Update copyright for 2022
[pgsql.git] / src / include / lib / simplehash.h
blob81929270100657cd5bfe8d206c644be5ff473cf6
1 /*
2 * simplehash.h
4 * When included this file generates a "templated" (by way of macros)
5 * open-addressing hash table implementation specialized to user-defined
6 * types.
8 * It's probably not worthwhile to generate such a specialized implementation
9 * for hash tables that aren't performance or space sensitive.
11 * Compared to dynahash, simplehash has the following benefits:
13 * - Due to the "templated" code generation has known structure sizes and no
14 * indirect function calls (which show up substantially in dynahash
15 * profiles). These features considerably increase speed for small
16 * entries.
17 * - Open addressing has better CPU cache behavior than dynahash's chained
18 * hashtables.
19 * - The generated interface is type-safe and easier to use than dynahash,
20 * though at the cost of more complex setup.
21 * - Allocates memory in a MemoryContext or another allocator with a
22 * malloc/free style interface (which isn't easily usable in a shared
23 * memory context)
24 * - Does not require the overhead of a separate memory context.
26 * Usage notes:
28 * To generate a hash-table and associated functions for a use case several
29 * macros have to be #define'ed before this file is included. Including
30 * the file #undef's all those, so a new hash table can be generated
31 * afterwards.
32 * The relevant parameters are:
33 * - SH_PREFIX - prefix for all symbol names generated. A prefix of 'foo'
34 * will result in hash table type 'foo_hash' and functions like
35 * 'foo_insert'/'foo_lookup' and so forth.
36 * - SH_ELEMENT_TYPE - type of the contained elements
37 * - SH_KEY_TYPE - type of the hashtable's key
38 * - SH_DECLARE - if defined function prototypes and type declarations are
39 * generated
40 * - SH_DEFINE - if defined function definitions are generated
41 * - SH_SCOPE - in which scope (e.g. extern, static inline) do function
42 * declarations reside
43 * - SH_RAW_ALLOCATOR - if defined, memory contexts are not used; instead,
44 * use this to allocate bytes. The allocator must zero the returned space.
45 * - SH_USE_NONDEFAULT_ALLOCATOR - if defined no element allocator functions
46 * are defined, so you can supply your own
47 * The following parameters are only relevant when SH_DEFINE is defined:
48 * - SH_KEY - name of the element in SH_ELEMENT_TYPE containing the hash key
49 * - SH_EQUAL(table, a, b) - compare two table keys
50 * - SH_HASH_KEY(table, key) - generate hash for the key
51 * - SH_STORE_HASH - if defined the hash is stored in the elements
52 * - SH_GET_HASH(tb, a) - return the field to store the hash in
54 * The element type is required to contain a "status" member that can store
55 * the range of values defined in the SH_STATUS enum.
57 * While SH_STORE_HASH (and subsequently SH_GET_HASH) are optional, because
58 * the hash table implementation needs to compare hashes to move elements
59 * (particularly when growing the hash), it's preferable, if possible, to
60 * store the element's hash in the element's data type. If the hash is so
61 * stored, the hash table will also compare hashes before calling SH_EQUAL
62 * when comparing two keys.
64 * For convenience the hash table create functions accept a void pointer
65 * that will be stored in the hash table type's member private_data. This
66 * allows callbacks to reference caller provided data.
68 * For examples of usage look at tidbitmap.c (file local definition) and
69 * execnodes.h/execGrouping.c (exposed declaration, file local
70 * implementation).
72 * Hash table design:
74 * The hash table design chosen is a variant of linear open-addressing. The
75 * reason for doing so is that linear addressing is CPU cache & pipeline
76 * friendly. The biggest disadvantage of simple linear addressing schemes
77 * are highly variable lookup times due to clustering, and deletions
78 * leaving a lot of tombstones around. To address these issues a variant
79 * of "robin hood" hashing is employed. Robin hood hashing optimizes
80 * chaining lengths by moving elements close to their optimal bucket
81 * ("rich" elements), out of the way if a to-be-inserted element is further
82 * away from its optimal position (i.e. it's "poor"). While that can make
83 * insertions slower, the average lookup performance is a lot better, and
84 * higher fill factors can be used in a still performant manner. To avoid
85 * tombstones - which normally solve the issue that a deleted node's
86 * presence is relevant to determine whether a lookup needs to continue
87 * looking or is done - buckets following a deleted element are shifted
88 * backwards, unless they're empty or already at their optimal position.
90 * Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group
91 * Portions Copyright (c) 1994, Regents of the University of California
93 * src/include/lib/simplehash.h
96 #include "port/pg_bitutils.h"
98 /* helpers */
99 #define SH_MAKE_PREFIX(a) CppConcat(a,_)
100 #define SH_MAKE_NAME(name) SH_MAKE_NAME_(SH_MAKE_PREFIX(SH_PREFIX),name)
101 #define SH_MAKE_NAME_(a,b) CppConcat(a,b)
103 /* name macros for: */
105 /* type declarations */
106 #define SH_TYPE SH_MAKE_NAME(hash)
107 #define SH_STATUS SH_MAKE_NAME(status)
108 #define SH_STATUS_EMPTY SH_MAKE_NAME(SH_EMPTY)
109 #define SH_STATUS_IN_USE SH_MAKE_NAME(SH_IN_USE)
110 #define SH_ITERATOR SH_MAKE_NAME(iterator)
112 /* function declarations */
113 #define SH_CREATE SH_MAKE_NAME(create)
114 #define SH_DESTROY SH_MAKE_NAME(destroy)
115 #define SH_RESET SH_MAKE_NAME(reset)
116 #define SH_INSERT SH_MAKE_NAME(insert)
117 #define SH_INSERT_HASH SH_MAKE_NAME(insert_hash)
118 #define SH_DELETE_ITEM SH_MAKE_NAME(delete_item)
119 #define SH_DELETE SH_MAKE_NAME(delete)
120 #define SH_LOOKUP SH_MAKE_NAME(lookup)
121 #define SH_LOOKUP_HASH SH_MAKE_NAME(lookup_hash)
122 #define SH_GROW SH_MAKE_NAME(grow)
123 #define SH_START_ITERATE SH_MAKE_NAME(start_iterate)
124 #define SH_START_ITERATE_AT SH_MAKE_NAME(start_iterate_at)
125 #define SH_ITERATE SH_MAKE_NAME(iterate)
126 #define SH_ALLOCATE SH_MAKE_NAME(allocate)
127 #define SH_FREE SH_MAKE_NAME(free)
128 #define SH_STAT SH_MAKE_NAME(stat)
130 /* internal helper functions (no externally visible prototypes) */
131 #define SH_COMPUTE_PARAMETERS SH_MAKE_NAME(compute_parameters)
132 #define SH_NEXT SH_MAKE_NAME(next)
133 #define SH_PREV SH_MAKE_NAME(prev)
134 #define SH_DISTANCE_FROM_OPTIMAL SH_MAKE_NAME(distance)
135 #define SH_INITIAL_BUCKET SH_MAKE_NAME(initial_bucket)
136 #define SH_ENTRY_HASH SH_MAKE_NAME(entry_hash)
137 #define SH_INSERT_HASH_INTERNAL SH_MAKE_NAME(insert_hash_internal)
138 #define SH_LOOKUP_HASH_INTERNAL SH_MAKE_NAME(lookup_hash_internal)
140 /* generate forward declarations necessary to use the hash table */
141 #ifdef SH_DECLARE
143 /* type definitions */
144 typedef struct SH_TYPE
147 * Size of data / bucket array, 64 bits to handle UINT32_MAX sized hash
148 * tables. Note that the maximum number of elements is lower
149 * (SH_MAX_FILLFACTOR)
151 uint64 size;
153 /* how many elements have valid contents */
154 uint32 members;
156 /* mask for bucket and size calculations, based on size */
157 uint32 sizemask;
159 /* boundary after which to grow hashtable */
160 uint32 grow_threshold;
162 /* hash buckets */
163 SH_ELEMENT_TYPE *data;
165 #ifndef SH_RAW_ALLOCATOR
166 /* memory context to use for allocations */
167 MemoryContext ctx;
168 #endif
170 /* user defined data, useful for callbacks */
171 void *private_data;
172 } SH_TYPE;
174 typedef enum SH_STATUS
176 SH_STATUS_EMPTY = 0x00,
177 SH_STATUS_IN_USE = 0x01
178 } SH_STATUS;
180 typedef struct SH_ITERATOR
182 uint32 cur; /* current element */
183 uint32 end;
184 bool done; /* iterator exhausted? */
185 } SH_ITERATOR;
187 /* externally visible function prototypes */
188 #ifdef SH_RAW_ALLOCATOR
189 /* <prefix>_hash <prefix>_create(uint32 nelements, void *private_data) */
190 SH_SCOPE SH_TYPE *SH_CREATE(uint32 nelements, void *private_data);
191 #else
193 * <prefix>_hash <prefix>_create(MemoryContext ctx, uint32 nelements,
194 * void *private_data)
196 SH_SCOPE SH_TYPE *SH_CREATE(MemoryContext ctx, uint32 nelements,
197 void *private_data);
198 #endif
200 /* void <prefix>_destroy(<prefix>_hash *tb) */
201 SH_SCOPE void SH_DESTROY(SH_TYPE * tb);
203 /* void <prefix>_reset(<prefix>_hash *tb) */
204 SH_SCOPE void SH_RESET(SH_TYPE * tb);
206 /* void <prefix>_grow(<prefix>_hash *tb, uint64 newsize) */
207 SH_SCOPE void SH_GROW(SH_TYPE * tb, uint64 newsize);
209 /* <element> *<prefix>_insert(<prefix>_hash *tb, <key> key, bool *found) */
210 SH_SCOPE SH_ELEMENT_TYPE *SH_INSERT(SH_TYPE * tb, SH_KEY_TYPE key, bool *found);
213 * <element> *<prefix>_insert_hash(<prefix>_hash *tb, <key> key, uint32 hash,
214 * bool *found)
216 SH_SCOPE SH_ELEMENT_TYPE *SH_INSERT_HASH(SH_TYPE * tb, SH_KEY_TYPE key,
217 uint32 hash, bool *found);
219 /* <element> *<prefix>_lookup(<prefix>_hash *tb, <key> key) */
220 SH_SCOPE SH_ELEMENT_TYPE *SH_LOOKUP(SH_TYPE * tb, SH_KEY_TYPE key);
222 /* <element> *<prefix>_lookup_hash(<prefix>_hash *tb, <key> key, uint32 hash) */
223 SH_SCOPE SH_ELEMENT_TYPE *SH_LOOKUP_HASH(SH_TYPE * tb, SH_KEY_TYPE key,
224 uint32 hash);
226 /* void <prefix>_delete_item(<prefix>_hash *tb, <element> *entry) */
227 SH_SCOPE void SH_DELETE_ITEM(SH_TYPE * tb, SH_ELEMENT_TYPE * entry);
229 /* bool <prefix>_delete(<prefix>_hash *tb, <key> key) */
230 SH_SCOPE bool SH_DELETE(SH_TYPE * tb, SH_KEY_TYPE key);
232 /* void <prefix>_start_iterate(<prefix>_hash *tb, <prefix>_iterator *iter) */
233 SH_SCOPE void SH_START_ITERATE(SH_TYPE * tb, SH_ITERATOR * iter);
236 * void <prefix>_start_iterate_at(<prefix>_hash *tb, <prefix>_iterator *iter,
237 * uint32 at)
239 SH_SCOPE void SH_START_ITERATE_AT(SH_TYPE * tb, SH_ITERATOR * iter, uint32 at);
241 /* <element> *<prefix>_iterate(<prefix>_hash *tb, <prefix>_iterator *iter) */
242 SH_SCOPE SH_ELEMENT_TYPE *SH_ITERATE(SH_TYPE * tb, SH_ITERATOR * iter);
244 /* void <prefix>_stat(<prefix>_hash *tb */
245 SH_SCOPE void SH_STAT(SH_TYPE * tb);
247 #endif /* SH_DECLARE */
250 /* generate implementation of the hash table */
251 #ifdef SH_DEFINE
253 #ifndef SH_RAW_ALLOCATOR
254 #include "utils/memutils.h"
255 #endif
257 /* max data array size,we allow up to PG_UINT32_MAX buckets, including 0 */
258 #define SH_MAX_SIZE (((uint64) PG_UINT32_MAX) + 1)
260 /* normal fillfactor, unless already close to maximum */
261 #ifndef SH_FILLFACTOR
262 #define SH_FILLFACTOR (0.9)
263 #endif
264 /* increase fillfactor if we otherwise would error out */
265 #define SH_MAX_FILLFACTOR (0.98)
266 /* grow if actual and optimal location bigger than */
267 #ifndef SH_GROW_MAX_DIB
268 #define SH_GROW_MAX_DIB 25
269 #endif
270 /* grow if more than elements to move when inserting */
271 #ifndef SH_GROW_MAX_MOVE
272 #define SH_GROW_MAX_MOVE 150
273 #endif
274 #ifndef SH_GROW_MIN_FILLFACTOR
275 /* but do not grow due to SH_GROW_MAX_* if below */
276 #define SH_GROW_MIN_FILLFACTOR 0.1
277 #endif
279 #ifdef SH_STORE_HASH
280 #define SH_COMPARE_KEYS(tb, ahash, akey, b) (ahash == SH_GET_HASH(tb, b) && SH_EQUAL(tb, b->SH_KEY, akey))
281 #else
282 #define SH_COMPARE_KEYS(tb, ahash, akey, b) (SH_EQUAL(tb, b->SH_KEY, akey))
283 #endif
286 * Wrap the following definitions in include guards, to avoid multiple
287 * definition errors if this header is included more than once. The rest of
288 * the file deliberately has no include guards, because it can be included
289 * with different parameters to define functions and types with non-colliding
290 * names.
292 #ifndef SIMPLEHASH_H
293 #define SIMPLEHASH_H
295 #ifdef FRONTEND
296 #define sh_error(...) \
297 do { pg_log_fatal(__VA_ARGS__); exit(1); } while(0)
298 #define sh_log(...) pg_log_info(__VA_ARGS__)
299 #else
300 #define sh_error(...) elog(ERROR, __VA_ARGS__)
301 #define sh_log(...) elog(LOG, __VA_ARGS__)
302 #endif
304 #endif
307 * Compute sizing parameters for hashtable. Called when creating and growing
308 * the hashtable.
310 static inline void
311 SH_COMPUTE_PARAMETERS(SH_TYPE * tb, uint64 newsize)
313 uint64 size;
315 /* supporting zero sized hashes would complicate matters */
316 size = Max(newsize, 2);
318 /* round up size to the next power of 2, that's how bucketing works */
319 size = pg_nextpower2_64(size);
320 Assert(size <= SH_MAX_SIZE);
323 * Verify that allocation of ->data is possible on this platform, without
324 * overflowing Size.
326 if (unlikely((((uint64) sizeof(SH_ELEMENT_TYPE)) * size) >= SIZE_MAX / 2))
327 sh_error("hash table too large");
329 /* now set size */
330 tb->size = size;
331 tb->sizemask = (uint32) (size - 1);
334 * Compute the next threshold at which we need to grow the hash table
335 * again.
337 if (tb->size == SH_MAX_SIZE)
338 tb->grow_threshold = ((double) tb->size) * SH_MAX_FILLFACTOR;
339 else
340 tb->grow_threshold = ((double) tb->size) * SH_FILLFACTOR;
343 /* return the optimal bucket for the hash */
344 static inline uint32
345 SH_INITIAL_BUCKET(SH_TYPE * tb, uint32 hash)
347 return hash & tb->sizemask;
350 /* return next bucket after the current, handling wraparound */
351 static inline uint32
352 SH_NEXT(SH_TYPE * tb, uint32 curelem, uint32 startelem)
354 curelem = (curelem + 1) & tb->sizemask;
356 Assert(curelem != startelem);
358 return curelem;
361 /* return bucket before the current, handling wraparound */
362 static inline uint32
363 SH_PREV(SH_TYPE * tb, uint32 curelem, uint32 startelem)
365 curelem = (curelem - 1) & tb->sizemask;
367 Assert(curelem != startelem);
369 return curelem;
372 /* return distance between bucket and its optimal position */
373 static inline uint32
374 SH_DISTANCE_FROM_OPTIMAL(SH_TYPE * tb, uint32 optimal, uint32 bucket)
376 if (optimal <= bucket)
377 return bucket - optimal;
378 else
379 return (tb->size + bucket) - optimal;
382 static inline uint32
383 SH_ENTRY_HASH(SH_TYPE * tb, SH_ELEMENT_TYPE * entry)
385 #ifdef SH_STORE_HASH
386 return SH_GET_HASH(tb, entry);
387 #else
388 return SH_HASH_KEY(tb, entry->SH_KEY);
389 #endif
392 /* default memory allocator function */
393 static inline void *SH_ALLOCATE(SH_TYPE * type, Size size);
394 static inline void SH_FREE(SH_TYPE * type, void *pointer);
396 #ifndef SH_USE_NONDEFAULT_ALLOCATOR
398 /* default memory allocator function */
399 static inline void *
400 SH_ALLOCATE(SH_TYPE * type, Size size)
402 #ifdef SH_RAW_ALLOCATOR
403 return SH_RAW_ALLOCATOR(size);
404 #else
405 return MemoryContextAllocExtended(type->ctx, size,
406 MCXT_ALLOC_HUGE | MCXT_ALLOC_ZERO);
407 #endif
410 /* default memory free function */
411 static inline void
412 SH_FREE(SH_TYPE * type, void *pointer)
414 pfree(pointer);
417 #endif
420 * Create a hash table with enough space for `nelements` distinct members.
421 * Memory for the hash table is allocated from the passed-in context. If
422 * desired, the array of elements can be allocated using a passed-in allocator;
423 * this could be useful in order to place the array of elements in a shared
424 * memory, or in a context that will outlive the rest of the hash table.
425 * Memory other than for the array of elements will still be allocated from
426 * the passed-in context.
428 #ifdef SH_RAW_ALLOCATOR
429 SH_SCOPE SH_TYPE *
430 SH_CREATE(uint32 nelements, void *private_data)
431 #else
432 SH_SCOPE SH_TYPE *
433 SH_CREATE(MemoryContext ctx, uint32 nelements, void *private_data)
434 #endif
436 SH_TYPE *tb;
437 uint64 size;
439 #ifdef SH_RAW_ALLOCATOR
440 tb = SH_RAW_ALLOCATOR(sizeof(SH_TYPE));
441 #else
442 tb = MemoryContextAllocZero(ctx, sizeof(SH_TYPE));
443 tb->ctx = ctx;
444 #endif
445 tb->private_data = private_data;
447 /* increase nelements by fillfactor, want to store nelements elements */
448 size = Min((double) SH_MAX_SIZE, ((double) nelements) / SH_FILLFACTOR);
450 SH_COMPUTE_PARAMETERS(tb, size);
452 tb->data = SH_ALLOCATE(tb, sizeof(SH_ELEMENT_TYPE) * tb->size);
454 return tb;
457 /* destroy a previously created hash table */
458 SH_SCOPE void
459 SH_DESTROY(SH_TYPE * tb)
461 SH_FREE(tb, tb->data);
462 pfree(tb);
465 /* reset the contents of a previously created hash table */
466 SH_SCOPE void
467 SH_RESET(SH_TYPE * tb)
469 memset(tb->data, 0, sizeof(SH_ELEMENT_TYPE) * tb->size);
470 tb->members = 0;
474 * Grow a hash table to at least `newsize` buckets.
476 * Usually this will automatically be called by insertions/deletions, when
477 * necessary. But resizing to the exact input size can be advantageous
478 * performance-wise, when known at some point.
480 SH_SCOPE void
481 SH_GROW(SH_TYPE * tb, uint64 newsize)
483 uint64 oldsize = tb->size;
484 SH_ELEMENT_TYPE *olddata = tb->data;
485 SH_ELEMENT_TYPE *newdata;
486 uint32 i;
487 uint32 startelem = 0;
488 uint32 copyelem;
490 Assert(oldsize == pg_nextpower2_64(oldsize));
491 Assert(oldsize != SH_MAX_SIZE);
492 Assert(oldsize < newsize);
494 /* compute parameters for new table */
495 SH_COMPUTE_PARAMETERS(tb, newsize);
497 tb->data = SH_ALLOCATE(tb, sizeof(SH_ELEMENT_TYPE) * tb->size);
499 newdata = tb->data;
502 * Copy entries from the old data to newdata. We theoretically could use
503 * SH_INSERT here, to avoid code duplication, but that's more general than
504 * we need. We neither want tb->members increased, nor do we need to do
505 * deal with deleted elements, nor do we need to compare keys. So a
506 * special-cased implementation is lot faster. As resizing can be time
507 * consuming and frequent, that's worthwhile to optimize.
509 * To be able to simply move entries over, we have to start not at the
510 * first bucket (i.e olddata[0]), but find the first bucket that's either
511 * empty, or is occupied by an entry at its optimal position. Such a
512 * bucket has to exist in any table with a load factor under 1, as not all
513 * buckets are occupied, i.e. there always has to be an empty bucket. By
514 * starting at such a bucket we can move the entries to the larger table,
515 * without having to deal with conflicts.
518 /* search for the first element in the hash that's not wrapped around */
519 for (i = 0; i < oldsize; i++)
521 SH_ELEMENT_TYPE *oldentry = &olddata[i];
522 uint32 hash;
523 uint32 optimal;
525 if (oldentry->status != SH_STATUS_IN_USE)
527 startelem = i;
528 break;
531 hash = SH_ENTRY_HASH(tb, oldentry);
532 optimal = SH_INITIAL_BUCKET(tb, hash);
534 if (optimal == i)
536 startelem = i;
537 break;
541 /* and copy all elements in the old table */
542 copyelem = startelem;
543 for (i = 0; i < oldsize; i++)
545 SH_ELEMENT_TYPE *oldentry = &olddata[copyelem];
547 if (oldentry->status == SH_STATUS_IN_USE)
549 uint32 hash;
550 uint32 startelem;
551 uint32 curelem;
552 SH_ELEMENT_TYPE *newentry;
554 hash = SH_ENTRY_HASH(tb, oldentry);
555 startelem = SH_INITIAL_BUCKET(tb, hash);
556 curelem = startelem;
558 /* find empty element to put data into */
559 while (true)
561 newentry = &newdata[curelem];
563 if (newentry->status == SH_STATUS_EMPTY)
565 break;
568 curelem = SH_NEXT(tb, curelem, startelem);
571 /* copy entry to new slot */
572 memcpy(newentry, oldentry, sizeof(SH_ELEMENT_TYPE));
575 /* can't use SH_NEXT here, would use new size */
576 copyelem++;
577 if (copyelem >= oldsize)
579 copyelem = 0;
583 SH_FREE(tb, olddata);
587 * This is a separate static inline function, so it can be reliably be inlined
588 * into its wrapper functions even if SH_SCOPE is extern.
590 static inline SH_ELEMENT_TYPE *
591 SH_INSERT_HASH_INTERNAL(SH_TYPE * tb, SH_KEY_TYPE key, uint32 hash, bool *found)
593 uint32 startelem;
594 uint32 curelem;
595 SH_ELEMENT_TYPE *data;
596 uint32 insertdist;
598 restart:
599 insertdist = 0;
602 * We do the grow check even if the key is actually present, to avoid
603 * doing the check inside the loop. This also lets us avoid having to
604 * re-find our position in the hashtable after resizing.
606 * Note that this also reached when resizing the table due to
607 * SH_GROW_MAX_DIB / SH_GROW_MAX_MOVE.
609 if (unlikely(tb->members >= tb->grow_threshold))
611 if (unlikely(tb->size == SH_MAX_SIZE))
612 sh_error("hash table size exceeded");
615 * When optimizing, it can be very useful to print these out.
617 /* SH_STAT(tb); */
618 SH_GROW(tb, tb->size * 2);
619 /* SH_STAT(tb); */
622 /* perform insert, start bucket search at optimal location */
623 data = tb->data;
624 startelem = SH_INITIAL_BUCKET(tb, hash);
625 curelem = startelem;
626 while (true)
628 uint32 curdist;
629 uint32 curhash;
630 uint32 curoptimal;
631 SH_ELEMENT_TYPE *entry = &data[curelem];
633 /* any empty bucket can directly be used */
634 if (entry->status == SH_STATUS_EMPTY)
636 tb->members++;
637 entry->SH_KEY = key;
638 #ifdef SH_STORE_HASH
639 SH_GET_HASH(tb, entry) = hash;
640 #endif
641 entry->status = SH_STATUS_IN_USE;
642 *found = false;
643 return entry;
647 * If the bucket is not empty, we either found a match (in which case
648 * we're done), or we have to decide whether to skip over or move the
649 * colliding entry. When the colliding element's distance to its
650 * optimal position is smaller than the to-be-inserted entry's, we
651 * shift the colliding entry (and its followers) forward by one.
654 if (SH_COMPARE_KEYS(tb, hash, key, entry))
656 Assert(entry->status == SH_STATUS_IN_USE);
657 *found = true;
658 return entry;
661 curhash = SH_ENTRY_HASH(tb, entry);
662 curoptimal = SH_INITIAL_BUCKET(tb, curhash);
663 curdist = SH_DISTANCE_FROM_OPTIMAL(tb, curoptimal, curelem);
665 if (insertdist > curdist)
667 SH_ELEMENT_TYPE *lastentry = entry;
668 uint32 emptyelem = curelem;
669 uint32 moveelem;
670 int32 emptydist = 0;
672 /* find next empty bucket */
673 while (true)
675 SH_ELEMENT_TYPE *emptyentry;
677 emptyelem = SH_NEXT(tb, emptyelem, startelem);
678 emptyentry = &data[emptyelem];
680 if (emptyentry->status == SH_STATUS_EMPTY)
682 lastentry = emptyentry;
683 break;
687 * To avoid negative consequences from overly imbalanced
688 * hashtables, grow the hashtable if collisions would require
689 * us to move a lot of entries. The most likely cause of such
690 * imbalance is filling a (currently) small table, from a
691 * currently big one, in hash-table order. Don't grow if the
692 * hashtable would be too empty, to prevent quick space
693 * explosion for some weird edge cases.
695 if (unlikely(++emptydist > SH_GROW_MAX_MOVE) &&
696 ((double) tb->members / tb->size) >= SH_GROW_MIN_FILLFACTOR)
698 tb->grow_threshold = 0;
699 goto restart;
703 /* shift forward, starting at last occupied element */
706 * TODO: This could be optimized to be one memcpy in many cases,
707 * excepting wrapping around at the end of ->data. Hasn't shown up
708 * in profiles so far though.
710 moveelem = emptyelem;
711 while (moveelem != curelem)
713 SH_ELEMENT_TYPE *moveentry;
715 moveelem = SH_PREV(tb, moveelem, startelem);
716 moveentry = &data[moveelem];
718 memcpy(lastentry, moveentry, sizeof(SH_ELEMENT_TYPE));
719 lastentry = moveentry;
722 /* and fill the now empty spot */
723 tb->members++;
725 entry->SH_KEY = key;
726 #ifdef SH_STORE_HASH
727 SH_GET_HASH(tb, entry) = hash;
728 #endif
729 entry->status = SH_STATUS_IN_USE;
730 *found = false;
731 return entry;
734 curelem = SH_NEXT(tb, curelem, startelem);
735 insertdist++;
738 * To avoid negative consequences from overly imbalanced hashtables,
739 * grow the hashtable if collisions lead to large runs. The most
740 * likely cause of such imbalance is filling a (currently) small
741 * table, from a currently big one, in hash-table order. Don't grow
742 * if the hashtable would be too empty, to prevent quick space
743 * explosion for some weird edge cases.
745 if (unlikely(insertdist > SH_GROW_MAX_DIB) &&
746 ((double) tb->members / tb->size) >= SH_GROW_MIN_FILLFACTOR)
748 tb->grow_threshold = 0;
749 goto restart;
755 * Insert the key key into the hash-table, set *found to true if the key
756 * already exists, false otherwise. Returns the hash-table entry in either
757 * case.
759 SH_SCOPE SH_ELEMENT_TYPE *
760 SH_INSERT(SH_TYPE * tb, SH_KEY_TYPE key, bool *found)
762 uint32 hash = SH_HASH_KEY(tb, key);
764 return SH_INSERT_HASH_INTERNAL(tb, key, hash, found);
768 * Insert the key key into the hash-table using an already-calculated
769 * hash. Set *found to true if the key already exists, false
770 * otherwise. Returns the hash-table entry in either case.
772 SH_SCOPE SH_ELEMENT_TYPE *
773 SH_INSERT_HASH(SH_TYPE * tb, SH_KEY_TYPE key, uint32 hash, bool *found)
775 return SH_INSERT_HASH_INTERNAL(tb, key, hash, found);
779 * This is a separate static inline function, so it can be reliably be inlined
780 * into its wrapper functions even if SH_SCOPE is extern.
782 static inline SH_ELEMENT_TYPE *
783 SH_LOOKUP_HASH_INTERNAL(SH_TYPE * tb, SH_KEY_TYPE key, uint32 hash)
785 const uint32 startelem = SH_INITIAL_BUCKET(tb, hash);
786 uint32 curelem = startelem;
788 while (true)
790 SH_ELEMENT_TYPE *entry = &tb->data[curelem];
792 if (entry->status == SH_STATUS_EMPTY)
794 return NULL;
797 Assert(entry->status == SH_STATUS_IN_USE);
799 if (SH_COMPARE_KEYS(tb, hash, key, entry))
800 return entry;
803 * TODO: we could stop search based on distance. If the current
804 * buckets's distance-from-optimal is smaller than what we've skipped
805 * already, the entry doesn't exist. Probably only do so if
806 * SH_STORE_HASH is defined, to avoid re-computing hashes?
809 curelem = SH_NEXT(tb, curelem, startelem);
814 * Lookup up entry in hash table. Returns NULL if key not present.
816 SH_SCOPE SH_ELEMENT_TYPE *
817 SH_LOOKUP(SH_TYPE * tb, SH_KEY_TYPE key)
819 uint32 hash = SH_HASH_KEY(tb, key);
821 return SH_LOOKUP_HASH_INTERNAL(tb, key, hash);
825 * Lookup up entry in hash table using an already-calculated hash.
827 * Returns NULL if key not present.
829 SH_SCOPE SH_ELEMENT_TYPE *
830 SH_LOOKUP_HASH(SH_TYPE * tb, SH_KEY_TYPE key, uint32 hash)
832 return SH_LOOKUP_HASH_INTERNAL(tb, key, hash);
836 * Delete entry from hash table by key. Returns whether to-be-deleted key was
837 * present.
839 SH_SCOPE bool
840 SH_DELETE(SH_TYPE * tb, SH_KEY_TYPE key)
842 uint32 hash = SH_HASH_KEY(tb, key);
843 uint32 startelem = SH_INITIAL_BUCKET(tb, hash);
844 uint32 curelem = startelem;
846 while (true)
848 SH_ELEMENT_TYPE *entry = &tb->data[curelem];
850 if (entry->status == SH_STATUS_EMPTY)
851 return false;
853 if (entry->status == SH_STATUS_IN_USE &&
854 SH_COMPARE_KEYS(tb, hash, key, entry))
856 SH_ELEMENT_TYPE *lastentry = entry;
858 tb->members--;
861 * Backward shift following elements till either an empty element
862 * or an element at its optimal position is encountered.
864 * While that sounds expensive, the average chain length is short,
865 * and deletions would otherwise require tombstones.
867 while (true)
869 SH_ELEMENT_TYPE *curentry;
870 uint32 curhash;
871 uint32 curoptimal;
873 curelem = SH_NEXT(tb, curelem, startelem);
874 curentry = &tb->data[curelem];
876 if (curentry->status != SH_STATUS_IN_USE)
878 lastentry->status = SH_STATUS_EMPTY;
879 break;
882 curhash = SH_ENTRY_HASH(tb, curentry);
883 curoptimal = SH_INITIAL_BUCKET(tb, curhash);
885 /* current is at optimal position, done */
886 if (curoptimal == curelem)
888 lastentry->status = SH_STATUS_EMPTY;
889 break;
892 /* shift */
893 memcpy(lastentry, curentry, sizeof(SH_ELEMENT_TYPE));
895 lastentry = curentry;
898 return true;
901 /* TODO: return false; if distance too big */
903 curelem = SH_NEXT(tb, curelem, startelem);
908 * Delete entry from hash table by entry pointer
910 SH_SCOPE void
911 SH_DELETE_ITEM(SH_TYPE * tb, SH_ELEMENT_TYPE * entry)
913 SH_ELEMENT_TYPE *lastentry = entry;
914 uint32 hash = SH_ENTRY_HASH(tb, entry);
915 uint32 startelem = SH_INITIAL_BUCKET(tb, hash);
916 uint32 curelem;
918 /* Calculate the index of 'entry' */
919 curelem = entry - &tb->data[0];
921 tb->members--;
924 * Backward shift following elements till either an empty element or an
925 * element at its optimal position is encountered.
927 * While that sounds expensive, the average chain length is short, and
928 * deletions would otherwise require tombstones.
930 while (true)
932 SH_ELEMENT_TYPE *curentry;
933 uint32 curhash;
934 uint32 curoptimal;
936 curelem = SH_NEXT(tb, curelem, startelem);
937 curentry = &tb->data[curelem];
939 if (curentry->status != SH_STATUS_IN_USE)
941 lastentry->status = SH_STATUS_EMPTY;
942 break;
945 curhash = SH_ENTRY_HASH(tb, curentry);
946 curoptimal = SH_INITIAL_BUCKET(tb, curhash);
948 /* current is at optimal position, done */
949 if (curoptimal == curelem)
951 lastentry->status = SH_STATUS_EMPTY;
952 break;
955 /* shift */
956 memcpy(lastentry, curentry, sizeof(SH_ELEMENT_TYPE));
958 lastentry = curentry;
963 * Initialize iterator.
965 SH_SCOPE void
966 SH_START_ITERATE(SH_TYPE * tb, SH_ITERATOR * iter)
968 int i;
969 uint64 startelem = PG_UINT64_MAX;
972 * Search for the first empty element. As deletions during iterations are
973 * supported, we want to start/end at an element that cannot be affected
974 * by elements being shifted.
976 for (i = 0; i < tb->size; i++)
978 SH_ELEMENT_TYPE *entry = &tb->data[i];
980 if (entry->status != SH_STATUS_IN_USE)
982 startelem = i;
983 break;
987 Assert(startelem < SH_MAX_SIZE);
990 * Iterate backwards, that allows the current element to be deleted, even
991 * if there are backward shifts
993 iter->cur = startelem;
994 iter->end = iter->cur;
995 iter->done = false;
999 * Initialize iterator to a specific bucket. That's really only useful for
1000 * cases where callers are partially iterating over the hashspace, and that
1001 * iteration deletes and inserts elements based on visited entries. Doing that
1002 * repeatedly could lead to an unbalanced keyspace when always starting at the
1003 * same position.
1005 SH_SCOPE void
1006 SH_START_ITERATE_AT(SH_TYPE * tb, SH_ITERATOR * iter, uint32 at)
1009 * Iterate backwards, that allows the current element to be deleted, even
1010 * if there are backward shifts.
1012 iter->cur = at & tb->sizemask; /* ensure at is within a valid range */
1013 iter->end = iter->cur;
1014 iter->done = false;
1018 * Iterate over all entries in the hash-table. Return the next occupied entry,
1019 * or NULL if done.
1021 * During iteration the current entry in the hash table may be deleted,
1022 * without leading to elements being skipped or returned twice. Additionally
1023 * the rest of the table may be modified (i.e. there can be insertions or
1024 * deletions), but if so, there's neither a guarantee that all nodes are
1025 * visited at least once, nor a guarantee that a node is visited at most once.
1027 SH_SCOPE SH_ELEMENT_TYPE *
1028 SH_ITERATE(SH_TYPE * tb, SH_ITERATOR * iter)
1030 while (!iter->done)
1032 SH_ELEMENT_TYPE *elem;
1034 elem = &tb->data[iter->cur];
1036 /* next element in backward direction */
1037 iter->cur = (iter->cur - 1) & tb->sizemask;
1039 if ((iter->cur & tb->sizemask) == (iter->end & tb->sizemask))
1040 iter->done = true;
1041 if (elem->status == SH_STATUS_IN_USE)
1043 return elem;
1047 return NULL;
1051 * Report some statistics about the state of the hashtable. For
1052 * debugging/profiling purposes only.
1054 SH_SCOPE void
1055 SH_STAT(SH_TYPE * tb)
1057 uint32 max_chain_length = 0;
1058 uint32 total_chain_length = 0;
1059 double avg_chain_length;
1060 double fillfactor;
1061 uint32 i;
1063 uint32 *collisions = palloc0(tb->size * sizeof(uint32));
1064 uint32 total_collisions = 0;
1065 uint32 max_collisions = 0;
1066 double avg_collisions;
1068 for (i = 0; i < tb->size; i++)
1070 uint32 hash;
1071 uint32 optimal;
1072 uint32 dist;
1073 SH_ELEMENT_TYPE *elem;
1075 elem = &tb->data[i];
1077 if (elem->status != SH_STATUS_IN_USE)
1078 continue;
1080 hash = SH_ENTRY_HASH(tb, elem);
1081 optimal = SH_INITIAL_BUCKET(tb, hash);
1082 dist = SH_DISTANCE_FROM_OPTIMAL(tb, optimal, i);
1084 if (dist > max_chain_length)
1085 max_chain_length = dist;
1086 total_chain_length += dist;
1088 collisions[optimal]++;
1091 for (i = 0; i < tb->size; i++)
1093 uint32 curcoll = collisions[i];
1095 if (curcoll == 0)
1096 continue;
1098 /* single contained element is not a collision */
1099 curcoll--;
1100 total_collisions += curcoll;
1101 if (curcoll > max_collisions)
1102 max_collisions = curcoll;
1105 if (tb->members > 0)
1107 fillfactor = tb->members / ((double) tb->size);
1108 avg_chain_length = ((double) total_chain_length) / tb->members;
1109 avg_collisions = ((double) total_collisions) / tb->members;
1111 else
1113 fillfactor = 0;
1114 avg_chain_length = 0;
1115 avg_collisions = 0;
1118 sh_log("size: " UINT64_FORMAT ", members: %u, filled: %f, total chain: %u, max chain: %u, avg chain: %f, total_collisions: %u, max_collisions: %u, avg_collisions: %f",
1119 tb->size, tb->members, fillfactor, total_chain_length, max_chain_length, avg_chain_length,
1120 total_collisions, max_collisions, avg_collisions);
1123 #endif /* SH_DEFINE */
1126 /* undefine external parameters, so next hash table can be defined */
1127 #undef SH_PREFIX
1128 #undef SH_KEY_TYPE
1129 #undef SH_KEY
1130 #undef SH_ELEMENT_TYPE
1131 #undef SH_HASH_KEY
1132 #undef SH_SCOPE
1133 #undef SH_DECLARE
1134 #undef SH_DEFINE
1135 #undef SH_GET_HASH
1136 #undef SH_STORE_HASH
1137 #undef SH_USE_NONDEFAULT_ALLOCATOR
1138 #undef SH_EQUAL
1140 /* undefine locally declared macros */
1141 #undef SH_MAKE_PREFIX
1142 #undef SH_MAKE_NAME
1143 #undef SH_MAKE_NAME_
1144 #undef SH_FILLFACTOR
1145 #undef SH_MAX_FILLFACTOR
1146 #undef SH_GROW_MAX_DIB
1147 #undef SH_GROW_MAX_MOVE
1148 #undef SH_GROW_MIN_FILLFACTOR
1149 #undef SH_MAX_SIZE
1151 /* types */
1152 #undef SH_TYPE
1153 #undef SH_STATUS
1154 #undef SH_STATUS_EMPTY
1155 #undef SH_STATUS_IN_USE
1156 #undef SH_ITERATOR
1158 /* external function names */
1159 #undef SH_CREATE
1160 #undef SH_DESTROY
1161 #undef SH_RESET
1162 #undef SH_INSERT
1163 #undef SH_INSERT_HASH
1164 #undef SH_DELETE_ITEM
1165 #undef SH_DELETE
1166 #undef SH_LOOKUP
1167 #undef SH_LOOKUP_HASH
1168 #undef SH_GROW
1169 #undef SH_START_ITERATE
1170 #undef SH_START_ITERATE_AT
1171 #undef SH_ITERATE
1172 #undef SH_ALLOCATE
1173 #undef SH_FREE
1174 #undef SH_STAT
1176 /* internal function names */
1177 #undef SH_COMPUTE_PARAMETERS
1178 #undef SH_COMPARE_KEYS
1179 #undef SH_INITIAL_BUCKET
1180 #undef SH_NEXT
1181 #undef SH_PREV
1182 #undef SH_DISTANCE_FROM_OPTIMAL
1183 #undef SH_ENTRY_HASH
1184 #undef SH_INSERT_HASH_INTERNAL
1185 #undef SH_LOOKUP_HASH_INTERNAL