1 /*-------------------------------------------------------------------------
4 * Roll-our-own 128-bit integer arithmetic.
6 * We make use of the native int128 type if there is one, otherwise
7 * implement things the hard way based on two int64 halves.
9 * See src/tools/testint128.c for a simple test harness for this file.
11 * Copyright (c) 2017-2023, PostgreSQL Global Development Group
13 * src/include/common/int128.h
15 *-------------------------------------------------------------------------
21 * For testing purposes, use of native int128 can be switched on/off by
22 * predefining USE_NATIVE_INT128.
24 #ifndef USE_NATIVE_INT128
26 #define USE_NATIVE_INT128 1
28 #define USE_NATIVE_INT128 0
35 typedef int128 INT128
;
38 * Add an unsigned int64 value into an INT128 variable.
41 int128_add_uint64(INT128
*i128
, uint64 v
)
47 * Add a signed int64 value into an INT128 variable.
50 int128_add_int64(INT128
*i128
, int64 v
)
56 * Add the 128-bit product of two int64 values into an INT128 variable.
58 * XXX with a stupid compiler, this could actually be less efficient than
59 * the other implementation; maybe we should do it by hand always?
62 int128_add_int64_mul_int64(INT128
*i128
, int64 x
, int64 y
)
64 *i128
+= (int128
) x
* (int128
) y
;
68 * Compare two INT128 values, return -1, 0, or +1.
71 int128_compare(INT128 x
, INT128 y
)
81 * Widen int64 to INT128.
84 int64_to_int128(int64 v
)
90 * Convert INT128 to int64 (losing any high-order bits).
91 * This also works fine for casting down to uint64.
94 int128_to_int64(INT128 val
)
99 #else /* !USE_NATIVE_INT128 */
102 * We lay out the INT128 structure with the same content and byte ordering
103 * that a native int128 type would (probably) have. This makes no difference
104 * for ordinary use of INT128, but allows union'ing INT128 with int128 for
109 #ifdef WORDS_BIGENDIAN
110 int64 hi
; /* most significant 64 bits, including sign */
111 uint64 lo
; /* least significant 64 bits, without sign */
113 uint64 lo
; /* least significant 64 bits, without sign */
114 int64 hi
; /* most significant 64 bits, including sign */
119 * Add an unsigned int64 value into an INT128 variable.
122 int128_add_uint64(INT128
*i128
, uint64 v
)
125 * First add the value to the .lo part, then check to see if a carry needs
126 * to be propagated into the .hi part. A carry is needed if both inputs
127 * have high bits set, or if just one input has high bit set while the new
128 * .lo part doesn't. Remember that .lo part is unsigned; we cast to
129 * signed here just as a cheap way to check the high bit.
131 uint64 oldlo
= i128
->lo
;
134 if (((int64
) v
< 0 && (int64
) oldlo
< 0) ||
135 (((int64
) v
< 0 || (int64
) oldlo
< 0) && (int64
) i128
->lo
>= 0))
140 * Add a signed int64 value into an INT128 variable.
143 int128_add_int64(INT128
*i128
, int64 v
)
146 * This is much like the above except that the carry logic differs for
147 * negative v. Ordinarily we'd need to subtract 1 from the .hi part
148 * (corresponding to adding the sign-extended bits of v to it); but if
149 * there is a carry out of the .lo part, that cancels and we do nothing.
151 uint64 oldlo
= i128
->lo
;
156 if ((int64
) oldlo
< 0 && (int64
) i128
->lo
>= 0)
161 if (!((int64
) oldlo
< 0 || (int64
) i128
->lo
>= 0))
167 * INT64_AU32 extracts the most significant 32 bits of int64 as int64, while
168 * INT64_AL32 extracts the least significant 32 bits as uint64.
170 #define INT64_AU32(i64) ((i64) >> 32)
171 #define INT64_AL32(i64) ((i64) & UINT64CONST(0xFFFFFFFF))
174 * Add the 128-bit product of two int64 values into an INT128 variable.
177 int128_add_int64_mul_int64(INT128
*i128
, int64 x
, int64 y
)
179 /* INT64_AU32 must use arithmetic right shift */
180 StaticAssertDecl(((int64
) -1 >> 1) == (int64
) -1,
181 "arithmetic right shift is needed");
184 * Form the 128-bit product x * y using 64-bit arithmetic.
185 * Considering each 64-bit input as having 32-bit high and low parts,
188 * x * y = ((x.hi << 32) + x.lo) * (((y.hi << 32) + y.lo)
189 * = (x.hi * y.hi) << 64 +
190 * (x.hi * y.lo) << 32 +
191 * (x.lo * y.hi) << 32 +
194 * Each individual product is of 32-bit terms so it won't overflow when
195 * computed in 64-bit arithmetic. Then we just have to shift it to the
196 * correct position while adding into the 128-bit result. We must also
197 * keep in mind that the "lo" parts must be treated as unsigned.
201 /* No need to work hard if product must be zero */
202 if (x
!= 0 && y
!= 0)
204 int64 x_u32
= INT64_AU32(x
);
205 uint64 x_l32
= INT64_AL32(x
);
206 int64 y_u32
= INT64_AU32(y
);
207 uint64 y_l32
= INT64_AL32(y
);
211 i128
->hi
+= x_u32
* y_u32
;
213 /* the second term: sign-extend it only if x is negative */
216 i128
->hi
+= INT64_AU32(tmp
);
218 i128
->hi
+= ((uint64
) tmp
) >> 32;
219 int128_add_uint64(i128
, ((uint64
) INT64_AL32(tmp
)) << 32);
221 /* the third term: sign-extend it only if y is negative */
224 i128
->hi
+= INT64_AU32(tmp
);
226 i128
->hi
+= ((uint64
) tmp
) >> 32;
227 int128_add_uint64(i128
, ((uint64
) INT64_AL32(tmp
)) << 32);
229 /* the fourth term: always unsigned */
230 int128_add_uint64(i128
, x_l32
* y_l32
);
235 * Compare two INT128 values, return -1, 0, or +1.
238 int128_compare(INT128 x
, INT128 y
)
252 * Widen int64 to INT128.
255 int64_to_int128(int64 v
)
260 val
.hi
= (v
< 0) ? -INT64CONST(1) : INT64CONST(0);
265 * Convert INT128 to int64 (losing any high-order bits).
266 * This also works fine for casting down to uint64.
269 int128_to_int64(INT128 val
)
271 return (int64
) val
.lo
;
274 #endif /* USE_NATIVE_INT128 */
276 #endif /* INT128_H */