if(cu->texflag & CU_AUTOSPACE) {
292 VECCOPY(cu->loc, loc);
293 VECCOPY(cu->size, size);
294 cu->rot[0]= cu->rot[1]= cu->rot[2]= 0.0;
296 if(cu->size[0]==0.0) cu->size[0]= 1.0;
297 else if(cu->size[0]>0.0 && cu->size[0]<0.00001) cu->size[0]= 0.00001;
298 else if(cu->size[0]<0.0 && cu->size[0]> -0.00001) cu->size[0]= -0.00001;
300 if(cu->size[1]==0.0) cu->size[1]= 1.0;
301 else if(cu->size[1]>0.0 && cu->size[1]<0.00001) cu->size[1]= 0.00001;
302 else if(cu->size[1]<0.0 && cu->size[1]> -0.00001) cu->size[1]= -0.00001;
304 if(cu->size[2]==0.0) cu->size[2]= 1.0;
305 else if(cu->size[2]>0.0 && cu->size[2]<0.00001) cu->size[2]= 0.00001;
306 else if(cu->size[2]<0.0 && cu->size[2]> -0.00001) cu->size[2]= -0.00001;
312 int count_curveverts(ListBase *nurb)
314 Nurb *nu;
315 int tot=0;
317 nu= nurb->first;
318 while(nu) {
319 if(nu->bezt) tot+= 3*nu->pntsu;
320 else if(nu->bp) tot+= nu->pntsu*nu->pntsv;
322 nu= nu->next;
324 return tot;
329 /* **************** NURBS ROUTINES ******************** */
331 void freeNurb(Nurb *nu)
334 if(nu==0) return;
336 if(nu->bezt) MEM_freeN(nu->bezt);
337 nu->bezt= 0;
338 if(nu->bp) MEM_freeN(nu->bp);
339 nu->bp= 0;
340 if(nu->knotsu) MEM_freeN(nu->knotsu);
341 nu->knotsu= 0;
342 if(nu->knotsv) MEM_freeN(nu->knotsv);
343 nu->knotsv= 0;
344 /* if(nu->trim.first) freeNurblist(&(nu->trim)); */
346 MEM_freeN(nu);
351 void freeNurblist(ListBase *lb)
353 Nurb *nu, *next;
355 if(lb==0) return;
357 nu= lb->first;
358 while(nu) {
359 next= nu->next;
360 freeNurb(nu);
361 nu= next;
363 lb->first= lb->last= 0;
366 Nurb *duplicateNurb(Nurb *nu)
368 Nurb *newnu;
369 int len;
371 newnu= (Nurb*)MEM_mallocN(sizeof(Nurb),"duplicateNurb");
372 if(newnu==0) return 0;
373 memcpy(newnu, nu, sizeof(Nurb));
375 if(nu->bezt) {
376 newnu->bezt=
377 (BezTriple*)MEM_mallocN((nu->pntsu)* sizeof(BezTriple),"duplicateNurb2");
378 memcpy(newnu->bezt, nu->bezt, nu->pntsu*sizeof(BezTriple));
380 else {
381 len= nu->pntsu*nu->pntsv;
382 newnu->bp=
383 (BPoint*)MEM_mallocN((len)* sizeof(BPoint),"duplicateNurb3");
384 memcpy(newnu->bp, nu->bp, len*sizeof(BPoint));
386 newnu->knotsu=newnu->knotsv= 0;
388 if(nu->knotsu) {
389 len= KNOTSU(nu);
390 if(len) {
391 newnu->knotsu= MEM_mallocN(len*sizeof(float), "duplicateNurb4");
392 memcpy(newnu->knotsu, nu->knotsu, sizeof(float)*len);
395 if(nu->pntsv>1 && nu->knotsv) {
396 len= KNOTSV(nu);
397 if(len) {
398 newnu->knotsv= MEM_mallocN(len*sizeof(float), "duplicateNurb5");
399 memcpy(newnu->knotsv, nu->knotsv, sizeof(float)*len);
403 return newnu;
406 void duplicateNurblist(ListBase *lb1, ListBase *lb2)
408 Nurb *nu, *nun;
410 freeNurblist(lb1);
412 nu= lb2->first;
413 while(nu) {
414 nun= duplicateNurb(nu);
415 BLI_addtail(lb1, nun);
417 nu= nu->next;
421 void test2DNurb(Nurb *nu)
423 BezTriple *bezt;
424 BPoint *bp;
425 int a;
427 if( nu->type== CU_BEZIER+CU_2D ) {
428 a= nu->pntsu;
429 bezt= nu->bezt;
430 while(a--) {
431 bezt->vec[0][2]= 0.0;
432 bezt->vec[1][2]= 0.0;
433 bezt->vec[2][2]= 0.0;
434 bezt++;
437 else if(nu->type & CU_2D) {
438 a= nu->pntsu*nu->pntsv;
439 bp= nu->bp;
440 while(a--) {
441 bp->vec[2]= 0.0;
442 bp++;
447 void minmaxNurb(Nurb *nu, float *min, float *max)
449 BezTriple *bezt;
450 BPoint *bp;
451 int a;
453 if( (nu->type & 7)==CU_BEZIER ) {
454 a= nu->pntsu;
455 bezt= nu->bezt;
456 while(a--) {
457 DO_MINMAX(bezt->vec[0], min, max);
458 DO_MINMAX(bezt->vec[1], min, max);
459 DO_MINMAX(bezt->vec[2], min, max);
460 bezt++;
463 else {
464 a= nu->pntsu*nu->pntsv;
465 bp= nu->bp;
466 while(a--) {
467 DO_MINMAX(bp->vec, min, max);
468 bp++;
474 /* ~~~~~~~~~~~~~~~~~~~~Non Uniform Rational B Spline calculations ~~~~~~~~~~~ */
477 static void calcknots(float *knots, short aantal, short order, short type)
478 /* knots: number of pnts NOT corrected for cyclic */
479 /* type; 0: uniform, 1: endpoints, 2: bezier */
481 float k;
482 int a, t;
484 t = aantal+order;
485 if(type==0) {
487 for(a=0;a<t;a++) {
488 knots[a]= (float)a;
491 else if(type==1) {
492 k= 0.0;
493 for(a=1;a<=t;a++) {
494 knots[a-1]= k;
495 if(a>=order && a<=aantal) k+= 1.0;
498 else if(type==2) {
499 if(order==4) {
500 k= 0.34;
501 for(a=0;a<t;a++) {
502 knots[a]= (float)floor(k);
503 k+= (1.0/3.0);
506 else if(order==3) {
507 k= 0.6;
508 for(a=0;a<t;a++) {
509 if(a>=order && a<=aantal) k+= (0.5);
510 knots[a]= (float)floor(k);
516 static void makecyclicknots(float *knots, short pnts, short order)
517 /* pnts, order: number of pnts NOT corrected for cyclic */
519 int a, b, order2, c;
521 if(knots==0) return;
522 order2=order-1;
524 /* do first long rows (order -1), remove identical knots at endpoints */
525 if(order>2) {
526 b= pnts+order2;
527 for(a=1; a<order2; a++) {
528 if(knots[b]!= knots[b-a]) break;
530 if(a==order2) knots[pnts+order-2]+= 1.0;
533 b= order;
534 c=pnts + order + order2;
535 for(a=pnts+order2; a<c; a++) {
536 knots[a]= knots[a-1]+ (knots[b]-knots[b-1]);
537 b--;
542 void makeknots(Nurb *nu, short uv, short type) /* 0: uniform, 1: endpoints, 2: bezier */
544 if( (nu->type & 7)==CU_NURBS ) {
545 if(uv & 1) {
546 if(nu->knotsu) MEM_freeN(nu->knotsu);
547 if(nu->pntsu>1) {
548 nu->knotsu= MEM_callocN(4+sizeof(float)*KNOTSU(nu), "makeknots");
549 calcknots(nu->knotsu, nu->pntsu, nu->orderu, type);
550 if(nu->flagu & 1) makecyclicknots(nu->knotsu, nu->pntsu, nu->orderu);
552 else nu->knotsu= 0;
554 if(uv & 2) {
555 if(nu->knotsv) MEM_freeN(nu->knotsv);
556 if(nu->pntsv>1) {
557 nu->knotsv= MEM_callocN(4+sizeof(float)*KNOTSV(nu), "makeknots");
558 calcknots(nu->knotsv, nu->pntsv, nu->orderv, type);
559 if(nu->flagv & 1) makecyclicknots(nu->knotsv, nu->pntsv, nu->orderv);
561 else nu->knotsv= 0;
566 static void basisNurb(float t, short order, short pnts, float *knots, float *basis, int *start, int *end)
568 float d, e;
569 int i, i1 = 0, i2 = 0 ,j, orderpluspnts, opp2, o2;
571 orderpluspnts= order+pnts;
572 opp2 = orderpluspnts-1;
574 /* this is for float inaccuracy */
575 if(t < knots[0]) t= knots[0];
576 else if(t > knots[opp2]) t= knots[opp2];
578 /* this part is order '1' */
579 o2 = order + 1;
580 for(i=0;i<opp2;i++) {
581 if(knots[i]!=knots[i+1] && t>= knots[i] && t<=knots[i+1]) {
582 basis[i]= 1.0;
583 i1= i-o2;
584 if(i1<0) i1= 0;
585 i2= i;
586 i++;
587 while(i<opp2) {
588 basis[i]= 0.0;
589 i++;
591 break;
593 else basis[i]= 0.0;
595 basis[i]= 0.0;
597 /* this is order 2,3,... */
598 for(j=2; j<=order; j++) {
600 if(i2+j>= orderpluspnts) i2= opp2-j;
602 for(i= i1; i<=i2; i++) {
603 if(basis[i]!=0.0)
604 d= ((t-knots[i])*basis[i]) / (knots[i+j-1]-knots[i]);
605 else
606 d= 0.0;
608 if(basis[i+1]!=0.0)
609 e= ((knots[i+j]-t)*basis[i+1]) / (knots[i+j]-knots[i+1]);
610 else
611 e= 0.0;
613 basis[i]= d+e;
617 *start= 1000;
618 *end= 0;
620 for(i=i1; i<=i2; i++) {
621 if(basis[i]>0.0) {
622 *end= i;
623 if(*start==1000) *start= i;
629 void makeNurbfaces(Nurb *nu, float *data, int rowstride)
630 /* data has to be 3*4*resolu*resolv in size, and zero-ed */
632 BPoint *bp;
633 float *basisu, *basis, *basisv, *sum, *fp, *in;
634 float u, v, ustart, uend, ustep, vstart, vend, vstep, sumdiv;
635 int i, j, iofs, jofs, cycl, len, resolu, resolv;
636 int istart, iend, jsta, jen, *jstart, *jend, ratcomp;
638 if(nu->knotsu==0 || nu->knotsv==0) return;
639 if(nu->orderu>nu->pntsu) return;
640 if(nu->orderv>nu->pntsv) return;
641 if(data==0) return;
643 /* allocate and initialize */
644 len= nu->pntsu*nu->pntsv;
645 if(len==0) return;
649 sum= (float *)MEM_callocN(sizeof(float)*len, "makeNurbfaces1");
651 resolu= nu->resolu;
652 resolv= nu->resolv;
653 len= resolu*resolv;
654 if(len==0) {
655 MEM_freeN(sum);
656 return;
659 bp= nu->bp;
660 i= nu->pntsu*nu->pntsv;
661 ratcomp=0;
662 while(i--) {
663 if(bp->vec[3]!=1.0) {
664 ratcomp= 1;
665 break;
667 bp++;
670 fp= nu->knotsu;
671 ustart= fp[nu->orderu-1];
672 if(nu->flagu & 1) uend= fp[nu->pntsu+nu->orderu-1];
673 else uend= fp[nu->pntsu];
674 ustep= (uend-ustart)/(resolu-1+(nu->flagu & 1));
675 basisu= (float *)MEM_mallocN(sizeof(float)*KNOTSU(nu), "makeNurbfaces3");
677 fp= nu->knotsv;
678 vstart= fp[nu->orderv-1];
680 if(nu->flagv & 1) vend= fp[nu->pntsv+nu->orderv-1];
681 else vend= fp[nu->pntsv];
682 vstep= (vend-vstart)/(resolv-1+(nu->flagv & 1));
683 len= KNOTSV(nu);
684 basisv= (float *)MEM_mallocN(sizeof(float)*len*resolv, "makeNurbfaces3");
685 jstart= (int *)MEM_mallocN(sizeof(float)*resolv, "makeNurbfaces4");
686 jend= (int *)MEM_mallocN(sizeof(float)*resolv, "makeNurbfaces5");
688 /* precalculation of basisv and jstart,jend */
689 if(nu->flagv & 1) cycl= nu->orderv-1;
690 else cycl= 0;
691 v= vstart;
692 basis= basisv;
693 while(resolv--) {
694 basisNurb(v, nu->orderv, (short)(nu->pntsv+cycl), nu->knotsv, basis, jstart+resolv, jend+resolv);
695 basis+= KNOTSV(nu);
696 v+= vstep;
699 if(nu->flagu & 1) cycl= nu->orderu-1;
700 else cycl= 0;
701 in= data;
702 u= ustart;
703 while(resolu--) {
705 basisNurb(u, nu->orderu, (short)(nu->pntsu+cycl), nu->knotsu, basisu, &istart, &iend);
707 basis= basisv;
708 resolv= nu->resolv;
709 while(resolv--) {
711 jsta= jstart[resolv];
712 jen= jend[resolv];
714 /* calculate sum */
715 sumdiv= 0.0;
716 fp= sum;
718 for(j= jsta; j<=jen; j++) {
720 if(j>=nu->pntsv) jofs= (j - nu->pntsv);
721 else jofs= j;
722 bp= nu->bp+ nu->pntsu*jofs+istart-1;
724 for(i= istart; i<=iend; i++, fp++) {
726 if(i>= nu->pntsu) {
727 iofs= i- nu->pntsu;
728 bp= nu->bp+ nu->pntsu*jofs+iofs;
730 else bp++;
732 if(ratcomp) {
733 *fp= basisu[i]*basis[j]*bp->vec[3];
734 sumdiv+= *fp;
736 else *fp= basisu[i]*basis[j];
740 if(ratcomp) {
741 fp= sum;
742 for(j= jsta; j<=jen; j++) {
743 for(i= istart; i<=iend; i++, fp++) {
744 *fp/= sumdiv;
749 /* one! (1.0) real point now */
750 fp= sum;
751 for(j= jsta; j<=jen; j++) {
753 if(j>=nu->pntsv) jofs= (j - nu->pntsv);
754 else jofs= j;
755 bp= nu->bp+ nu->pntsu*jofs+istart-1;
757 for(i= istart; i<=iend; i++, fp++) {
759 if(i>= nu->pntsu) {
760 iofs= i- nu->pntsu;
761 bp= nu->bp+ nu->pntsu*jofs+iofs;
763 else bp++;
765 if(*fp!=0.0) {
766 in[0]+= (*fp) * bp->vec[0];
767 in[1]+= (*fp) * bp->vec[1];
768 in[2]+= (*fp) * bp->vec[2];
773 in+=3;
774 basis+= KNOTSV(nu);
776 u+= ustep;
777 if (rowstride!=0) in = (float*) (((unsigned char*) in) + (rowstride - 3*nu->resolv*sizeof(*in)));
780 /* free */
781 MEM_freeN(sum);
782 MEM_freeN(basisu);
783 MEM_freeN(basisv);
784 MEM_freeN(jstart);
785 MEM_freeN(jend);
788 void makeNurbcurve(Nurb *nu, float *data, int resolu, int dim)
789 /* data has to be dim*4*pntsu*resolu in size and zero-ed */
791 BPoint *bp;
792 float u, ustart, uend, ustep, sumdiv;
793 float *basisu, *sum, *fp, *in;
794 int i, len, istart, iend, cycl;
796 if(nu->knotsu==0) return;
797 if(nu->orderu>nu->pntsu) return;
798 if(data==0) return;
800 /* allocate and initialize */
801 len= nu->pntsu;
802 if(len==0) return;
803 sum= (float *)MEM_callocN(sizeof(float)*len, "makeNurbcurve1");
805 resolu*= nu->pntsu;
806 if(resolu==0) {
807 MEM_freeN(sum);
808 return;
811 fp= nu->knotsu;
812 ustart= fp[nu->orderu-1];
813 if(nu->flagu & 1) uend= fp[nu->pntsu+nu->orderu-1];
814 else uend= fp[nu->pntsu];
815 ustep= (uend-ustart)/(resolu-1+(nu->flagu & 1));
816 basisu= (float *)MEM_mallocN(sizeof(float)*KNOTSU(nu), "makeNurbcurve3");
818 if(nu->flagu & 1) cycl= nu->orderu-1;
819 else cycl= 0;
821 in= data;
822 u= ustart;
823 while(resolu--) {
825 basisNurb(u, nu->orderu, (short)(nu->pntsu+cycl), nu->knotsu, basisu, &istart, &iend);
826 /* calc sum */
827 sumdiv= 0.0;
828 fp= sum;
829 bp= nu->bp+ istart-1;
830 for(i= istart; i<=iend; i++, fp++) {
832 if(i>=nu->pntsu) bp= nu->bp+(i - nu->pntsu);
833 else bp++;
835 *fp= basisu[i]*bp->vec[3];
836 sumdiv+= *fp;
838 if(sumdiv!=0.0) if(sumdiv<0.999 || sumdiv>1.001) {
839 /* is normalizing needed? */
840 fp= sum;
841 for(i= istart; i<=iend; i++, fp++) {
842 *fp/= sumdiv;
846 /* one! (1.0) real point */
847 fp= sum;
848 bp= nu->bp+ istart-1;
849 for(i= istart; i<=iend; i++, fp++) {
851 if(i>=nu->pntsu) bp= nu->bp+(i - nu->pntsu);
852 else bp++;
854 if(*fp!=0.0) {
856 in[0]+= (*fp) * bp->vec[0];
857 in[1]+= (*fp) * bp->vec[1];
858 if(dim>=3) {
859 in[2]+= (*fp) * bp->vec[2];
860 if(dim==4) in[3]+= (*fp) * bp->alfa;
865 in+= dim;
867 u+= ustep;
870 /* free */
871 MEM_freeN(sum);
872 MEM_freeN(basisu);
875 /* forward differencing method for bezier curve */
876 void forward_diff_bezier(float q0, float q1, float q2, float q3, float *p, int it, int stride)
878 float rt0,rt1,rt2,rt3,f;
879 int a;
881 f= (float)it;
882 rt0= q0;
883 rt1= 3.0f*(q1-q0)/f;
884 f*= f;
885 rt2= 3.0f*(q0-2.0f*q1+q2)/f;
886 f*= it;
887 rt3= (q3-q0+3.0f*(q1-q2))/f;
889 q0= rt0;
890 q1= rt1+rt2+rt3;
891 q2= 2*rt2+6*rt3;
892 q3= 6*rt3;
894 for(a=0; a<=it; a++) {
895 *p= q0;
896 p+= stride;
897 q0+= q1;
898 q1+= q2;
899 q2+= q3;
903 /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
905 float *make_orco_surf(Object *ob)
907 Curve *cu= ob->data;
908 Nurb *nu;
909 int a, b, tot=0;
910 int sizeu, sizev;
911 float *data, *orco;
913 /* first calculate the size of the datablock */
914 nu= cu->nurb.first;
915 while(nu) {
916 /* as we want to avoid the seam in a cyclic nurbs
917 texture wrapping, reserve extra orco data space to save these extra needed
918 vertex based UV coordinates for the meridian vertices.
919 Vertices on the 0/2pi boundary are not duplicated inside the displist but later in
920 the renderface/vert construction.
922 See also convertblender.c: init_render_surf()
925 sizeu = nu->resolu;
926 sizev = nu->resolv;
927 if (nu->flagu & CU_CYCLIC) sizeu++;
928 if (nu->flagv & CU_CYCLIC) sizev++;
929 if(nu->pntsv>1) tot+= sizeu * sizev;
931 nu= nu->next;
933 /* makeNurbfaces wants zeros */
934 data= orco= MEM_callocN(3*sizeof(float)*tot, "make_orco");
936 nu= cu->nurb.first;
937 while(nu) {
938 if(nu->pntsv>1) {
939 sizeu = nu->resolu;
940 sizev = nu->resolv;
941 if (nu->flagu & CU_CYCLIC) sizeu++;
942 if (nu->flagv & CU_CYCLIC) sizev++;
944 if(cu->flag & CU_UV_ORCO) {
945 for(b=0; b< sizeu; b++) {
946 for(a=0; a< sizev; a++) {
948 if(sizev <2) data[0]= 0.0f;
949 else data[0]= -1.0f + 2.0f*((float)a)/(sizev - 1);
951 if(sizeu <2) data[1]= 0.0f;
952 else data[1]= -1.0f + 2.0f*((float)b)/(sizeu - 1);
954 data[2]= 0.0;
956 data+= 3;
960 else {
961 float *_tdata= MEM_callocN(nu->resolu*nu->resolv*3*sizeof(float), "temp data");
962 float *tdata= _tdata;
964 makeNurbfaces(nu, tdata, 0);
966 for(b=0; b<sizeu; b++) {
967 int use_b= b;
968 if (b==sizeu-1 && (nu->flagu & CU_CYCLIC))
969 use_b= 0;
971 for(a=0; a<sizev; a++) {
972 int use_a= a;
973 if (a==sizev-1 && (nu->flagv & CU_CYCLIC))
974 use_a= 0;
976 tdata = _tdata + 3 * (use_b * nu->resolv + use_a);
978 data[0]= (tdata[0]-cu->loc[0])/cu->size[0];
979 data[1]= (tdata[1]-cu->loc[1])/cu->size[1];
980 data[2]= (tdata[2]-cu->loc[2])/cu->size[2];
981 data+= 3;
985 MEM_freeN(_tdata);
988 nu= nu->next;
991 return orco;
995 /* NOTE: This routine is tied to the order of vertex
996 * built by displist and as passed to the renderer.
998 float *make_orco_curve(Object *ob)
1000 Curve *cu = ob->data;
1001 DispList *dl;
1002 int u, v, numVerts;
1003 float *fp, *orco;
1004 int remakeDisp = 0;
1006 if (!(cu->flag&CU_UV_ORCO) && cu->key && cu->key->refkey) {
1007 cp_cu_key(cu, cu->key->refkey, 0, count_curveverts(&cu->nurb));
1008 makeDispListCurveTypes(ob, 1);
1009 remakeDisp = 1;
1012 /* Assumes displist has been built */
1014 numVerts = 0;
1015 for (dl=cu->disp.first; dl; dl=dl->next) {
1016 if (dl->type==DL_INDEX3) {
1017 numVerts += dl->nr;
1018 } else if (dl->type==DL_SURF) {
1019 /* convertblender.c uses the Surface code for creating renderfaces when cyclic U only (closed circle beveling) */
1020 if (dl->flag & DL_CYCL_U) {
1021 if (dl->flag & DL_CYCL_V)
1022 numVerts += (dl->parts+1)*(dl->nr+1);
1023 else
1024 numVerts += dl->parts*(dl->nr+1);
1026 else
1027 numVerts += dl->parts*dl->nr;
1031 fp= orco= MEM_mallocN(3*sizeof(float)*numVerts, "cu_orco");
1032 for (dl=cu->disp.first; dl; dl=dl->next) {
1033 if (dl->type==DL_INDEX3) {
1034 for (u=0; u<dl->nr; u++, fp+=3) {
1035 if (cu->flag & CU_UV_ORCO) {
1036 fp[0]= 2.0f*u/(dl->nr-1) - 1.0f;
1037 fp[1]= 0.0;
1038 fp[2]= 0.0;
1039 } else {
1040 VECCOPY(fp, &dl->verts[u*3]);
1042 fp[0]= (fp[0]-cu->loc[0])/cu->size[0];
1043 fp[1]= (fp[1]-cu->loc[1])/cu->size[1];
1044 fp[2]= (fp[2]-cu->loc[2])/cu->size[2];
1047 } else if (dl->type==DL_SURF) {
1048 int sizeu= dl->nr, sizev= dl->parts;
1050 /* exception as handled in convertblender.c too */
1051 if (dl->flag & DL_CYCL_U) {
1052 sizeu++;
1053 if (dl->flag & DL_CYCL_V)
1054 sizev++;
1057 for (u=0; u<sizev; u++) {
1058 for (v=0; v<sizeu; v++,fp+=3) {
1059 if (cu->flag & CU_UV_ORCO) {
1060 fp[0]= 2.0f*u/(dl->parts-1) - 1.0f;
1061 fp[1]= 2.0f*v/(dl->nr-1) - 1.0f;
1062 fp[2]= 0.0;
1063 } else {
1064 int realv= v % dl->nr;
1066 VECCOPY(fp, &dl->verts[(dl->nr*u + realv)*3]);
1068 fp[0]= (fp[0]-cu->loc[0])/cu->size[0];
1069 fp[1]= (fp[1]-cu->loc[1])/cu->size[1];
1070 fp[2]= (fp[2]-cu->loc[2])/cu->size[2];
1077 if (remakeDisp) {
1078 makeDispListCurveTypes(ob, 0);
1081 return orco;
1085 /* ***************** BEVEL ****************** */
1087 void makebevelcurve(Object *ob, ListBase *disp)
1089 DispList *dl, *dlnew;
1090 Curve *bevcu, *cu;
1091 float *fp, facx, facy, angle, dangle;
1092 int nr, a;
1094 cu= ob->data;
1095 disp->first = disp->last = NULL;
1097 /* if a font object is being edited, then do nothing */
1098 if( ob == G.obedit && ob->type == OB_FONT ) return;
1100 if(cu->bevobj && cu->bevobj!=ob) {
1101 if(cu->bevobj->type==OB_CURVE) {
1102 bevcu= cu->bevobj->data;
1103 if(bevcu->ext1==0.0 && bevcu->ext2==0.0) {
1104 facx= cu->bevobj->size[0];
1105 facy= cu->bevobj->size[1];
1107 dl= bevcu->disp.first;
1108 if(dl==0) {
1109 makeDispListCurveTypes(cu->bevobj, 0);
1110 dl= bevcu->disp.first;
1112 while(dl) {
1113 if ELEM(dl->type, DL_POLY, DL_SEGM) {
1114 dlnew= MEM_mallocN(sizeof(DispList), "makebevelcurve1");
1115 *dlnew= *dl;
1116 dlnew->verts= MEM_mallocN(3*sizeof(float)*dl->parts*dl->nr, "makebevelcurve1");
1117 memcpy(dlnew->verts, dl->verts, 3*sizeof(float)*dl->parts*dl->nr);
1119 if(dlnew->type==DL_SEGM) dlnew->flag |= (DL_FRONT_CURVE|DL_BACK_CURVE);
1121 BLI_addtail(disp, dlnew);
1122 fp= dlnew->verts;
1123 nr= dlnew->parts*dlnew->nr;
1124 while(nr--) {
1125 fp[2]= fp[1]*facy;
1126 fp[1]= -fp[0]*facx;
1127 fp[0]= 0.0;
1128 fp+= 3;
1131 dl= dl->next;
1136 else if(cu->ext1==0.0 && cu->ext2==0.0) {
1139 else if(cu->ext2==0.0) {
1140 dl= MEM_callocN(sizeof(DispList), "makebevelcurve2");
1141 dl->verts= MEM_mallocN(2*3*sizeof(float), "makebevelcurve2");
1142 BLI_addtail(disp, dl);
1143 dl->type= DL_SEGM;
1144 dl->parts= 1;
1145 dl->flag= DL_FRONT_CURVE|DL_BACK_CURVE;
1146 dl->nr= 2;
1148 fp= dl->verts;
1149 fp[0]= fp[1]= 0.0;
1150 fp[2]= -cu->ext1;
1151 fp[3]= fp[4]= 0.0;
1152 fp[5]= cu->ext1;
1154 else if( (cu->flag & (CU_FRONT|CU_BACK))==0 && cu->ext1==0.0f) { // we make a full round bevel in that case
1156 nr= 4+ 2*cu->bevresol;
1158 dl= MEM_callocN(sizeof(DispList), "makebevelcurve p1");
1159 dl->verts= MEM_mallocN(nr*3*sizeof(float), "makebevelcurve p1");
1160 BLI_addtail(disp, dl);
1161 dl->type= DL_POLY;
1162 dl->parts= 1;
1163 dl->flag= DL_BACK_CURVE;
1164 dl->nr= nr;
1166 /* a circle */
1167 fp= dl->verts;
1168 dangle= (2.0f*M_PI/(nr));
1169 angle= -(nr-1)*dangle;
1171 for(a=0; a<nr; a++) {
1172 fp[0]= 0.0;
1173 fp[1]= (float)(cos(angle)*(cu->ext2));
1174 fp[2]= (float)(sin(angle)*(cu->ext2)) - cu->ext1;
1175 angle+= dangle;
1176 fp+= 3;
1179 else {
1180 short dnr;
1182 /* bevel now in three parts, for proper vertex normals */
1183 /* part 1 */
1184 dnr= nr= 2+ cu->bevresol;
1185 if( (cu->flag & (CU_FRONT|CU_BACK))==0)
1186 nr= 3+ 2*cu->bevresol;
1188 dl= MEM_callocN(sizeof(DispList), "makebevelcurve p1");
1189 dl->verts= MEM_mallocN(nr*3*sizeof(float), "makebevelcurve p1");
1190 BLI_addtail(disp, dl);
1191 dl->type= DL_SEGM;
1192 dl->parts= 1;
1193 dl->flag= DL_BACK_CURVE;
1194 dl->nr= nr;
1196 /* half a circle */
1197 fp= dl->verts;
1198 dangle= (0.5*M_PI/(dnr-1));
1199 angle= -(nr-1)*dangle;
1201 for(a=0; a<nr; a++) {
1202 fp[0]= 0.0;
1203 fp[1]= (float)(cos(angle)*(cu->ext2));
1204 fp[2]= (float)(sin(angle)*(cu->ext2)) - cu->ext1;
1205 angle+= dangle;
1206 fp+= 3;
1209 /* part 2, sidefaces */
1210 if(cu->ext1!=0.0) {
1211 nr= 2;
1213 dl= MEM_callocN(sizeof(DispList), "makebevelcurve p2");
1214 dl->verts= MEM_callocN(nr*3*sizeof(float), "makebevelcurve p2");
1215 BLI_addtail(disp, dl);
1216 dl->type= DL_SEGM;
1217 dl->parts= 1;
1218 dl->nr= nr;
1220 fp= dl->verts;
1221 fp[1]= cu->ext2;
1222 fp[2]= -cu->ext1;
1223 fp[4]= cu->ext2;
1224 fp[5]= cu->ext1;
1226 if( (cu->flag & (CU_FRONT|CU_BACK))==0) {
1227 dl= MEM_dupallocN(dl);
1228 dl->verts= MEM_dupallocN(dl->verts);
1229 BLI_addtail(disp, dl);
1231 fp= dl->verts;
1232 fp[1]= -fp[1];
1233 fp[2]= -fp[2];
1234 fp[4]= -fp[4];
1235 fp[5]= -fp[5];
1239 /* part 3 */
1240 dnr= nr= 2+ cu->bevresol;
1241 if( (cu->flag & (CU_FRONT|CU_BACK))==0)
1242 nr= 3+ 2*cu->bevresol;
1244 dl= MEM_callocN(sizeof(DispList), "makebevelcurve p3");
1245 dl->verts= MEM_mallocN(nr*3*sizeof(float), "makebevelcurve p3");
1246 BLI_addtail(disp, dl);
1247 dl->type= DL_SEGM;
1248 dl->flag= DL_FRONT_CURVE;
1249 dl->parts= 1;
1250 dl->nr= nr;
1252 /* half a circle */
1253 fp= dl->verts;
1254 angle= 0.0;
1255 dangle= (0.5*M_PI/(dnr-1));
1257 for(a=0; a<nr; a++) {
1258 fp[0]= 0.0;
1259 fp[1]= (float)(cos(angle)*(cu->ext2));
1260 fp[2]= (float)(sin(angle)*(cu->ext2)) + cu->ext1;
1261 angle+= dangle;
1262 fp+= 3;
1267 int cu_isectLL(float *v1, float *v2, float *v3, float *v4, short cox, short coy, float *labda, float *mu, float *vec)
1269 /* return:
1270 -1: colliniar
1271 0: no intersection of segments
1272 1: exact intersection of segments
1273 2: cross-intersection of segments
1275 float deler;
1277 deler= (v1[cox]-v2[cox])*(v3[coy]-v4[coy])-(v3[cox]-v4[cox])*(v1[coy]-v2[coy]);
1278 if(deler==0.0) return -1;
1280 *labda= (v1[coy]-v3[coy])*(v3[cox]-v4[cox])-(v1[cox]-v3[cox])*(v3[coy]-v4[coy]);
1281 *labda= -(*labda/deler);
1283 deler= v3[coy]-v4[coy];
1284 if(deler==0) {
1285 deler=v3[cox]-v4[cox];
1286 *mu= -(*labda*(v2[cox]-v1[cox])+v1[cox]-v3[cox])/deler;
1287 } else {
1288 *mu= -(*labda*(v2[coy]-v1[coy])+v1[coy]-v3[coy])/deler;
1290 vec[cox]= *labda*(v2[cox]-v1[cox])+v1[cox];
1291 vec[coy]= *labda*(v2[coy]-v1[coy])+v1[coy];
1293 if(*labda>=0.0 && *labda<=1.0 && *mu>=0.0 && *mu<=1.0) {
1294 if(*labda==0.0 || *labda==1.0 || *mu==0.0 || *mu==1.0) return 1;
1295 return 2;
1297 return 0;
1301 static short bevelinside(BevList *bl1,BevList *bl2)
1303 /* is bl2 INSIDE bl1 ? with left-right method and "labda's" */
1304 /* returns '1' if correct hole */
1305 BevPoint *bevp, *prevbevp;
1306 float min,max,vec[3],hvec1[3],hvec2[3],lab,mu;
1307 int nr, links=0,rechts=0,mode;
1309 /* take first vertex of possible hole */
1311 bevp= (BevPoint *)(bl2+1);
1312 hvec1[0]= bevp->x;
1313 hvec1[1]= bevp->y;
1314 hvec1[2]= 0.0;
1315 VECCOPY(hvec2,hvec1);
1316 hvec2[0]+=1000;
1318 /* test it with all edges of potential surounding poly */
1319 /* count number of transitions left-right */
1321 bevp= (BevPoint *)(bl1+1);
1322 nr= bl1->nr;
1323 prevbevp= bevp+(nr-1);
1325 while(nr--) {
1326 min= prevbevp->y;
1327 max= bevp->y;
1328 if(max<min) {
1329 min= max;
1330 max= prevbevp->y;
1332 if(min!=max) {
1333 if(min<=hvec1[1] && max>=hvec1[1]) {
1334 /* there's a transition, calc intersection point */
1335 mode= cu_isectLL(&(prevbevp->x),&(bevp->x),hvec1,hvec2,0,1,&lab,&mu,vec);
1336 /* if lab==0.0 or lab==1.0 then the edge intersects exactly a transition
1337 only allow for one situation: we choose lab= 1.0
1339 if(mode>=0 && lab!=0.0) {
1340 if(vec[0]<hvec1[0]) links++;
1341 else rechts++;
1345 prevbevp= bevp;
1346 bevp++;
1349 if( (links & 1) && (rechts & 1) ) return 1;
1350 return 0;
1354 struct bevelsort {
1355 float left;
1356 BevList *bl;
1357 int dir;
1360 static int vergxcobev(const void *a1, const void *a2)
1362 const struct bevelsort *x1=a1,*x2=a2;
1364 if( x1->left > x2->left ) return 1;
1365 else if( x1->left < x2->left) return -1;
1366 return 0;
1369 /* this function cannot be replaced with atan2, but why? */
1371 static void calc_bevel_sin_cos(float x1, float y1, float x2, float y2, float *sina, float *cosa)
1373 float t01, t02, x3, y3;
1375 t01= (float)sqrt(x1*x1+y1*y1);
1376 t02= (float)sqrt(x2*x2+y2*y2);
1377 if(t01==0.0) t01= 1.0;
1378 if(t02==0.0) t02= 1.0;
1380 x1/=t01;
1381 y1/=t01;
1382 x2/=t02;
1383 y2/=t02;
1385 t02= x1*x2+y1*y2;
1386 if(fabs(t02)>=1.0) t02= .5*M_PI;
1387 else t02= (saacos(t02))/2.0f;
1389 t02= (float)sin(t02);
1390 if(t02==0.0) t02= 1.0;
1392 x3= x1-x2;
1393 y3= y1-y2;
1394 if(x3==0 && y3==0) {
1395 x3= y1;
1396 y3= -x1;
1397 } else {
1398 t01= (float)sqrt(x3*x3+y3*y3);
1399 x3/=t01;
1400 y3/=t01;
1403 *sina= -y3/t02;
1404 *cosa= x3/t02;
1408 static void alfa_bezpart(BezTriple *prevbezt, BezTriple *bezt, Nurb *nu, float *data_a, int resolu)
1410 BezTriple *pprev, *next, *last;
1411 float fac, dfac, t[4];
1412 int a;
1414 last= nu->bezt+(nu->pntsu-1);
1416 /* returns a point */
1417 if(prevbezt==nu->bezt) {
1418 if(nu->flagu & 1) pprev= last;
1419 else pprev= prevbezt;
1421 else pprev= prevbezt-1;
1423 /* next point */
1424 if(bezt==last) {
1425 if(nu->flagu & 1) next= nu->bezt;
1426 else next= bezt;
1428 else next= bezt+1;
1430 fac= 0.0;
1431 dfac= 1.0f/(float)resolu;
1433 for(a=0; a<resolu; a++, fac+= dfac) {
1435 set_four_ipo(fac, t, KEY_LINEAR);
1437 data_a[a]= t[0]*pprev->alfa + t[1]*prevbezt->alfa + t[2]*bezt->alfa + t[3]*next->alfa;
1441 void makeBevelList(Object *ob)
1444 - convert all curves to polys, with indication of resol and flags for double-vertices
1445 - possibly; do a smart vertice removal (in case Nurb)
1446 - separate in individual blicks with BoundBox
1447 - AutoHole detection
1449 Curve *cu;
1450 Nurb *nu;
1451 BezTriple *bezt, *prevbezt;
1452 BPoint *bp;
1453 BevList *bl, *blnew, *blnext;
1454 BevPoint *bevp, *bevp2, *bevp1 = NULL, *bevp0;
1455 float *data, *data_a, *v1, *v2, min, inp, x1, x2, y1, y2, vec[3];
1456 struct bevelsort *sortdata, *sd, *sd1;
1457 int a, b, len, nr, poly, resolu;
1459 /* this function needs an object, because of tflag and upflag */
1460 cu= ob->data;
1462 /* STEP 1: MAKE POLYS */
1464 BLI_freelistN(&(cu->bev));
1465 if(ob==G.obedit && ob->type!=OB_FONT) nu= editNurb.first;
1466 else nu= cu->nurb.first;
1468 while(nu) {
1469 if(nu->pntsu>1) {
1470 if(G.rendering && cu->resolu_ren!=0)
1471 resolu= cu->resolu_ren;
1472 else
1473 resolu= nu->resolu;
1475 if((nu->type & 7)==CU_POLY) {
1477 len= nu->pntsu;
1478 bl= MEM_callocN(sizeof(BevList)+len*sizeof(BevPoint), "makeBevelList");
1479 BLI_addtail(&(cu->bev), bl);
1481 if(nu->flagu & 1) bl->poly= 0;
1482 else bl->poly= -1;
1483 bl->nr= len;
1484 bl->flag= 0;
1485 bevp= (BevPoint *)(bl+1);
1486 bp= nu->bp;
1488 while(len--) {
1489 bevp->x= bp->vec[0];
1490 bevp->y= bp->vec[1];
1491 bevp->z= bp->vec[2];
1492 bevp->alfa= bp->alfa;
1493 bevp->f1= 1;
1494 bevp++;
1495 bp++;
1498 else if((nu->type & 7)==CU_BEZIER) {
1500 len= resolu*(nu->pntsu+ (nu->flagu & 1) -1)+1; /* in case last point is not cyclic */
1501 bl= MEM_callocN(sizeof(BevList)+len*sizeof(BevPoint), "makeBevelList");
1502 BLI_addtail(&(cu->bev), bl);
1504 if(nu->flagu & 1) bl->poly= 0;
1505 else bl->poly= -1;
1506 bevp= (BevPoint *)(bl+1);
1508 a= nu->pntsu-1;
1509 bezt= nu->bezt;
1510 if(nu->flagu & 1) {
1511 a++;
1512 prevbezt= nu->bezt+(nu->pntsu-1);
1514 else {
1515 prevbezt= bezt;
1516 bezt++;
1519 data= MEM_mallocN(3*sizeof(float)*(resolu+1), "makeBevelList2");
1520 data_a= MEM_callocN(sizeof(float)*(resolu+1), "data_a");
1522 while(a--) {
1523 if(prevbezt->h2==HD_VECT && bezt->h1==HD_VECT) {
1525 bevp->x= prevbezt->vec[1][0];
1526 bevp->y= prevbezt->vec[1][1];
1527 bevp->z= prevbezt->vec[1][2];
1528 bevp->alfa= prevbezt->alfa;
1529 bevp->f1= 1;
1530 bevp->f2= 0;
1531 bevp++;
1532 bl->nr++;
1533 bl->flag= 1;
1535 else {
1536 v1= prevbezt->vec[1];
1537 v2= bezt->vec[0];
1539 /* always do all three, to prevent data hanging around */
1540 forward_diff_bezier(v1[0], v1[3], v2[0], v2[3], data, resolu, 3);
1541 forward_diff_bezier(v1[1], v1[4], v2[1], v2[4], data+1, resolu, 3);
1542 forward_diff_bezier(v1[2], v1[5], v2[2], v2[5], data+2, resolu, 3);
1544 if((nu->type & CU_2D)==0) {
1545 if(cu->flag & CU_3D) {
1546 alfa_bezpart(prevbezt, bezt, nu, data_a, resolu);
1551 /* indicate with handlecodes double points */
1552 if(prevbezt->h1==prevbezt->h2) {
1553 if(prevbezt->h1==0 || prevbezt->h1==HD_VECT) bevp->f1= 1;
1555 else {
1556 if(prevbezt->h1==0 || prevbezt->h1==HD_VECT) bevp->f1= 1;
1557 else if(prevbezt->h2==0 || prevbezt->h2==HD_VECT) bevp->f1= 1;
1560 v1= data;
1561 v2= data_a;
1562 nr= resolu;
1564 while(nr--) {
1565 bevp->x= v1[0];
1566 bevp->y= v1[1];
1567 bevp->z= v1[2];
1568 bevp->alfa= v2[0];
1569 bevp++;
1570 v1+=3;
1571 v2++;
1573 bl->nr+= resolu;
1576 prevbezt= bezt;
1577 bezt++;
1580 MEM_freeN(data);
1581 MEM_freeN(data_a);
1583 if((nu->flagu & 1)==0) { /* not cyclic: endpoint */
1584 bevp->x= prevbezt->vec[1][0];
1585 bevp->y= prevbezt->vec[1][1];
1586 bevp->z= prevbezt->vec[1][2];
1587 bevp->alfa= prevbezt->alfa;
1588 bl->nr++;
1592 else if((nu->type & 7)==CU_NURBS) {
1593 if(nu->pntsv==1) {
1594 len= resolu*nu->pntsu;
1595 bl= MEM_mallocN(sizeof(BevList)+len*sizeof(BevPoint), "makeBevelList3");
1596 BLI_addtail(&(cu->bev), bl);
1597 bl->nr= len;
1598 bl->flag= 0;
1599 if(nu->flagu & 1) bl->poly= 0;
1600 else bl->poly= -1;
1601 bevp= (BevPoint *)(bl+1);
1603 data= MEM_callocN(4*sizeof(float)*len, "makeBevelList4"); /* has to be zero-ed */
1604 makeNurbcurve(nu, data, resolu, 4);
1606 v1= data;
1607 while(len--) {
1608 bevp->x= v1[0];
1609 bevp->y= v1[1];
1610 bevp->z= v1[2];
1611 bevp->alfa= v1[3];
1613 bevp->f1= bevp->f2= 0;
1614 bevp++;
1615 v1+=4;
1617 MEM_freeN(data);
1621 nu= nu->next;
1624 /* STEP 2: DOUBLE POINTS AND AUTOMATIC RESOLUTION, REDUCE DATABLOCKS */
1625 bl= cu->bev.first;
1626 while(bl) {
1627 nr= bl->nr;
1628 bevp1= (BevPoint *)(bl+1);
1629 bevp0= bevp1+(nr-1);
1630 nr--;
1631 while(nr--) {
1632 if( fabs(bevp0->x-bevp1->x)<0.00001 ) {
1633 if( fabs(bevp0->y-bevp1->y)<0.00001 ) {
1634 if( fabs(bevp0->z-bevp1->z)<0.00001 ) {
1635 bevp0->f2= 1;
1636 bl->flag++;
1640 bevp0= bevp1;
1641 bevp1++;
1643 bl= bl->next;
1645 bl= cu->bev.first;
1646 while(bl) {
1647 blnext= bl->next;
1648 if(bl->flag) {
1649 nr= bl->nr- bl->flag+1; /* +1 because vectorbezier sets flag too */
1650 blnew= MEM_mallocN(sizeof(BevList)+nr*sizeof(BevPoint), "makeBevelList");
1651 memcpy(blnew, bl, sizeof(BevList));
1652 blnew->nr= 0;
1653 BLI_remlink(&(cu->bev), bl);
1654 BLI_insertlinkbefore(&(cu->bev),blnext,blnew); /* to make sure bevlijst is tuned with nurblist */
1655 bevp0= (BevPoint *)(bl+1);
1656 bevp1= (BevPoint *)(blnew+1);
1657 nr= bl->nr;
1658 while(nr--) {
1659 if(bevp0->f2==0) {
1660 memcpy(bevp1, bevp0, sizeof(BevPoint));
1661 bevp1++;
1662 blnew->nr++;
1664 bevp0++;
1666 MEM_freeN(bl);
1667 blnew->flag= 0;
1669 bl= blnext;
1672 /* STEP 3: COUNT POLYS TELLEN AND AUTOHOLE */
1673 bl= cu->bev.first;
1674 poly= 0;
1675 while(bl) {
1676 if(bl->poly>=0) {
1677 poly++;
1678 bl->poly= poly;
1679 bl->gat= 0; /* 'gat' is dutch for hole */
1681 bl= bl->next;
1685 /* find extreme left points, also test (turning) direction */
1686 if(poly>0) {
1687 sd= sortdata= MEM_mallocN(sizeof(struct bevelsort)*poly, "makeBevelList5");
1688 bl= cu->bev.first;
1689 while(bl) {
1690 if(bl->poly>0) {
1692 min= 300000.0;
1693 bevp= (BevPoint *)(bl+1);
1694 nr= bl->nr;
1695 while(nr--) {
1696 if(min>bevp->x) {
1697 min= bevp->x;
1698 bevp1= bevp;
1700 bevp++;
1702 sd->bl= bl;
1703 sd->left= min;
1705 bevp= (BevPoint *)(bl+1);
1706 if(bevp1== bevp) bevp0= bevp+ (bl->nr-1);
1707 else bevp0= bevp1-1;
1708 bevp= bevp+ (bl->nr-1);
1709 if(bevp1== bevp) bevp2= (BevPoint *)(bl+1);
1710 else bevp2= bevp1+1;
1712 inp= (bevp1->x- bevp0->x)*(bevp0->y- bevp2->y)
1713 +(bevp0->y- bevp1->y)*(bevp0->x- bevp2->x);
1715 if(inp>0.0) sd->dir= 1;
1716 else sd->dir= 0;
1718 sd++;
1721 bl= bl->next;
1723 qsort(sortdata,poly,sizeof(struct bevelsort), vergxcobev);
1725 sd= sortdata+1;
1726 for(a=1; a<poly; a++, sd++) {
1727 bl= sd->bl; /* is bl a hole? */
1728 sd1= sortdata+ (a-1);
1729 for(b=a-1; b>=0; b--, sd1--) { /* all polys to the left */
1730 if(bevelinside(sd1->bl, bl)) {
1731 bl->gat= 1- sd1->bl->gat;
1732 break;
1737 /* turning direction */
1738 if((cu->flag & CU_3D)==0) {
1739 sd= sortdata;
1740 for(a=0; a<poly; a++, sd++) {
1741 if(sd->bl->gat==sd->dir) {
1742 bl= sd->bl;
1743 bevp1= (BevPoint *)(bl+1);
1744 bevp2= bevp1+ (bl->nr-1);
1745 nr= bl->nr/2;
1746 while(nr--) {
1747 SWAP(BevPoint, *bevp1, *bevp2);
1748 bevp1++;
1749 bevp2--;
1754 MEM_freeN(sortdata);
1757 /* STEP 4: COSINES */
1758 bl= cu->bev.first;
1759 while(bl) {
1761 if(bl->nr==2) { /* 2 pnt, treat separate */
1762 bevp2= (BevPoint *)(bl+1);
1763 bevp1= bevp2+1;
1765 x1= bevp1->x- bevp2->x;
1766 y1= bevp1->y- bevp2->y;
1768 calc_bevel_sin_cos(x1, y1, -x1, -y1, &(bevp1->sina), &(bevp1->cosa));
1769 bevp2->sina= bevp1->sina;
1770 bevp2->cosa= bevp1->cosa;
1772 if(cu->flag & CU_3D) { /* 3D */
1773 float *quat, q[4];
1775 vec[0]= bevp1->x - bevp2->x;
1776 vec[1]= bevp1->y - bevp2->y;
1777 vec[2]= bevp1->z - bevp2->z;
1779 quat= vectoquat(vec, 5, 1);
1781 Normalize(vec);
1782 q[0]= (float)cos(0.5*bevp1->alfa);
1783 x1= (float)sin(0.5*bevp1->alfa);
1784 q[1]= x1*vec[0];
1785 q[2]= x1*vec[1];
1786 q[3]= x1*vec[2];
1787 QuatMul(quat, q, quat);
1789 QuatToMat3(quat, bevp1->mat);
1790 Mat3CpyMat3(bevp2->mat, bevp1->mat);
1794 else if(bl->nr>2) {
1795 bevp2= (BevPoint *)(bl+1);
1796 bevp1= bevp2+(bl->nr-1);
1797 bevp0= bevp1-1;
1800 nr= bl->nr;
1802 while(nr--) {
1804 if(cu->flag & CU_3D) { /* 3D */
1805 float *quat, q[4];
1807 vec[0]= bevp2->x - bevp0->x;
1808 vec[1]= bevp2->y - bevp0->y;
1809 vec[2]= bevp2->z - bevp0->z;
1811 Normalize(vec);
1813 quat= vectoquat(vec, 5, 1);
1815 q[0]= (float)cos(0.5*bevp1->alfa);
1816 x1= (float)sin(0.5*bevp1->alfa);
1817 q[1]= x1*vec[0];
1818 q[2]= x1*vec[1];
1819 q[3]= x1*vec[2];
1820 QuatMul(quat, q, quat);
1822 QuatToMat3(quat, bevp1->mat);
1825 x1= bevp1->x- bevp0->x;
1826 x2= bevp1->x- bevp2->x;
1827 y1= bevp1->y- bevp0->y;
1828 y2= bevp1->y- bevp2->y;
1830 calc_bevel_sin_cos(x1, y1, x2, y2, &(bevp1->sina), &(bevp1->cosa));
1833 bevp0= bevp1;
1834 bevp1= bevp2;
1835 bevp2++;
1837 /* correct non-cyclic cases */
1838 if(bl->poly== -1) {
1839 if(bl->nr>2) {
1840 bevp= (BevPoint *)(bl+1);
1841 bevp1= bevp+1;
1842 bevp->sina= bevp1->sina;
1843 bevp->cosa= bevp1->cosa;
1844 Mat3CpyMat3(bevp->mat, bevp1->mat);
1845 bevp= (BevPoint *)(bl+1);
1846 bevp+= (bl->nr-1);
1847 bevp1= bevp-1;
1848 bevp->sina= bevp1->sina;
1849 bevp->cosa= bevp1->cosa;
1850 Mat3CpyMat3(bevp->mat, bevp1->mat);
1854 bl= bl->next;
1858 /* calculates a bevel width (radius) for a particular subdivided curve part,
1859 * based on the radius value of the surrounding CVs */
1860 float calc_curve_subdiv_radius(Curve *cu, Nurb *nu, int cursubdiv)
1862 BezTriple *bezt, *beztfirst, *beztlast, *beztnext, *beztprev;
1863 BPoint *bp, *bpfirst, *bplast;
1864 int resolu;
1865 float prevrad=0.0, nextrad=0.0, rad=0.0, ratio=0.0;
1866 int vectseg=0, subdivs=0;
1868 if((nu==NULL) || (nu->pntsu<=1)) return 1.0;
1869 bezt= nu->bezt;
1870 bp = nu->bp;
1872 if(G.rendering && cu->resolu_ren!=0) resolu= cu->resolu_ren;
1873 else resolu= nu->resolu;
1875 if(((nu->type & 7)==CU_BEZIER) && (bezt != NULL)) {
1876 beztfirst = nu->bezt;
1877 beztlast = nu->bezt + (nu->pntsu - 1);
1879 /* loop through the CVs to end up with a pointer to the CV before the subdiv in question, and a ratio
1880 * of how far that subdiv is between this CV and the next */
1881 while(bezt<=beztlast) {
1882 beztnext = bezt+1;
1883 beztprev = bezt-1;
1884 vectseg=0;
1886 if (subdivs==cursubdiv) {
1887 ratio= 0.0;
1888 break;
1891 /* check to see if we're looking at a vector segment (no subdivisions) */
1892 if (nu->flagu & CU_CYCLIC) {
1893 if (bezt == beztfirst) {
1894 if ((beztlast->h2==HD_VECT) && (bezt->h1==HD_VECT)) vectseg = 1;
1895 } else {
1896 if ((beztprev->h2==HD_VECT) && (bezt->h1==HD_VECT)) vectseg = 1;
1898 } else if ((bezt->h2==HD_VECT) && (beztnext->h1==HD_VECT)) vectseg = 1;
1901 if (vectseg==0) {
1902 /* if it's NOT a vector segment, check to see if the subdiv falls within the segment */
1903 subdivs += resolu;
1905 if (cursubdiv < subdivs) {
1906 ratio = 1.0 - ((subdivs - cursubdiv)/(float)resolu);
1907 break;
1909 } else {
1910 /* must be a vector segment.. loop again! */
1911 subdivs += 1;
1914 bezt++;
1917 /* Now we have a nice bezt pointer to the CV that we want. But cyclic messes it up, so must correct for that..
1918 * (cyclic goes last-> first -> first+1 -> first+2 -> ...) */
1919 if (nu->flagu & CU_CYCLIC) {
1920 if (bezt == beztfirst) bezt = beztlast;
1921 else bezt--;
1924 /* find the radii at the bounding CVs and interpolate between them based on ratio */
1925 rad = prevrad = bezt->radius;
1927 if ((bezt == beztlast) && (nu->flagu & CU_CYCLIC)) { /* loop around */
1928 bezt= beztfirst;
1929 } else if (bezt != beztlast) {
1930 bezt++;
1932 nextrad = bezt->radius;
1935 else if( ( ((nu->type & 7)==CU_NURBS) || ((nu->type & 7)==CU_POLY)) && (bp != NULL)) {
1936 /* follows similar algo as for bezt above */
1937 bpfirst = nu->bp;
1938 bplast = nu->bp + (nu->pntsu - 1);
1940 if ((nu->type & 7)==CU_POLY) resolu=1;
1942 while(bp<=bplast) {
1943 if (subdivs==cursubdiv) {
1944 ratio= 0.0;
1945 break;
1948 subdivs += resolu;
1950 if (cursubdiv < subdivs) {
1951 ratio = 1.0 - ((subdivs - cursubdiv)/(float)resolu);
1952 break;
1955 bp++;
1958 if ( ((nu->type & 7)==CU_NURBS) && (nu->flagu & CU_CYCLIC)) {
1959 if (bp >= bplast) bp = bpfirst;
1960 else bp++;
1961 } else if ( bp >= bplast ) {
1962 /* this can happen in rare cases, refer to bug [#8596] */
1963 bp = bplast;
1966 rad = prevrad = bp->radius;
1968 if ((bp == bplast) && (nu->flagu & CU_CYCLIC)) { /* loop around */
1969 bp= bpfirst;
1970 } else if (bp != bplast) {
1971 bp++;
1973 nextrad = bp->radius;
1978 if (nextrad != prevrad) {
1979 /* smooth interpolation */
1980 rad = prevrad + (nextrad-prevrad)*(3.0f*ratio*ratio - 2.0f*ratio*ratio*ratio);
1983 if (rad > 0.0)
1984 return rad;
1985 else
1986 return 1.0;
1989 /* ****************** HANDLES ************** */
1992 * handlecodes:
1993 * 1: nothing, 1:auto, 2:vector, 3:aligned
1996 /* mode: is not zero when IpoCurve, is 2 when forced horizontal for autohandles */
1997 void calchandleNurb(BezTriple *bezt, BezTriple *prev, BezTriple *next, int mode)
1999 float *p1,*p2,*p3, pt[3];
2000 float dx1,dy1,dz1,dx,dy,dz,vx,vy,vz,len,len1,len2;
2002 if(bezt->h1==0 && bezt->h2==0) return;
2004 p2= bezt->vec[1];
2006 if(prev==0) {
2007 p3= next->vec[1];
2008 pt[0]= 2*p2[0]- p3[0];
2009 pt[1]= 2*p2[1]- p3[1];
2010 pt[2]= 2*p2[2]- p3[2];
2011 p1= pt;
2013 else p1= prev->vec[1];
2015 if(next==0) {
2016 pt[0]= 2*p2[0]- p1[0];
2017 pt[1]= 2*p2[1]- p1[1];
2018 pt[2]= 2*p2[2]- p1[2];
2019 p3= pt;
2021 else p3= next->vec[1];
2023 dx= p2[0]- p1[0];
2024 dy= p2[1]- p1[1];
2025 dz= p2[2]- p1[2];
2027 if(mode) len1= dx;
2028 else len1= (float)sqrt(dx*dx+dy*dy+dz*dz);
2030 dx1= p3[0]- p2[0];
2031 dy1= p3[1]- p2[1];
2032 dz1= p3[2]- p2[2];
2034 if(mode) len2= dx1;
2035 else len2= (float)sqrt(dx1*dx1+dy1*dy1+dz1*dz1);
2037 if(len1==0.0f) len1=1.0f;
2038 if(len2==0.0f) len2=1.0f;
2041 if(bezt->h1==HD_AUTO || bezt->h2==HD_AUTO) { /* auto */
2042 vx= dx1/len2 + dx/len1;
2043 vy= dy1/len2 + dy/len1;
2044 vz= dz1/len2 + dz/len1;
2045 len= 2.5614f*(float)sqrt(vx*vx + vy*vy + vz*vz);
2046 if(len!=0.0f) {
2047 int leftviolate=0, rightviolate=0; /* for mode==2 */
2049 if(len1>5.0f*len2) len1= 5.0f*len2;
2050 if(len2>5.0f*len1) len2= 5.0f*len1;
2052 if(bezt->h1==HD_AUTO) {
2053 len1/=len;
2054 *(p2-3)= *p2-vx*len1;
2055 *(p2-2)= *(p2+1)-vy*len1;
2056 *(p2-1)= *(p2+2)-vz*len1;
2058 if(mode==2 && next && prev) { // keep horizontal if extrema
2059 float ydiff1= prev->vec[1][1] - bezt->vec[1][1];
2060 float ydiff2= next->vec[1][1] - bezt->vec[1][1];
2061 if( (ydiff1<=0.0 && ydiff2<=0.0) || (ydiff1>=0.0 && ydiff2>=0.0) ) {
2062 bezt->vec[0][1]= bezt->vec[1][1];
2064 else { // handles should not be beyond y coord of two others
2065 if(ydiff1<=0.0) {
2066 if(prev->vec[1][1] > bezt->vec[0][1]) {
2067 bezt->vec[0][1]= prev->vec[1][1];
2068 leftviolate= 1;
2071 else {
2072 if(prev->vec[1][1] < bezt->vec[0][1]) {
2073 bezt->vec[0][1]= prev->vec[1][1];
2074 leftviolate= 1;
2080 if(bezt->h2==HD_AUTO) {
2081 len2/=len;
2082 *(p2+3)= *p2+vx*len2;
2083 *(p2+4)= *(p2+1)+vy*len2;
2084 *(p2+5)= *(p2+2)+vz*len2;
2086 if(mode==2 && next && prev) { // keep horizontal if extrema
2087 float ydiff1= prev->vec[1][1] - bezt->vec[1][1];
2088 float ydiff2= next->vec[1][1] - bezt->vec[1][1];
2089 if( (ydiff1<=0.0 && ydiff2<=0.0) || (ydiff1>=0.0 && ydiff2>=0.0) ) {
2090 bezt->vec[2][1]= bezt->vec[1][1];
2092 else { // handles should not be beyond y coord of two others
2093 if(ydiff1<=0.0) {
2094 if(next->vec[1][1] < bezt->vec[2][1]) {
2095 bezt->vec[2][1]= next->vec[1][1];
2096 rightviolate= 1;
2099 else {
2100 if(next->vec[1][1] > bezt->vec[2][1]) {
2101 bezt->vec[2][1]= next->vec[1][1];
2102 rightviolate= 1;
2108 if(leftviolate || rightviolate) { /* align left handle */
2109 float h1[3], h2[3];
2111 VecSubf(h1, p2-3, p2);
2112 VecSubf(h2, p2, p2+3);
2113 len1= Normalize(h1);
2114 len2= Normalize(h2);
2116 vz= INPR(h1, h2);
2118 if(leftviolate) {
2119 *(p2+3)= *(p2) - vz*len2*h1[0];
2120 *(p2+4)= *(p2+1) - vz*len2*h1[1];
2121 *(p2+5)= *(p2+2) - vz*len2*h1[2];
2123 else {
2124 *(p2-3)= *(p2) + vz*len1*h2[0];
2125 *(p2-2)= *(p2+1) + vz*len1*h2[1];
2126 *(p2-1)= *(p2+2) + vz*len1*h2[2];
2133 if(bezt->h1==HD_VECT) { /* vector */
2134 dx/=3.0;
2135 dy/=3.0;
2136 dz/=3.0;
2137 *(p2-3)= *p2-dx;
2138 *(p2-2)= *(p2+1)-dy;
2139 *(p2-1)= *(p2+2)-dz;
2141 if(bezt->h2==HD_VECT) {
2142 dx1/=3.0;
2143 dy1/=3.0;
2144 dz1/=3.0;
2145 *(p2+3)= *p2+dx1;
2146 *(p2+4)= *(p2+1)+dy1;
2147 *(p2+5)= *(p2+2)+dz1;
2150 len2= VecLenf(p2, p2+3);
2151 len1= VecLenf(p2, p2-3);
2152 if(len1==0.0) len1=1.0;
2153 if(len2==0.0) len2=1.0;
2155 if(bezt->f1 & 1) { /* order of calculation */
2156 if(bezt->h2==HD_ALIGN) { /* aligned */
2157 len= len2/len1;
2158 p2[3]= p2[0]+len*(p2[0]-p2[-3]);
2159 p2[4]= p2[1]+len*(p2[1]-p2[-2]);
2160 p2[5]= p2[2]+len*(p2[2]-p2[-1]);
2162 if(bezt->h1==HD_ALIGN) {
2163 len= len1/len2;
2164 p2[-3]= p2[0]+len*(p2[0]-p2[3]);
2165 p2[-2]= p2[1]+len*(p2[1]-p2[4]);
2166 p2[-1]= p2[2]+len*(p2[2]-p2[5]);
2169 else {
2170 if(bezt->h1==HD_ALIGN) {
2171 len= len1/len2;
2172 p2[-3]= p2[0]+len*(p2[0]-p2[3]);
2173 p2[-2]= p2[1]+len*(p2[1]-p2[4]);
2174 p2[-1]= p2[2]+len*(p2[2]-p2[5]);
2176 if(bezt->h2==HD_ALIGN) { /* aligned */
2177 len= len2/len1;
2178 p2[3]= p2[0]+len*(p2[0]-p2[-3]);
2179 p2[4]= p2[1]+len*(p2[1]-p2[-2]);
2180 p2[5]= p2[2]+len*(p2[2]-p2[-1]);
2185 void calchandlesNurb(Nurb *nu) /* first, if needed, set handle flags */
2187 BezTriple *bezt, *prev, *next;
2188 short a;
2190 if((nu->type & 7)!=CU_BEZIER) return;
2191 if(nu->pntsu<2) return;
2193 a= nu->pntsu;
2194 bezt= nu->bezt;
2195 if(nu->flagu & 1) prev= bezt+(a-1);
2196 else prev= 0;
2197 next= bezt+1;
2199 while(a--) {
2200 calchandleNurb(bezt, prev, next, 0);
2201 prev= bezt;
2202 if(a==1) {
2203 if(nu->flagu & 1) next= nu->bezt;
2204 else next= 0;
2206 else next++;
2208 bezt++;
2213 void testhandlesNurb(Nurb *nu)
2215 /* use when something has changed with handles.
2216 it treats all BezTriples with the following rules:
2217 PHASE 1: do types have to be altered?
2218 Auto handles: become aligned when selection status is NOT(000 || 111)
2219 Vector handles: become 'nothing' when (one half selected AND other not)
2220 PHASE 2: recalculate handles
2222 BezTriple *bezt;
2223 short flag, a;
2225 if((nu->type & 7)!=CU_BEZIER) return;
2227 bezt= nu->bezt;
2228 a= nu->pntsu;
2229 while(a--) {
2230 flag= 0;
2231 if(bezt->f1 & 1) flag++;
2232 if(bezt->f2 & 1) flag += 2;
2233 if(bezt->f3 & 1) flag += 4;
2235 if( !(flag==0 || flag==7) ) {
2236 if(bezt->h1==HD_AUTO) { /* auto */
2237 bezt->h1= HD_ALIGN;
2239 if(bezt->h2==HD_AUTO) { /* auto */
2240 bezt->h2= HD_ALIGN;
2243 if(bezt->h1==HD_VECT) { /* vector */
2244 if(flag < 4) bezt->h1= 0;
2246 if(bezt->h2==HD_VECT) { /* vector */
2247 if( flag > 3) bezt->h2= 0;
2250 bezt++;
2253 calchandlesNurb(nu);
2256 void autocalchandlesNurb(Nurb *nu, int flag)
2258 /* checks handle coordinates and calculates type */
2260 BezTriple *bezt2, *bezt1, *bezt0;
2261 int i, align, leftsmall, rightsmall;
2263 if(nu==0 || nu->bezt==0) return;
2265 bezt2 = nu->bezt;
2266 bezt1 = bezt2 + (nu->pntsu-1);
2267 bezt0 = bezt1 - 1;
2268 i = nu->pntsu;
2270 while(i--) {
2272 align= leftsmall= rightsmall= 0;
2274 /* left handle: */
2275 if(flag==0 || (bezt1->f1 & flag) ) {
2276 bezt1->h1= 0;
2277 /* distance too short: vectorhandle */
2278 if( VecLenf( bezt1->vec[1], bezt0->vec[1] ) < 0.0001) {
2279 bezt1->h1= HD_VECT;
2280 leftsmall= 1;
2282 else {
2283 /* aligned handle? */
2284 if(DistVL2Dfl(bezt1->vec[1], bezt1->vec[0], bezt1->vec[2]) < 0.0001) {
2285 align= 1;
2286 bezt1->h1= HD_ALIGN;
2288 /* or vector handle? */
2289 if(DistVL2Dfl(bezt1->vec[0], bezt1->vec[1], bezt0->vec[1]) < 0.0001)
2290 bezt1->h1= HD_VECT;
2294 /* right handle: */
2295 if(flag==0 || (bezt1->f3 & flag) ) {
2296 bezt1->h2= 0;
2297 /* distance too short: vectorhandle */
2298 if( VecLenf( bezt1->vec[1], bezt2->vec[1] ) < 0.0001) {
2299 bezt1->h2= HD_VECT;
2300 rightsmall= 1;
2302 else {
2303 /* aligned handle? */
2304 if(align) bezt1->h2= HD_ALIGN;
2306 /* or vector handle? */
2307 if(DistVL2Dfl(bezt1->vec[2], bezt1->vec[1], bezt2->vec[1]) < 0.0001)
2308 bezt1->h2= HD_VECT;
2312 if(leftsmall && bezt1->h2==HD_ALIGN) bezt1->h2= 0;
2313 if(rightsmall && bezt1->h1==HD_ALIGN) bezt1->h1= 0;
2315 /* undesired combination: */
2316 if(bezt1->h1==HD_ALIGN && bezt1->h2==HD_VECT) bezt1->h1= 0;
2317 if(bezt1->h2==HD_ALIGN && bezt1->h1==HD_VECT) bezt1->h2= 0;
2319 bezt0= bezt1;
2320 bezt1= bezt2;
2321 bezt2++;
2324 calchandlesNurb(nu);
2327 void autocalchandlesNurb_all(int flag)
2329 Nurb *nu;
2331 nu= editNurb.first;
2332 while(nu) {
2333 autocalchandlesNurb(nu, flag);
2334 nu= nu->next;
2338 void sethandlesNurb(short code)
2340 /* code==1: set autohandle */
2341 /* code==2: set vectorhandle */
2342 /* code==3 (HD_ALIGN) it toggle, vectorhandles become HD_FREE */
2343 /* code==4: sets icu flag to become IPO_AUTO_HORIZ, horizontal extremes on auto-handles */
2344 Nurb *nu;
2345 BezTriple *bezt;
2346 short a, ok=0;
2348 if(code==1 || code==2) {
2349 nu= editNurb.first;
2350 while(nu) {
2351 if( (nu->type & 7)==1) {
2352 bezt= nu->bezt;
2353 a= nu->pntsu;
2354 while(a--) {
2355 if(bezt->f1 || bezt->f3) {
2356 if(bezt->f1) bezt->h1= code;
2357 if(bezt->f3) bezt->h2= code;
2358 if(bezt->h1!=bezt->h2) {
2359 if ELEM(bezt->h1, HD_ALIGN, HD_AUTO) bezt->h1= HD_FREE;
2360 if ELEM(bezt->h2, HD_ALIGN, HD_AUTO) bezt->h2= HD_FREE;
2363 bezt++;
2365 calchandlesNurb(nu);
2367 nu= nu->next;
2370 else {
2371 /* there is 1 handle not FREE: FREE it all, else make ALIGNED */
2373 nu= editNurb.first;
2374 while(nu) {
2375 if( (nu->type & 7)==1) {
2376 bezt= nu->bezt;
2377 a= nu->pntsu;
2378 while(a--) {
2379 if(bezt->f1 && bezt->h1) ok= 1;
2380 if(bezt->f3 && bezt->h2) ok= 1;
2381 if(ok) break;
2382 bezt++;
2385 nu= nu->next;
2387 if(ok) ok= HD_FREE;
2388 else ok= HD_ALIGN;
2390 nu= editNurb.first;
2391 while(nu) {
2392 if( (nu->type & 7)==1) {
2393 bezt= nu->bezt;
2394 a= nu->pntsu;
2395 while(a--) {
2396 if(bezt->f1) bezt->h1= ok;
2397 if(bezt->f3 ) bezt->h2= ok;
2399 bezt++;
2401 calchandlesNurb(nu);
2403 nu= nu->next;
2408 static void swapdata(void *adr1, void *adr2, int len)
2411 if(len<=0) return;
2413 if(len<65) {
2414 char adr[64];
2416 memcpy(adr, adr1, len);
2417 memcpy(adr1, adr2, len);
2418 memcpy(adr2, adr, len);
2420 else {
2421 char *adr;
2423 adr= (char *)MEM_mallocN(len, "curve swap");
2424 memcpy(adr, adr1, len);
2425 memcpy(adr1, adr2, len);
2426 memcpy(adr2, adr, len);
2427 MEM_freeN(adr);
2431 void switchdirectionNurb(Nurb *nu)
2433 BezTriple *bezt1, *bezt2;
2434 BPoint *bp1, *bp2;
2435 float *fp1, *fp2, *tempf;
2436 int a, b;
2438 if(nu->pntsu==1 && nu->pntsv==1) return;
2440 if((nu->type & 7)==CU_BEZIER) {
2441 a= nu->pntsu;
2442 bezt1= nu->bezt;
2443 bezt2= bezt1+(a-1);
2444 if(a & 1) a+= 1; /* if odd, also swap middle content */
2445 a/= 2;
2446 while(a>0) {
2447 if(bezt1!=bezt2) SWAP(BezTriple, *bezt1, *bezt2);
2449 swapdata(bezt1->vec[0], bezt1->vec[2], 12);
2450 if(bezt1!=bezt2) swapdata(bezt2->vec[0], bezt2->vec[2], 12);
2452 SWAP(char, bezt1->h1, bezt1->h2);
2453 SWAP(short, bezt1->f1, bezt1->f3);
2455 if(bezt1!=bezt2) {
2456 SWAP(char, bezt2->h1, bezt2->h2);
2457 SWAP(short, bezt2->f1, bezt2->f3);
2458 bezt1->alfa= -bezt1->alfa;
2459 bezt2->alfa= -bezt2->alfa;
2461 a--;
2462 bezt1++;
2463 bezt2--;
2466 else if(nu->pntsv==1) {
2467 a= nu->pntsu;
2468 bp1= nu->bp;
2469 bp2= bp1+(a-1);
2470 a/= 2;
2471 while(bp1!=bp2 && a>0) {
2472 SWAP(BPoint, *bp1, *bp2);
2473 a--;
2474 bp1->alfa= -bp1->alfa;
2475 bp2->alfa= -bp2->alfa;
2476 bp1++;
2477 bp2--;
2479 if((nu->type & 7)==CU_NURBS) {
2480 /* inverse knots */
2481 a= KNOTSU(nu);
2482 fp1= nu->knotsu;
2483 fp2= fp1+(a-1);
2484 a/= 2;
2485 while(fp1!=fp2 && a>0) {
2486 SWAP(float, *fp1, *fp2);
2487 a--;
2488 fp1++;
2489 fp2--;
2491 /* and make in increasing order again */
2492 a= KNOTSU(nu);
2493 fp1= nu->knotsu;
2494 fp2=tempf= MEM_mallocN(sizeof(float)*a, "switchdirect");
2495 while(a--) {
2496 fp2[0]= fabs(fp1[1]-fp1[0]);
2497 fp1++;
2498 fp2++;
2501 a= KNOTSU(nu)-1;
2502 fp1= nu->knotsu;
2503 fp2= tempf;
2504 fp1[0]= 0.0;
2505 fp1++;
2506 while(a--) {
2507 fp1[0]= fp1[-1]+fp2[0];
2508 fp1++;
2509 fp2++;
2511 MEM_freeN(tempf);
2514 else {
2516 for(b=0; b<nu->pntsv; b++) {
2518 bp1= nu->bp+b*nu->pntsu;
2519 a= nu->pntsu;
2520 bp2= bp1+(a-1);
2521 a/= 2;
2523 while(bp1!=bp2 && a>0) {
2524 SWAP(BPoint, *bp1, *bp2);
2525 a--;
2526 bp1++;
2527 bp2--;
2534 float (*curve_getVertexCos(Curve *cu, ListBase *lb, int *numVerts_r))[3]
2536 int i, numVerts = *numVerts_r = count_curveverts(lb);
2537 float *co, (*cos)[3] = MEM_mallocN(sizeof(*cos)*numVerts, "cu_vcos");
2538 Nurb *nu;
2540 co = cos[0];
2541 for (nu=lb->first; nu; nu=nu->next) {
2542 if ((nu->type & 7)==CU_BEZIER) {
2543 BezTriple *bezt = nu->bezt;
2545 for (i=0; i<nu->pntsu; i++,bezt++) {
2546 VECCOPY(co, bezt->vec[0]); co+=3;
2547 VECCOPY(co, bezt->vec[1]); co+=3;
2548 VECCOPY(co, bezt->vec[2]); co+=3;
2550 } else {
2551 BPoint *bp = nu->bp;
2553 for (i=0; i<nu->pntsu*nu->pntsv; i++,bp++) {
2554 VECCOPY(co, bp->vec); co+=3;
2559 return cos;
2562 void curve_applyVertexCos(Curve *cu, ListBase *lb, float (*vertexCos)[3])
2564 float *co = vertexCos[0];
2565 Nurb *nu;
2566 int i;
2568 for (nu=lb->first; nu; nu=nu->next) {
2569 if ((nu->type & 7)==CU_BEZIER) {
2570 BezTriple *bezt = nu->bezt;
2572 for (i=0; i<nu->pntsu; i++,bezt++) {
2573 VECCOPY(bezt->vec[0], co); co+=3;
2574 VECCOPY(bezt->vec[1], co); co+=3;
2575 VECCOPY(bezt->vec[2], co); co+=3;
2577 } else {
2578 BPoint *bp = nu->bp;
2580 for (i=0; i<nu->pntsu*nu->pntsv; i++,bp++) {
2581 VECCOPY(bp->vec, co); co+=3;