Update copyright for 2022
[pgsql.git] / src / backend / executor / nodeHash.c
blob4d68a8b97b79be2888456302295241d9792867d8
1 /*-------------------------------------------------------------------------
3 * nodeHash.c
4 * Routines to hash relations for hashjoin
6 * Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group
7 * Portions Copyright (c) 1994, Regents of the University of California
10 * IDENTIFICATION
11 * src/backend/executor/nodeHash.c
13 * See note on parallelism in nodeHashjoin.c.
15 *-------------------------------------------------------------------------
18 * INTERFACE ROUTINES
19 * MultiExecHash - generate an in-memory hash table of the relation
20 * ExecInitHash - initialize node and subnodes
21 * ExecEndHash - shutdown node and subnodes
24 #include "postgres.h"
26 #include <math.h>
27 #include <limits.h>
29 #include "access/htup_details.h"
30 #include "access/parallel.h"
31 #include "catalog/pg_statistic.h"
32 #include "commands/tablespace.h"
33 #include "executor/execdebug.h"
34 #include "executor/hashjoin.h"
35 #include "executor/nodeHash.h"
36 #include "executor/nodeHashjoin.h"
37 #include "miscadmin.h"
38 #include "pgstat.h"
39 #include "port/atomics.h"
40 #include "port/pg_bitutils.h"
41 #include "utils/dynahash.h"
42 #include "utils/guc.h"
43 #include "utils/lsyscache.h"
44 #include "utils/memutils.h"
45 #include "utils/syscache.h"
47 static void ExecHashIncreaseNumBatches(HashJoinTable hashtable);
48 static void ExecHashIncreaseNumBuckets(HashJoinTable hashtable);
49 static void ExecParallelHashIncreaseNumBatches(HashJoinTable hashtable);
50 static void ExecParallelHashIncreaseNumBuckets(HashJoinTable hashtable);
51 static void ExecHashBuildSkewHash(HashJoinTable hashtable, Hash *node,
52 int mcvsToUse);
53 static void ExecHashSkewTableInsert(HashJoinTable hashtable,
54 TupleTableSlot *slot,
55 uint32 hashvalue,
56 int bucketNumber);
57 static void ExecHashRemoveNextSkewBucket(HashJoinTable hashtable);
59 static void *dense_alloc(HashJoinTable hashtable, Size size);
60 static HashJoinTuple ExecParallelHashTupleAlloc(HashJoinTable hashtable,
61 size_t size,
62 dsa_pointer *shared);
63 static void MultiExecPrivateHash(HashState *node);
64 static void MultiExecParallelHash(HashState *node);
65 static inline HashJoinTuple ExecParallelHashFirstTuple(HashJoinTable table,
66 int bucketno);
67 static inline HashJoinTuple ExecParallelHashNextTuple(HashJoinTable table,
68 HashJoinTuple tuple);
69 static inline void ExecParallelHashPushTuple(dsa_pointer_atomic *head,
70 HashJoinTuple tuple,
71 dsa_pointer tuple_shared);
72 static void ExecParallelHashJoinSetUpBatches(HashJoinTable hashtable, int nbatch);
73 static void ExecParallelHashEnsureBatchAccessors(HashJoinTable hashtable);
74 static void ExecParallelHashRepartitionFirst(HashJoinTable hashtable);
75 static void ExecParallelHashRepartitionRest(HashJoinTable hashtable);
76 static HashMemoryChunk ExecParallelHashPopChunkQueue(HashJoinTable table,
77 dsa_pointer *shared);
78 static bool ExecParallelHashTuplePrealloc(HashJoinTable hashtable,
79 int batchno,
80 size_t size);
81 static void ExecParallelHashMergeCounters(HashJoinTable hashtable);
82 static void ExecParallelHashCloseBatchAccessors(HashJoinTable hashtable);
85 /* ----------------------------------------------------------------
86 * ExecHash
88 * stub for pro forma compliance
89 * ----------------------------------------------------------------
91 static TupleTableSlot *
92 ExecHash(PlanState *pstate)
94 elog(ERROR, "Hash node does not support ExecProcNode call convention");
95 return NULL;
98 /* ----------------------------------------------------------------
99 * MultiExecHash
101 * build hash table for hashjoin, doing partitioning if more
102 * than one batch is required.
103 * ----------------------------------------------------------------
105 Node *
106 MultiExecHash(HashState *node)
108 /* must provide our own instrumentation support */
109 if (node->ps.instrument)
110 InstrStartNode(node->ps.instrument);
112 if (node->parallel_state != NULL)
113 MultiExecParallelHash(node);
114 else
115 MultiExecPrivateHash(node);
117 /* must provide our own instrumentation support */
118 if (node->ps.instrument)
119 InstrStopNode(node->ps.instrument, node->hashtable->partialTuples);
122 * We do not return the hash table directly because it's not a subtype of
123 * Node, and so would violate the MultiExecProcNode API. Instead, our
124 * parent Hashjoin node is expected to know how to fish it out of our node
125 * state. Ugly but not really worth cleaning up, since Hashjoin knows
126 * quite a bit more about Hash besides that.
128 return NULL;
131 /* ----------------------------------------------------------------
132 * MultiExecPrivateHash
134 * parallel-oblivious version, building a backend-private
135 * hash table and (if necessary) batch files.
136 * ----------------------------------------------------------------
138 static void
139 MultiExecPrivateHash(HashState *node)
141 PlanState *outerNode;
142 List *hashkeys;
143 HashJoinTable hashtable;
144 TupleTableSlot *slot;
145 ExprContext *econtext;
146 uint32 hashvalue;
149 * get state info from node
151 outerNode = outerPlanState(node);
152 hashtable = node->hashtable;
155 * set expression context
157 hashkeys = node->hashkeys;
158 econtext = node->ps.ps_ExprContext;
161 * Get all tuples from the node below the Hash node and insert into the
162 * hash table (or temp files).
164 for (;;)
166 slot = ExecProcNode(outerNode);
167 if (TupIsNull(slot))
168 break;
169 /* We have to compute the hash value */
170 econtext->ecxt_outertuple = slot;
171 if (ExecHashGetHashValue(hashtable, econtext, hashkeys,
172 false, hashtable->keepNulls,
173 &hashvalue))
175 int bucketNumber;
177 bucketNumber = ExecHashGetSkewBucket(hashtable, hashvalue);
178 if (bucketNumber != INVALID_SKEW_BUCKET_NO)
180 /* It's a skew tuple, so put it into that hash table */
181 ExecHashSkewTableInsert(hashtable, slot, hashvalue,
182 bucketNumber);
183 hashtable->skewTuples += 1;
185 else
187 /* Not subject to skew optimization, so insert normally */
188 ExecHashTableInsert(hashtable, slot, hashvalue);
190 hashtable->totalTuples += 1;
194 /* resize the hash table if needed (NTUP_PER_BUCKET exceeded) */
195 if (hashtable->nbuckets != hashtable->nbuckets_optimal)
196 ExecHashIncreaseNumBuckets(hashtable);
198 /* Account for the buckets in spaceUsed (reported in EXPLAIN ANALYZE) */
199 hashtable->spaceUsed += hashtable->nbuckets * sizeof(HashJoinTuple);
200 if (hashtable->spaceUsed > hashtable->spacePeak)
201 hashtable->spacePeak = hashtable->spaceUsed;
203 hashtable->partialTuples = hashtable->totalTuples;
206 /* ----------------------------------------------------------------
207 * MultiExecParallelHash
209 * parallel-aware version, building a shared hash table and
210 * (if necessary) batch files using the combined effort of
211 * a set of co-operating backends.
212 * ----------------------------------------------------------------
214 static void
215 MultiExecParallelHash(HashState *node)
217 ParallelHashJoinState *pstate;
218 PlanState *outerNode;
219 List *hashkeys;
220 HashJoinTable hashtable;
221 TupleTableSlot *slot;
222 ExprContext *econtext;
223 uint32 hashvalue;
224 Barrier *build_barrier;
225 int i;
228 * get state info from node
230 outerNode = outerPlanState(node);
231 hashtable = node->hashtable;
234 * set expression context
236 hashkeys = node->hashkeys;
237 econtext = node->ps.ps_ExprContext;
240 * Synchronize the parallel hash table build. At this stage we know that
241 * the shared hash table has been or is being set up by
242 * ExecHashTableCreate(), but we don't know if our peers have returned
243 * from there or are here in MultiExecParallelHash(), and if so how far
244 * through they are. To find out, we check the build_barrier phase then
245 * and jump to the right step in the build algorithm.
247 pstate = hashtable->parallel_state;
248 build_barrier = &pstate->build_barrier;
249 Assert(BarrierPhase(build_barrier) >= PHJ_BUILD_ALLOCATING);
250 switch (BarrierPhase(build_barrier))
252 case PHJ_BUILD_ALLOCATING:
255 * Either I just allocated the initial hash table in
256 * ExecHashTableCreate(), or someone else is doing that. Either
257 * way, wait for everyone to arrive here so we can proceed.
259 BarrierArriveAndWait(build_barrier, WAIT_EVENT_HASH_BUILD_ALLOCATE);
260 /* Fall through. */
262 case PHJ_BUILD_HASHING_INNER:
265 * It's time to begin hashing, or if we just arrived here then
266 * hashing is already underway, so join in that effort. While
267 * hashing we have to be prepared to help increase the number of
268 * batches or buckets at any time, and if we arrived here when
269 * that was already underway we'll have to help complete that work
270 * immediately so that it's safe to access batches and buckets
271 * below.
273 if (PHJ_GROW_BATCHES_PHASE(BarrierAttach(&pstate->grow_batches_barrier)) !=
274 PHJ_GROW_BATCHES_ELECTING)
275 ExecParallelHashIncreaseNumBatches(hashtable);
276 if (PHJ_GROW_BUCKETS_PHASE(BarrierAttach(&pstate->grow_buckets_barrier)) !=
277 PHJ_GROW_BUCKETS_ELECTING)
278 ExecParallelHashIncreaseNumBuckets(hashtable);
279 ExecParallelHashEnsureBatchAccessors(hashtable);
280 ExecParallelHashTableSetCurrentBatch(hashtable, 0);
281 for (;;)
283 slot = ExecProcNode(outerNode);
284 if (TupIsNull(slot))
285 break;
286 econtext->ecxt_outertuple = slot;
287 if (ExecHashGetHashValue(hashtable, econtext, hashkeys,
288 false, hashtable->keepNulls,
289 &hashvalue))
290 ExecParallelHashTableInsert(hashtable, slot, hashvalue);
291 hashtable->partialTuples++;
295 * Make sure that any tuples we wrote to disk are visible to
296 * others before anyone tries to load them.
298 for (i = 0; i < hashtable->nbatch; ++i)
299 sts_end_write(hashtable->batches[i].inner_tuples);
302 * Update shared counters. We need an accurate total tuple count
303 * to control the empty table optimization.
305 ExecParallelHashMergeCounters(hashtable);
307 BarrierDetach(&pstate->grow_buckets_barrier);
308 BarrierDetach(&pstate->grow_batches_barrier);
311 * Wait for everyone to finish building and flushing files and
312 * counters.
314 if (BarrierArriveAndWait(build_barrier,
315 WAIT_EVENT_HASH_BUILD_HASH_INNER))
318 * Elect one backend to disable any further growth. Batches
319 * are now fixed. While building them we made sure they'd fit
320 * in our memory budget when we load them back in later (or we
321 * tried to do that and gave up because we detected extreme
322 * skew).
324 pstate->growth = PHJ_GROWTH_DISABLED;
329 * We're not yet attached to a batch. We all agree on the dimensions and
330 * number of inner tuples (for the empty table optimization).
332 hashtable->curbatch = -1;
333 hashtable->nbuckets = pstate->nbuckets;
334 hashtable->log2_nbuckets = my_log2(hashtable->nbuckets);
335 hashtable->totalTuples = pstate->total_tuples;
336 ExecParallelHashEnsureBatchAccessors(hashtable);
339 * The next synchronization point is in ExecHashJoin's HJ_BUILD_HASHTABLE
340 * case, which will bring the build phase to PHJ_BUILD_DONE (if it isn't
341 * there already).
343 Assert(BarrierPhase(build_barrier) == PHJ_BUILD_HASHING_OUTER ||
344 BarrierPhase(build_barrier) == PHJ_BUILD_DONE);
347 /* ----------------------------------------------------------------
348 * ExecInitHash
350 * Init routine for Hash node
351 * ----------------------------------------------------------------
353 HashState *
354 ExecInitHash(Hash *node, EState *estate, int eflags)
356 HashState *hashstate;
358 /* check for unsupported flags */
359 Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK)));
362 * create state structure
364 hashstate = makeNode(HashState);
365 hashstate->ps.plan = (Plan *) node;
366 hashstate->ps.state = estate;
367 hashstate->ps.ExecProcNode = ExecHash;
368 hashstate->hashtable = NULL;
369 hashstate->hashkeys = NIL; /* will be set by parent HashJoin */
372 * Miscellaneous initialization
374 * create expression context for node
376 ExecAssignExprContext(estate, &hashstate->ps);
379 * initialize child nodes
381 outerPlanState(hashstate) = ExecInitNode(outerPlan(node), estate, eflags);
384 * initialize our result slot and type. No need to build projection
385 * because this node doesn't do projections.
387 ExecInitResultTupleSlotTL(&hashstate->ps, &TTSOpsMinimalTuple);
388 hashstate->ps.ps_ProjInfo = NULL;
391 * initialize child expressions
393 Assert(node->plan.qual == NIL);
394 hashstate->hashkeys =
395 ExecInitExprList(node->hashkeys, (PlanState *) hashstate);
397 return hashstate;
400 /* ---------------------------------------------------------------
401 * ExecEndHash
403 * clean up routine for Hash node
404 * ----------------------------------------------------------------
406 void
407 ExecEndHash(HashState *node)
409 PlanState *outerPlan;
412 * free exprcontext
414 ExecFreeExprContext(&node->ps);
417 * shut down the subplan
419 outerPlan = outerPlanState(node);
420 ExecEndNode(outerPlan);
424 /* ----------------------------------------------------------------
425 * ExecHashTableCreate
427 * create an empty hashtable data structure for hashjoin.
428 * ----------------------------------------------------------------
430 HashJoinTable
431 ExecHashTableCreate(HashState *state, List *hashOperators, List *hashCollations, bool keepNulls)
433 Hash *node;
434 HashJoinTable hashtable;
435 Plan *outerNode;
436 size_t space_allowed;
437 int nbuckets;
438 int nbatch;
439 double rows;
440 int num_skew_mcvs;
441 int log2_nbuckets;
442 int nkeys;
443 int i;
444 ListCell *ho;
445 ListCell *hc;
446 MemoryContext oldcxt;
449 * Get information about the size of the relation to be hashed (it's the
450 * "outer" subtree of this node, but the inner relation of the hashjoin).
451 * Compute the appropriate size of the hash table.
453 node = (Hash *) state->ps.plan;
454 outerNode = outerPlan(node);
457 * If this is shared hash table with a partial plan, then we can't use
458 * outerNode->plan_rows to estimate its size. We need an estimate of the
459 * total number of rows across all copies of the partial plan.
461 rows = node->plan.parallel_aware ? node->rows_total : outerNode->plan_rows;
463 ExecChooseHashTableSize(rows, outerNode->plan_width,
464 OidIsValid(node->skewTable),
465 state->parallel_state != NULL,
466 state->parallel_state != NULL ?
467 state->parallel_state->nparticipants - 1 : 0,
468 &space_allowed,
469 &nbuckets, &nbatch, &num_skew_mcvs);
471 /* nbuckets must be a power of 2 */
472 log2_nbuckets = my_log2(nbuckets);
473 Assert(nbuckets == (1 << log2_nbuckets));
476 * Initialize the hash table control block.
478 * The hashtable control block is just palloc'd from the executor's
479 * per-query memory context. Everything else should be kept inside the
480 * subsidiary hashCxt or batchCxt.
482 hashtable = (HashJoinTable) palloc(sizeof(HashJoinTableData));
483 hashtable->nbuckets = nbuckets;
484 hashtable->nbuckets_original = nbuckets;
485 hashtable->nbuckets_optimal = nbuckets;
486 hashtable->log2_nbuckets = log2_nbuckets;
487 hashtable->log2_nbuckets_optimal = log2_nbuckets;
488 hashtable->buckets.unshared = NULL;
489 hashtable->keepNulls = keepNulls;
490 hashtable->skewEnabled = false;
491 hashtable->skewBucket = NULL;
492 hashtable->skewBucketLen = 0;
493 hashtable->nSkewBuckets = 0;
494 hashtable->skewBucketNums = NULL;
495 hashtable->nbatch = nbatch;
496 hashtable->curbatch = 0;
497 hashtable->nbatch_original = nbatch;
498 hashtable->nbatch_outstart = nbatch;
499 hashtable->growEnabled = true;
500 hashtable->totalTuples = 0;
501 hashtable->partialTuples = 0;
502 hashtable->skewTuples = 0;
503 hashtable->innerBatchFile = NULL;
504 hashtable->outerBatchFile = NULL;
505 hashtable->spaceUsed = 0;
506 hashtable->spacePeak = 0;
507 hashtable->spaceAllowed = space_allowed;
508 hashtable->spaceUsedSkew = 0;
509 hashtable->spaceAllowedSkew =
510 hashtable->spaceAllowed * SKEW_HASH_MEM_PERCENT / 100;
511 hashtable->chunks = NULL;
512 hashtable->current_chunk = NULL;
513 hashtable->parallel_state = state->parallel_state;
514 hashtable->area = state->ps.state->es_query_dsa;
515 hashtable->batches = NULL;
517 #ifdef HJDEBUG
518 printf("Hashjoin %p: initial nbatch = %d, nbuckets = %d\n",
519 hashtable, nbatch, nbuckets);
520 #endif
523 * Create temporary memory contexts in which to keep the hashtable working
524 * storage. See notes in executor/hashjoin.h.
526 hashtable->hashCxt = AllocSetContextCreate(CurrentMemoryContext,
527 "HashTableContext",
528 ALLOCSET_DEFAULT_SIZES);
530 hashtable->batchCxt = AllocSetContextCreate(hashtable->hashCxt,
531 "HashBatchContext",
532 ALLOCSET_DEFAULT_SIZES);
534 /* Allocate data that will live for the life of the hashjoin */
536 oldcxt = MemoryContextSwitchTo(hashtable->hashCxt);
539 * Get info about the hash functions to be used for each hash key. Also
540 * remember whether the join operators are strict.
542 nkeys = list_length(hashOperators);
543 hashtable->outer_hashfunctions =
544 (FmgrInfo *) palloc(nkeys * sizeof(FmgrInfo));
545 hashtable->inner_hashfunctions =
546 (FmgrInfo *) palloc(nkeys * sizeof(FmgrInfo));
547 hashtable->hashStrict = (bool *) palloc(nkeys * sizeof(bool));
548 hashtable->collations = (Oid *) palloc(nkeys * sizeof(Oid));
549 i = 0;
550 forboth(ho, hashOperators, hc, hashCollations)
552 Oid hashop = lfirst_oid(ho);
553 Oid left_hashfn;
554 Oid right_hashfn;
556 if (!get_op_hash_functions(hashop, &left_hashfn, &right_hashfn))
557 elog(ERROR, "could not find hash function for hash operator %u",
558 hashop);
559 fmgr_info(left_hashfn, &hashtable->outer_hashfunctions[i]);
560 fmgr_info(right_hashfn, &hashtable->inner_hashfunctions[i]);
561 hashtable->hashStrict[i] = op_strict(hashop);
562 hashtable->collations[i] = lfirst_oid(hc);
563 i++;
566 if (nbatch > 1 && hashtable->parallel_state == NULL)
569 * allocate and initialize the file arrays in hashCxt (not needed for
570 * parallel case which uses shared tuplestores instead of raw files)
572 hashtable->innerBatchFile = (BufFile **)
573 palloc0(nbatch * sizeof(BufFile *));
574 hashtable->outerBatchFile = (BufFile **)
575 palloc0(nbatch * sizeof(BufFile *));
576 /* The files will not be opened until needed... */
577 /* ... but make sure we have temp tablespaces established for them */
578 PrepareTempTablespaces();
581 MemoryContextSwitchTo(oldcxt);
583 if (hashtable->parallel_state)
585 ParallelHashJoinState *pstate = hashtable->parallel_state;
586 Barrier *build_barrier;
589 * Attach to the build barrier. The corresponding detach operation is
590 * in ExecHashTableDetach. Note that we won't attach to the
591 * batch_barrier for batch 0 yet. We'll attach later and start it out
592 * in PHJ_BATCH_PROBING phase, because batch 0 is allocated up front
593 * and then loaded while hashing (the standard hybrid hash join
594 * algorithm), and we'll coordinate that using build_barrier.
596 build_barrier = &pstate->build_barrier;
597 BarrierAttach(build_barrier);
600 * So far we have no idea whether there are any other participants,
601 * and if so, what phase they are working on. The only thing we care
602 * about at this point is whether someone has already created the
603 * SharedHashJoinBatch objects and the hash table for batch 0. One
604 * backend will be elected to do that now if necessary.
606 if (BarrierPhase(build_barrier) == PHJ_BUILD_ELECTING &&
607 BarrierArriveAndWait(build_barrier, WAIT_EVENT_HASH_BUILD_ELECT))
609 pstate->nbatch = nbatch;
610 pstate->space_allowed = space_allowed;
611 pstate->growth = PHJ_GROWTH_OK;
613 /* Set up the shared state for coordinating batches. */
614 ExecParallelHashJoinSetUpBatches(hashtable, nbatch);
617 * Allocate batch 0's hash table up front so we can load it
618 * directly while hashing.
620 pstate->nbuckets = nbuckets;
621 ExecParallelHashTableAlloc(hashtable, 0);
625 * The next Parallel Hash synchronization point is in
626 * MultiExecParallelHash(), which will progress it all the way to
627 * PHJ_BUILD_DONE. The caller must not return control from this
628 * executor node between now and then.
631 else
634 * Prepare context for the first-scan space allocations; allocate the
635 * hashbucket array therein, and set each bucket "empty".
637 MemoryContextSwitchTo(hashtable->batchCxt);
639 hashtable->buckets.unshared = (HashJoinTuple *)
640 palloc0(nbuckets * sizeof(HashJoinTuple));
643 * Set up for skew optimization, if possible and there's a need for
644 * more than one batch. (In a one-batch join, there's no point in
645 * it.)
647 if (nbatch > 1)
648 ExecHashBuildSkewHash(hashtable, node, num_skew_mcvs);
650 MemoryContextSwitchTo(oldcxt);
653 return hashtable;
658 * Compute appropriate size for hashtable given the estimated size of the
659 * relation to be hashed (number of rows and average row width).
661 * This is exported so that the planner's costsize.c can use it.
664 /* Target bucket loading (tuples per bucket) */
665 #define NTUP_PER_BUCKET 1
667 void
668 ExecChooseHashTableSize(double ntuples, int tupwidth, bool useskew,
669 bool try_combined_hash_mem,
670 int parallel_workers,
671 size_t *space_allowed,
672 int *numbuckets,
673 int *numbatches,
674 int *num_skew_mcvs)
676 int tupsize;
677 double inner_rel_bytes;
678 size_t hash_table_bytes;
679 size_t bucket_bytes;
680 size_t max_pointers;
681 int nbatch = 1;
682 int nbuckets;
683 double dbuckets;
685 /* Force a plausible relation size if no info */
686 if (ntuples <= 0.0)
687 ntuples = 1000.0;
690 * Estimate tupsize based on footprint of tuple in hashtable... note this
691 * does not allow for any palloc overhead. The manipulations of spaceUsed
692 * don't count palloc overhead either.
694 tupsize = HJTUPLE_OVERHEAD +
695 MAXALIGN(SizeofMinimalTupleHeader) +
696 MAXALIGN(tupwidth);
697 inner_rel_bytes = ntuples * tupsize;
700 * Compute in-memory hashtable size limit from GUCs.
702 hash_table_bytes = get_hash_memory_limit();
705 * Parallel Hash tries to use the combined hash_mem of all workers to
706 * avoid the need to batch. If that won't work, it falls back to hash_mem
707 * per worker and tries to process batches in parallel.
709 if (try_combined_hash_mem)
711 /* Careful, this could overflow size_t */
712 double newlimit;
714 newlimit = (double) hash_table_bytes * (double) (parallel_workers + 1);
715 newlimit = Min(newlimit, (double) SIZE_MAX);
716 hash_table_bytes = (size_t) newlimit;
719 *space_allowed = hash_table_bytes;
722 * If skew optimization is possible, estimate the number of skew buckets
723 * that will fit in the memory allowed, and decrement the assumed space
724 * available for the main hash table accordingly.
726 * We make the optimistic assumption that each skew bucket will contain
727 * one inner-relation tuple. If that turns out to be low, we will recover
728 * at runtime by reducing the number of skew buckets.
730 * hashtable->skewBucket will have up to 8 times as many HashSkewBucket
731 * pointers as the number of MCVs we allow, since ExecHashBuildSkewHash
732 * will round up to the next power of 2 and then multiply by 4 to reduce
733 * collisions.
735 if (useskew)
737 size_t bytes_per_mcv;
738 size_t skew_mcvs;
740 /*----------
741 * Compute number of MCVs we could hold in hash_table_bytes
743 * Divisor is:
744 * size of a hash tuple +
745 * worst-case size of skewBucket[] per MCV +
746 * size of skewBucketNums[] entry +
747 * size of skew bucket struct itself
748 *----------
750 bytes_per_mcv = tupsize +
751 (8 * sizeof(HashSkewBucket *)) +
752 sizeof(int) +
753 SKEW_BUCKET_OVERHEAD;
754 skew_mcvs = hash_table_bytes / bytes_per_mcv;
757 * Now scale by SKEW_HASH_MEM_PERCENT (we do it in this order so as
758 * not to worry about size_t overflow in the multiplication)
760 skew_mcvs = (skew_mcvs * SKEW_HASH_MEM_PERCENT) / 100;
762 /* Now clamp to integer range */
763 skew_mcvs = Min(skew_mcvs, INT_MAX);
765 *num_skew_mcvs = (int) skew_mcvs;
767 /* Reduce hash_table_bytes by the amount needed for the skew table */
768 if (skew_mcvs > 0)
769 hash_table_bytes -= skew_mcvs * bytes_per_mcv;
771 else
772 *num_skew_mcvs = 0;
775 * Set nbuckets to achieve an average bucket load of NTUP_PER_BUCKET when
776 * memory is filled, assuming a single batch; but limit the value so that
777 * the pointer arrays we'll try to allocate do not exceed hash_table_bytes
778 * nor MaxAllocSize.
780 * Note that both nbuckets and nbatch must be powers of 2 to make
781 * ExecHashGetBucketAndBatch fast.
783 max_pointers = hash_table_bytes / sizeof(HashJoinTuple);
784 max_pointers = Min(max_pointers, MaxAllocSize / sizeof(HashJoinTuple));
785 /* If max_pointers isn't a power of 2, must round it down to one */
786 max_pointers = pg_prevpower2_size_t(max_pointers);
788 /* Also ensure we avoid integer overflow in nbatch and nbuckets */
789 /* (this step is redundant given the current value of MaxAllocSize) */
790 max_pointers = Min(max_pointers, INT_MAX / 2 + 1);
792 dbuckets = ceil(ntuples / NTUP_PER_BUCKET);
793 dbuckets = Min(dbuckets, max_pointers);
794 nbuckets = (int) dbuckets;
795 /* don't let nbuckets be really small, though ... */
796 nbuckets = Max(nbuckets, 1024);
797 /* ... and force it to be a power of 2. */
798 nbuckets = pg_nextpower2_32(nbuckets);
801 * If there's not enough space to store the projected number of tuples and
802 * the required bucket headers, we will need multiple batches.
804 bucket_bytes = sizeof(HashJoinTuple) * nbuckets;
805 if (inner_rel_bytes + bucket_bytes > hash_table_bytes)
807 /* We'll need multiple batches */
808 size_t sbuckets;
809 double dbatch;
810 int minbatch;
811 size_t bucket_size;
814 * If Parallel Hash with combined hash_mem would still need multiple
815 * batches, we'll have to fall back to regular hash_mem budget.
817 if (try_combined_hash_mem)
819 ExecChooseHashTableSize(ntuples, tupwidth, useskew,
820 false, parallel_workers,
821 space_allowed,
822 numbuckets,
823 numbatches,
824 num_skew_mcvs);
825 return;
829 * Estimate the number of buckets we'll want to have when hash_mem is
830 * entirely full. Each bucket will contain a bucket pointer plus
831 * NTUP_PER_BUCKET tuples, whose projected size already includes
832 * overhead for the hash code, pointer to the next tuple, etc.
834 bucket_size = (tupsize * NTUP_PER_BUCKET + sizeof(HashJoinTuple));
835 sbuckets = pg_nextpower2_size_t(hash_table_bytes / bucket_size);
836 sbuckets = Min(sbuckets, max_pointers);
837 nbuckets = (int) sbuckets;
838 nbuckets = pg_nextpower2_32(nbuckets);
839 bucket_bytes = nbuckets * sizeof(HashJoinTuple);
842 * Buckets are simple pointers to hashjoin tuples, while tupsize
843 * includes the pointer, hash code, and MinimalTupleData. So buckets
844 * should never really exceed 25% of hash_mem (even for
845 * NTUP_PER_BUCKET=1); except maybe for hash_mem values that are not
846 * 2^N bytes, where we might get more because of doubling. So let's
847 * look for 50% here.
849 Assert(bucket_bytes <= hash_table_bytes / 2);
851 /* Calculate required number of batches. */
852 dbatch = ceil(inner_rel_bytes / (hash_table_bytes - bucket_bytes));
853 dbatch = Min(dbatch, max_pointers);
854 minbatch = (int) dbatch;
855 nbatch = pg_nextpower2_32(Max(2, minbatch));
858 Assert(nbuckets > 0);
859 Assert(nbatch > 0);
861 *numbuckets = nbuckets;
862 *numbatches = nbatch;
866 /* ----------------------------------------------------------------
867 * ExecHashTableDestroy
869 * destroy a hash table
870 * ----------------------------------------------------------------
872 void
873 ExecHashTableDestroy(HashJoinTable hashtable)
875 int i;
878 * Make sure all the temp files are closed. We skip batch 0, since it
879 * can't have any temp files (and the arrays might not even exist if
880 * nbatch is only 1). Parallel hash joins don't use these files.
882 if (hashtable->innerBatchFile != NULL)
884 for (i = 1; i < hashtable->nbatch; i++)
886 if (hashtable->innerBatchFile[i])
887 BufFileClose(hashtable->innerBatchFile[i]);
888 if (hashtable->outerBatchFile[i])
889 BufFileClose(hashtable->outerBatchFile[i]);
893 /* Release working memory (batchCxt is a child, so it goes away too) */
894 MemoryContextDelete(hashtable->hashCxt);
896 /* And drop the control block */
897 pfree(hashtable);
901 * ExecHashIncreaseNumBatches
902 * increase the original number of batches in order to reduce
903 * current memory consumption
905 static void
906 ExecHashIncreaseNumBatches(HashJoinTable hashtable)
908 int oldnbatch = hashtable->nbatch;
909 int curbatch = hashtable->curbatch;
910 int nbatch;
911 MemoryContext oldcxt;
912 long ninmemory;
913 long nfreed;
914 HashMemoryChunk oldchunks;
916 /* do nothing if we've decided to shut off growth */
917 if (!hashtable->growEnabled)
918 return;
920 /* safety check to avoid overflow */
921 if (oldnbatch > Min(INT_MAX / 2, MaxAllocSize / (sizeof(void *) * 2)))
922 return;
924 nbatch = oldnbatch * 2;
925 Assert(nbatch > 1);
927 #ifdef HJDEBUG
928 printf("Hashjoin %p: increasing nbatch to %d because space = %zu\n",
929 hashtable, nbatch, hashtable->spaceUsed);
930 #endif
932 oldcxt = MemoryContextSwitchTo(hashtable->hashCxt);
934 if (hashtable->innerBatchFile == NULL)
936 /* we had no file arrays before */
937 hashtable->innerBatchFile = (BufFile **)
938 palloc0(nbatch * sizeof(BufFile *));
939 hashtable->outerBatchFile = (BufFile **)
940 palloc0(nbatch * sizeof(BufFile *));
941 /* time to establish the temp tablespaces, too */
942 PrepareTempTablespaces();
944 else
946 /* enlarge arrays and zero out added entries */
947 hashtable->innerBatchFile = (BufFile **)
948 repalloc(hashtable->innerBatchFile, nbatch * sizeof(BufFile *));
949 hashtable->outerBatchFile = (BufFile **)
950 repalloc(hashtable->outerBatchFile, nbatch * sizeof(BufFile *));
951 MemSet(hashtable->innerBatchFile + oldnbatch, 0,
952 (nbatch - oldnbatch) * sizeof(BufFile *));
953 MemSet(hashtable->outerBatchFile + oldnbatch, 0,
954 (nbatch - oldnbatch) * sizeof(BufFile *));
957 MemoryContextSwitchTo(oldcxt);
959 hashtable->nbatch = nbatch;
962 * Scan through the existing hash table entries and dump out any that are
963 * no longer of the current batch.
965 ninmemory = nfreed = 0;
967 /* If know we need to resize nbuckets, we can do it while rebatching. */
968 if (hashtable->nbuckets_optimal != hashtable->nbuckets)
970 /* we never decrease the number of buckets */
971 Assert(hashtable->nbuckets_optimal > hashtable->nbuckets);
973 hashtable->nbuckets = hashtable->nbuckets_optimal;
974 hashtable->log2_nbuckets = hashtable->log2_nbuckets_optimal;
976 hashtable->buckets.unshared =
977 repalloc(hashtable->buckets.unshared,
978 sizeof(HashJoinTuple) * hashtable->nbuckets);
982 * We will scan through the chunks directly, so that we can reset the
983 * buckets now and not have to keep track which tuples in the buckets have
984 * already been processed. We will free the old chunks as we go.
986 memset(hashtable->buckets.unshared, 0,
987 sizeof(HashJoinTuple) * hashtable->nbuckets);
988 oldchunks = hashtable->chunks;
989 hashtable->chunks = NULL;
991 /* so, let's scan through the old chunks, and all tuples in each chunk */
992 while (oldchunks != NULL)
994 HashMemoryChunk nextchunk = oldchunks->next.unshared;
996 /* position within the buffer (up to oldchunks->used) */
997 size_t idx = 0;
999 /* process all tuples stored in this chunk (and then free it) */
1000 while (idx < oldchunks->used)
1002 HashJoinTuple hashTuple = (HashJoinTuple) (HASH_CHUNK_DATA(oldchunks) + idx);
1003 MinimalTuple tuple = HJTUPLE_MINTUPLE(hashTuple);
1004 int hashTupleSize = (HJTUPLE_OVERHEAD + tuple->t_len);
1005 int bucketno;
1006 int batchno;
1008 ninmemory++;
1009 ExecHashGetBucketAndBatch(hashtable, hashTuple->hashvalue,
1010 &bucketno, &batchno);
1012 if (batchno == curbatch)
1014 /* keep tuple in memory - copy it into the new chunk */
1015 HashJoinTuple copyTuple;
1017 copyTuple = (HashJoinTuple) dense_alloc(hashtable, hashTupleSize);
1018 memcpy(copyTuple, hashTuple, hashTupleSize);
1020 /* and add it back to the appropriate bucket */
1021 copyTuple->next.unshared = hashtable->buckets.unshared[bucketno];
1022 hashtable->buckets.unshared[bucketno] = copyTuple;
1024 else
1026 /* dump it out */
1027 Assert(batchno > curbatch);
1028 ExecHashJoinSaveTuple(HJTUPLE_MINTUPLE(hashTuple),
1029 hashTuple->hashvalue,
1030 &hashtable->innerBatchFile[batchno]);
1032 hashtable->spaceUsed -= hashTupleSize;
1033 nfreed++;
1036 /* next tuple in this chunk */
1037 idx += MAXALIGN(hashTupleSize);
1039 /* allow this loop to be cancellable */
1040 CHECK_FOR_INTERRUPTS();
1043 /* we're done with this chunk - free it and proceed to the next one */
1044 pfree(oldchunks);
1045 oldchunks = nextchunk;
1048 #ifdef HJDEBUG
1049 printf("Hashjoin %p: freed %ld of %ld tuples, space now %zu\n",
1050 hashtable, nfreed, ninmemory, hashtable->spaceUsed);
1051 #endif
1054 * If we dumped out either all or none of the tuples in the table, disable
1055 * further expansion of nbatch. This situation implies that we have
1056 * enough tuples of identical hashvalues to overflow spaceAllowed.
1057 * Increasing nbatch will not fix it since there's no way to subdivide the
1058 * group any more finely. We have to just gut it out and hope the server
1059 * has enough RAM.
1061 if (nfreed == 0 || nfreed == ninmemory)
1063 hashtable->growEnabled = false;
1064 #ifdef HJDEBUG
1065 printf("Hashjoin %p: disabling further increase of nbatch\n",
1066 hashtable);
1067 #endif
1072 * ExecParallelHashIncreaseNumBatches
1073 * Every participant attached to grow_batches_barrier must run this
1074 * function when it observes growth == PHJ_GROWTH_NEED_MORE_BATCHES.
1076 static void
1077 ExecParallelHashIncreaseNumBatches(HashJoinTable hashtable)
1079 ParallelHashJoinState *pstate = hashtable->parallel_state;
1080 int i;
1082 Assert(BarrierPhase(&pstate->build_barrier) == PHJ_BUILD_HASHING_INNER);
1085 * It's unlikely, but we need to be prepared for new participants to show
1086 * up while we're in the middle of this operation so we need to switch on
1087 * barrier phase here.
1089 switch (PHJ_GROW_BATCHES_PHASE(BarrierPhase(&pstate->grow_batches_barrier)))
1091 case PHJ_GROW_BATCHES_ELECTING:
1094 * Elect one participant to prepare to grow the number of batches.
1095 * This involves reallocating or resetting the buckets of batch 0
1096 * in preparation for all participants to begin repartitioning the
1097 * tuples.
1099 if (BarrierArriveAndWait(&pstate->grow_batches_barrier,
1100 WAIT_EVENT_HASH_GROW_BATCHES_ELECT))
1102 dsa_pointer_atomic *buckets;
1103 ParallelHashJoinBatch *old_batch0;
1104 int new_nbatch;
1105 int i;
1107 /* Move the old batch out of the way. */
1108 old_batch0 = hashtable->batches[0].shared;
1109 pstate->old_batches = pstate->batches;
1110 pstate->old_nbatch = hashtable->nbatch;
1111 pstate->batches = InvalidDsaPointer;
1113 /* Free this backend's old accessors. */
1114 ExecParallelHashCloseBatchAccessors(hashtable);
1116 /* Figure out how many batches to use. */
1117 if (hashtable->nbatch == 1)
1120 * We are going from single-batch to multi-batch. We need
1121 * to switch from one large combined memory budget to the
1122 * regular hash_mem budget.
1124 pstate->space_allowed = get_hash_memory_limit();
1127 * The combined hash_mem of all participants wasn't
1128 * enough. Therefore one batch per participant would be
1129 * approximately equivalent and would probably also be
1130 * insufficient. So try two batches per participant,
1131 * rounded up to a power of two.
1133 new_nbatch = pg_nextpower2_32(pstate->nparticipants * 2);
1135 else
1138 * We were already multi-batched. Try doubling the number
1139 * of batches.
1141 new_nbatch = hashtable->nbatch * 2;
1144 /* Allocate new larger generation of batches. */
1145 Assert(hashtable->nbatch == pstate->nbatch);
1146 ExecParallelHashJoinSetUpBatches(hashtable, new_nbatch);
1147 Assert(hashtable->nbatch == pstate->nbatch);
1149 /* Replace or recycle batch 0's bucket array. */
1150 if (pstate->old_nbatch == 1)
1152 double dtuples;
1153 double dbuckets;
1154 int new_nbuckets;
1157 * We probably also need a smaller bucket array. How many
1158 * tuples do we expect per batch, assuming we have only
1159 * half of them so far? Normally we don't need to change
1160 * the bucket array's size, because the size of each batch
1161 * stays the same as we add more batches, but in this
1162 * special case we move from a large batch to many smaller
1163 * batches and it would be wasteful to keep the large
1164 * array.
1166 dtuples = (old_batch0->ntuples * 2.0) / new_nbatch;
1167 dbuckets = ceil(dtuples / NTUP_PER_BUCKET);
1168 dbuckets = Min(dbuckets,
1169 MaxAllocSize / sizeof(dsa_pointer_atomic));
1170 new_nbuckets = (int) dbuckets;
1171 new_nbuckets = Max(new_nbuckets, 1024);
1172 new_nbuckets = pg_nextpower2_32(new_nbuckets);
1173 dsa_free(hashtable->area, old_batch0->buckets);
1174 hashtable->batches[0].shared->buckets =
1175 dsa_allocate(hashtable->area,
1176 sizeof(dsa_pointer_atomic) * new_nbuckets);
1177 buckets = (dsa_pointer_atomic *)
1178 dsa_get_address(hashtable->area,
1179 hashtable->batches[0].shared->buckets);
1180 for (i = 0; i < new_nbuckets; ++i)
1181 dsa_pointer_atomic_init(&buckets[i], InvalidDsaPointer);
1182 pstate->nbuckets = new_nbuckets;
1184 else
1186 /* Recycle the existing bucket array. */
1187 hashtable->batches[0].shared->buckets = old_batch0->buckets;
1188 buckets = (dsa_pointer_atomic *)
1189 dsa_get_address(hashtable->area, old_batch0->buckets);
1190 for (i = 0; i < hashtable->nbuckets; ++i)
1191 dsa_pointer_atomic_write(&buckets[i], InvalidDsaPointer);
1194 /* Move all chunks to the work queue for parallel processing. */
1195 pstate->chunk_work_queue = old_batch0->chunks;
1197 /* Disable further growth temporarily while we're growing. */
1198 pstate->growth = PHJ_GROWTH_DISABLED;
1200 else
1202 /* All other participants just flush their tuples to disk. */
1203 ExecParallelHashCloseBatchAccessors(hashtable);
1205 /* Fall through. */
1207 case PHJ_GROW_BATCHES_ALLOCATING:
1208 /* Wait for the above to be finished. */
1209 BarrierArriveAndWait(&pstate->grow_batches_barrier,
1210 WAIT_EVENT_HASH_GROW_BATCHES_ALLOCATE);
1211 /* Fall through. */
1213 case PHJ_GROW_BATCHES_REPARTITIONING:
1214 /* Make sure that we have the current dimensions and buckets. */
1215 ExecParallelHashEnsureBatchAccessors(hashtable);
1216 ExecParallelHashTableSetCurrentBatch(hashtable, 0);
1217 /* Then partition, flush counters. */
1218 ExecParallelHashRepartitionFirst(hashtable);
1219 ExecParallelHashRepartitionRest(hashtable);
1220 ExecParallelHashMergeCounters(hashtable);
1221 /* Wait for the above to be finished. */
1222 BarrierArriveAndWait(&pstate->grow_batches_barrier,
1223 WAIT_EVENT_HASH_GROW_BATCHES_REPARTITION);
1224 /* Fall through. */
1226 case PHJ_GROW_BATCHES_DECIDING:
1229 * Elect one participant to clean up and decide whether further
1230 * repartitioning is needed, or should be disabled because it's
1231 * not helping.
1233 if (BarrierArriveAndWait(&pstate->grow_batches_barrier,
1234 WAIT_EVENT_HASH_GROW_BATCHES_DECIDE))
1236 bool space_exhausted = false;
1237 bool extreme_skew_detected = false;
1239 /* Make sure that we have the current dimensions and buckets. */
1240 ExecParallelHashEnsureBatchAccessors(hashtable);
1241 ExecParallelHashTableSetCurrentBatch(hashtable, 0);
1243 /* Are any of the new generation of batches exhausted? */
1244 for (i = 0; i < hashtable->nbatch; ++i)
1246 ParallelHashJoinBatch *batch = hashtable->batches[i].shared;
1248 if (batch->space_exhausted ||
1249 batch->estimated_size > pstate->space_allowed)
1251 int parent;
1253 space_exhausted = true;
1256 * Did this batch receive ALL of the tuples from its
1257 * parent batch? That would indicate that further
1258 * repartitioning isn't going to help (the hash values
1259 * are probably all the same).
1261 parent = i % pstate->old_nbatch;
1262 if (batch->ntuples == hashtable->batches[parent].shared->old_ntuples)
1263 extreme_skew_detected = true;
1267 /* Don't keep growing if it's not helping or we'd overflow. */
1268 if (extreme_skew_detected || hashtable->nbatch >= INT_MAX / 2)
1269 pstate->growth = PHJ_GROWTH_DISABLED;
1270 else if (space_exhausted)
1271 pstate->growth = PHJ_GROWTH_NEED_MORE_BATCHES;
1272 else
1273 pstate->growth = PHJ_GROWTH_OK;
1275 /* Free the old batches in shared memory. */
1276 dsa_free(hashtable->area, pstate->old_batches);
1277 pstate->old_batches = InvalidDsaPointer;
1279 /* Fall through. */
1281 case PHJ_GROW_BATCHES_FINISHING:
1282 /* Wait for the above to complete. */
1283 BarrierArriveAndWait(&pstate->grow_batches_barrier,
1284 WAIT_EVENT_HASH_GROW_BATCHES_FINISH);
1289 * Repartition the tuples currently loaded into memory for inner batch 0
1290 * because the number of batches has been increased. Some tuples are retained
1291 * in memory and some are written out to a later batch.
1293 static void
1294 ExecParallelHashRepartitionFirst(HashJoinTable hashtable)
1296 dsa_pointer chunk_shared;
1297 HashMemoryChunk chunk;
1299 Assert(hashtable->nbatch == hashtable->parallel_state->nbatch);
1301 while ((chunk = ExecParallelHashPopChunkQueue(hashtable, &chunk_shared)))
1303 size_t idx = 0;
1305 /* Repartition all tuples in this chunk. */
1306 while (idx < chunk->used)
1308 HashJoinTuple hashTuple = (HashJoinTuple) (HASH_CHUNK_DATA(chunk) + idx);
1309 MinimalTuple tuple = HJTUPLE_MINTUPLE(hashTuple);
1310 HashJoinTuple copyTuple;
1311 dsa_pointer shared;
1312 int bucketno;
1313 int batchno;
1315 ExecHashGetBucketAndBatch(hashtable, hashTuple->hashvalue,
1316 &bucketno, &batchno);
1318 Assert(batchno < hashtable->nbatch);
1319 if (batchno == 0)
1321 /* It still belongs in batch 0. Copy to a new chunk. */
1322 copyTuple =
1323 ExecParallelHashTupleAlloc(hashtable,
1324 HJTUPLE_OVERHEAD + tuple->t_len,
1325 &shared);
1326 copyTuple->hashvalue = hashTuple->hashvalue;
1327 memcpy(HJTUPLE_MINTUPLE(copyTuple), tuple, tuple->t_len);
1328 ExecParallelHashPushTuple(&hashtable->buckets.shared[bucketno],
1329 copyTuple, shared);
1331 else
1333 size_t tuple_size =
1334 MAXALIGN(HJTUPLE_OVERHEAD + tuple->t_len);
1336 /* It belongs in a later batch. */
1337 hashtable->batches[batchno].estimated_size += tuple_size;
1338 sts_puttuple(hashtable->batches[batchno].inner_tuples,
1339 &hashTuple->hashvalue, tuple);
1342 /* Count this tuple. */
1343 ++hashtable->batches[0].old_ntuples;
1344 ++hashtable->batches[batchno].ntuples;
1346 idx += MAXALIGN(HJTUPLE_OVERHEAD +
1347 HJTUPLE_MINTUPLE(hashTuple)->t_len);
1350 /* Free this chunk. */
1351 dsa_free(hashtable->area, chunk_shared);
1353 CHECK_FOR_INTERRUPTS();
1358 * Help repartition inner batches 1..n.
1360 static void
1361 ExecParallelHashRepartitionRest(HashJoinTable hashtable)
1363 ParallelHashJoinState *pstate = hashtable->parallel_state;
1364 int old_nbatch = pstate->old_nbatch;
1365 SharedTuplestoreAccessor **old_inner_tuples;
1366 ParallelHashJoinBatch *old_batches;
1367 int i;
1369 /* Get our hands on the previous generation of batches. */
1370 old_batches = (ParallelHashJoinBatch *)
1371 dsa_get_address(hashtable->area, pstate->old_batches);
1372 old_inner_tuples = palloc0(sizeof(SharedTuplestoreAccessor *) * old_nbatch);
1373 for (i = 1; i < old_nbatch; ++i)
1375 ParallelHashJoinBatch *shared =
1376 NthParallelHashJoinBatch(old_batches, i);
1378 old_inner_tuples[i] = sts_attach(ParallelHashJoinBatchInner(shared),
1379 ParallelWorkerNumber + 1,
1380 &pstate->fileset);
1383 /* Join in the effort to repartition them. */
1384 for (i = 1; i < old_nbatch; ++i)
1386 MinimalTuple tuple;
1387 uint32 hashvalue;
1389 /* Scan one partition from the previous generation. */
1390 sts_begin_parallel_scan(old_inner_tuples[i]);
1391 while ((tuple = sts_parallel_scan_next(old_inner_tuples[i], &hashvalue)))
1393 size_t tuple_size = MAXALIGN(HJTUPLE_OVERHEAD + tuple->t_len);
1394 int bucketno;
1395 int batchno;
1397 /* Decide which partition it goes to in the new generation. */
1398 ExecHashGetBucketAndBatch(hashtable, hashvalue, &bucketno,
1399 &batchno);
1401 hashtable->batches[batchno].estimated_size += tuple_size;
1402 ++hashtable->batches[batchno].ntuples;
1403 ++hashtable->batches[i].old_ntuples;
1405 /* Store the tuple its new batch. */
1406 sts_puttuple(hashtable->batches[batchno].inner_tuples,
1407 &hashvalue, tuple);
1409 CHECK_FOR_INTERRUPTS();
1411 sts_end_parallel_scan(old_inner_tuples[i]);
1414 pfree(old_inner_tuples);
1418 * Transfer the backend-local per-batch counters to the shared totals.
1420 static void
1421 ExecParallelHashMergeCounters(HashJoinTable hashtable)
1423 ParallelHashJoinState *pstate = hashtable->parallel_state;
1424 int i;
1426 LWLockAcquire(&pstate->lock, LW_EXCLUSIVE);
1427 pstate->total_tuples = 0;
1428 for (i = 0; i < hashtable->nbatch; ++i)
1430 ParallelHashJoinBatchAccessor *batch = &hashtable->batches[i];
1432 batch->shared->size += batch->size;
1433 batch->shared->estimated_size += batch->estimated_size;
1434 batch->shared->ntuples += batch->ntuples;
1435 batch->shared->old_ntuples += batch->old_ntuples;
1436 batch->size = 0;
1437 batch->estimated_size = 0;
1438 batch->ntuples = 0;
1439 batch->old_ntuples = 0;
1440 pstate->total_tuples += batch->shared->ntuples;
1442 LWLockRelease(&pstate->lock);
1446 * ExecHashIncreaseNumBuckets
1447 * increase the original number of buckets in order to reduce
1448 * number of tuples per bucket
1450 static void
1451 ExecHashIncreaseNumBuckets(HashJoinTable hashtable)
1453 HashMemoryChunk chunk;
1455 /* do nothing if not an increase (it's called increase for a reason) */
1456 if (hashtable->nbuckets >= hashtable->nbuckets_optimal)
1457 return;
1459 #ifdef HJDEBUG
1460 printf("Hashjoin %p: increasing nbuckets %d => %d\n",
1461 hashtable, hashtable->nbuckets, hashtable->nbuckets_optimal);
1462 #endif
1464 hashtable->nbuckets = hashtable->nbuckets_optimal;
1465 hashtable->log2_nbuckets = hashtable->log2_nbuckets_optimal;
1467 Assert(hashtable->nbuckets > 1);
1468 Assert(hashtable->nbuckets <= (INT_MAX / 2));
1469 Assert(hashtable->nbuckets == (1 << hashtable->log2_nbuckets));
1472 * Just reallocate the proper number of buckets - we don't need to walk
1473 * through them - we can walk the dense-allocated chunks (just like in
1474 * ExecHashIncreaseNumBatches, but without all the copying into new
1475 * chunks)
1477 hashtable->buckets.unshared =
1478 (HashJoinTuple *) repalloc(hashtable->buckets.unshared,
1479 hashtable->nbuckets * sizeof(HashJoinTuple));
1481 memset(hashtable->buckets.unshared, 0,
1482 hashtable->nbuckets * sizeof(HashJoinTuple));
1484 /* scan through all tuples in all chunks to rebuild the hash table */
1485 for (chunk = hashtable->chunks; chunk != NULL; chunk = chunk->next.unshared)
1487 /* process all tuples stored in this chunk */
1488 size_t idx = 0;
1490 while (idx < chunk->used)
1492 HashJoinTuple hashTuple = (HashJoinTuple) (HASH_CHUNK_DATA(chunk) + idx);
1493 int bucketno;
1494 int batchno;
1496 ExecHashGetBucketAndBatch(hashtable, hashTuple->hashvalue,
1497 &bucketno, &batchno);
1499 /* add the tuple to the proper bucket */
1500 hashTuple->next.unshared = hashtable->buckets.unshared[bucketno];
1501 hashtable->buckets.unshared[bucketno] = hashTuple;
1503 /* advance index past the tuple */
1504 idx += MAXALIGN(HJTUPLE_OVERHEAD +
1505 HJTUPLE_MINTUPLE(hashTuple)->t_len);
1508 /* allow this loop to be cancellable */
1509 CHECK_FOR_INTERRUPTS();
1513 static void
1514 ExecParallelHashIncreaseNumBuckets(HashJoinTable hashtable)
1516 ParallelHashJoinState *pstate = hashtable->parallel_state;
1517 int i;
1518 HashMemoryChunk chunk;
1519 dsa_pointer chunk_s;
1521 Assert(BarrierPhase(&pstate->build_barrier) == PHJ_BUILD_HASHING_INNER);
1524 * It's unlikely, but we need to be prepared for new participants to show
1525 * up while we're in the middle of this operation so we need to switch on
1526 * barrier phase here.
1528 switch (PHJ_GROW_BUCKETS_PHASE(BarrierPhase(&pstate->grow_buckets_barrier)))
1530 case PHJ_GROW_BUCKETS_ELECTING:
1531 /* Elect one participant to prepare to increase nbuckets. */
1532 if (BarrierArriveAndWait(&pstate->grow_buckets_barrier,
1533 WAIT_EVENT_HASH_GROW_BUCKETS_ELECT))
1535 size_t size;
1536 dsa_pointer_atomic *buckets;
1538 /* Double the size of the bucket array. */
1539 pstate->nbuckets *= 2;
1540 size = pstate->nbuckets * sizeof(dsa_pointer_atomic);
1541 hashtable->batches[0].shared->size += size / 2;
1542 dsa_free(hashtable->area, hashtable->batches[0].shared->buckets);
1543 hashtable->batches[0].shared->buckets =
1544 dsa_allocate(hashtable->area, size);
1545 buckets = (dsa_pointer_atomic *)
1546 dsa_get_address(hashtable->area,
1547 hashtable->batches[0].shared->buckets);
1548 for (i = 0; i < pstate->nbuckets; ++i)
1549 dsa_pointer_atomic_init(&buckets[i], InvalidDsaPointer);
1551 /* Put the chunk list onto the work queue. */
1552 pstate->chunk_work_queue = hashtable->batches[0].shared->chunks;
1554 /* Clear the flag. */
1555 pstate->growth = PHJ_GROWTH_OK;
1557 /* Fall through. */
1559 case PHJ_GROW_BUCKETS_ALLOCATING:
1560 /* Wait for the above to complete. */
1561 BarrierArriveAndWait(&pstate->grow_buckets_barrier,
1562 WAIT_EVENT_HASH_GROW_BUCKETS_ALLOCATE);
1563 /* Fall through. */
1565 case PHJ_GROW_BUCKETS_REINSERTING:
1566 /* Reinsert all tuples into the hash table. */
1567 ExecParallelHashEnsureBatchAccessors(hashtable);
1568 ExecParallelHashTableSetCurrentBatch(hashtable, 0);
1569 while ((chunk = ExecParallelHashPopChunkQueue(hashtable, &chunk_s)))
1571 size_t idx = 0;
1573 while (idx < chunk->used)
1575 HashJoinTuple hashTuple = (HashJoinTuple) (HASH_CHUNK_DATA(chunk) + idx);
1576 dsa_pointer shared = chunk_s + HASH_CHUNK_HEADER_SIZE + idx;
1577 int bucketno;
1578 int batchno;
1580 ExecHashGetBucketAndBatch(hashtable, hashTuple->hashvalue,
1581 &bucketno, &batchno);
1582 Assert(batchno == 0);
1584 /* add the tuple to the proper bucket */
1585 ExecParallelHashPushTuple(&hashtable->buckets.shared[bucketno],
1586 hashTuple, shared);
1588 /* advance index past the tuple */
1589 idx += MAXALIGN(HJTUPLE_OVERHEAD +
1590 HJTUPLE_MINTUPLE(hashTuple)->t_len);
1593 /* allow this loop to be cancellable */
1594 CHECK_FOR_INTERRUPTS();
1596 BarrierArriveAndWait(&pstate->grow_buckets_barrier,
1597 WAIT_EVENT_HASH_GROW_BUCKETS_REINSERT);
1602 * ExecHashTableInsert
1603 * insert a tuple into the hash table depending on the hash value
1604 * it may just go to a temp file for later batches
1606 * Note: the passed TupleTableSlot may contain a regular, minimal, or virtual
1607 * tuple; the minimal case in particular is certain to happen while reloading
1608 * tuples from batch files. We could save some cycles in the regular-tuple
1609 * case by not forcing the slot contents into minimal form; not clear if it's
1610 * worth the messiness required.
1612 void
1613 ExecHashTableInsert(HashJoinTable hashtable,
1614 TupleTableSlot *slot,
1615 uint32 hashvalue)
1617 bool shouldFree;
1618 MinimalTuple tuple = ExecFetchSlotMinimalTuple(slot, &shouldFree);
1619 int bucketno;
1620 int batchno;
1622 ExecHashGetBucketAndBatch(hashtable, hashvalue,
1623 &bucketno, &batchno);
1626 * decide whether to put the tuple in the hash table or a temp file
1628 if (batchno == hashtable->curbatch)
1631 * put the tuple in hash table
1633 HashJoinTuple hashTuple;
1634 int hashTupleSize;
1635 double ntuples = (hashtable->totalTuples - hashtable->skewTuples);
1637 /* Create the HashJoinTuple */
1638 hashTupleSize = HJTUPLE_OVERHEAD + tuple->t_len;
1639 hashTuple = (HashJoinTuple) dense_alloc(hashtable, hashTupleSize);
1641 hashTuple->hashvalue = hashvalue;
1642 memcpy(HJTUPLE_MINTUPLE(hashTuple), tuple, tuple->t_len);
1645 * We always reset the tuple-matched flag on insertion. This is okay
1646 * even when reloading a tuple from a batch file, since the tuple
1647 * could not possibly have been matched to an outer tuple before it
1648 * went into the batch file.
1650 HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(hashTuple));
1652 /* Push it onto the front of the bucket's list */
1653 hashTuple->next.unshared = hashtable->buckets.unshared[bucketno];
1654 hashtable->buckets.unshared[bucketno] = hashTuple;
1657 * Increase the (optimal) number of buckets if we just exceeded the
1658 * NTUP_PER_BUCKET threshold, but only when there's still a single
1659 * batch.
1661 if (hashtable->nbatch == 1 &&
1662 ntuples > (hashtable->nbuckets_optimal * NTUP_PER_BUCKET))
1664 /* Guard against integer overflow and alloc size overflow */
1665 if (hashtable->nbuckets_optimal <= INT_MAX / 2 &&
1666 hashtable->nbuckets_optimal * 2 <= MaxAllocSize / sizeof(HashJoinTuple))
1668 hashtable->nbuckets_optimal *= 2;
1669 hashtable->log2_nbuckets_optimal += 1;
1673 /* Account for space used, and back off if we've used too much */
1674 hashtable->spaceUsed += hashTupleSize;
1675 if (hashtable->spaceUsed > hashtable->spacePeak)
1676 hashtable->spacePeak = hashtable->spaceUsed;
1677 if (hashtable->spaceUsed +
1678 hashtable->nbuckets_optimal * sizeof(HashJoinTuple)
1679 > hashtable->spaceAllowed)
1680 ExecHashIncreaseNumBatches(hashtable);
1682 else
1685 * put the tuple into a temp file for later batches
1687 Assert(batchno > hashtable->curbatch);
1688 ExecHashJoinSaveTuple(tuple,
1689 hashvalue,
1690 &hashtable->innerBatchFile[batchno]);
1693 if (shouldFree)
1694 heap_free_minimal_tuple(tuple);
1698 * ExecParallelHashTableInsert
1699 * insert a tuple into a shared hash table or shared batch tuplestore
1701 void
1702 ExecParallelHashTableInsert(HashJoinTable hashtable,
1703 TupleTableSlot *slot,
1704 uint32 hashvalue)
1706 bool shouldFree;
1707 MinimalTuple tuple = ExecFetchSlotMinimalTuple(slot, &shouldFree);
1708 dsa_pointer shared;
1709 int bucketno;
1710 int batchno;
1712 retry:
1713 ExecHashGetBucketAndBatch(hashtable, hashvalue, &bucketno, &batchno);
1715 if (batchno == 0)
1717 HashJoinTuple hashTuple;
1719 /* Try to load it into memory. */
1720 Assert(BarrierPhase(&hashtable->parallel_state->build_barrier) ==
1721 PHJ_BUILD_HASHING_INNER);
1722 hashTuple = ExecParallelHashTupleAlloc(hashtable,
1723 HJTUPLE_OVERHEAD + tuple->t_len,
1724 &shared);
1725 if (hashTuple == NULL)
1726 goto retry;
1728 /* Store the hash value in the HashJoinTuple header. */
1729 hashTuple->hashvalue = hashvalue;
1730 memcpy(HJTUPLE_MINTUPLE(hashTuple), tuple, tuple->t_len);
1732 /* Push it onto the front of the bucket's list */
1733 ExecParallelHashPushTuple(&hashtable->buckets.shared[bucketno],
1734 hashTuple, shared);
1736 else
1738 size_t tuple_size = MAXALIGN(HJTUPLE_OVERHEAD + tuple->t_len);
1740 Assert(batchno > 0);
1742 /* Try to preallocate space in the batch if necessary. */
1743 if (hashtable->batches[batchno].preallocated < tuple_size)
1745 if (!ExecParallelHashTuplePrealloc(hashtable, batchno, tuple_size))
1746 goto retry;
1749 Assert(hashtable->batches[batchno].preallocated >= tuple_size);
1750 hashtable->batches[batchno].preallocated -= tuple_size;
1751 sts_puttuple(hashtable->batches[batchno].inner_tuples, &hashvalue,
1752 tuple);
1754 ++hashtable->batches[batchno].ntuples;
1756 if (shouldFree)
1757 heap_free_minimal_tuple(tuple);
1761 * Insert a tuple into the current hash table. Unlike
1762 * ExecParallelHashTableInsert, this version is not prepared to send the tuple
1763 * to other batches or to run out of memory, and should only be called with
1764 * tuples that belong in the current batch once growth has been disabled.
1766 void
1767 ExecParallelHashTableInsertCurrentBatch(HashJoinTable hashtable,
1768 TupleTableSlot *slot,
1769 uint32 hashvalue)
1771 bool shouldFree;
1772 MinimalTuple tuple = ExecFetchSlotMinimalTuple(slot, &shouldFree);
1773 HashJoinTuple hashTuple;
1774 dsa_pointer shared;
1775 int batchno;
1776 int bucketno;
1778 ExecHashGetBucketAndBatch(hashtable, hashvalue, &bucketno, &batchno);
1779 Assert(batchno == hashtable->curbatch);
1780 hashTuple = ExecParallelHashTupleAlloc(hashtable,
1781 HJTUPLE_OVERHEAD + tuple->t_len,
1782 &shared);
1783 hashTuple->hashvalue = hashvalue;
1784 memcpy(HJTUPLE_MINTUPLE(hashTuple), tuple, tuple->t_len);
1785 HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(hashTuple));
1786 ExecParallelHashPushTuple(&hashtable->buckets.shared[bucketno],
1787 hashTuple, shared);
1789 if (shouldFree)
1790 heap_free_minimal_tuple(tuple);
1794 * ExecHashGetHashValue
1795 * Compute the hash value for a tuple
1797 * The tuple to be tested must be in econtext->ecxt_outertuple (thus Vars in
1798 * the hashkeys expressions need to have OUTER_VAR as varno). If outer_tuple
1799 * is false (meaning it's the HashJoin's inner node, Hash), econtext,
1800 * hashkeys, and slot need to be from Hash, with hashkeys/slot referencing and
1801 * being suitable for tuples from the node below the Hash. Conversely, if
1802 * outer_tuple is true, econtext is from HashJoin, and hashkeys/slot need to
1803 * be appropriate for tuples from HashJoin's outer node.
1805 * A true result means the tuple's hash value has been successfully computed
1806 * and stored at *hashvalue. A false result means the tuple cannot match
1807 * because it contains a null attribute, and hence it should be discarded
1808 * immediately. (If keep_nulls is true then false is never returned.)
1810 bool
1811 ExecHashGetHashValue(HashJoinTable hashtable,
1812 ExprContext *econtext,
1813 List *hashkeys,
1814 bool outer_tuple,
1815 bool keep_nulls,
1816 uint32 *hashvalue)
1818 uint32 hashkey = 0;
1819 FmgrInfo *hashfunctions;
1820 ListCell *hk;
1821 int i = 0;
1822 MemoryContext oldContext;
1825 * We reset the eval context each time to reclaim any memory leaked in the
1826 * hashkey expressions.
1828 ResetExprContext(econtext);
1830 oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);
1832 if (outer_tuple)
1833 hashfunctions = hashtable->outer_hashfunctions;
1834 else
1835 hashfunctions = hashtable->inner_hashfunctions;
1837 foreach(hk, hashkeys)
1839 ExprState *keyexpr = (ExprState *) lfirst(hk);
1840 Datum keyval;
1841 bool isNull;
1843 /* rotate hashkey left 1 bit at each step */
1844 hashkey = (hashkey << 1) | ((hashkey & 0x80000000) ? 1 : 0);
1847 * Get the join attribute value of the tuple
1849 keyval = ExecEvalExpr(keyexpr, econtext, &isNull);
1852 * If the attribute is NULL, and the join operator is strict, then
1853 * this tuple cannot pass the join qual so we can reject it
1854 * immediately (unless we're scanning the outside of an outer join, in
1855 * which case we must not reject it). Otherwise we act like the
1856 * hashcode of NULL is zero (this will support operators that act like
1857 * IS NOT DISTINCT, though not any more-random behavior). We treat
1858 * the hash support function as strict even if the operator is not.
1860 * Note: currently, all hashjoinable operators must be strict since
1861 * the hash index AM assumes that. However, it takes so little extra
1862 * code here to allow non-strict that we may as well do it.
1864 if (isNull)
1866 if (hashtable->hashStrict[i] && !keep_nulls)
1868 MemoryContextSwitchTo(oldContext);
1869 return false; /* cannot match */
1871 /* else, leave hashkey unmodified, equivalent to hashcode 0 */
1873 else
1875 /* Compute the hash function */
1876 uint32 hkey;
1878 hkey = DatumGetUInt32(FunctionCall1Coll(&hashfunctions[i], hashtable->collations[i], keyval));
1879 hashkey ^= hkey;
1882 i++;
1885 MemoryContextSwitchTo(oldContext);
1887 *hashvalue = hashkey;
1888 return true;
1892 * ExecHashGetBucketAndBatch
1893 * Determine the bucket number and batch number for a hash value
1895 * Note: on-the-fly increases of nbatch must not change the bucket number
1896 * for a given hash code (since we don't move tuples to different hash
1897 * chains), and must only cause the batch number to remain the same or
1898 * increase. Our algorithm is
1899 * bucketno = hashvalue MOD nbuckets
1900 * batchno = ROR(hashvalue, log2_nbuckets) MOD nbatch
1901 * where nbuckets and nbatch are both expected to be powers of 2, so we can
1902 * do the computations by shifting and masking. (This assumes that all hash
1903 * functions are good about randomizing all their output bits, else we are
1904 * likely to have very skewed bucket or batch occupancy.)
1906 * nbuckets and log2_nbuckets may change while nbatch == 1 because of dynamic
1907 * bucket count growth. Once we start batching, the value is fixed and does
1908 * not change over the course of the join (making it possible to compute batch
1909 * number the way we do here).
1911 * nbatch is always a power of 2; we increase it only by doubling it. This
1912 * effectively adds one more bit to the top of the batchno. In very large
1913 * joins, we might run out of bits to add, so we do this by rotating the hash
1914 * value. This causes batchno to steal bits from bucketno when the number of
1915 * virtual buckets exceeds 2^32. It's better to have longer bucket chains
1916 * than to lose the ability to divide batches.
1918 void
1919 ExecHashGetBucketAndBatch(HashJoinTable hashtable,
1920 uint32 hashvalue,
1921 int *bucketno,
1922 int *batchno)
1924 uint32 nbuckets = (uint32) hashtable->nbuckets;
1925 uint32 nbatch = (uint32) hashtable->nbatch;
1927 if (nbatch > 1)
1929 *bucketno = hashvalue & (nbuckets - 1);
1930 *batchno = pg_rotate_right32(hashvalue,
1931 hashtable->log2_nbuckets) & (nbatch - 1);
1933 else
1935 *bucketno = hashvalue & (nbuckets - 1);
1936 *batchno = 0;
1941 * ExecScanHashBucket
1942 * scan a hash bucket for matches to the current outer tuple
1944 * The current outer tuple must be stored in econtext->ecxt_outertuple.
1946 * On success, the inner tuple is stored into hjstate->hj_CurTuple and
1947 * econtext->ecxt_innertuple, using hjstate->hj_HashTupleSlot as the slot
1948 * for the latter.
1950 bool
1951 ExecScanHashBucket(HashJoinState *hjstate,
1952 ExprContext *econtext)
1954 ExprState *hjclauses = hjstate->hashclauses;
1955 HashJoinTable hashtable = hjstate->hj_HashTable;
1956 HashJoinTuple hashTuple = hjstate->hj_CurTuple;
1957 uint32 hashvalue = hjstate->hj_CurHashValue;
1960 * hj_CurTuple is the address of the tuple last returned from the current
1961 * bucket, or NULL if it's time to start scanning a new bucket.
1963 * If the tuple hashed to a skew bucket then scan the skew bucket
1964 * otherwise scan the standard hashtable bucket.
1966 if (hashTuple != NULL)
1967 hashTuple = hashTuple->next.unshared;
1968 else if (hjstate->hj_CurSkewBucketNo != INVALID_SKEW_BUCKET_NO)
1969 hashTuple = hashtable->skewBucket[hjstate->hj_CurSkewBucketNo]->tuples;
1970 else
1971 hashTuple = hashtable->buckets.unshared[hjstate->hj_CurBucketNo];
1973 while (hashTuple != NULL)
1975 if (hashTuple->hashvalue == hashvalue)
1977 TupleTableSlot *inntuple;
1979 /* insert hashtable's tuple into exec slot so ExecQual sees it */
1980 inntuple = ExecStoreMinimalTuple(HJTUPLE_MINTUPLE(hashTuple),
1981 hjstate->hj_HashTupleSlot,
1982 false); /* do not pfree */
1983 econtext->ecxt_innertuple = inntuple;
1985 if (ExecQualAndReset(hjclauses, econtext))
1987 hjstate->hj_CurTuple = hashTuple;
1988 return true;
1992 hashTuple = hashTuple->next.unshared;
1996 * no match
1998 return false;
2002 * ExecParallelScanHashBucket
2003 * scan a hash bucket for matches to the current outer tuple
2005 * The current outer tuple must be stored in econtext->ecxt_outertuple.
2007 * On success, the inner tuple is stored into hjstate->hj_CurTuple and
2008 * econtext->ecxt_innertuple, using hjstate->hj_HashTupleSlot as the slot
2009 * for the latter.
2011 bool
2012 ExecParallelScanHashBucket(HashJoinState *hjstate,
2013 ExprContext *econtext)
2015 ExprState *hjclauses = hjstate->hashclauses;
2016 HashJoinTable hashtable = hjstate->hj_HashTable;
2017 HashJoinTuple hashTuple = hjstate->hj_CurTuple;
2018 uint32 hashvalue = hjstate->hj_CurHashValue;
2021 * hj_CurTuple is the address of the tuple last returned from the current
2022 * bucket, or NULL if it's time to start scanning a new bucket.
2024 if (hashTuple != NULL)
2025 hashTuple = ExecParallelHashNextTuple(hashtable, hashTuple);
2026 else
2027 hashTuple = ExecParallelHashFirstTuple(hashtable,
2028 hjstate->hj_CurBucketNo);
2030 while (hashTuple != NULL)
2032 if (hashTuple->hashvalue == hashvalue)
2034 TupleTableSlot *inntuple;
2036 /* insert hashtable's tuple into exec slot so ExecQual sees it */
2037 inntuple = ExecStoreMinimalTuple(HJTUPLE_MINTUPLE(hashTuple),
2038 hjstate->hj_HashTupleSlot,
2039 false); /* do not pfree */
2040 econtext->ecxt_innertuple = inntuple;
2042 if (ExecQualAndReset(hjclauses, econtext))
2044 hjstate->hj_CurTuple = hashTuple;
2045 return true;
2049 hashTuple = ExecParallelHashNextTuple(hashtable, hashTuple);
2053 * no match
2055 return false;
2059 * ExecPrepHashTableForUnmatched
2060 * set up for a series of ExecScanHashTableForUnmatched calls
2062 void
2063 ExecPrepHashTableForUnmatched(HashJoinState *hjstate)
2065 /*----------
2066 * During this scan we use the HashJoinState fields as follows:
2068 * hj_CurBucketNo: next regular bucket to scan
2069 * hj_CurSkewBucketNo: next skew bucket (an index into skewBucketNums)
2070 * hj_CurTuple: last tuple returned, or NULL to start next bucket
2071 *----------
2073 hjstate->hj_CurBucketNo = 0;
2074 hjstate->hj_CurSkewBucketNo = 0;
2075 hjstate->hj_CurTuple = NULL;
2079 * ExecScanHashTableForUnmatched
2080 * scan the hash table for unmatched inner tuples
2082 * On success, the inner tuple is stored into hjstate->hj_CurTuple and
2083 * econtext->ecxt_innertuple, using hjstate->hj_HashTupleSlot as the slot
2084 * for the latter.
2086 bool
2087 ExecScanHashTableForUnmatched(HashJoinState *hjstate, ExprContext *econtext)
2089 HashJoinTable hashtable = hjstate->hj_HashTable;
2090 HashJoinTuple hashTuple = hjstate->hj_CurTuple;
2092 for (;;)
2095 * hj_CurTuple is the address of the tuple last returned from the
2096 * current bucket, or NULL if it's time to start scanning a new
2097 * bucket.
2099 if (hashTuple != NULL)
2100 hashTuple = hashTuple->next.unshared;
2101 else if (hjstate->hj_CurBucketNo < hashtable->nbuckets)
2103 hashTuple = hashtable->buckets.unshared[hjstate->hj_CurBucketNo];
2104 hjstate->hj_CurBucketNo++;
2106 else if (hjstate->hj_CurSkewBucketNo < hashtable->nSkewBuckets)
2108 int j = hashtable->skewBucketNums[hjstate->hj_CurSkewBucketNo];
2110 hashTuple = hashtable->skewBucket[j]->tuples;
2111 hjstate->hj_CurSkewBucketNo++;
2113 else
2114 break; /* finished all buckets */
2116 while (hashTuple != NULL)
2118 if (!HeapTupleHeaderHasMatch(HJTUPLE_MINTUPLE(hashTuple)))
2120 TupleTableSlot *inntuple;
2122 /* insert hashtable's tuple into exec slot */
2123 inntuple = ExecStoreMinimalTuple(HJTUPLE_MINTUPLE(hashTuple),
2124 hjstate->hj_HashTupleSlot,
2125 false); /* do not pfree */
2126 econtext->ecxt_innertuple = inntuple;
2129 * Reset temp memory each time; although this function doesn't
2130 * do any qual eval, the caller will, so let's keep it
2131 * parallel to ExecScanHashBucket.
2133 ResetExprContext(econtext);
2135 hjstate->hj_CurTuple = hashTuple;
2136 return true;
2139 hashTuple = hashTuple->next.unshared;
2142 /* allow this loop to be cancellable */
2143 CHECK_FOR_INTERRUPTS();
2147 * no more unmatched tuples
2149 return false;
2153 * ExecHashTableReset
2155 * reset hash table header for new batch
2157 void
2158 ExecHashTableReset(HashJoinTable hashtable)
2160 MemoryContext oldcxt;
2161 int nbuckets = hashtable->nbuckets;
2164 * Release all the hash buckets and tuples acquired in the prior pass, and
2165 * reinitialize the context for a new pass.
2167 MemoryContextReset(hashtable->batchCxt);
2168 oldcxt = MemoryContextSwitchTo(hashtable->batchCxt);
2170 /* Reallocate and reinitialize the hash bucket headers. */
2171 hashtable->buckets.unshared = (HashJoinTuple *)
2172 palloc0(nbuckets * sizeof(HashJoinTuple));
2174 hashtable->spaceUsed = 0;
2176 MemoryContextSwitchTo(oldcxt);
2178 /* Forget the chunks (the memory was freed by the context reset above). */
2179 hashtable->chunks = NULL;
2183 * ExecHashTableResetMatchFlags
2184 * Clear all the HeapTupleHeaderHasMatch flags in the table
2186 void
2187 ExecHashTableResetMatchFlags(HashJoinTable hashtable)
2189 HashJoinTuple tuple;
2190 int i;
2192 /* Reset all flags in the main table ... */
2193 for (i = 0; i < hashtable->nbuckets; i++)
2195 for (tuple = hashtable->buckets.unshared[i]; tuple != NULL;
2196 tuple = tuple->next.unshared)
2197 HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(tuple));
2200 /* ... and the same for the skew buckets, if any */
2201 for (i = 0; i < hashtable->nSkewBuckets; i++)
2203 int j = hashtable->skewBucketNums[i];
2204 HashSkewBucket *skewBucket = hashtable->skewBucket[j];
2206 for (tuple = skewBucket->tuples; tuple != NULL; tuple = tuple->next.unshared)
2207 HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(tuple));
2212 void
2213 ExecReScanHash(HashState *node)
2216 * if chgParam of subnode is not null then plan will be re-scanned by
2217 * first ExecProcNode.
2219 if (node->ps.lefttree->chgParam == NULL)
2220 ExecReScan(node->ps.lefttree);
2225 * ExecHashBuildSkewHash
2227 * Set up for skew optimization if we can identify the most common values
2228 * (MCVs) of the outer relation's join key. We make a skew hash bucket
2229 * for the hash value of each MCV, up to the number of slots allowed
2230 * based on available memory.
2232 static void
2233 ExecHashBuildSkewHash(HashJoinTable hashtable, Hash *node, int mcvsToUse)
2235 HeapTupleData *statsTuple;
2236 AttStatsSlot sslot;
2238 /* Do nothing if planner didn't identify the outer relation's join key */
2239 if (!OidIsValid(node->skewTable))
2240 return;
2241 /* Also, do nothing if we don't have room for at least one skew bucket */
2242 if (mcvsToUse <= 0)
2243 return;
2246 * Try to find the MCV statistics for the outer relation's join key.
2248 statsTuple = SearchSysCache3(STATRELATTINH,
2249 ObjectIdGetDatum(node->skewTable),
2250 Int16GetDatum(node->skewColumn),
2251 BoolGetDatum(node->skewInherit));
2252 if (!HeapTupleIsValid(statsTuple))
2253 return;
2255 if (get_attstatsslot(&sslot, statsTuple,
2256 STATISTIC_KIND_MCV, InvalidOid,
2257 ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS))
2259 double frac;
2260 int nbuckets;
2261 FmgrInfo *hashfunctions;
2262 int i;
2264 if (mcvsToUse > sslot.nvalues)
2265 mcvsToUse = sslot.nvalues;
2268 * Calculate the expected fraction of outer relation that will
2269 * participate in the skew optimization. If this isn't at least
2270 * SKEW_MIN_OUTER_FRACTION, don't use skew optimization.
2272 frac = 0;
2273 for (i = 0; i < mcvsToUse; i++)
2274 frac += sslot.numbers[i];
2275 if (frac < SKEW_MIN_OUTER_FRACTION)
2277 free_attstatsslot(&sslot);
2278 ReleaseSysCache(statsTuple);
2279 return;
2283 * Okay, set up the skew hashtable.
2285 * skewBucket[] is an open addressing hashtable with a power of 2 size
2286 * that is greater than the number of MCV values. (This ensures there
2287 * will be at least one null entry, so searches will always
2288 * terminate.)
2290 * Note: this code could fail if mcvsToUse exceeds INT_MAX/8 or
2291 * MaxAllocSize/sizeof(void *)/8, but that is not currently possible
2292 * since we limit pg_statistic entries to much less than that.
2294 nbuckets = pg_nextpower2_32(mcvsToUse + 1);
2295 /* use two more bits just to help avoid collisions */
2296 nbuckets <<= 2;
2298 hashtable->skewEnabled = true;
2299 hashtable->skewBucketLen = nbuckets;
2302 * We allocate the bucket memory in the hashtable's batch context. It
2303 * is only needed during the first batch, and this ensures it will be
2304 * automatically removed once the first batch is done.
2306 hashtable->skewBucket = (HashSkewBucket **)
2307 MemoryContextAllocZero(hashtable->batchCxt,
2308 nbuckets * sizeof(HashSkewBucket *));
2309 hashtable->skewBucketNums = (int *)
2310 MemoryContextAllocZero(hashtable->batchCxt,
2311 mcvsToUse * sizeof(int));
2313 hashtable->spaceUsed += nbuckets * sizeof(HashSkewBucket *)
2314 + mcvsToUse * sizeof(int);
2315 hashtable->spaceUsedSkew += nbuckets * sizeof(HashSkewBucket *)
2316 + mcvsToUse * sizeof(int);
2317 if (hashtable->spaceUsed > hashtable->spacePeak)
2318 hashtable->spacePeak = hashtable->spaceUsed;
2321 * Create a skew bucket for each MCV hash value.
2323 * Note: it is very important that we create the buckets in order of
2324 * decreasing MCV frequency. If we have to remove some buckets, they
2325 * must be removed in reverse order of creation (see notes in
2326 * ExecHashRemoveNextSkewBucket) and we want the least common MCVs to
2327 * be removed first.
2329 hashfunctions = hashtable->outer_hashfunctions;
2331 for (i = 0; i < mcvsToUse; i++)
2333 uint32 hashvalue;
2334 int bucket;
2336 hashvalue = DatumGetUInt32(FunctionCall1Coll(&hashfunctions[0],
2337 hashtable->collations[0],
2338 sslot.values[i]));
2341 * While we have not hit a hole in the hashtable and have not hit
2342 * the desired bucket, we have collided with some previous hash
2343 * value, so try the next bucket location. NB: this code must
2344 * match ExecHashGetSkewBucket.
2346 bucket = hashvalue & (nbuckets - 1);
2347 while (hashtable->skewBucket[bucket] != NULL &&
2348 hashtable->skewBucket[bucket]->hashvalue != hashvalue)
2349 bucket = (bucket + 1) & (nbuckets - 1);
2352 * If we found an existing bucket with the same hashvalue, leave
2353 * it alone. It's okay for two MCVs to share a hashvalue.
2355 if (hashtable->skewBucket[bucket] != NULL)
2356 continue;
2358 /* Okay, create a new skew bucket for this hashvalue. */
2359 hashtable->skewBucket[bucket] = (HashSkewBucket *)
2360 MemoryContextAlloc(hashtable->batchCxt,
2361 sizeof(HashSkewBucket));
2362 hashtable->skewBucket[bucket]->hashvalue = hashvalue;
2363 hashtable->skewBucket[bucket]->tuples = NULL;
2364 hashtable->skewBucketNums[hashtable->nSkewBuckets] = bucket;
2365 hashtable->nSkewBuckets++;
2366 hashtable->spaceUsed += SKEW_BUCKET_OVERHEAD;
2367 hashtable->spaceUsedSkew += SKEW_BUCKET_OVERHEAD;
2368 if (hashtable->spaceUsed > hashtable->spacePeak)
2369 hashtable->spacePeak = hashtable->spaceUsed;
2372 free_attstatsslot(&sslot);
2375 ReleaseSysCache(statsTuple);
2379 * ExecHashGetSkewBucket
2381 * Returns the index of the skew bucket for this hashvalue,
2382 * or INVALID_SKEW_BUCKET_NO if the hashvalue is not
2383 * associated with any active skew bucket.
2386 ExecHashGetSkewBucket(HashJoinTable hashtable, uint32 hashvalue)
2388 int bucket;
2391 * Always return INVALID_SKEW_BUCKET_NO if not doing skew optimization (in
2392 * particular, this happens after the initial batch is done).
2394 if (!hashtable->skewEnabled)
2395 return INVALID_SKEW_BUCKET_NO;
2398 * Since skewBucketLen is a power of 2, we can do a modulo by ANDing.
2400 bucket = hashvalue & (hashtable->skewBucketLen - 1);
2403 * While we have not hit a hole in the hashtable and have not hit the
2404 * desired bucket, we have collided with some other hash value, so try the
2405 * next bucket location.
2407 while (hashtable->skewBucket[bucket] != NULL &&
2408 hashtable->skewBucket[bucket]->hashvalue != hashvalue)
2409 bucket = (bucket + 1) & (hashtable->skewBucketLen - 1);
2412 * Found the desired bucket?
2414 if (hashtable->skewBucket[bucket] != NULL)
2415 return bucket;
2418 * There must not be any hashtable entry for this hash value.
2420 return INVALID_SKEW_BUCKET_NO;
2424 * ExecHashSkewTableInsert
2426 * Insert a tuple into the skew hashtable.
2428 * This should generally match up with the current-batch case in
2429 * ExecHashTableInsert.
2431 static void
2432 ExecHashSkewTableInsert(HashJoinTable hashtable,
2433 TupleTableSlot *slot,
2434 uint32 hashvalue,
2435 int bucketNumber)
2437 bool shouldFree;
2438 MinimalTuple tuple = ExecFetchSlotMinimalTuple(slot, &shouldFree);
2439 HashJoinTuple hashTuple;
2440 int hashTupleSize;
2442 /* Create the HashJoinTuple */
2443 hashTupleSize = HJTUPLE_OVERHEAD + tuple->t_len;
2444 hashTuple = (HashJoinTuple) MemoryContextAlloc(hashtable->batchCxt,
2445 hashTupleSize);
2446 hashTuple->hashvalue = hashvalue;
2447 memcpy(HJTUPLE_MINTUPLE(hashTuple), tuple, tuple->t_len);
2448 HeapTupleHeaderClearMatch(HJTUPLE_MINTUPLE(hashTuple));
2450 /* Push it onto the front of the skew bucket's list */
2451 hashTuple->next.unshared = hashtable->skewBucket[bucketNumber]->tuples;
2452 hashtable->skewBucket[bucketNumber]->tuples = hashTuple;
2453 Assert(hashTuple != hashTuple->next.unshared);
2455 /* Account for space used, and back off if we've used too much */
2456 hashtable->spaceUsed += hashTupleSize;
2457 hashtable->spaceUsedSkew += hashTupleSize;
2458 if (hashtable->spaceUsed > hashtable->spacePeak)
2459 hashtable->spacePeak = hashtable->spaceUsed;
2460 while (hashtable->spaceUsedSkew > hashtable->spaceAllowedSkew)
2461 ExecHashRemoveNextSkewBucket(hashtable);
2463 /* Check we are not over the total spaceAllowed, either */
2464 if (hashtable->spaceUsed > hashtable->spaceAllowed)
2465 ExecHashIncreaseNumBatches(hashtable);
2467 if (shouldFree)
2468 heap_free_minimal_tuple(tuple);
2472 * ExecHashRemoveNextSkewBucket
2474 * Remove the least valuable skew bucket by pushing its tuples into
2475 * the main hash table.
2477 static void
2478 ExecHashRemoveNextSkewBucket(HashJoinTable hashtable)
2480 int bucketToRemove;
2481 HashSkewBucket *bucket;
2482 uint32 hashvalue;
2483 int bucketno;
2484 int batchno;
2485 HashJoinTuple hashTuple;
2487 /* Locate the bucket to remove */
2488 bucketToRemove = hashtable->skewBucketNums[hashtable->nSkewBuckets - 1];
2489 bucket = hashtable->skewBucket[bucketToRemove];
2492 * Calculate which bucket and batch the tuples belong to in the main
2493 * hashtable. They all have the same hash value, so it's the same for all
2494 * of them. Also note that it's not possible for nbatch to increase while
2495 * we are processing the tuples.
2497 hashvalue = bucket->hashvalue;
2498 ExecHashGetBucketAndBatch(hashtable, hashvalue, &bucketno, &batchno);
2500 /* Process all tuples in the bucket */
2501 hashTuple = bucket->tuples;
2502 while (hashTuple != NULL)
2504 HashJoinTuple nextHashTuple = hashTuple->next.unshared;
2505 MinimalTuple tuple;
2506 Size tupleSize;
2509 * This code must agree with ExecHashTableInsert. We do not use
2510 * ExecHashTableInsert directly as ExecHashTableInsert expects a
2511 * TupleTableSlot while we already have HashJoinTuples.
2513 tuple = HJTUPLE_MINTUPLE(hashTuple);
2514 tupleSize = HJTUPLE_OVERHEAD + tuple->t_len;
2516 /* Decide whether to put the tuple in the hash table or a temp file */
2517 if (batchno == hashtable->curbatch)
2519 /* Move the tuple to the main hash table */
2520 HashJoinTuple copyTuple;
2523 * We must copy the tuple into the dense storage, else it will not
2524 * be found by, eg, ExecHashIncreaseNumBatches.
2526 copyTuple = (HashJoinTuple) dense_alloc(hashtable, tupleSize);
2527 memcpy(copyTuple, hashTuple, tupleSize);
2528 pfree(hashTuple);
2530 copyTuple->next.unshared = hashtable->buckets.unshared[bucketno];
2531 hashtable->buckets.unshared[bucketno] = copyTuple;
2533 /* We have reduced skew space, but overall space doesn't change */
2534 hashtable->spaceUsedSkew -= tupleSize;
2536 else
2538 /* Put the tuple into a temp file for later batches */
2539 Assert(batchno > hashtable->curbatch);
2540 ExecHashJoinSaveTuple(tuple, hashvalue,
2541 &hashtable->innerBatchFile[batchno]);
2542 pfree(hashTuple);
2543 hashtable->spaceUsed -= tupleSize;
2544 hashtable->spaceUsedSkew -= tupleSize;
2547 hashTuple = nextHashTuple;
2549 /* allow this loop to be cancellable */
2550 CHECK_FOR_INTERRUPTS();
2554 * Free the bucket struct itself and reset the hashtable entry to NULL.
2556 * NOTE: this is not nearly as simple as it looks on the surface, because
2557 * of the possibility of collisions in the hashtable. Suppose that hash
2558 * values A and B collide at a particular hashtable entry, and that A was
2559 * entered first so B gets shifted to a different table entry. If we were
2560 * to remove A first then ExecHashGetSkewBucket would mistakenly start
2561 * reporting that B is not in the hashtable, because it would hit the NULL
2562 * before finding B. However, we always remove entries in the reverse
2563 * order of creation, so this failure cannot happen.
2565 hashtable->skewBucket[bucketToRemove] = NULL;
2566 hashtable->nSkewBuckets--;
2567 pfree(bucket);
2568 hashtable->spaceUsed -= SKEW_BUCKET_OVERHEAD;
2569 hashtable->spaceUsedSkew -= SKEW_BUCKET_OVERHEAD;
2572 * If we have removed all skew buckets then give up on skew optimization.
2573 * Release the arrays since they aren't useful any more.
2575 if (hashtable->nSkewBuckets == 0)
2577 hashtable->skewEnabled = false;
2578 pfree(hashtable->skewBucket);
2579 pfree(hashtable->skewBucketNums);
2580 hashtable->skewBucket = NULL;
2581 hashtable->skewBucketNums = NULL;
2582 hashtable->spaceUsed -= hashtable->spaceUsedSkew;
2583 hashtable->spaceUsedSkew = 0;
2588 * Reserve space in the DSM segment for instrumentation data.
2590 void
2591 ExecHashEstimate(HashState *node, ParallelContext *pcxt)
2593 size_t size;
2595 /* don't need this if not instrumenting or no workers */
2596 if (!node->ps.instrument || pcxt->nworkers == 0)
2597 return;
2599 size = mul_size(pcxt->nworkers, sizeof(HashInstrumentation));
2600 size = add_size(size, offsetof(SharedHashInfo, hinstrument));
2601 shm_toc_estimate_chunk(&pcxt->estimator, size);
2602 shm_toc_estimate_keys(&pcxt->estimator, 1);
2606 * Set up a space in the DSM for all workers to record instrumentation data
2607 * about their hash table.
2609 void
2610 ExecHashInitializeDSM(HashState *node, ParallelContext *pcxt)
2612 size_t size;
2614 /* don't need this if not instrumenting or no workers */
2615 if (!node->ps.instrument || pcxt->nworkers == 0)
2616 return;
2618 size = offsetof(SharedHashInfo, hinstrument) +
2619 pcxt->nworkers * sizeof(HashInstrumentation);
2620 node->shared_info = (SharedHashInfo *) shm_toc_allocate(pcxt->toc, size);
2622 /* Each per-worker area must start out as zeroes. */
2623 memset(node->shared_info, 0, size);
2625 node->shared_info->num_workers = pcxt->nworkers;
2626 shm_toc_insert(pcxt->toc, node->ps.plan->plan_node_id,
2627 node->shared_info);
2631 * Locate the DSM space for hash table instrumentation data that we'll write
2632 * to at shutdown time.
2634 void
2635 ExecHashInitializeWorker(HashState *node, ParallelWorkerContext *pwcxt)
2637 SharedHashInfo *shared_info;
2639 /* don't need this if not instrumenting */
2640 if (!node->ps.instrument)
2641 return;
2644 * Find our entry in the shared area, and set up a pointer to it so that
2645 * we'll accumulate stats there when shutting down or rebuilding the hash
2646 * table.
2648 shared_info = (SharedHashInfo *)
2649 shm_toc_lookup(pwcxt->toc, node->ps.plan->plan_node_id, false);
2650 node->hinstrument = &shared_info->hinstrument[ParallelWorkerNumber];
2654 * Collect EXPLAIN stats if needed, saving them into DSM memory if
2655 * ExecHashInitializeWorker was called, or local storage if not. In the
2656 * parallel case, this must be done in ExecShutdownHash() rather than
2657 * ExecEndHash() because the latter runs after we've detached from the DSM
2658 * segment.
2660 void
2661 ExecShutdownHash(HashState *node)
2663 /* Allocate save space if EXPLAIN'ing and we didn't do so already */
2664 if (node->ps.instrument && !node->hinstrument)
2665 node->hinstrument = (HashInstrumentation *)
2666 palloc0(sizeof(HashInstrumentation));
2667 /* Now accumulate data for the current (final) hash table */
2668 if (node->hinstrument && node->hashtable)
2669 ExecHashAccumInstrumentation(node->hinstrument, node->hashtable);
2673 * Retrieve instrumentation data from workers before the DSM segment is
2674 * detached, so that EXPLAIN can access it.
2676 void
2677 ExecHashRetrieveInstrumentation(HashState *node)
2679 SharedHashInfo *shared_info = node->shared_info;
2680 size_t size;
2682 if (shared_info == NULL)
2683 return;
2685 /* Replace node->shared_info with a copy in backend-local memory. */
2686 size = offsetof(SharedHashInfo, hinstrument) +
2687 shared_info->num_workers * sizeof(HashInstrumentation);
2688 node->shared_info = palloc(size);
2689 memcpy(node->shared_info, shared_info, size);
2693 * Accumulate instrumentation data from 'hashtable' into an
2694 * initially-zeroed HashInstrumentation struct.
2696 * This is used to merge information across successive hash table instances
2697 * within a single plan node. We take the maximum values of each interesting
2698 * number. The largest nbuckets and largest nbatch values might have occurred
2699 * in different instances, so there's some risk of confusion from reporting
2700 * unrelated numbers; but there's a bigger risk of misdiagnosing a performance
2701 * issue if we don't report the largest values. Similarly, we want to report
2702 * the largest spacePeak regardless of whether it happened in the same
2703 * instance as the largest nbuckets or nbatch. All the instances should have
2704 * the same nbuckets_original and nbatch_original; but there's little value
2705 * in depending on that here, so handle them the same way.
2707 void
2708 ExecHashAccumInstrumentation(HashInstrumentation *instrument,
2709 HashJoinTable hashtable)
2711 instrument->nbuckets = Max(instrument->nbuckets,
2712 hashtable->nbuckets);
2713 instrument->nbuckets_original = Max(instrument->nbuckets_original,
2714 hashtable->nbuckets_original);
2715 instrument->nbatch = Max(instrument->nbatch,
2716 hashtable->nbatch);
2717 instrument->nbatch_original = Max(instrument->nbatch_original,
2718 hashtable->nbatch_original);
2719 instrument->space_peak = Max(instrument->space_peak,
2720 hashtable->spacePeak);
2724 * Allocate 'size' bytes from the currently active HashMemoryChunk
2726 static void *
2727 dense_alloc(HashJoinTable hashtable, Size size)
2729 HashMemoryChunk newChunk;
2730 char *ptr;
2732 /* just in case the size is not already aligned properly */
2733 size = MAXALIGN(size);
2736 * If tuple size is larger than threshold, allocate a separate chunk.
2738 if (size > HASH_CHUNK_THRESHOLD)
2740 /* allocate new chunk and put it at the beginning of the list */
2741 newChunk = (HashMemoryChunk) MemoryContextAlloc(hashtable->batchCxt,
2742 HASH_CHUNK_HEADER_SIZE + size);
2743 newChunk->maxlen = size;
2744 newChunk->used = size;
2745 newChunk->ntuples = 1;
2748 * Add this chunk to the list after the first existing chunk, so that
2749 * we don't lose the remaining space in the "current" chunk.
2751 if (hashtable->chunks != NULL)
2753 newChunk->next = hashtable->chunks->next;
2754 hashtable->chunks->next.unshared = newChunk;
2756 else
2758 newChunk->next.unshared = hashtable->chunks;
2759 hashtable->chunks = newChunk;
2762 return HASH_CHUNK_DATA(newChunk);
2766 * See if we have enough space for it in the current chunk (if any). If
2767 * not, allocate a fresh chunk.
2769 if ((hashtable->chunks == NULL) ||
2770 (hashtable->chunks->maxlen - hashtable->chunks->used) < size)
2772 /* allocate new chunk and put it at the beginning of the list */
2773 newChunk = (HashMemoryChunk) MemoryContextAlloc(hashtable->batchCxt,
2774 HASH_CHUNK_HEADER_SIZE + HASH_CHUNK_SIZE);
2776 newChunk->maxlen = HASH_CHUNK_SIZE;
2777 newChunk->used = size;
2778 newChunk->ntuples = 1;
2780 newChunk->next.unshared = hashtable->chunks;
2781 hashtable->chunks = newChunk;
2783 return HASH_CHUNK_DATA(newChunk);
2786 /* There is enough space in the current chunk, let's add the tuple */
2787 ptr = HASH_CHUNK_DATA(hashtable->chunks) + hashtable->chunks->used;
2788 hashtable->chunks->used += size;
2789 hashtable->chunks->ntuples += 1;
2791 /* return pointer to the start of the tuple memory */
2792 return ptr;
2796 * Allocate space for a tuple in shared dense storage. This is equivalent to
2797 * dense_alloc but for Parallel Hash using shared memory.
2799 * While loading a tuple into shared memory, we might run out of memory and
2800 * decide to repartition, or determine that the load factor is too high and
2801 * decide to expand the bucket array, or discover that another participant has
2802 * commanded us to help do that. Return NULL if number of buckets or batches
2803 * has changed, indicating that the caller must retry (considering the
2804 * possibility that the tuple no longer belongs in the same batch).
2806 static HashJoinTuple
2807 ExecParallelHashTupleAlloc(HashJoinTable hashtable, size_t size,
2808 dsa_pointer *shared)
2810 ParallelHashJoinState *pstate = hashtable->parallel_state;
2811 dsa_pointer chunk_shared;
2812 HashMemoryChunk chunk;
2813 Size chunk_size;
2814 HashJoinTuple result;
2815 int curbatch = hashtable->curbatch;
2817 size = MAXALIGN(size);
2820 * Fast path: if there is enough space in this backend's current chunk,
2821 * then we can allocate without any locking.
2823 chunk = hashtable->current_chunk;
2824 if (chunk != NULL &&
2825 size <= HASH_CHUNK_THRESHOLD &&
2826 chunk->maxlen - chunk->used >= size)
2829 chunk_shared = hashtable->current_chunk_shared;
2830 Assert(chunk == dsa_get_address(hashtable->area, chunk_shared));
2831 *shared = chunk_shared + HASH_CHUNK_HEADER_SIZE + chunk->used;
2832 result = (HashJoinTuple) (HASH_CHUNK_DATA(chunk) + chunk->used);
2833 chunk->used += size;
2835 Assert(chunk->used <= chunk->maxlen);
2836 Assert(result == dsa_get_address(hashtable->area, *shared));
2838 return result;
2841 /* Slow path: try to allocate a new chunk. */
2842 LWLockAcquire(&pstate->lock, LW_EXCLUSIVE);
2845 * Check if we need to help increase the number of buckets or batches.
2847 if (pstate->growth == PHJ_GROWTH_NEED_MORE_BATCHES ||
2848 pstate->growth == PHJ_GROWTH_NEED_MORE_BUCKETS)
2850 ParallelHashGrowth growth = pstate->growth;
2852 hashtable->current_chunk = NULL;
2853 LWLockRelease(&pstate->lock);
2855 /* Another participant has commanded us to help grow. */
2856 if (growth == PHJ_GROWTH_NEED_MORE_BATCHES)
2857 ExecParallelHashIncreaseNumBatches(hashtable);
2858 else if (growth == PHJ_GROWTH_NEED_MORE_BUCKETS)
2859 ExecParallelHashIncreaseNumBuckets(hashtable);
2861 /* The caller must retry. */
2862 return NULL;
2865 /* Oversized tuples get their own chunk. */
2866 if (size > HASH_CHUNK_THRESHOLD)
2867 chunk_size = size + HASH_CHUNK_HEADER_SIZE;
2868 else
2869 chunk_size = HASH_CHUNK_SIZE;
2871 /* Check if it's time to grow batches or buckets. */
2872 if (pstate->growth != PHJ_GROWTH_DISABLED)
2874 Assert(curbatch == 0);
2875 Assert(BarrierPhase(&pstate->build_barrier) == PHJ_BUILD_HASHING_INNER);
2878 * Check if our space limit would be exceeded. To avoid choking on
2879 * very large tuples or very low hash_mem setting, we'll always allow
2880 * each backend to allocate at least one chunk.
2882 if (hashtable->batches[0].at_least_one_chunk &&
2883 hashtable->batches[0].shared->size +
2884 chunk_size > pstate->space_allowed)
2886 pstate->growth = PHJ_GROWTH_NEED_MORE_BATCHES;
2887 hashtable->batches[0].shared->space_exhausted = true;
2888 LWLockRelease(&pstate->lock);
2890 return NULL;
2893 /* Check if our load factor limit would be exceeded. */
2894 if (hashtable->nbatch == 1)
2896 hashtable->batches[0].shared->ntuples += hashtable->batches[0].ntuples;
2897 hashtable->batches[0].ntuples = 0;
2898 /* Guard against integer overflow and alloc size overflow */
2899 if (hashtable->batches[0].shared->ntuples + 1 >
2900 hashtable->nbuckets * NTUP_PER_BUCKET &&
2901 hashtable->nbuckets < (INT_MAX / 2) &&
2902 hashtable->nbuckets * 2 <=
2903 MaxAllocSize / sizeof(dsa_pointer_atomic))
2905 pstate->growth = PHJ_GROWTH_NEED_MORE_BUCKETS;
2906 LWLockRelease(&pstate->lock);
2908 return NULL;
2913 /* We are cleared to allocate a new chunk. */
2914 chunk_shared = dsa_allocate(hashtable->area, chunk_size);
2915 hashtable->batches[curbatch].shared->size += chunk_size;
2916 hashtable->batches[curbatch].at_least_one_chunk = true;
2918 /* Set up the chunk. */
2919 chunk = (HashMemoryChunk) dsa_get_address(hashtable->area, chunk_shared);
2920 *shared = chunk_shared + HASH_CHUNK_HEADER_SIZE;
2921 chunk->maxlen = chunk_size - HASH_CHUNK_HEADER_SIZE;
2922 chunk->used = size;
2925 * Push it onto the list of chunks, so that it can be found if we need to
2926 * increase the number of buckets or batches (batch 0 only) and later for
2927 * freeing the memory (all batches).
2929 chunk->next.shared = hashtable->batches[curbatch].shared->chunks;
2930 hashtable->batches[curbatch].shared->chunks = chunk_shared;
2932 if (size <= HASH_CHUNK_THRESHOLD)
2935 * Make this the current chunk so that we can use the fast path to
2936 * fill the rest of it up in future calls.
2938 hashtable->current_chunk = chunk;
2939 hashtable->current_chunk_shared = chunk_shared;
2941 LWLockRelease(&pstate->lock);
2943 Assert(HASH_CHUNK_DATA(chunk) == dsa_get_address(hashtable->area, *shared));
2944 result = (HashJoinTuple) HASH_CHUNK_DATA(chunk);
2946 return result;
2950 * One backend needs to set up the shared batch state including tuplestores.
2951 * Other backends will ensure they have correctly configured accessors by
2952 * called ExecParallelHashEnsureBatchAccessors().
2954 static void
2955 ExecParallelHashJoinSetUpBatches(HashJoinTable hashtable, int nbatch)
2957 ParallelHashJoinState *pstate = hashtable->parallel_state;
2958 ParallelHashJoinBatch *batches;
2959 MemoryContext oldcxt;
2960 int i;
2962 Assert(hashtable->batches == NULL);
2964 /* Allocate space. */
2965 pstate->batches =
2966 dsa_allocate0(hashtable->area,
2967 EstimateParallelHashJoinBatch(hashtable) * nbatch);
2968 pstate->nbatch = nbatch;
2969 batches = dsa_get_address(hashtable->area, pstate->batches);
2971 /* Use hash join memory context. */
2972 oldcxt = MemoryContextSwitchTo(hashtable->hashCxt);
2974 /* Allocate this backend's accessor array. */
2975 hashtable->nbatch = nbatch;
2976 hashtable->batches = (ParallelHashJoinBatchAccessor *)
2977 palloc0(sizeof(ParallelHashJoinBatchAccessor) * hashtable->nbatch);
2979 /* Set up the shared state, tuplestores and backend-local accessors. */
2980 for (i = 0; i < hashtable->nbatch; ++i)
2982 ParallelHashJoinBatchAccessor *accessor = &hashtable->batches[i];
2983 ParallelHashJoinBatch *shared = NthParallelHashJoinBatch(batches, i);
2984 char name[MAXPGPATH];
2987 * All members of shared were zero-initialized. We just need to set
2988 * up the Barrier.
2990 BarrierInit(&shared->batch_barrier, 0);
2991 if (i == 0)
2993 /* Batch 0 doesn't need to be loaded. */
2994 BarrierAttach(&shared->batch_barrier);
2995 while (BarrierPhase(&shared->batch_barrier) < PHJ_BATCH_PROBING)
2996 BarrierArriveAndWait(&shared->batch_barrier, 0);
2997 BarrierDetach(&shared->batch_barrier);
3000 /* Initialize accessor state. All members were zero-initialized. */
3001 accessor->shared = shared;
3003 /* Initialize the shared tuplestores. */
3004 snprintf(name, sizeof(name), "i%dof%d", i, hashtable->nbatch);
3005 accessor->inner_tuples =
3006 sts_initialize(ParallelHashJoinBatchInner(shared),
3007 pstate->nparticipants,
3008 ParallelWorkerNumber + 1,
3009 sizeof(uint32),
3010 SHARED_TUPLESTORE_SINGLE_PASS,
3011 &pstate->fileset,
3012 name);
3013 snprintf(name, sizeof(name), "o%dof%d", i, hashtable->nbatch);
3014 accessor->outer_tuples =
3015 sts_initialize(ParallelHashJoinBatchOuter(shared,
3016 pstate->nparticipants),
3017 pstate->nparticipants,
3018 ParallelWorkerNumber + 1,
3019 sizeof(uint32),
3020 SHARED_TUPLESTORE_SINGLE_PASS,
3021 &pstate->fileset,
3022 name);
3025 MemoryContextSwitchTo(oldcxt);
3029 * Free the current set of ParallelHashJoinBatchAccessor objects.
3031 static void
3032 ExecParallelHashCloseBatchAccessors(HashJoinTable hashtable)
3034 int i;
3036 for (i = 0; i < hashtable->nbatch; ++i)
3038 /* Make sure no files are left open. */
3039 sts_end_write(hashtable->batches[i].inner_tuples);
3040 sts_end_write(hashtable->batches[i].outer_tuples);
3041 sts_end_parallel_scan(hashtable->batches[i].inner_tuples);
3042 sts_end_parallel_scan(hashtable->batches[i].outer_tuples);
3044 pfree(hashtable->batches);
3045 hashtable->batches = NULL;
3049 * Make sure this backend has up-to-date accessors for the current set of
3050 * batches.
3052 static void
3053 ExecParallelHashEnsureBatchAccessors(HashJoinTable hashtable)
3055 ParallelHashJoinState *pstate = hashtable->parallel_state;
3056 ParallelHashJoinBatch *batches;
3057 MemoryContext oldcxt;
3058 int i;
3060 if (hashtable->batches != NULL)
3062 if (hashtable->nbatch == pstate->nbatch)
3063 return;
3064 ExecParallelHashCloseBatchAccessors(hashtable);
3068 * It's possible for a backend to start up very late so that the whole
3069 * join is finished and the shm state for tracking batches has already
3070 * been freed by ExecHashTableDetach(). In that case we'll just leave
3071 * hashtable->batches as NULL so that ExecParallelHashJoinNewBatch() gives
3072 * up early.
3074 if (!DsaPointerIsValid(pstate->batches))
3075 return;
3077 /* Use hash join memory context. */
3078 oldcxt = MemoryContextSwitchTo(hashtable->hashCxt);
3080 /* Allocate this backend's accessor array. */
3081 hashtable->nbatch = pstate->nbatch;
3082 hashtable->batches = (ParallelHashJoinBatchAccessor *)
3083 palloc0(sizeof(ParallelHashJoinBatchAccessor) * hashtable->nbatch);
3085 /* Find the base of the pseudo-array of ParallelHashJoinBatch objects. */
3086 batches = (ParallelHashJoinBatch *)
3087 dsa_get_address(hashtable->area, pstate->batches);
3089 /* Set up the accessor array and attach to the tuplestores. */
3090 for (i = 0; i < hashtable->nbatch; ++i)
3092 ParallelHashJoinBatchAccessor *accessor = &hashtable->batches[i];
3093 ParallelHashJoinBatch *shared = NthParallelHashJoinBatch(batches, i);
3095 accessor->shared = shared;
3096 accessor->preallocated = 0;
3097 accessor->done = false;
3098 accessor->inner_tuples =
3099 sts_attach(ParallelHashJoinBatchInner(shared),
3100 ParallelWorkerNumber + 1,
3101 &pstate->fileset);
3102 accessor->outer_tuples =
3103 sts_attach(ParallelHashJoinBatchOuter(shared,
3104 pstate->nparticipants),
3105 ParallelWorkerNumber + 1,
3106 &pstate->fileset);
3109 MemoryContextSwitchTo(oldcxt);
3113 * Allocate an empty shared memory hash table for a given batch.
3115 void
3116 ExecParallelHashTableAlloc(HashJoinTable hashtable, int batchno)
3118 ParallelHashJoinBatch *batch = hashtable->batches[batchno].shared;
3119 dsa_pointer_atomic *buckets;
3120 int nbuckets = hashtable->parallel_state->nbuckets;
3121 int i;
3123 batch->buckets =
3124 dsa_allocate(hashtable->area, sizeof(dsa_pointer_atomic) * nbuckets);
3125 buckets = (dsa_pointer_atomic *)
3126 dsa_get_address(hashtable->area, batch->buckets);
3127 for (i = 0; i < nbuckets; ++i)
3128 dsa_pointer_atomic_init(&buckets[i], InvalidDsaPointer);
3132 * If we are currently attached to a shared hash join batch, detach. If we
3133 * are last to detach, clean up.
3135 void
3136 ExecHashTableDetachBatch(HashJoinTable hashtable)
3138 if (hashtable->parallel_state != NULL &&
3139 hashtable->curbatch >= 0)
3141 int curbatch = hashtable->curbatch;
3142 ParallelHashJoinBatch *batch = hashtable->batches[curbatch].shared;
3144 /* Make sure any temporary files are closed. */
3145 sts_end_parallel_scan(hashtable->batches[curbatch].inner_tuples);
3146 sts_end_parallel_scan(hashtable->batches[curbatch].outer_tuples);
3148 /* Detach from the batch we were last working on. */
3149 if (BarrierArriveAndDetach(&batch->batch_barrier))
3152 * Technically we shouldn't access the barrier because we're no
3153 * longer attached, but since there is no way it's moving after
3154 * this point it seems safe to make the following assertion.
3156 Assert(BarrierPhase(&batch->batch_barrier) == PHJ_BATCH_DONE);
3158 /* Free shared chunks and buckets. */
3159 while (DsaPointerIsValid(batch->chunks))
3161 HashMemoryChunk chunk =
3162 dsa_get_address(hashtable->area, batch->chunks);
3163 dsa_pointer next = chunk->next.shared;
3165 dsa_free(hashtable->area, batch->chunks);
3166 batch->chunks = next;
3168 if (DsaPointerIsValid(batch->buckets))
3170 dsa_free(hashtable->area, batch->buckets);
3171 batch->buckets = InvalidDsaPointer;
3176 * Track the largest batch we've been attached to. Though each
3177 * backend might see a different subset of batches, explain.c will
3178 * scan the results from all backends to find the largest value.
3180 hashtable->spacePeak =
3181 Max(hashtable->spacePeak,
3182 batch->size + sizeof(dsa_pointer_atomic) * hashtable->nbuckets);
3184 /* Remember that we are not attached to a batch. */
3185 hashtable->curbatch = -1;
3190 * Detach from all shared resources. If we are last to detach, clean up.
3192 void
3193 ExecHashTableDetach(HashJoinTable hashtable)
3195 if (hashtable->parallel_state)
3197 ParallelHashJoinState *pstate = hashtable->parallel_state;
3198 int i;
3200 /* Make sure any temporary files are closed. */
3201 if (hashtable->batches)
3203 for (i = 0; i < hashtable->nbatch; ++i)
3205 sts_end_write(hashtable->batches[i].inner_tuples);
3206 sts_end_write(hashtable->batches[i].outer_tuples);
3207 sts_end_parallel_scan(hashtable->batches[i].inner_tuples);
3208 sts_end_parallel_scan(hashtable->batches[i].outer_tuples);
3212 /* If we're last to detach, clean up shared memory. */
3213 if (BarrierDetach(&pstate->build_barrier))
3215 if (DsaPointerIsValid(pstate->batches))
3217 dsa_free(hashtable->area, pstate->batches);
3218 pstate->batches = InvalidDsaPointer;
3222 hashtable->parallel_state = NULL;
3227 * Get the first tuple in a given bucket identified by number.
3229 static inline HashJoinTuple
3230 ExecParallelHashFirstTuple(HashJoinTable hashtable, int bucketno)
3232 HashJoinTuple tuple;
3233 dsa_pointer p;
3235 Assert(hashtable->parallel_state);
3236 p = dsa_pointer_atomic_read(&hashtable->buckets.shared[bucketno]);
3237 tuple = (HashJoinTuple) dsa_get_address(hashtable->area, p);
3239 return tuple;
3243 * Get the next tuple in the same bucket as 'tuple'.
3245 static inline HashJoinTuple
3246 ExecParallelHashNextTuple(HashJoinTable hashtable, HashJoinTuple tuple)
3248 HashJoinTuple next;
3250 Assert(hashtable->parallel_state);
3251 next = (HashJoinTuple) dsa_get_address(hashtable->area, tuple->next.shared);
3253 return next;
3257 * Insert a tuple at the front of a chain of tuples in DSA memory atomically.
3259 static inline void
3260 ExecParallelHashPushTuple(dsa_pointer_atomic *head,
3261 HashJoinTuple tuple,
3262 dsa_pointer tuple_shared)
3264 for (;;)
3266 tuple->next.shared = dsa_pointer_atomic_read(head);
3267 if (dsa_pointer_atomic_compare_exchange(head,
3268 &tuple->next.shared,
3269 tuple_shared))
3270 break;
3275 * Prepare to work on a given batch.
3277 void
3278 ExecParallelHashTableSetCurrentBatch(HashJoinTable hashtable, int batchno)
3280 Assert(hashtable->batches[batchno].shared->buckets != InvalidDsaPointer);
3282 hashtable->curbatch = batchno;
3283 hashtable->buckets.shared = (dsa_pointer_atomic *)
3284 dsa_get_address(hashtable->area,
3285 hashtable->batches[batchno].shared->buckets);
3286 hashtable->nbuckets = hashtable->parallel_state->nbuckets;
3287 hashtable->log2_nbuckets = my_log2(hashtable->nbuckets);
3288 hashtable->current_chunk = NULL;
3289 hashtable->current_chunk_shared = InvalidDsaPointer;
3290 hashtable->batches[batchno].at_least_one_chunk = false;
3294 * Take the next available chunk from the queue of chunks being worked on in
3295 * parallel. Return NULL if there are none left. Otherwise return a pointer
3296 * to the chunk, and set *shared to the DSA pointer to the chunk.
3298 static HashMemoryChunk
3299 ExecParallelHashPopChunkQueue(HashJoinTable hashtable, dsa_pointer *shared)
3301 ParallelHashJoinState *pstate = hashtable->parallel_state;
3302 HashMemoryChunk chunk;
3304 LWLockAcquire(&pstate->lock, LW_EXCLUSIVE);
3305 if (DsaPointerIsValid(pstate->chunk_work_queue))
3307 *shared = pstate->chunk_work_queue;
3308 chunk = (HashMemoryChunk)
3309 dsa_get_address(hashtable->area, *shared);
3310 pstate->chunk_work_queue = chunk->next.shared;
3312 else
3313 chunk = NULL;
3314 LWLockRelease(&pstate->lock);
3316 return chunk;
3320 * Increase the space preallocated in this backend for a given inner batch by
3321 * at least a given amount. This allows us to track whether a given batch
3322 * would fit in memory when loaded back in. Also increase the number of
3323 * batches or buckets if required.
3325 * This maintains a running estimation of how much space will be taken when we
3326 * load the batch back into memory by simulating the way chunks will be handed
3327 * out to workers. It's not perfectly accurate because the tuples will be
3328 * packed into memory chunks differently by ExecParallelHashTupleAlloc(), but
3329 * it should be pretty close. It tends to overestimate by a fraction of a
3330 * chunk per worker since all workers gang up to preallocate during hashing,
3331 * but workers tend to reload batches alone if there are enough to go around,
3332 * leaving fewer partially filled chunks. This effect is bounded by
3333 * nparticipants.
3335 * Return false if the number of batches or buckets has changed, and the
3336 * caller should reconsider which batch a given tuple now belongs in and call
3337 * again.
3339 static bool
3340 ExecParallelHashTuplePrealloc(HashJoinTable hashtable, int batchno, size_t size)
3342 ParallelHashJoinState *pstate = hashtable->parallel_state;
3343 ParallelHashJoinBatchAccessor *batch = &hashtable->batches[batchno];
3344 size_t want = Max(size, HASH_CHUNK_SIZE - HASH_CHUNK_HEADER_SIZE);
3346 Assert(batchno > 0);
3347 Assert(batchno < hashtable->nbatch);
3348 Assert(size == MAXALIGN(size));
3350 LWLockAcquire(&pstate->lock, LW_EXCLUSIVE);
3352 /* Has another participant commanded us to help grow? */
3353 if (pstate->growth == PHJ_GROWTH_NEED_MORE_BATCHES ||
3354 pstate->growth == PHJ_GROWTH_NEED_MORE_BUCKETS)
3356 ParallelHashGrowth growth = pstate->growth;
3358 LWLockRelease(&pstate->lock);
3359 if (growth == PHJ_GROWTH_NEED_MORE_BATCHES)
3360 ExecParallelHashIncreaseNumBatches(hashtable);
3361 else if (growth == PHJ_GROWTH_NEED_MORE_BUCKETS)
3362 ExecParallelHashIncreaseNumBuckets(hashtable);
3364 return false;
3367 if (pstate->growth != PHJ_GROWTH_DISABLED &&
3368 batch->at_least_one_chunk &&
3369 (batch->shared->estimated_size + want + HASH_CHUNK_HEADER_SIZE
3370 > pstate->space_allowed))
3373 * We have determined that this batch would exceed the space budget if
3374 * loaded into memory. Command all participants to help repartition.
3376 batch->shared->space_exhausted = true;
3377 pstate->growth = PHJ_GROWTH_NEED_MORE_BATCHES;
3378 LWLockRelease(&pstate->lock);
3380 return false;
3383 batch->at_least_one_chunk = true;
3384 batch->shared->estimated_size += want + HASH_CHUNK_HEADER_SIZE;
3385 batch->preallocated = want;
3386 LWLockRelease(&pstate->lock);
3388 return true;
3392 * Calculate the limit on how much memory can be used by Hash and similar
3393 * plan types. This is work_mem times hash_mem_multiplier, and is
3394 * expressed in bytes.
3396 * Exported for use by the planner, as well as other hash-like executor
3397 * nodes. This is a rather random place for this, but there is no better
3398 * place.
3400 size_t
3401 get_hash_memory_limit(void)
3403 double mem_limit;
3405 /* Do initial calculation in double arithmetic */
3406 mem_limit = (double) work_mem * hash_mem_multiplier * 1024.0;
3408 /* Clamp in case it doesn't fit in size_t */
3409 mem_limit = Min(mem_limit, (double) SIZE_MAX);
3411 return (size_t) mem_limit;