Update copyright for 2022
[pgsql.git] / src / backend / parser / parse_agg.c
blobded0a14d7232b18e2bd58d5b5f130122c5b388a9
1 /*-------------------------------------------------------------------------
3 * parse_agg.c
4 * handle aggregates and window functions in parser
6 * Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group
7 * Portions Copyright (c) 1994, Regents of the University of California
10 * IDENTIFICATION
11 * src/backend/parser/parse_agg.c
13 *-------------------------------------------------------------------------
15 #include "postgres.h"
17 #include "catalog/pg_aggregate.h"
18 #include "catalog/pg_constraint.h"
19 #include "catalog/pg_type.h"
20 #include "nodes/makefuncs.h"
21 #include "nodes/nodeFuncs.h"
22 #include "optimizer/optimizer.h"
23 #include "parser/parse_agg.h"
24 #include "parser/parse_clause.h"
25 #include "parser/parse_coerce.h"
26 #include "parser/parse_expr.h"
27 #include "parser/parsetree.h"
28 #include "rewrite/rewriteManip.h"
29 #include "utils/builtins.h"
30 #include "utils/lsyscache.h"
33 typedef struct
35 ParseState *pstate;
36 int min_varlevel;
37 int min_agglevel;
38 int sublevels_up;
39 } check_agg_arguments_context;
41 typedef struct
43 ParseState *pstate;
44 Query *qry;
45 bool hasJoinRTEs;
46 List *groupClauses;
47 List *groupClauseCommonVars;
48 bool have_non_var_grouping;
49 List **func_grouped_rels;
50 int sublevels_up;
51 bool in_agg_direct_args;
52 } check_ungrouped_columns_context;
54 static int check_agg_arguments(ParseState *pstate,
55 List *directargs,
56 List *args,
57 Expr *filter);
58 static bool check_agg_arguments_walker(Node *node,
59 check_agg_arguments_context *context);
60 static void check_ungrouped_columns(Node *node, ParseState *pstate, Query *qry,
61 List *groupClauses, List *groupClauseCommonVars,
62 bool have_non_var_grouping,
63 List **func_grouped_rels);
64 static bool check_ungrouped_columns_walker(Node *node,
65 check_ungrouped_columns_context *context);
66 static void finalize_grouping_exprs(Node *node, ParseState *pstate, Query *qry,
67 List *groupClauses, bool hasJoinRTEs,
68 bool have_non_var_grouping);
69 static bool finalize_grouping_exprs_walker(Node *node,
70 check_ungrouped_columns_context *context);
71 static void check_agglevels_and_constraints(ParseState *pstate, Node *expr);
72 static List *expand_groupingset_node(GroupingSet *gs);
73 static Node *make_agg_arg(Oid argtype, Oid argcollation);
77 * transformAggregateCall -
78 * Finish initial transformation of an aggregate call
80 * parse_func.c has recognized the function as an aggregate, and has set up
81 * all the fields of the Aggref except aggargtypes, aggdirectargs, args,
82 * aggorder, aggdistinct and agglevelsup. The passed-in args list has been
83 * through standard expression transformation and type coercion to match the
84 * agg's declared arg types, while the passed-in aggorder list hasn't been
85 * transformed at all.
87 * Here we separate the args list into direct and aggregated args, storing the
88 * former in agg->aggdirectargs and the latter in agg->args. The regular
89 * args, but not the direct args, are converted into a targetlist by inserting
90 * TargetEntry nodes. We then transform the aggorder and agg_distinct
91 * specifications to produce lists of SortGroupClause nodes for agg->aggorder
92 * and agg->aggdistinct. (For a regular aggregate, this might result in
93 * adding resjunk expressions to the targetlist; but for ordered-set
94 * aggregates the aggorder list will always be one-to-one with the aggregated
95 * args.)
97 * We must also determine which query level the aggregate actually belongs to,
98 * set agglevelsup accordingly, and mark p_hasAggs true in the corresponding
99 * pstate level.
101 void
102 transformAggregateCall(ParseState *pstate, Aggref *agg,
103 List *args, List *aggorder, bool agg_distinct)
105 List *argtypes = NIL;
106 List *tlist = NIL;
107 List *torder = NIL;
108 List *tdistinct = NIL;
109 AttrNumber attno = 1;
110 int save_next_resno;
111 ListCell *lc;
114 * Before separating the args into direct and aggregated args, make a list
115 * of their data type OIDs for use later.
117 foreach(lc, args)
119 Expr *arg = (Expr *) lfirst(lc);
121 argtypes = lappend_oid(argtypes, exprType((Node *) arg));
123 agg->aggargtypes = argtypes;
125 if (AGGKIND_IS_ORDERED_SET(agg->aggkind))
128 * For an ordered-set agg, the args list includes direct args and
129 * aggregated args; we must split them apart.
131 int numDirectArgs = list_length(args) - list_length(aggorder);
132 List *aargs;
133 ListCell *lc2;
135 Assert(numDirectArgs >= 0);
137 aargs = list_copy_tail(args, numDirectArgs);
138 agg->aggdirectargs = list_truncate(args, numDirectArgs);
141 * Build a tlist from the aggregated args, and make a sortlist entry
142 * for each one. Note that the expressions in the SortBy nodes are
143 * ignored (they are the raw versions of the transformed args); we are
144 * just looking at the sort information in the SortBy nodes.
146 forboth(lc, aargs, lc2, aggorder)
148 Expr *arg = (Expr *) lfirst(lc);
149 SortBy *sortby = (SortBy *) lfirst(lc2);
150 TargetEntry *tle;
152 /* We don't bother to assign column names to the entries */
153 tle = makeTargetEntry(arg, attno++, NULL, false);
154 tlist = lappend(tlist, tle);
156 torder = addTargetToSortList(pstate, tle,
157 torder, tlist, sortby);
160 /* Never any DISTINCT in an ordered-set agg */
161 Assert(!agg_distinct);
163 else
165 /* Regular aggregate, so it has no direct args */
166 agg->aggdirectargs = NIL;
169 * Transform the plain list of Exprs into a targetlist.
171 foreach(lc, args)
173 Expr *arg = (Expr *) lfirst(lc);
174 TargetEntry *tle;
176 /* We don't bother to assign column names to the entries */
177 tle = makeTargetEntry(arg, attno++, NULL, false);
178 tlist = lappend(tlist, tle);
182 * If we have an ORDER BY, transform it. This will add columns to the
183 * tlist if they appear in ORDER BY but weren't already in the arg
184 * list. They will be marked resjunk = true so we can tell them apart
185 * from regular aggregate arguments later.
187 * We need to mess with p_next_resno since it will be used to number
188 * any new targetlist entries.
190 save_next_resno = pstate->p_next_resno;
191 pstate->p_next_resno = attno;
193 torder = transformSortClause(pstate,
194 aggorder,
195 &tlist,
196 EXPR_KIND_ORDER_BY,
197 true /* force SQL99 rules */ );
200 * If we have DISTINCT, transform that to produce a distinctList.
202 if (agg_distinct)
204 tdistinct = transformDistinctClause(pstate, &tlist, torder, true);
207 * Remove this check if executor support for hashed distinct for
208 * aggregates is ever added.
210 foreach(lc, tdistinct)
212 SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc);
214 if (!OidIsValid(sortcl->sortop))
216 Node *expr = get_sortgroupclause_expr(sortcl, tlist);
218 ereport(ERROR,
219 (errcode(ERRCODE_UNDEFINED_FUNCTION),
220 errmsg("could not identify an ordering operator for type %s",
221 format_type_be(exprType(expr))),
222 errdetail("Aggregates with DISTINCT must be able to sort their inputs."),
223 parser_errposition(pstate, exprLocation(expr))));
228 pstate->p_next_resno = save_next_resno;
231 /* Update the Aggref with the transformation results */
232 agg->args = tlist;
233 agg->aggorder = torder;
234 agg->aggdistinct = tdistinct;
236 check_agglevels_and_constraints(pstate, (Node *) agg);
240 * transformGroupingFunc
241 * Transform a GROUPING expression
243 * GROUPING() behaves very like an aggregate. Processing of levels and nesting
244 * is done as for aggregates. We set p_hasAggs for these expressions too.
246 Node *
247 transformGroupingFunc(ParseState *pstate, GroupingFunc *p)
249 ListCell *lc;
250 List *args = p->args;
251 List *result_list = NIL;
252 GroupingFunc *result = makeNode(GroupingFunc);
254 if (list_length(args) > 31)
255 ereport(ERROR,
256 (errcode(ERRCODE_TOO_MANY_ARGUMENTS),
257 errmsg("GROUPING must have fewer than 32 arguments"),
258 parser_errposition(pstate, p->location)));
260 foreach(lc, args)
262 Node *current_result;
264 current_result = transformExpr(pstate, (Node *) lfirst(lc), pstate->p_expr_kind);
266 /* acceptability of expressions is checked later */
268 result_list = lappend(result_list, current_result);
271 result->args = result_list;
272 result->location = p->location;
274 check_agglevels_and_constraints(pstate, (Node *) result);
276 return (Node *) result;
280 * Aggregate functions and grouping operations (which are combined in the spec
281 * as <set function specification>) are very similar with regard to level and
282 * nesting restrictions (though we allow a lot more things than the spec does).
283 * Centralise those restrictions here.
285 static void
286 check_agglevels_and_constraints(ParseState *pstate, Node *expr)
288 List *directargs = NIL;
289 List *args = NIL;
290 Expr *filter = NULL;
291 int min_varlevel;
292 int location = -1;
293 Index *p_levelsup;
294 const char *err;
295 bool errkind;
296 bool isAgg = IsA(expr, Aggref);
298 if (isAgg)
300 Aggref *agg = (Aggref *) expr;
302 directargs = agg->aggdirectargs;
303 args = agg->args;
304 filter = agg->aggfilter;
305 location = agg->location;
306 p_levelsup = &agg->agglevelsup;
308 else
310 GroupingFunc *grp = (GroupingFunc *) expr;
312 args = grp->args;
313 location = grp->location;
314 p_levelsup = &grp->agglevelsup;
318 * Check the arguments to compute the aggregate's level and detect
319 * improper nesting.
321 min_varlevel = check_agg_arguments(pstate,
322 directargs,
323 args,
324 filter);
326 *p_levelsup = min_varlevel;
328 /* Mark the correct pstate level as having aggregates */
329 while (min_varlevel-- > 0)
330 pstate = pstate->parentParseState;
331 pstate->p_hasAggs = true;
334 * Check to see if the aggregate function is in an invalid place within
335 * its aggregation query.
337 * For brevity we support two schemes for reporting an error here: set
338 * "err" to a custom message, or set "errkind" true if the error context
339 * is sufficiently identified by what ParseExprKindName will return, *and*
340 * what it will return is just a SQL keyword. (Otherwise, use a custom
341 * message to avoid creating translation problems.)
343 err = NULL;
344 errkind = false;
345 switch (pstate->p_expr_kind)
347 case EXPR_KIND_NONE:
348 Assert(false); /* can't happen */
349 break;
350 case EXPR_KIND_OTHER:
353 * Accept aggregate/grouping here; caller must throw error if
354 * wanted
356 break;
357 case EXPR_KIND_JOIN_ON:
358 case EXPR_KIND_JOIN_USING:
359 if (isAgg)
360 err = _("aggregate functions are not allowed in JOIN conditions");
361 else
362 err = _("grouping operations are not allowed in JOIN conditions");
364 break;
365 case EXPR_KIND_FROM_SUBSELECT:
366 /* Should only be possible in a LATERAL subquery */
367 Assert(pstate->p_lateral_active);
370 * Aggregate/grouping scope rules make it worth being explicit
371 * here
373 if (isAgg)
374 err = _("aggregate functions are not allowed in FROM clause of their own query level");
375 else
376 err = _("grouping operations are not allowed in FROM clause of their own query level");
378 break;
379 case EXPR_KIND_FROM_FUNCTION:
380 if (isAgg)
381 err = _("aggregate functions are not allowed in functions in FROM");
382 else
383 err = _("grouping operations are not allowed in functions in FROM");
385 break;
386 case EXPR_KIND_WHERE:
387 errkind = true;
388 break;
389 case EXPR_KIND_POLICY:
390 if (isAgg)
391 err = _("aggregate functions are not allowed in policy expressions");
392 else
393 err = _("grouping operations are not allowed in policy expressions");
395 break;
396 case EXPR_KIND_HAVING:
397 /* okay */
398 break;
399 case EXPR_KIND_FILTER:
400 errkind = true;
401 break;
402 case EXPR_KIND_WINDOW_PARTITION:
403 /* okay */
404 break;
405 case EXPR_KIND_WINDOW_ORDER:
406 /* okay */
407 break;
408 case EXPR_KIND_WINDOW_FRAME_RANGE:
409 if (isAgg)
410 err = _("aggregate functions are not allowed in window RANGE");
411 else
412 err = _("grouping operations are not allowed in window RANGE");
414 break;
415 case EXPR_KIND_WINDOW_FRAME_ROWS:
416 if (isAgg)
417 err = _("aggregate functions are not allowed in window ROWS");
418 else
419 err = _("grouping operations are not allowed in window ROWS");
421 break;
422 case EXPR_KIND_WINDOW_FRAME_GROUPS:
423 if (isAgg)
424 err = _("aggregate functions are not allowed in window GROUPS");
425 else
426 err = _("grouping operations are not allowed in window GROUPS");
428 break;
429 case EXPR_KIND_SELECT_TARGET:
430 /* okay */
431 break;
432 case EXPR_KIND_INSERT_TARGET:
433 case EXPR_KIND_UPDATE_SOURCE:
434 case EXPR_KIND_UPDATE_TARGET:
435 errkind = true;
436 break;
437 case EXPR_KIND_GROUP_BY:
438 errkind = true;
439 break;
440 case EXPR_KIND_ORDER_BY:
441 /* okay */
442 break;
443 case EXPR_KIND_DISTINCT_ON:
444 /* okay */
445 break;
446 case EXPR_KIND_LIMIT:
447 case EXPR_KIND_OFFSET:
448 errkind = true;
449 break;
450 case EXPR_KIND_RETURNING:
451 errkind = true;
452 break;
453 case EXPR_KIND_VALUES:
454 case EXPR_KIND_VALUES_SINGLE:
455 errkind = true;
456 break;
457 case EXPR_KIND_CHECK_CONSTRAINT:
458 case EXPR_KIND_DOMAIN_CHECK:
459 if (isAgg)
460 err = _("aggregate functions are not allowed in check constraints");
461 else
462 err = _("grouping operations are not allowed in check constraints");
464 break;
465 case EXPR_KIND_COLUMN_DEFAULT:
466 case EXPR_KIND_FUNCTION_DEFAULT:
468 if (isAgg)
469 err = _("aggregate functions are not allowed in DEFAULT expressions");
470 else
471 err = _("grouping operations are not allowed in DEFAULT expressions");
473 break;
474 case EXPR_KIND_INDEX_EXPRESSION:
475 if (isAgg)
476 err = _("aggregate functions are not allowed in index expressions");
477 else
478 err = _("grouping operations are not allowed in index expressions");
480 break;
481 case EXPR_KIND_INDEX_PREDICATE:
482 if (isAgg)
483 err = _("aggregate functions are not allowed in index predicates");
484 else
485 err = _("grouping operations are not allowed in index predicates");
487 break;
488 case EXPR_KIND_STATS_EXPRESSION:
489 if (isAgg)
490 err = _("aggregate functions are not allowed in statistics expressions");
491 else
492 err = _("grouping operations are not allowed in statistics expressions");
494 break;
495 case EXPR_KIND_ALTER_COL_TRANSFORM:
496 if (isAgg)
497 err = _("aggregate functions are not allowed in transform expressions");
498 else
499 err = _("grouping operations are not allowed in transform expressions");
501 break;
502 case EXPR_KIND_EXECUTE_PARAMETER:
503 if (isAgg)
504 err = _("aggregate functions are not allowed in EXECUTE parameters");
505 else
506 err = _("grouping operations are not allowed in EXECUTE parameters");
508 break;
509 case EXPR_KIND_TRIGGER_WHEN:
510 if (isAgg)
511 err = _("aggregate functions are not allowed in trigger WHEN conditions");
512 else
513 err = _("grouping operations are not allowed in trigger WHEN conditions");
515 break;
516 case EXPR_KIND_PARTITION_BOUND:
517 if (isAgg)
518 err = _("aggregate functions are not allowed in partition bound");
519 else
520 err = _("grouping operations are not allowed in partition bound");
522 break;
523 case EXPR_KIND_PARTITION_EXPRESSION:
524 if (isAgg)
525 err = _("aggregate functions are not allowed in partition key expressions");
526 else
527 err = _("grouping operations are not allowed in partition key expressions");
529 break;
530 case EXPR_KIND_GENERATED_COLUMN:
532 if (isAgg)
533 err = _("aggregate functions are not allowed in column generation expressions");
534 else
535 err = _("grouping operations are not allowed in column generation expressions");
537 break;
539 case EXPR_KIND_CALL_ARGUMENT:
540 if (isAgg)
541 err = _("aggregate functions are not allowed in CALL arguments");
542 else
543 err = _("grouping operations are not allowed in CALL arguments");
545 break;
547 case EXPR_KIND_COPY_WHERE:
548 if (isAgg)
549 err = _("aggregate functions are not allowed in COPY FROM WHERE conditions");
550 else
551 err = _("grouping operations are not allowed in COPY FROM WHERE conditions");
553 break;
555 case EXPR_KIND_CYCLE_MARK:
556 errkind = true;
557 break;
560 * There is intentionally no default: case here, so that the
561 * compiler will warn if we add a new ParseExprKind without
562 * extending this switch. If we do see an unrecognized value at
563 * runtime, the behavior will be the same as for EXPR_KIND_OTHER,
564 * which is sane anyway.
568 if (err)
569 ereport(ERROR,
570 (errcode(ERRCODE_GROUPING_ERROR),
571 errmsg_internal("%s", err),
572 parser_errposition(pstate, location)));
574 if (errkind)
576 if (isAgg)
577 /* translator: %s is name of a SQL construct, eg GROUP BY */
578 err = _("aggregate functions are not allowed in %s");
579 else
580 /* translator: %s is name of a SQL construct, eg GROUP BY */
581 err = _("grouping operations are not allowed in %s");
583 ereport(ERROR,
584 (errcode(ERRCODE_GROUPING_ERROR),
585 errmsg_internal(err,
586 ParseExprKindName(pstate->p_expr_kind)),
587 parser_errposition(pstate, location)));
592 * check_agg_arguments
593 * Scan the arguments of an aggregate function to determine the
594 * aggregate's semantic level (zero is the current select's level,
595 * one is its parent, etc).
597 * The aggregate's level is the same as the level of the lowest-level variable
598 * or aggregate in its aggregated arguments (including any ORDER BY columns)
599 * or filter expression; or if it contains no variables at all, we presume it
600 * to be local.
602 * Vars/Aggs in direct arguments are *not* counted towards determining the
603 * agg's level, as those arguments aren't evaluated per-row but only
604 * per-group, and so in some sense aren't really agg arguments. However,
605 * this can mean that we decide an agg is upper-level even when its direct
606 * args contain lower-level Vars/Aggs, and that case has to be disallowed.
607 * (This is a little strange, but the SQL standard seems pretty definite that
608 * direct args are not to be considered when setting the agg's level.)
610 * We also take this opportunity to detect any aggregates or window functions
611 * nested within the arguments. We can throw error immediately if we find
612 * a window function. Aggregates are a bit trickier because it's only an
613 * error if the inner aggregate is of the same semantic level as the outer,
614 * which we can't know until we finish scanning the arguments.
616 static int
617 check_agg_arguments(ParseState *pstate,
618 List *directargs,
619 List *args,
620 Expr *filter)
622 int agglevel;
623 check_agg_arguments_context context;
625 context.pstate = pstate;
626 context.min_varlevel = -1; /* signifies nothing found yet */
627 context.min_agglevel = -1;
628 context.sublevels_up = 0;
630 (void) check_agg_arguments_walker((Node *) args, &context);
631 (void) check_agg_arguments_walker((Node *) filter, &context);
634 * If we found no vars nor aggs at all, it's a level-zero aggregate;
635 * otherwise, its level is the minimum of vars or aggs.
637 if (context.min_varlevel < 0)
639 if (context.min_agglevel < 0)
640 agglevel = 0;
641 else
642 agglevel = context.min_agglevel;
644 else if (context.min_agglevel < 0)
645 agglevel = context.min_varlevel;
646 else
647 agglevel = Min(context.min_varlevel, context.min_agglevel);
650 * If there's a nested aggregate of the same semantic level, complain.
652 if (agglevel == context.min_agglevel)
654 int aggloc;
656 aggloc = locate_agg_of_level((Node *) args, agglevel);
657 if (aggloc < 0)
658 aggloc = locate_agg_of_level((Node *) filter, agglevel);
659 ereport(ERROR,
660 (errcode(ERRCODE_GROUPING_ERROR),
661 errmsg("aggregate function calls cannot be nested"),
662 parser_errposition(pstate, aggloc)));
666 * Now check for vars/aggs in the direct arguments, and throw error if
667 * needed. Note that we allow a Var of the agg's semantic level, but not
668 * an Agg of that level. In principle such Aggs could probably be
669 * supported, but it would create an ordering dependency among the
670 * aggregates at execution time. Since the case appears neither to be
671 * required by spec nor particularly useful, we just treat it as a
672 * nested-aggregate situation.
674 if (directargs)
676 context.min_varlevel = -1;
677 context.min_agglevel = -1;
678 (void) check_agg_arguments_walker((Node *) directargs, &context);
679 if (context.min_varlevel >= 0 && context.min_varlevel < agglevel)
680 ereport(ERROR,
681 (errcode(ERRCODE_GROUPING_ERROR),
682 errmsg("outer-level aggregate cannot contain a lower-level variable in its direct arguments"),
683 parser_errposition(pstate,
684 locate_var_of_level((Node *) directargs,
685 context.min_varlevel))));
686 if (context.min_agglevel >= 0 && context.min_agglevel <= agglevel)
687 ereport(ERROR,
688 (errcode(ERRCODE_GROUPING_ERROR),
689 errmsg("aggregate function calls cannot be nested"),
690 parser_errposition(pstate,
691 locate_agg_of_level((Node *) directargs,
692 context.min_agglevel))));
694 return agglevel;
697 static bool
698 check_agg_arguments_walker(Node *node,
699 check_agg_arguments_context *context)
701 if (node == NULL)
702 return false;
703 if (IsA(node, Var))
705 int varlevelsup = ((Var *) node)->varlevelsup;
707 /* convert levelsup to frame of reference of original query */
708 varlevelsup -= context->sublevels_up;
709 /* ignore local vars of subqueries */
710 if (varlevelsup >= 0)
712 if (context->min_varlevel < 0 ||
713 context->min_varlevel > varlevelsup)
714 context->min_varlevel = varlevelsup;
716 return false;
718 if (IsA(node, Aggref))
720 int agglevelsup = ((Aggref *) node)->agglevelsup;
722 /* convert levelsup to frame of reference of original query */
723 agglevelsup -= context->sublevels_up;
724 /* ignore local aggs of subqueries */
725 if (agglevelsup >= 0)
727 if (context->min_agglevel < 0 ||
728 context->min_agglevel > agglevelsup)
729 context->min_agglevel = agglevelsup;
731 /* no need to examine args of the inner aggregate */
732 return false;
734 if (IsA(node, GroupingFunc))
736 int agglevelsup = ((GroupingFunc *) node)->agglevelsup;
738 /* convert levelsup to frame of reference of original query */
739 agglevelsup -= context->sublevels_up;
740 /* ignore local aggs of subqueries */
741 if (agglevelsup >= 0)
743 if (context->min_agglevel < 0 ||
744 context->min_agglevel > agglevelsup)
745 context->min_agglevel = agglevelsup;
747 /* Continue and descend into subtree */
751 * SRFs and window functions can be rejected immediately, unless we are
752 * within a sub-select within the aggregate's arguments; in that case
753 * they're OK.
755 if (context->sublevels_up == 0)
757 if ((IsA(node, FuncExpr) && ((FuncExpr *) node)->funcretset) ||
758 (IsA(node, OpExpr) && ((OpExpr *) node)->opretset))
759 ereport(ERROR,
760 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
761 errmsg("aggregate function calls cannot contain set-returning function calls"),
762 errhint("You might be able to move the set-returning function into a LATERAL FROM item."),
763 parser_errposition(context->pstate, exprLocation(node))));
764 if (IsA(node, WindowFunc))
765 ereport(ERROR,
766 (errcode(ERRCODE_GROUPING_ERROR),
767 errmsg("aggregate function calls cannot contain window function calls"),
768 parser_errposition(context->pstate,
769 ((WindowFunc *) node)->location)));
771 if (IsA(node, Query))
773 /* Recurse into subselects */
774 bool result;
776 context->sublevels_up++;
777 result = query_tree_walker((Query *) node,
778 check_agg_arguments_walker,
779 (void *) context,
781 context->sublevels_up--;
782 return result;
785 return expression_tree_walker(node,
786 check_agg_arguments_walker,
787 (void *) context);
791 * transformWindowFuncCall -
792 * Finish initial transformation of a window function call
794 * parse_func.c has recognized the function as a window function, and has set
795 * up all the fields of the WindowFunc except winref. Here we must (1) add
796 * the WindowDef to the pstate (if not a duplicate of one already present) and
797 * set winref to link to it; and (2) mark p_hasWindowFuncs true in the pstate.
798 * Unlike aggregates, only the most closely nested pstate level need be
799 * considered --- there are no "outer window functions" per SQL spec.
801 void
802 transformWindowFuncCall(ParseState *pstate, WindowFunc *wfunc,
803 WindowDef *windef)
805 const char *err;
806 bool errkind;
809 * A window function call can't contain another one (but aggs are OK). XXX
810 * is this required by spec, or just an unimplemented feature?
812 * Note: we don't need to check the filter expression here, because the
813 * context checks done below and in transformAggregateCall would have
814 * already rejected any window funcs or aggs within the filter.
816 if (pstate->p_hasWindowFuncs &&
817 contain_windowfuncs((Node *) wfunc->args))
818 ereport(ERROR,
819 (errcode(ERRCODE_WINDOWING_ERROR),
820 errmsg("window function calls cannot be nested"),
821 parser_errposition(pstate,
822 locate_windowfunc((Node *) wfunc->args))));
825 * Check to see if the window function is in an invalid place within the
826 * query.
828 * For brevity we support two schemes for reporting an error here: set
829 * "err" to a custom message, or set "errkind" true if the error context
830 * is sufficiently identified by what ParseExprKindName will return, *and*
831 * what it will return is just a SQL keyword. (Otherwise, use a custom
832 * message to avoid creating translation problems.)
834 err = NULL;
835 errkind = false;
836 switch (pstate->p_expr_kind)
838 case EXPR_KIND_NONE:
839 Assert(false); /* can't happen */
840 break;
841 case EXPR_KIND_OTHER:
842 /* Accept window func here; caller must throw error if wanted */
843 break;
844 case EXPR_KIND_JOIN_ON:
845 case EXPR_KIND_JOIN_USING:
846 err = _("window functions are not allowed in JOIN conditions");
847 break;
848 case EXPR_KIND_FROM_SUBSELECT:
849 /* can't get here, but just in case, throw an error */
850 errkind = true;
851 break;
852 case EXPR_KIND_FROM_FUNCTION:
853 err = _("window functions are not allowed in functions in FROM");
854 break;
855 case EXPR_KIND_WHERE:
856 errkind = true;
857 break;
858 case EXPR_KIND_POLICY:
859 err = _("window functions are not allowed in policy expressions");
860 break;
861 case EXPR_KIND_HAVING:
862 errkind = true;
863 break;
864 case EXPR_KIND_FILTER:
865 errkind = true;
866 break;
867 case EXPR_KIND_WINDOW_PARTITION:
868 case EXPR_KIND_WINDOW_ORDER:
869 case EXPR_KIND_WINDOW_FRAME_RANGE:
870 case EXPR_KIND_WINDOW_FRAME_ROWS:
871 case EXPR_KIND_WINDOW_FRAME_GROUPS:
872 err = _("window functions are not allowed in window definitions");
873 break;
874 case EXPR_KIND_SELECT_TARGET:
875 /* okay */
876 break;
877 case EXPR_KIND_INSERT_TARGET:
878 case EXPR_KIND_UPDATE_SOURCE:
879 case EXPR_KIND_UPDATE_TARGET:
880 errkind = true;
881 break;
882 case EXPR_KIND_GROUP_BY:
883 errkind = true;
884 break;
885 case EXPR_KIND_ORDER_BY:
886 /* okay */
887 break;
888 case EXPR_KIND_DISTINCT_ON:
889 /* okay */
890 break;
891 case EXPR_KIND_LIMIT:
892 case EXPR_KIND_OFFSET:
893 errkind = true;
894 break;
895 case EXPR_KIND_RETURNING:
896 errkind = true;
897 break;
898 case EXPR_KIND_VALUES:
899 case EXPR_KIND_VALUES_SINGLE:
900 errkind = true;
901 break;
902 case EXPR_KIND_CHECK_CONSTRAINT:
903 case EXPR_KIND_DOMAIN_CHECK:
904 err = _("window functions are not allowed in check constraints");
905 break;
906 case EXPR_KIND_COLUMN_DEFAULT:
907 case EXPR_KIND_FUNCTION_DEFAULT:
908 err = _("window functions are not allowed in DEFAULT expressions");
909 break;
910 case EXPR_KIND_INDEX_EXPRESSION:
911 err = _("window functions are not allowed in index expressions");
912 break;
913 case EXPR_KIND_STATS_EXPRESSION:
914 err = _("window functions are not allowed in statistics expressions");
915 break;
916 case EXPR_KIND_INDEX_PREDICATE:
917 err = _("window functions are not allowed in index predicates");
918 break;
919 case EXPR_KIND_ALTER_COL_TRANSFORM:
920 err = _("window functions are not allowed in transform expressions");
921 break;
922 case EXPR_KIND_EXECUTE_PARAMETER:
923 err = _("window functions are not allowed in EXECUTE parameters");
924 break;
925 case EXPR_KIND_TRIGGER_WHEN:
926 err = _("window functions are not allowed in trigger WHEN conditions");
927 break;
928 case EXPR_KIND_PARTITION_BOUND:
929 err = _("window functions are not allowed in partition bound");
930 break;
931 case EXPR_KIND_PARTITION_EXPRESSION:
932 err = _("window functions are not allowed in partition key expressions");
933 break;
934 case EXPR_KIND_CALL_ARGUMENT:
935 err = _("window functions are not allowed in CALL arguments");
936 break;
937 case EXPR_KIND_COPY_WHERE:
938 err = _("window functions are not allowed in COPY FROM WHERE conditions");
939 break;
940 case EXPR_KIND_GENERATED_COLUMN:
941 err = _("window functions are not allowed in column generation expressions");
942 break;
943 case EXPR_KIND_CYCLE_MARK:
944 errkind = true;
945 break;
948 * There is intentionally no default: case here, so that the
949 * compiler will warn if we add a new ParseExprKind without
950 * extending this switch. If we do see an unrecognized value at
951 * runtime, the behavior will be the same as for EXPR_KIND_OTHER,
952 * which is sane anyway.
955 if (err)
956 ereport(ERROR,
957 (errcode(ERRCODE_WINDOWING_ERROR),
958 errmsg_internal("%s", err),
959 parser_errposition(pstate, wfunc->location)));
960 if (errkind)
961 ereport(ERROR,
962 (errcode(ERRCODE_WINDOWING_ERROR),
963 /* translator: %s is name of a SQL construct, eg GROUP BY */
964 errmsg("window functions are not allowed in %s",
965 ParseExprKindName(pstate->p_expr_kind)),
966 parser_errposition(pstate, wfunc->location)));
969 * If the OVER clause just specifies a window name, find that WINDOW
970 * clause (which had better be present). Otherwise, try to match all the
971 * properties of the OVER clause, and make a new entry in the p_windowdefs
972 * list if no luck.
974 if (windef->name)
976 Index winref = 0;
977 ListCell *lc;
979 Assert(windef->refname == NULL &&
980 windef->partitionClause == NIL &&
981 windef->orderClause == NIL &&
982 windef->frameOptions == FRAMEOPTION_DEFAULTS);
984 foreach(lc, pstate->p_windowdefs)
986 WindowDef *refwin = (WindowDef *) lfirst(lc);
988 winref++;
989 if (refwin->name && strcmp(refwin->name, windef->name) == 0)
991 wfunc->winref = winref;
992 break;
995 if (lc == NULL) /* didn't find it? */
996 ereport(ERROR,
997 (errcode(ERRCODE_UNDEFINED_OBJECT),
998 errmsg("window \"%s\" does not exist", windef->name),
999 parser_errposition(pstate, windef->location)));
1001 else
1003 Index winref = 0;
1004 ListCell *lc;
1006 foreach(lc, pstate->p_windowdefs)
1008 WindowDef *refwin = (WindowDef *) lfirst(lc);
1010 winref++;
1011 if (refwin->refname && windef->refname &&
1012 strcmp(refwin->refname, windef->refname) == 0)
1013 /* matched on refname */ ;
1014 else if (!refwin->refname && !windef->refname)
1015 /* matched, no refname */ ;
1016 else
1017 continue;
1018 if (equal(refwin->partitionClause, windef->partitionClause) &&
1019 equal(refwin->orderClause, windef->orderClause) &&
1020 refwin->frameOptions == windef->frameOptions &&
1021 equal(refwin->startOffset, windef->startOffset) &&
1022 equal(refwin->endOffset, windef->endOffset))
1024 /* found a duplicate window specification */
1025 wfunc->winref = winref;
1026 break;
1029 if (lc == NULL) /* didn't find it? */
1031 pstate->p_windowdefs = lappend(pstate->p_windowdefs, windef);
1032 wfunc->winref = list_length(pstate->p_windowdefs);
1036 pstate->p_hasWindowFuncs = true;
1040 * parseCheckAggregates
1041 * Check for aggregates where they shouldn't be and improper grouping.
1042 * This function should be called after the target list and qualifications
1043 * are finalized.
1045 * Misplaced aggregates are now mostly detected in transformAggregateCall,
1046 * but it seems more robust to check for aggregates in recursive queries
1047 * only after everything is finalized. In any case it's hard to detect
1048 * improper grouping on-the-fly, so we have to make another pass over the
1049 * query for that.
1051 void
1052 parseCheckAggregates(ParseState *pstate, Query *qry)
1054 List *gset_common = NIL;
1055 List *groupClauses = NIL;
1056 List *groupClauseCommonVars = NIL;
1057 bool have_non_var_grouping;
1058 List *func_grouped_rels = NIL;
1059 ListCell *l;
1060 bool hasJoinRTEs;
1061 bool hasSelfRefRTEs;
1062 Node *clause;
1064 /* This should only be called if we found aggregates or grouping */
1065 Assert(pstate->p_hasAggs || qry->groupClause || qry->havingQual || qry->groupingSets);
1068 * If we have grouping sets, expand them and find the intersection of all
1069 * sets.
1071 if (qry->groupingSets)
1074 * The limit of 4096 is arbitrary and exists simply to avoid resource
1075 * issues from pathological constructs.
1077 List *gsets = expand_grouping_sets(qry->groupingSets, qry->groupDistinct, 4096);
1079 if (!gsets)
1080 ereport(ERROR,
1081 (errcode(ERRCODE_STATEMENT_TOO_COMPLEX),
1082 errmsg("too many grouping sets present (maximum 4096)"),
1083 parser_errposition(pstate,
1084 qry->groupClause
1085 ? exprLocation((Node *) qry->groupClause)
1086 : exprLocation((Node *) qry->groupingSets))));
1089 * The intersection will often be empty, so help things along by
1090 * seeding the intersect with the smallest set.
1092 gset_common = linitial(gsets);
1094 if (gset_common)
1096 for_each_from(l, gsets, 1)
1098 gset_common = list_intersection_int(gset_common, lfirst(l));
1099 if (!gset_common)
1100 break;
1105 * If there was only one grouping set in the expansion, AND if the
1106 * groupClause is non-empty (meaning that the grouping set is not
1107 * empty either), then we can ditch the grouping set and pretend we
1108 * just had a normal GROUP BY.
1110 if (list_length(gsets) == 1 && qry->groupClause)
1111 qry->groupingSets = NIL;
1115 * Scan the range table to see if there are JOIN or self-reference CTE
1116 * entries. We'll need this info below.
1118 hasJoinRTEs = hasSelfRefRTEs = false;
1119 foreach(l, pstate->p_rtable)
1121 RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
1123 if (rte->rtekind == RTE_JOIN)
1124 hasJoinRTEs = true;
1125 else if (rte->rtekind == RTE_CTE && rte->self_reference)
1126 hasSelfRefRTEs = true;
1130 * Build a list of the acceptable GROUP BY expressions for use by
1131 * check_ungrouped_columns().
1133 * We get the TLE, not just the expr, because GROUPING wants to know the
1134 * sortgroupref.
1136 foreach(l, qry->groupClause)
1138 SortGroupClause *grpcl = (SortGroupClause *) lfirst(l);
1139 TargetEntry *expr;
1141 expr = get_sortgroupclause_tle(grpcl, qry->targetList);
1142 if (expr == NULL)
1143 continue; /* probably cannot happen */
1145 groupClauses = lappend(groupClauses, expr);
1149 * If there are join alias vars involved, we have to flatten them to the
1150 * underlying vars, so that aliased and unaliased vars will be correctly
1151 * taken as equal. We can skip the expense of doing this if no rangetable
1152 * entries are RTE_JOIN kind.
1154 if (hasJoinRTEs)
1155 groupClauses = (List *) flatten_join_alias_vars(qry,
1156 (Node *) groupClauses);
1159 * Detect whether any of the grouping expressions aren't simple Vars; if
1160 * they're all Vars then we don't have to work so hard in the recursive
1161 * scans. (Note we have to flatten aliases before this.)
1163 * Track Vars that are included in all grouping sets separately in
1164 * groupClauseCommonVars, since these are the only ones we can use to
1165 * check for functional dependencies.
1167 have_non_var_grouping = false;
1168 foreach(l, groupClauses)
1170 TargetEntry *tle = lfirst(l);
1172 if (!IsA(tle->expr, Var))
1174 have_non_var_grouping = true;
1176 else if (!qry->groupingSets ||
1177 list_member_int(gset_common, tle->ressortgroupref))
1179 groupClauseCommonVars = lappend(groupClauseCommonVars, tle->expr);
1184 * Check the targetlist and HAVING clause for ungrouped variables.
1186 * Note: because we check resjunk tlist elements as well as regular ones,
1187 * this will also find ungrouped variables that came from ORDER BY and
1188 * WINDOW clauses. For that matter, it's also going to examine the
1189 * grouping expressions themselves --- but they'll all pass the test ...
1191 * We also finalize GROUPING expressions, but for that we need to traverse
1192 * the original (unflattened) clause in order to modify nodes.
1194 clause = (Node *) qry->targetList;
1195 finalize_grouping_exprs(clause, pstate, qry,
1196 groupClauses, hasJoinRTEs,
1197 have_non_var_grouping);
1198 if (hasJoinRTEs)
1199 clause = flatten_join_alias_vars(qry, clause);
1200 check_ungrouped_columns(clause, pstate, qry,
1201 groupClauses, groupClauseCommonVars,
1202 have_non_var_grouping,
1203 &func_grouped_rels);
1205 clause = (Node *) qry->havingQual;
1206 finalize_grouping_exprs(clause, pstate, qry,
1207 groupClauses, hasJoinRTEs,
1208 have_non_var_grouping);
1209 if (hasJoinRTEs)
1210 clause = flatten_join_alias_vars(qry, clause);
1211 check_ungrouped_columns(clause, pstate, qry,
1212 groupClauses, groupClauseCommonVars,
1213 have_non_var_grouping,
1214 &func_grouped_rels);
1217 * Per spec, aggregates can't appear in a recursive term.
1219 if (pstate->p_hasAggs && hasSelfRefRTEs)
1220 ereport(ERROR,
1221 (errcode(ERRCODE_INVALID_RECURSION),
1222 errmsg("aggregate functions are not allowed in a recursive query's recursive term"),
1223 parser_errposition(pstate,
1224 locate_agg_of_level((Node *) qry, 0))));
1228 * check_ungrouped_columns -
1229 * Scan the given expression tree for ungrouped variables (variables
1230 * that are not listed in the groupClauses list and are not within
1231 * the arguments of aggregate functions). Emit a suitable error message
1232 * if any are found.
1234 * NOTE: we assume that the given clause has been transformed suitably for
1235 * parser output. This means we can use expression_tree_walker.
1237 * NOTE: we recognize grouping expressions in the main query, but only
1238 * grouping Vars in subqueries. For example, this will be rejected,
1239 * although it could be allowed:
1240 * SELECT
1241 * (SELECT x FROM bar where y = (foo.a + foo.b))
1242 * FROM foo
1243 * GROUP BY a + b;
1244 * The difficulty is the need to account for different sublevels_up.
1245 * This appears to require a whole custom version of equal(), which is
1246 * way more pain than the feature seems worth.
1248 static void
1249 check_ungrouped_columns(Node *node, ParseState *pstate, Query *qry,
1250 List *groupClauses, List *groupClauseCommonVars,
1251 bool have_non_var_grouping,
1252 List **func_grouped_rels)
1254 check_ungrouped_columns_context context;
1256 context.pstate = pstate;
1257 context.qry = qry;
1258 context.hasJoinRTEs = false; /* assume caller flattened join Vars */
1259 context.groupClauses = groupClauses;
1260 context.groupClauseCommonVars = groupClauseCommonVars;
1261 context.have_non_var_grouping = have_non_var_grouping;
1262 context.func_grouped_rels = func_grouped_rels;
1263 context.sublevels_up = 0;
1264 context.in_agg_direct_args = false;
1265 check_ungrouped_columns_walker(node, &context);
1268 static bool
1269 check_ungrouped_columns_walker(Node *node,
1270 check_ungrouped_columns_context *context)
1272 ListCell *gl;
1274 if (node == NULL)
1275 return false;
1276 if (IsA(node, Const) ||
1277 IsA(node, Param))
1278 return false; /* constants are always acceptable */
1280 if (IsA(node, Aggref))
1282 Aggref *agg = (Aggref *) node;
1284 if ((int) agg->agglevelsup == context->sublevels_up)
1287 * If we find an aggregate call of the original level, do not
1288 * recurse into its normal arguments, ORDER BY arguments, or
1289 * filter; ungrouped vars there are not an error. But we should
1290 * check direct arguments as though they weren't in an aggregate.
1291 * We set a special flag in the context to help produce a useful
1292 * error message for ungrouped vars in direct arguments.
1294 bool result;
1296 Assert(!context->in_agg_direct_args);
1297 context->in_agg_direct_args = true;
1298 result = check_ungrouped_columns_walker((Node *) agg->aggdirectargs,
1299 context);
1300 context->in_agg_direct_args = false;
1301 return result;
1305 * We can skip recursing into aggregates of higher levels altogether,
1306 * since they could not possibly contain Vars of concern to us (see
1307 * transformAggregateCall). We do need to look at aggregates of lower
1308 * levels, however.
1310 if ((int) agg->agglevelsup > context->sublevels_up)
1311 return false;
1314 if (IsA(node, GroupingFunc))
1316 GroupingFunc *grp = (GroupingFunc *) node;
1318 /* handled GroupingFunc separately, no need to recheck at this level */
1320 if ((int) grp->agglevelsup >= context->sublevels_up)
1321 return false;
1325 * If we have any GROUP BY items that are not simple Vars, check to see if
1326 * subexpression as a whole matches any GROUP BY item. We need to do this
1327 * at every recursion level so that we recognize GROUPed-BY expressions
1328 * before reaching variables within them. But this only works at the outer
1329 * query level, as noted above.
1331 if (context->have_non_var_grouping && context->sublevels_up == 0)
1333 foreach(gl, context->groupClauses)
1335 TargetEntry *tle = lfirst(gl);
1337 if (equal(node, tle->expr))
1338 return false; /* acceptable, do not descend more */
1343 * If we have an ungrouped Var of the original query level, we have a
1344 * failure. Vars below the original query level are not a problem, and
1345 * neither are Vars from above it. (If such Vars are ungrouped as far as
1346 * their own query level is concerned, that's someone else's problem...)
1348 if (IsA(node, Var))
1350 Var *var = (Var *) node;
1351 RangeTblEntry *rte;
1352 char *attname;
1354 if (var->varlevelsup != context->sublevels_up)
1355 return false; /* it's not local to my query, ignore */
1358 * Check for a match, if we didn't do it above.
1360 if (!context->have_non_var_grouping || context->sublevels_up != 0)
1362 foreach(gl, context->groupClauses)
1364 Var *gvar = (Var *) ((TargetEntry *) lfirst(gl))->expr;
1366 if (IsA(gvar, Var) &&
1367 gvar->varno == var->varno &&
1368 gvar->varattno == var->varattno &&
1369 gvar->varlevelsup == 0)
1370 return false; /* acceptable, we're okay */
1375 * Check whether the Var is known functionally dependent on the GROUP
1376 * BY columns. If so, we can allow the Var to be used, because the
1377 * grouping is really a no-op for this table. However, this deduction
1378 * depends on one or more constraints of the table, so we have to add
1379 * those constraints to the query's constraintDeps list, because it's
1380 * not semantically valid anymore if the constraint(s) get dropped.
1381 * (Therefore, this check must be the last-ditch effort before raising
1382 * error: we don't want to add dependencies unnecessarily.)
1384 * Because this is a pretty expensive check, and will have the same
1385 * outcome for all columns of a table, we remember which RTEs we've
1386 * already proven functional dependency for in the func_grouped_rels
1387 * list. This test also prevents us from adding duplicate entries to
1388 * the constraintDeps list.
1390 if (list_member_int(*context->func_grouped_rels, var->varno))
1391 return false; /* previously proven acceptable */
1393 Assert(var->varno > 0 &&
1394 (int) var->varno <= list_length(context->pstate->p_rtable));
1395 rte = rt_fetch(var->varno, context->pstate->p_rtable);
1396 if (rte->rtekind == RTE_RELATION)
1398 if (check_functional_grouping(rte->relid,
1399 var->varno,
1401 context->groupClauseCommonVars,
1402 &context->qry->constraintDeps))
1404 *context->func_grouped_rels =
1405 lappend_int(*context->func_grouped_rels, var->varno);
1406 return false; /* acceptable */
1410 /* Found an ungrouped local variable; generate error message */
1411 attname = get_rte_attribute_name(rte, var->varattno);
1412 if (context->sublevels_up == 0)
1413 ereport(ERROR,
1414 (errcode(ERRCODE_GROUPING_ERROR),
1415 errmsg("column \"%s.%s\" must appear in the GROUP BY clause or be used in an aggregate function",
1416 rte->eref->aliasname, attname),
1417 context->in_agg_direct_args ?
1418 errdetail("Direct arguments of an ordered-set aggregate must use only grouped columns.") : 0,
1419 parser_errposition(context->pstate, var->location)));
1420 else
1421 ereport(ERROR,
1422 (errcode(ERRCODE_GROUPING_ERROR),
1423 errmsg("subquery uses ungrouped column \"%s.%s\" from outer query",
1424 rte->eref->aliasname, attname),
1425 parser_errposition(context->pstate, var->location)));
1428 if (IsA(node, Query))
1430 /* Recurse into subselects */
1431 bool result;
1433 context->sublevels_up++;
1434 result = query_tree_walker((Query *) node,
1435 check_ungrouped_columns_walker,
1436 (void *) context,
1438 context->sublevels_up--;
1439 return result;
1441 return expression_tree_walker(node, check_ungrouped_columns_walker,
1442 (void *) context);
1446 * finalize_grouping_exprs -
1447 * Scan the given expression tree for GROUPING() and related calls,
1448 * and validate and process their arguments.
1450 * This is split out from check_ungrouped_columns above because it needs
1451 * to modify the nodes (which it does in-place, not via a mutator) while
1452 * check_ungrouped_columns may see only a copy of the original thanks to
1453 * flattening of join alias vars. So here, we flatten each individual
1454 * GROUPING argument as we see it before comparing it.
1456 static void
1457 finalize_grouping_exprs(Node *node, ParseState *pstate, Query *qry,
1458 List *groupClauses, bool hasJoinRTEs,
1459 bool have_non_var_grouping)
1461 check_ungrouped_columns_context context;
1463 context.pstate = pstate;
1464 context.qry = qry;
1465 context.hasJoinRTEs = hasJoinRTEs;
1466 context.groupClauses = groupClauses;
1467 context.groupClauseCommonVars = NIL;
1468 context.have_non_var_grouping = have_non_var_grouping;
1469 context.func_grouped_rels = NULL;
1470 context.sublevels_up = 0;
1471 context.in_agg_direct_args = false;
1472 finalize_grouping_exprs_walker(node, &context);
1475 static bool
1476 finalize_grouping_exprs_walker(Node *node,
1477 check_ungrouped_columns_context *context)
1479 ListCell *gl;
1481 if (node == NULL)
1482 return false;
1483 if (IsA(node, Const) ||
1484 IsA(node, Param))
1485 return false; /* constants are always acceptable */
1487 if (IsA(node, Aggref))
1489 Aggref *agg = (Aggref *) node;
1491 if ((int) agg->agglevelsup == context->sublevels_up)
1494 * If we find an aggregate call of the original level, do not
1495 * recurse into its normal arguments, ORDER BY arguments, or
1496 * filter; GROUPING exprs of this level are not allowed there. But
1497 * check direct arguments as though they weren't in an aggregate.
1499 bool result;
1501 Assert(!context->in_agg_direct_args);
1502 context->in_agg_direct_args = true;
1503 result = finalize_grouping_exprs_walker((Node *) agg->aggdirectargs,
1504 context);
1505 context->in_agg_direct_args = false;
1506 return result;
1510 * We can skip recursing into aggregates of higher levels altogether,
1511 * since they could not possibly contain exprs of concern to us (see
1512 * transformAggregateCall). We do need to look at aggregates of lower
1513 * levels, however.
1515 if ((int) agg->agglevelsup > context->sublevels_up)
1516 return false;
1519 if (IsA(node, GroupingFunc))
1521 GroupingFunc *grp = (GroupingFunc *) node;
1524 * We only need to check GroupingFunc nodes at the exact level to
1525 * which they belong, since they cannot mix levels in arguments.
1528 if ((int) grp->agglevelsup == context->sublevels_up)
1530 ListCell *lc;
1531 List *ref_list = NIL;
1533 foreach(lc, grp->args)
1535 Node *expr = lfirst(lc);
1536 Index ref = 0;
1538 if (context->hasJoinRTEs)
1539 expr = flatten_join_alias_vars(context->qry, expr);
1542 * Each expression must match a grouping entry at the current
1543 * query level. Unlike the general expression case, we don't
1544 * allow functional dependencies or outer references.
1547 if (IsA(expr, Var))
1549 Var *var = (Var *) expr;
1551 if (var->varlevelsup == context->sublevels_up)
1553 foreach(gl, context->groupClauses)
1555 TargetEntry *tle = lfirst(gl);
1556 Var *gvar = (Var *) tle->expr;
1558 if (IsA(gvar, Var) &&
1559 gvar->varno == var->varno &&
1560 gvar->varattno == var->varattno &&
1561 gvar->varlevelsup == 0)
1563 ref = tle->ressortgroupref;
1564 break;
1569 else if (context->have_non_var_grouping &&
1570 context->sublevels_up == 0)
1572 foreach(gl, context->groupClauses)
1574 TargetEntry *tle = lfirst(gl);
1576 if (equal(expr, tle->expr))
1578 ref = tle->ressortgroupref;
1579 break;
1584 if (ref == 0)
1585 ereport(ERROR,
1586 (errcode(ERRCODE_GROUPING_ERROR),
1587 errmsg("arguments to GROUPING must be grouping expressions of the associated query level"),
1588 parser_errposition(context->pstate,
1589 exprLocation(expr))));
1591 ref_list = lappend_int(ref_list, ref);
1594 grp->refs = ref_list;
1597 if ((int) grp->agglevelsup > context->sublevels_up)
1598 return false;
1601 if (IsA(node, Query))
1603 /* Recurse into subselects */
1604 bool result;
1606 context->sublevels_up++;
1607 result = query_tree_walker((Query *) node,
1608 finalize_grouping_exprs_walker,
1609 (void *) context,
1611 context->sublevels_up--;
1612 return result;
1614 return expression_tree_walker(node, finalize_grouping_exprs_walker,
1615 (void *) context);
1620 * Given a GroupingSet node, expand it and return a list of lists.
1622 * For EMPTY nodes, return a list of one empty list.
1624 * For SIMPLE nodes, return a list of one list, which is the node content.
1626 * For CUBE and ROLLUP nodes, return a list of the expansions.
1628 * For SET nodes, recursively expand contained CUBE and ROLLUP.
1630 static List *
1631 expand_groupingset_node(GroupingSet *gs)
1633 List *result = NIL;
1635 switch (gs->kind)
1637 case GROUPING_SET_EMPTY:
1638 result = list_make1(NIL);
1639 break;
1641 case GROUPING_SET_SIMPLE:
1642 result = list_make1(gs->content);
1643 break;
1645 case GROUPING_SET_ROLLUP:
1647 List *rollup_val = gs->content;
1648 ListCell *lc;
1649 int curgroup_size = list_length(gs->content);
1651 while (curgroup_size > 0)
1653 List *current_result = NIL;
1654 int i = curgroup_size;
1656 foreach(lc, rollup_val)
1658 GroupingSet *gs_current = (GroupingSet *) lfirst(lc);
1660 Assert(gs_current->kind == GROUPING_SET_SIMPLE);
1662 current_result = list_concat(current_result,
1663 gs_current->content);
1665 /* If we are done with making the current group, break */
1666 if (--i == 0)
1667 break;
1670 result = lappend(result, current_result);
1671 --curgroup_size;
1674 result = lappend(result, NIL);
1676 break;
1678 case GROUPING_SET_CUBE:
1680 List *cube_list = gs->content;
1681 int number_bits = list_length(cube_list);
1682 uint32 num_sets;
1683 uint32 i;
1685 /* parser should cap this much lower */
1686 Assert(number_bits < 31);
1688 num_sets = (1U << number_bits);
1690 for (i = 0; i < num_sets; i++)
1692 List *current_result = NIL;
1693 ListCell *lc;
1694 uint32 mask = 1U;
1696 foreach(lc, cube_list)
1698 GroupingSet *gs_current = (GroupingSet *) lfirst(lc);
1700 Assert(gs_current->kind == GROUPING_SET_SIMPLE);
1702 if (mask & i)
1703 current_result = list_concat(current_result,
1704 gs_current->content);
1706 mask <<= 1;
1709 result = lappend(result, current_result);
1712 break;
1714 case GROUPING_SET_SETS:
1716 ListCell *lc;
1718 foreach(lc, gs->content)
1720 List *current_result = expand_groupingset_node(lfirst(lc));
1722 result = list_concat(result, current_result);
1725 break;
1728 return result;
1731 /* list_sort comparator to sort sub-lists by length */
1732 static int
1733 cmp_list_len_asc(const ListCell *a, const ListCell *b)
1735 int la = list_length((const List *) lfirst(a));
1736 int lb = list_length((const List *) lfirst(b));
1738 return (la > lb) ? 1 : (la == lb) ? 0 : -1;
1741 /* list_sort comparator to sort sub-lists by length and contents */
1742 static int
1743 cmp_list_len_contents_asc(const ListCell *a, const ListCell *b)
1745 int res = cmp_list_len_asc(a, b);
1747 if (res == 0)
1749 List *la = (List *) lfirst(a);
1750 List *lb = (List *) lfirst(b);
1751 ListCell *lca;
1752 ListCell *lcb;
1754 forboth(lca, la, lcb, lb)
1756 int va = lfirst_int(lca);
1757 int vb = lfirst_int(lcb);
1759 if (va > vb)
1760 return 1;
1761 if (va < vb)
1762 return -1;
1766 return res;
1770 * Expand a groupingSets clause to a flat list of grouping sets.
1771 * The returned list is sorted by length, shortest sets first.
1773 * This is mainly for the planner, but we use it here too to do
1774 * some consistency checks.
1776 List *
1777 expand_grouping_sets(List *groupingSets, bool groupDistinct, int limit)
1779 List *expanded_groups = NIL;
1780 List *result = NIL;
1781 double numsets = 1;
1782 ListCell *lc;
1784 if (groupingSets == NIL)
1785 return NIL;
1787 foreach(lc, groupingSets)
1789 List *current_result = NIL;
1790 GroupingSet *gs = lfirst(lc);
1792 current_result = expand_groupingset_node(gs);
1794 Assert(current_result != NIL);
1796 numsets *= list_length(current_result);
1798 if (limit >= 0 && numsets > limit)
1799 return NIL;
1801 expanded_groups = lappend(expanded_groups, current_result);
1805 * Do cartesian product between sublists of expanded_groups. While at it,
1806 * remove any duplicate elements from individual grouping sets (we must
1807 * NOT change the number of sets though)
1810 foreach(lc, (List *) linitial(expanded_groups))
1812 result = lappend(result, list_union_int(NIL, (List *) lfirst(lc)));
1815 for_each_from(lc, expanded_groups, 1)
1817 List *p = lfirst(lc);
1818 List *new_result = NIL;
1819 ListCell *lc2;
1821 foreach(lc2, result)
1823 List *q = lfirst(lc2);
1824 ListCell *lc3;
1826 foreach(lc3, p)
1828 new_result = lappend(new_result,
1829 list_union_int(q, (List *) lfirst(lc3)));
1832 result = new_result;
1835 /* Now sort the lists by length and deduplicate if necessary */
1836 if (!groupDistinct || list_length(result) < 2)
1837 list_sort(result, cmp_list_len_asc);
1838 else
1840 ListCell *cell;
1841 List *prev;
1843 /* Sort each groupset individually */
1844 foreach(cell, result)
1845 list_sort(lfirst(cell), list_int_cmp);
1847 /* Now sort the list of groupsets by length and contents */
1848 list_sort(result, cmp_list_len_contents_asc);
1850 /* Finally, remove duplicates */
1851 prev = linitial(result);
1852 for_each_from(cell, result, 1)
1854 if (equal(lfirst(cell), prev))
1855 result = foreach_delete_current(result, cell);
1856 else
1857 prev = lfirst(cell);
1861 return result;
1865 * get_aggregate_argtypes
1866 * Identify the specific datatypes passed to an aggregate call.
1868 * Given an Aggref, extract the actual datatypes of the input arguments.
1869 * The input datatypes are reported in a way that matches up with the
1870 * aggregate's declaration, ie, any ORDER BY columns attached to a plain
1871 * aggregate are ignored, but we report both direct and aggregated args of
1872 * an ordered-set aggregate.
1874 * Datatypes are returned into inputTypes[], which must reference an array
1875 * of length FUNC_MAX_ARGS.
1877 * The function result is the number of actual arguments.
1880 get_aggregate_argtypes(Aggref *aggref, Oid *inputTypes)
1882 int numArguments = 0;
1883 ListCell *lc;
1885 Assert(list_length(aggref->aggargtypes) <= FUNC_MAX_ARGS);
1887 foreach(lc, aggref->aggargtypes)
1889 inputTypes[numArguments++] = lfirst_oid(lc);
1892 return numArguments;
1896 * resolve_aggregate_transtype
1897 * Identify the transition state value's datatype for an aggregate call.
1899 * This function resolves a polymorphic aggregate's state datatype.
1900 * It must be passed the aggtranstype from the aggregate's catalog entry,
1901 * as well as the actual argument types extracted by get_aggregate_argtypes.
1902 * (We could fetch pg_aggregate.aggtranstype internally, but all existing
1903 * callers already have the value at hand, so we make them pass it.)
1906 resolve_aggregate_transtype(Oid aggfuncid,
1907 Oid aggtranstype,
1908 Oid *inputTypes,
1909 int numArguments)
1911 /* resolve actual type of transition state, if polymorphic */
1912 if (IsPolymorphicType(aggtranstype))
1914 /* have to fetch the agg's declared input types... */
1915 Oid *declaredArgTypes;
1916 int agg_nargs;
1918 (void) get_func_signature(aggfuncid, &declaredArgTypes, &agg_nargs);
1921 * VARIADIC ANY aggs could have more actual than declared args, but
1922 * such extra args can't affect polymorphic type resolution.
1924 Assert(agg_nargs <= numArguments);
1926 aggtranstype = enforce_generic_type_consistency(inputTypes,
1927 declaredArgTypes,
1928 agg_nargs,
1929 aggtranstype,
1930 false);
1931 pfree(declaredArgTypes);
1933 return aggtranstype;
1937 * Create an expression tree for the transition function of an aggregate.
1938 * This is needed so that polymorphic functions can be used within an
1939 * aggregate --- without the expression tree, such functions would not know
1940 * the datatypes they are supposed to use. (The trees will never actually
1941 * be executed, however, so we can skimp a bit on correctness.)
1943 * agg_input_types and agg_state_type identifies the input types of the
1944 * aggregate. These should be resolved to actual types (ie, none should
1945 * ever be ANYELEMENT etc).
1946 * agg_input_collation is the aggregate function's input collation.
1948 * For an ordered-set aggregate, remember that agg_input_types describes
1949 * the direct arguments followed by the aggregated arguments.
1951 * transfn_oid and invtransfn_oid identify the funcs to be called; the
1952 * latter may be InvalidOid, however if invtransfn_oid is set then
1953 * transfn_oid must also be set.
1955 * transfn_oid may also be passed as the aggcombinefn when the *transfnexpr is
1956 * to be used for a combine aggregate phase. We expect invtransfn_oid to be
1957 * InvalidOid in this case since there is no such thing as an inverse
1958 * combinefn.
1960 * Pointers to the constructed trees are returned into *transfnexpr,
1961 * *invtransfnexpr. If there is no invtransfn, the respective pointer is set
1962 * to NULL. Since use of the invtransfn is optional, NULL may be passed for
1963 * invtransfnexpr.
1965 void
1966 build_aggregate_transfn_expr(Oid *agg_input_types,
1967 int agg_num_inputs,
1968 int agg_num_direct_inputs,
1969 bool agg_variadic,
1970 Oid agg_state_type,
1971 Oid agg_input_collation,
1972 Oid transfn_oid,
1973 Oid invtransfn_oid,
1974 Expr **transfnexpr,
1975 Expr **invtransfnexpr)
1977 List *args;
1978 FuncExpr *fexpr;
1979 int i;
1982 * Build arg list to use in the transfn FuncExpr node.
1984 args = list_make1(make_agg_arg(agg_state_type, agg_input_collation));
1986 for (i = agg_num_direct_inputs; i < agg_num_inputs; i++)
1988 args = lappend(args,
1989 make_agg_arg(agg_input_types[i], agg_input_collation));
1992 fexpr = makeFuncExpr(transfn_oid,
1993 agg_state_type,
1994 args,
1995 InvalidOid,
1996 agg_input_collation,
1997 COERCE_EXPLICIT_CALL);
1998 fexpr->funcvariadic = agg_variadic;
1999 *transfnexpr = (Expr *) fexpr;
2002 * Build invtransfn expression if requested, with same args as transfn
2004 if (invtransfnexpr != NULL)
2006 if (OidIsValid(invtransfn_oid))
2008 fexpr = makeFuncExpr(invtransfn_oid,
2009 agg_state_type,
2010 args,
2011 InvalidOid,
2012 agg_input_collation,
2013 COERCE_EXPLICIT_CALL);
2014 fexpr->funcvariadic = agg_variadic;
2015 *invtransfnexpr = (Expr *) fexpr;
2017 else
2018 *invtransfnexpr = NULL;
2023 * Like build_aggregate_transfn_expr, but creates an expression tree for the
2024 * serialization function of an aggregate.
2026 void
2027 build_aggregate_serialfn_expr(Oid serialfn_oid,
2028 Expr **serialfnexpr)
2030 List *args;
2031 FuncExpr *fexpr;
2033 /* serialfn always takes INTERNAL and returns BYTEA */
2034 args = list_make1(make_agg_arg(INTERNALOID, InvalidOid));
2036 fexpr = makeFuncExpr(serialfn_oid,
2037 BYTEAOID,
2038 args,
2039 InvalidOid,
2040 InvalidOid,
2041 COERCE_EXPLICIT_CALL);
2042 *serialfnexpr = (Expr *) fexpr;
2046 * Like build_aggregate_transfn_expr, but creates an expression tree for the
2047 * deserialization function of an aggregate.
2049 void
2050 build_aggregate_deserialfn_expr(Oid deserialfn_oid,
2051 Expr **deserialfnexpr)
2053 List *args;
2054 FuncExpr *fexpr;
2056 /* deserialfn always takes BYTEA, INTERNAL and returns INTERNAL */
2057 args = list_make2(make_agg_arg(BYTEAOID, InvalidOid),
2058 make_agg_arg(INTERNALOID, InvalidOid));
2060 fexpr = makeFuncExpr(deserialfn_oid,
2061 INTERNALOID,
2062 args,
2063 InvalidOid,
2064 InvalidOid,
2065 COERCE_EXPLICIT_CALL);
2066 *deserialfnexpr = (Expr *) fexpr;
2070 * Like build_aggregate_transfn_expr, but creates an expression tree for the
2071 * final function of an aggregate, rather than the transition function.
2073 void
2074 build_aggregate_finalfn_expr(Oid *agg_input_types,
2075 int num_finalfn_inputs,
2076 Oid agg_state_type,
2077 Oid agg_result_type,
2078 Oid agg_input_collation,
2079 Oid finalfn_oid,
2080 Expr **finalfnexpr)
2082 List *args;
2083 int i;
2086 * Build expr tree for final function
2088 args = list_make1(make_agg_arg(agg_state_type, agg_input_collation));
2090 /* finalfn may take additional args, which match agg's input types */
2091 for (i = 0; i < num_finalfn_inputs - 1; i++)
2093 args = lappend(args,
2094 make_agg_arg(agg_input_types[i], agg_input_collation));
2097 *finalfnexpr = (Expr *) makeFuncExpr(finalfn_oid,
2098 agg_result_type,
2099 args,
2100 InvalidOid,
2101 agg_input_collation,
2102 COERCE_EXPLICIT_CALL);
2103 /* finalfn is currently never treated as variadic */
2107 * Convenience function to build dummy argument expressions for aggregates.
2109 * We really only care that an aggregate support function can discover its
2110 * actual argument types at runtime using get_fn_expr_argtype(), so it's okay
2111 * to use Param nodes that don't correspond to any real Param.
2113 static Node *
2114 make_agg_arg(Oid argtype, Oid argcollation)
2116 Param *argp = makeNode(Param);
2118 argp->paramkind = PARAM_EXEC;
2119 argp->paramid = -1;
2120 argp->paramtype = argtype;
2121 argp->paramtypmod = -1;
2122 argp->paramcollid = argcollation;
2123 argp->location = -1;
2124 return (Node *) argp;