Improve comment about GetWALAvailability's WALAVAIL_REMOVED code.
[pgsql.git] / src / backend / access / transam / clog.c
blob4a431d5876760d3e665429ceb5dad958cb655fc1
1 /*-------------------------------------------------------------------------
3 * clog.c
4 * PostgreSQL transaction-commit-log manager
6 * This module replaces the old "pg_log" access code, which treated pg_log
7 * essentially like a relation, in that it went through the regular buffer
8 * manager. The problem with that was that there wasn't any good way to
9 * recycle storage space for transactions so old that they'll never be
10 * looked up again. Now we use specialized access code so that the commit
11 * log can be broken into relatively small, independent segments.
13 * XLOG interactions: this module generates an XLOG record whenever a new
14 * CLOG page is initialized to zeroes. Other writes of CLOG come from
15 * recording of transaction commit or abort in xact.c, which generates its
16 * own XLOG records for these events and will re-perform the status update
17 * on redo; so we need make no additional XLOG entry here. For synchronous
18 * transaction commits, the XLOG is guaranteed flushed through the XLOG commit
19 * record before we are called to log a commit, so the WAL rule "write xlog
20 * before data" is satisfied automatically. However, for async commits we
21 * must track the latest LSN affecting each CLOG page, so that we can flush
22 * XLOG that far and satisfy the WAL rule. We don't have to worry about this
23 * for aborts (whether sync or async), since the post-crash assumption would
24 * be that such transactions failed anyway.
26 * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
27 * Portions Copyright (c) 1994, Regents of the University of California
29 * src/backend/access/transam/clog.c
31 *-------------------------------------------------------------------------
33 #include "postgres.h"
35 #include "access/clog.h"
36 #include "access/slru.h"
37 #include "access/transam.h"
38 #include "access/xlog.h"
39 #include "access/xloginsert.h"
40 #include "access/xlogutils.h"
41 #include "miscadmin.h"
42 #include "pg_trace.h"
43 #include "pgstat.h"
44 #include "storage/proc.h"
45 #include "storage/sync.h"
48 * Defines for CLOG page sizes. A page is the same BLCKSZ as is used
49 * everywhere else in Postgres.
51 * Note: because TransactionIds are 32 bits and wrap around at 0xFFFFFFFF,
52 * CLOG page numbering also wraps around at 0xFFFFFFFF/CLOG_XACTS_PER_PAGE,
53 * and CLOG segment numbering at
54 * 0xFFFFFFFF/CLOG_XACTS_PER_PAGE/SLRU_PAGES_PER_SEGMENT. We need take no
55 * explicit notice of that fact in this module, except when comparing segment
56 * and page numbers in TruncateCLOG (see CLOGPagePrecedes).
59 /* We need two bits per xact, so four xacts fit in a byte */
60 #define CLOG_BITS_PER_XACT 2
61 #define CLOG_XACTS_PER_BYTE 4
62 #define CLOG_XACTS_PER_PAGE (BLCKSZ * CLOG_XACTS_PER_BYTE)
63 #define CLOG_XACT_BITMASK ((1 << CLOG_BITS_PER_XACT) - 1)
65 #define TransactionIdToPage(xid) ((xid) / (TransactionId) CLOG_XACTS_PER_PAGE)
66 #define TransactionIdToPgIndex(xid) ((xid) % (TransactionId) CLOG_XACTS_PER_PAGE)
67 #define TransactionIdToByte(xid) (TransactionIdToPgIndex(xid) / CLOG_XACTS_PER_BYTE)
68 #define TransactionIdToBIndex(xid) ((xid) % (TransactionId) CLOG_XACTS_PER_BYTE)
70 /* We store the latest async LSN for each group of transactions */
71 #define CLOG_XACTS_PER_LSN_GROUP 32 /* keep this a power of 2 */
72 #define CLOG_LSNS_PER_PAGE (CLOG_XACTS_PER_PAGE / CLOG_XACTS_PER_LSN_GROUP)
74 #define GetLSNIndex(slotno, xid) ((slotno) * CLOG_LSNS_PER_PAGE + \
75 ((xid) % (TransactionId) CLOG_XACTS_PER_PAGE) / CLOG_XACTS_PER_LSN_GROUP)
78 * The number of subtransactions below which we consider to apply clog group
79 * update optimization. Testing reveals that the number higher than this can
80 * hurt performance.
82 #define THRESHOLD_SUBTRANS_CLOG_OPT 5
85 * Link to shared-memory data structures for CLOG control
87 static SlruCtlData XactCtlData;
89 #define XactCtl (&XactCtlData)
92 static int ZeroCLOGPage(int pageno, bool writeXlog);
93 static bool CLOGPagePrecedes(int page1, int page2);
94 static void WriteZeroPageXlogRec(int pageno);
95 static void WriteTruncateXlogRec(int pageno, TransactionId oldestXact,
96 Oid oldestXactDb);
97 static void TransactionIdSetPageStatus(TransactionId xid, int nsubxids,
98 TransactionId *subxids, XidStatus status,
99 XLogRecPtr lsn, int pageno,
100 bool all_xact_same_page);
101 static void TransactionIdSetStatusBit(TransactionId xid, XidStatus status,
102 XLogRecPtr lsn, int slotno);
103 static void set_status_by_pages(int nsubxids, TransactionId *subxids,
104 XidStatus status, XLogRecPtr lsn);
105 static bool TransactionGroupUpdateXidStatus(TransactionId xid,
106 XidStatus status, XLogRecPtr lsn, int pageno);
107 static void TransactionIdSetPageStatusInternal(TransactionId xid, int nsubxids,
108 TransactionId *subxids, XidStatus status,
109 XLogRecPtr lsn, int pageno);
113 * TransactionIdSetTreeStatus
115 * Record the final state of transaction entries in the commit log for
116 * a transaction and its subtransaction tree. Take care to ensure this is
117 * efficient, and as atomic as possible.
119 * xid is a single xid to set status for. This will typically be
120 * the top level transactionid for a top level commit or abort. It can
121 * also be a subtransaction when we record transaction aborts.
123 * subxids is an array of xids of length nsubxids, representing subtransactions
124 * in the tree of xid. In various cases nsubxids may be zero.
126 * lsn must be the WAL location of the commit record when recording an async
127 * commit. For a synchronous commit it can be InvalidXLogRecPtr, since the
128 * caller guarantees the commit record is already flushed in that case. It
129 * should be InvalidXLogRecPtr for abort cases, too.
131 * In the commit case, atomicity is limited by whether all the subxids are in
132 * the same CLOG page as xid. If they all are, then the lock will be grabbed
133 * only once, and the status will be set to committed directly. Otherwise
134 * we must
135 * 1. set sub-committed all subxids that are not on the same page as the
136 * main xid
137 * 2. atomically set committed the main xid and the subxids on the same page
138 * 3. go over the first bunch again and set them committed
139 * Note that as far as concurrent checkers are concerned, main transaction
140 * commit as a whole is still atomic.
142 * Example:
143 * TransactionId t commits and has subxids t1, t2, t3, t4
144 * t is on page p1, t1 is also on p1, t2 and t3 are on p2, t4 is on p3
145 * 1. update pages2-3:
146 * page2: set t2,t3 as sub-committed
147 * page3: set t4 as sub-committed
148 * 2. update page1:
149 * page1: set t,t1 as committed
150 * 3. update pages2-3:
151 * page2: set t2,t3 as committed
152 * page3: set t4 as committed
154 * NB: this is a low-level routine and is NOT the preferred entry point
155 * for most uses; functions in transam.c are the intended callers.
157 * XXX Think about issuing POSIX_FADV_WILLNEED on pages that we will need,
158 * but aren't yet in cache, as well as hinting pages not to fall out of
159 * cache yet.
161 void
162 TransactionIdSetTreeStatus(TransactionId xid, int nsubxids,
163 TransactionId *subxids, XidStatus status, XLogRecPtr lsn)
165 int pageno = TransactionIdToPage(xid); /* get page of parent */
166 int i;
168 Assert(status == TRANSACTION_STATUS_COMMITTED ||
169 status == TRANSACTION_STATUS_ABORTED);
172 * See how many subxids, if any, are on the same page as the parent, if
173 * any.
175 for (i = 0; i < nsubxids; i++)
177 if (TransactionIdToPage(subxids[i]) != pageno)
178 break;
182 * Do all items fit on a single page?
184 if (i == nsubxids)
187 * Set the parent and all subtransactions in a single call
189 TransactionIdSetPageStatus(xid, nsubxids, subxids, status, lsn,
190 pageno, true);
192 else
194 int nsubxids_on_first_page = i;
197 * If this is a commit then we care about doing this correctly (i.e.
198 * using the subcommitted intermediate status). By here, we know
199 * we're updating more than one page of clog, so we must mark entries
200 * that are *not* on the first page so that they show as subcommitted
201 * before we then return to update the status to fully committed.
203 * To avoid touching the first page twice, skip marking subcommitted
204 * for the subxids on that first page.
206 if (status == TRANSACTION_STATUS_COMMITTED)
207 set_status_by_pages(nsubxids - nsubxids_on_first_page,
208 subxids + nsubxids_on_first_page,
209 TRANSACTION_STATUS_SUB_COMMITTED, lsn);
212 * Now set the parent and subtransactions on same page as the parent,
213 * if any
215 pageno = TransactionIdToPage(xid);
216 TransactionIdSetPageStatus(xid, nsubxids_on_first_page, subxids, status,
217 lsn, pageno, false);
220 * Now work through the rest of the subxids one clog page at a time,
221 * starting from the second page onwards, like we did above.
223 set_status_by_pages(nsubxids - nsubxids_on_first_page,
224 subxids + nsubxids_on_first_page,
225 status, lsn);
230 * Helper for TransactionIdSetTreeStatus: set the status for a bunch of
231 * transactions, chunking in the separate CLOG pages involved. We never
232 * pass the whole transaction tree to this function, only subtransactions
233 * that are on different pages to the top level transaction id.
235 static void
236 set_status_by_pages(int nsubxids, TransactionId *subxids,
237 XidStatus status, XLogRecPtr lsn)
239 int pageno = TransactionIdToPage(subxids[0]);
240 int offset = 0;
241 int i = 0;
243 Assert(nsubxids > 0); /* else the pageno fetch above is unsafe */
245 while (i < nsubxids)
247 int num_on_page = 0;
248 int nextpageno;
252 nextpageno = TransactionIdToPage(subxids[i]);
253 if (nextpageno != pageno)
254 break;
255 num_on_page++;
256 i++;
257 } while (i < nsubxids);
259 TransactionIdSetPageStatus(InvalidTransactionId,
260 num_on_page, subxids + offset,
261 status, lsn, pageno, false);
262 offset = i;
263 pageno = nextpageno;
268 * Record the final state of transaction entries in the commit log for all
269 * entries on a single page. Atomic only on this page.
271 static void
272 TransactionIdSetPageStatus(TransactionId xid, int nsubxids,
273 TransactionId *subxids, XidStatus status,
274 XLogRecPtr lsn, int pageno,
275 bool all_xact_same_page)
277 /* Can't use group update when PGPROC overflows. */
278 StaticAssertDecl(THRESHOLD_SUBTRANS_CLOG_OPT <= PGPROC_MAX_CACHED_SUBXIDS,
279 "group clog threshold less than PGPROC cached subxids");
282 * When there is contention on XactSLRULock, we try to group multiple
283 * updates; a single leader process will perform transaction status
284 * updates for multiple backends so that the number of times XactSLRULock
285 * needs to be acquired is reduced.
287 * For this optimization to be safe, the XID and subxids in MyProc must be
288 * the same as the ones for which we're setting the status. Check that
289 * this is the case.
291 * For this optimization to be efficient, we shouldn't have too many
292 * sub-XIDs and all of the XIDs for which we're adjusting clog should be
293 * on the same page. Check those conditions, too.
295 if (all_xact_same_page && xid == MyProc->xid &&
296 nsubxids <= THRESHOLD_SUBTRANS_CLOG_OPT &&
297 nsubxids == MyProc->subxidStatus.count &&
298 (nsubxids == 0 ||
299 memcmp(subxids, MyProc->subxids.xids,
300 nsubxids * sizeof(TransactionId)) == 0))
303 * If we can immediately acquire XactSLRULock, we update the status of
304 * our own XID and release the lock. If not, try use group XID
305 * update. If that doesn't work out, fall back to waiting for the
306 * lock to perform an update for this transaction only.
308 if (LWLockConditionalAcquire(XactSLRULock, LW_EXCLUSIVE))
310 /* Got the lock without waiting! Do the update. */
311 TransactionIdSetPageStatusInternal(xid, nsubxids, subxids, status,
312 lsn, pageno);
313 LWLockRelease(XactSLRULock);
314 return;
316 else if (TransactionGroupUpdateXidStatus(xid, status, lsn, pageno))
318 /* Group update mechanism has done the work. */
319 return;
322 /* Fall through only if update isn't done yet. */
325 /* Group update not applicable, or couldn't accept this page number. */
326 LWLockAcquire(XactSLRULock, LW_EXCLUSIVE);
327 TransactionIdSetPageStatusInternal(xid, nsubxids, subxids, status,
328 lsn, pageno);
329 LWLockRelease(XactSLRULock);
333 * Record the final state of transaction entry in the commit log
335 * We don't do any locking here; caller must handle that.
337 static void
338 TransactionIdSetPageStatusInternal(TransactionId xid, int nsubxids,
339 TransactionId *subxids, XidStatus status,
340 XLogRecPtr lsn, int pageno)
342 int slotno;
343 int i;
345 Assert(status == TRANSACTION_STATUS_COMMITTED ||
346 status == TRANSACTION_STATUS_ABORTED ||
347 (status == TRANSACTION_STATUS_SUB_COMMITTED && !TransactionIdIsValid(xid)));
348 Assert(LWLockHeldByMeInMode(XactSLRULock, LW_EXCLUSIVE));
351 * If we're doing an async commit (ie, lsn is valid), then we must wait
352 * for any active write on the page slot to complete. Otherwise our
353 * update could reach disk in that write, which will not do since we
354 * mustn't let it reach disk until we've done the appropriate WAL flush.
355 * But when lsn is invalid, it's OK to scribble on a page while it is
356 * write-busy, since we don't care if the update reaches disk sooner than
357 * we think.
359 slotno = SimpleLruReadPage(XactCtl, pageno, XLogRecPtrIsInvalid(lsn), xid);
362 * Set the main transaction id, if any.
364 * If we update more than one xid on this page while it is being written
365 * out, we might find that some of the bits go to disk and others don't.
366 * If we are updating commits on the page with the top-level xid that
367 * could break atomicity, so we subcommit the subxids first before we mark
368 * the top-level commit.
370 if (TransactionIdIsValid(xid))
372 /* Subtransactions first, if needed ... */
373 if (status == TRANSACTION_STATUS_COMMITTED)
375 for (i = 0; i < nsubxids; i++)
377 Assert(XactCtl->shared->page_number[slotno] == TransactionIdToPage(subxids[i]));
378 TransactionIdSetStatusBit(subxids[i],
379 TRANSACTION_STATUS_SUB_COMMITTED,
380 lsn, slotno);
384 /* ... then the main transaction */
385 TransactionIdSetStatusBit(xid, status, lsn, slotno);
388 /* Set the subtransactions */
389 for (i = 0; i < nsubxids; i++)
391 Assert(XactCtl->shared->page_number[slotno] == TransactionIdToPage(subxids[i]));
392 TransactionIdSetStatusBit(subxids[i], status, lsn, slotno);
395 XactCtl->shared->page_dirty[slotno] = true;
399 * When we cannot immediately acquire XactSLRULock in exclusive mode at
400 * commit time, add ourselves to a list of processes that need their XIDs
401 * status update. The first process to add itself to the list will acquire
402 * XactSLRULock in exclusive mode and set transaction status as required
403 * on behalf of all group members. This avoids a great deal of contention
404 * around XactSLRULock when many processes are trying to commit at once,
405 * since the lock need not be repeatedly handed off from one committing
406 * process to the next.
408 * Returns true when transaction status has been updated in clog; returns
409 * false if we decided against applying the optimization because the page
410 * number we need to update differs from those processes already waiting.
412 static bool
413 TransactionGroupUpdateXidStatus(TransactionId xid, XidStatus status,
414 XLogRecPtr lsn, int pageno)
416 volatile PROC_HDR *procglobal = ProcGlobal;
417 PGPROC *proc = MyProc;
418 uint32 nextidx;
419 uint32 wakeidx;
421 /* We should definitely have an XID whose status needs to be updated. */
422 Assert(TransactionIdIsValid(xid));
425 * Add ourselves to the list of processes needing a group XID status
426 * update.
428 proc->clogGroupMember = true;
429 proc->clogGroupMemberXid = xid;
430 proc->clogGroupMemberXidStatus = status;
431 proc->clogGroupMemberPage = pageno;
432 proc->clogGroupMemberLsn = lsn;
434 nextidx = pg_atomic_read_u32(&procglobal->clogGroupFirst);
436 while (true)
439 * Add the proc to list, if the clog page where we need to update the
440 * current transaction status is same as group leader's clog page.
442 * There is a race condition here, which is that after doing the below
443 * check and before adding this proc's clog update to a group, the
444 * group leader might have already finished the group update for this
445 * page and becomes group leader of another group. This will lead to a
446 * situation where a single group can have different clog page
447 * updates. This isn't likely and will still work, just maybe a bit
448 * less efficiently.
450 if (nextidx != INVALID_PGPROCNO &&
451 ProcGlobal->allProcs[nextidx].clogGroupMemberPage != proc->clogGroupMemberPage)
454 * Ensure that this proc is not a member of any clog group that
455 * needs an XID status update.
457 proc->clogGroupMember = false;
458 pg_atomic_write_u32(&proc->clogGroupNext, INVALID_PGPROCNO);
459 return false;
462 pg_atomic_write_u32(&proc->clogGroupNext, nextidx);
464 if (pg_atomic_compare_exchange_u32(&procglobal->clogGroupFirst,
465 &nextidx,
466 (uint32) proc->pgprocno))
467 break;
471 * If the list was not empty, the leader will update the status of our
472 * XID. It is impossible to have followers without a leader because the
473 * first process that has added itself to the list will always have
474 * nextidx as INVALID_PGPROCNO.
476 if (nextidx != INVALID_PGPROCNO)
478 int extraWaits = 0;
480 /* Sleep until the leader updates our XID status. */
481 pgstat_report_wait_start(WAIT_EVENT_XACT_GROUP_UPDATE);
482 for (;;)
484 /* acts as a read barrier */
485 PGSemaphoreLock(proc->sem);
486 if (!proc->clogGroupMember)
487 break;
488 extraWaits++;
490 pgstat_report_wait_end();
492 Assert(pg_atomic_read_u32(&proc->clogGroupNext) == INVALID_PGPROCNO);
494 /* Fix semaphore count for any absorbed wakeups */
495 while (extraWaits-- > 0)
496 PGSemaphoreUnlock(proc->sem);
497 return true;
500 /* We are the leader. Acquire the lock on behalf of everyone. */
501 LWLockAcquire(XactSLRULock, LW_EXCLUSIVE);
504 * Now that we've got the lock, clear the list of processes waiting for
505 * group XID status update, saving a pointer to the head of the list.
506 * Trying to pop elements one at a time could lead to an ABA problem.
508 nextidx = pg_atomic_exchange_u32(&procglobal->clogGroupFirst,
509 INVALID_PGPROCNO);
511 /* Remember head of list so we can perform wakeups after dropping lock. */
512 wakeidx = nextidx;
514 /* Walk the list and update the status of all XIDs. */
515 while (nextidx != INVALID_PGPROCNO)
517 PGPROC *nextproc = &ProcGlobal->allProcs[nextidx];
520 * Transactions with more than THRESHOLD_SUBTRANS_CLOG_OPT sub-XIDs
521 * should not use group XID status update mechanism.
523 Assert(nextproc->subxidStatus.count <= THRESHOLD_SUBTRANS_CLOG_OPT);
525 TransactionIdSetPageStatusInternal(nextproc->clogGroupMemberXid,
526 nextproc->subxidStatus.count,
527 nextproc->subxids.xids,
528 nextproc->clogGroupMemberXidStatus,
529 nextproc->clogGroupMemberLsn,
530 nextproc->clogGroupMemberPage);
532 /* Move to next proc in list. */
533 nextidx = pg_atomic_read_u32(&nextproc->clogGroupNext);
536 /* We're done with the lock now. */
537 LWLockRelease(XactSLRULock);
540 * Now that we've released the lock, go back and wake everybody up. We
541 * don't do this under the lock so as to keep lock hold times to a
542 * minimum.
544 while (wakeidx != INVALID_PGPROCNO)
546 PGPROC *wakeproc = &ProcGlobal->allProcs[wakeidx];
548 wakeidx = pg_atomic_read_u32(&wakeproc->clogGroupNext);
549 pg_atomic_write_u32(&wakeproc->clogGroupNext, INVALID_PGPROCNO);
551 /* ensure all previous writes are visible before follower continues. */
552 pg_write_barrier();
554 wakeproc->clogGroupMember = false;
556 if (wakeproc != MyProc)
557 PGSemaphoreUnlock(wakeproc->sem);
560 return true;
564 * Sets the commit status of a single transaction.
566 * Must be called with XactSLRULock held
568 static void
569 TransactionIdSetStatusBit(TransactionId xid, XidStatus status, XLogRecPtr lsn, int slotno)
571 int byteno = TransactionIdToByte(xid);
572 int bshift = TransactionIdToBIndex(xid) * CLOG_BITS_PER_XACT;
573 char *byteptr;
574 char byteval;
575 char curval;
577 byteptr = XactCtl->shared->page_buffer[slotno] + byteno;
578 curval = (*byteptr >> bshift) & CLOG_XACT_BITMASK;
581 * When replaying transactions during recovery we still need to perform
582 * the two phases of subcommit and then commit. However, some transactions
583 * are already correctly marked, so we just treat those as a no-op which
584 * allows us to keep the following Assert as restrictive as possible.
586 if (InRecovery && status == TRANSACTION_STATUS_SUB_COMMITTED &&
587 curval == TRANSACTION_STATUS_COMMITTED)
588 return;
591 * Current state change should be from 0 or subcommitted to target state
592 * or we should already be there when replaying changes during recovery.
594 Assert(curval == 0 ||
595 (curval == TRANSACTION_STATUS_SUB_COMMITTED &&
596 status != TRANSACTION_STATUS_IN_PROGRESS) ||
597 curval == status);
599 /* note this assumes exclusive access to the clog page */
600 byteval = *byteptr;
601 byteval &= ~(((1 << CLOG_BITS_PER_XACT) - 1) << bshift);
602 byteval |= (status << bshift);
603 *byteptr = byteval;
606 * Update the group LSN if the transaction completion LSN is higher.
608 * Note: lsn will be invalid when supplied during InRecovery processing,
609 * so we don't need to do anything special to avoid LSN updates during
610 * recovery. After recovery completes the next clog change will set the
611 * LSN correctly.
613 if (!XLogRecPtrIsInvalid(lsn))
615 int lsnindex = GetLSNIndex(slotno, xid);
617 if (XactCtl->shared->group_lsn[lsnindex] < lsn)
618 XactCtl->shared->group_lsn[lsnindex] = lsn;
623 * Interrogate the state of a transaction in the commit log.
625 * Aside from the actual commit status, this function returns (into *lsn)
626 * an LSN that is late enough to be able to guarantee that if we flush up to
627 * that LSN then we will have flushed the transaction's commit record to disk.
628 * The result is not necessarily the exact LSN of the transaction's commit
629 * record! For example, for long-past transactions (those whose clog pages
630 * already migrated to disk), we'll return InvalidXLogRecPtr. Also, because
631 * we group transactions on the same clog page to conserve storage, we might
632 * return the LSN of a later transaction that falls into the same group.
634 * NB: this is a low-level routine and is NOT the preferred entry point
635 * for most uses; TransactionLogFetch() in transam.c is the intended caller.
637 XidStatus
638 TransactionIdGetStatus(TransactionId xid, XLogRecPtr *lsn)
640 int pageno = TransactionIdToPage(xid);
641 int byteno = TransactionIdToByte(xid);
642 int bshift = TransactionIdToBIndex(xid) * CLOG_BITS_PER_XACT;
643 int slotno;
644 int lsnindex;
645 char *byteptr;
646 XidStatus status;
648 /* lock is acquired by SimpleLruReadPage_ReadOnly */
650 slotno = SimpleLruReadPage_ReadOnly(XactCtl, pageno, xid);
651 byteptr = XactCtl->shared->page_buffer[slotno] + byteno;
653 status = (*byteptr >> bshift) & CLOG_XACT_BITMASK;
655 lsnindex = GetLSNIndex(slotno, xid);
656 *lsn = XactCtl->shared->group_lsn[lsnindex];
658 LWLockRelease(XactSLRULock);
660 return status;
664 * Number of shared CLOG buffers.
666 * On larger multi-processor systems, it is possible to have many CLOG page
667 * requests in flight at one time which could lead to disk access for CLOG
668 * page if the required page is not found in memory. Testing revealed that we
669 * can get the best performance by having 128 CLOG buffers, more than that it
670 * doesn't improve performance.
672 * Unconditionally keeping the number of CLOG buffers to 128 did not seem like
673 * a good idea, because it would increase the minimum amount of shared memory
674 * required to start, which could be a problem for people running very small
675 * configurations. The following formula seems to represent a reasonable
676 * compromise: people with very low values for shared_buffers will get fewer
677 * CLOG buffers as well, and everyone else will get 128.
679 Size
680 CLOGShmemBuffers(void)
682 return Min(128, Max(4, NBuffers / 512));
686 * Initialization of shared memory for CLOG
688 Size
689 CLOGShmemSize(void)
691 return SimpleLruShmemSize(CLOGShmemBuffers(), CLOG_LSNS_PER_PAGE);
694 void
695 CLOGShmemInit(void)
697 XactCtl->PagePrecedes = CLOGPagePrecedes;
698 SimpleLruInit(XactCtl, "Xact", CLOGShmemBuffers(), CLOG_LSNS_PER_PAGE,
699 XactSLRULock, "pg_xact", LWTRANCHE_XACT_BUFFER,
700 SYNC_HANDLER_CLOG);
701 SlruPagePrecedesUnitTests(XactCtl, CLOG_XACTS_PER_PAGE);
705 * This func must be called ONCE on system install. It creates
706 * the initial CLOG segment. (The CLOG directory is assumed to
707 * have been created by initdb, and CLOGShmemInit must have been
708 * called already.)
710 void
711 BootStrapCLOG(void)
713 int slotno;
715 LWLockAcquire(XactSLRULock, LW_EXCLUSIVE);
717 /* Create and zero the first page of the commit log */
718 slotno = ZeroCLOGPage(0, false);
720 /* Make sure it's written out */
721 SimpleLruWritePage(XactCtl, slotno);
722 Assert(!XactCtl->shared->page_dirty[slotno]);
724 LWLockRelease(XactSLRULock);
728 * Initialize (or reinitialize) a page of CLOG to zeroes.
729 * If writeXlog is true, also emit an XLOG record saying we did this.
731 * The page is not actually written, just set up in shared memory.
732 * The slot number of the new page is returned.
734 * Control lock must be held at entry, and will be held at exit.
736 static int
737 ZeroCLOGPage(int pageno, bool writeXlog)
739 int slotno;
741 slotno = SimpleLruZeroPage(XactCtl, pageno);
743 if (writeXlog)
744 WriteZeroPageXlogRec(pageno);
746 return slotno;
750 * This must be called ONCE during postmaster or standalone-backend startup,
751 * after StartupXLOG has initialized ShmemVariableCache->nextXid.
753 void
754 StartupCLOG(void)
756 TransactionId xid = XidFromFullTransactionId(ShmemVariableCache->nextXid);
757 int pageno = TransactionIdToPage(xid);
759 LWLockAcquire(XactSLRULock, LW_EXCLUSIVE);
762 * Initialize our idea of the latest page number.
764 XactCtl->shared->latest_page_number = pageno;
766 LWLockRelease(XactSLRULock);
770 * This must be called ONCE at the end of startup/recovery.
772 void
773 TrimCLOG(void)
775 TransactionId xid = XidFromFullTransactionId(ShmemVariableCache->nextXid);
776 int pageno = TransactionIdToPage(xid);
778 LWLockAcquire(XactSLRULock, LW_EXCLUSIVE);
781 * Zero out the remainder of the current clog page. Under normal
782 * circumstances it should be zeroes already, but it seems at least
783 * theoretically possible that XLOG replay will have settled on a nextXID
784 * value that is less than the last XID actually used and marked by the
785 * previous database lifecycle (since subtransaction commit writes clog
786 * but makes no WAL entry). Let's just be safe. (We need not worry about
787 * pages beyond the current one, since those will be zeroed when first
788 * used. For the same reason, there is no need to do anything when
789 * nextXid is exactly at a page boundary; and it's likely that the
790 * "current" page doesn't exist yet in that case.)
792 if (TransactionIdToPgIndex(xid) != 0)
794 int byteno = TransactionIdToByte(xid);
795 int bshift = TransactionIdToBIndex(xid) * CLOG_BITS_PER_XACT;
796 int slotno;
797 char *byteptr;
799 slotno = SimpleLruReadPage(XactCtl, pageno, false, xid);
800 byteptr = XactCtl->shared->page_buffer[slotno] + byteno;
802 /* Zero so-far-unused positions in the current byte */
803 *byteptr &= (1 << bshift) - 1;
804 /* Zero the rest of the page */
805 MemSet(byteptr + 1, 0, BLCKSZ - byteno - 1);
807 XactCtl->shared->page_dirty[slotno] = true;
810 LWLockRelease(XactSLRULock);
814 * Perform a checkpoint --- either during shutdown, or on-the-fly
816 void
817 CheckPointCLOG(void)
820 * Write dirty CLOG pages to disk. This may result in sync requests
821 * queued for later handling by ProcessSyncRequests(), as part of the
822 * checkpoint.
824 TRACE_POSTGRESQL_CLOG_CHECKPOINT_START(true);
825 SimpleLruWriteAll(XactCtl, true);
826 TRACE_POSTGRESQL_CLOG_CHECKPOINT_DONE(true);
831 * Make sure that CLOG has room for a newly-allocated XID.
833 * NB: this is called while holding XidGenLock. We want it to be very fast
834 * most of the time; even when it's not so fast, no actual I/O need happen
835 * unless we're forced to write out a dirty clog or xlog page to make room
836 * in shared memory.
838 void
839 ExtendCLOG(TransactionId newestXact)
841 int pageno;
844 * No work except at first XID of a page. But beware: just after
845 * wraparound, the first XID of page zero is FirstNormalTransactionId.
847 if (TransactionIdToPgIndex(newestXact) != 0 &&
848 !TransactionIdEquals(newestXact, FirstNormalTransactionId))
849 return;
851 pageno = TransactionIdToPage(newestXact);
853 LWLockAcquire(XactSLRULock, LW_EXCLUSIVE);
855 /* Zero the page and make an XLOG entry about it */
856 ZeroCLOGPage(pageno, true);
858 LWLockRelease(XactSLRULock);
863 * Remove all CLOG segments before the one holding the passed transaction ID
865 * Before removing any CLOG data, we must flush XLOG to disk, to ensure
866 * that any recently-emitted FREEZE_PAGE records have reached disk; otherwise
867 * a crash and restart might leave us with some unfrozen tuples referencing
868 * removed CLOG data. We choose to emit a special TRUNCATE XLOG record too.
869 * Replaying the deletion from XLOG is not critical, since the files could
870 * just as well be removed later, but doing so prevents a long-running hot
871 * standby server from acquiring an unreasonably bloated CLOG directory.
873 * Since CLOG segments hold a large number of transactions, the opportunity to
874 * actually remove a segment is fairly rare, and so it seems best not to do
875 * the XLOG flush unless we have confirmed that there is a removable segment.
877 void
878 TruncateCLOG(TransactionId oldestXact, Oid oldestxid_datoid)
880 int cutoffPage;
883 * The cutoff point is the start of the segment containing oldestXact. We
884 * pass the *page* containing oldestXact to SimpleLruTruncate.
886 cutoffPage = TransactionIdToPage(oldestXact);
888 /* Check to see if there's any files that could be removed */
889 if (!SlruScanDirectory(XactCtl, SlruScanDirCbReportPresence, &cutoffPage))
890 return; /* nothing to remove */
893 * Advance oldestClogXid before truncating clog, so concurrent xact status
894 * lookups can ensure they don't attempt to access truncated-away clog.
896 * It's only necessary to do this if we will actually truncate away clog
897 * pages.
899 AdvanceOldestClogXid(oldestXact);
902 * Write XLOG record and flush XLOG to disk. We record the oldest xid
903 * we're keeping information about here so we can ensure that it's always
904 * ahead of clog truncation in case we crash, and so a standby finds out
905 * the new valid xid before the next checkpoint.
907 WriteTruncateXlogRec(cutoffPage, oldestXact, oldestxid_datoid);
909 /* Now we can remove the old CLOG segment(s) */
910 SimpleLruTruncate(XactCtl, cutoffPage);
915 * Decide whether a CLOG page number is "older" for truncation purposes.
917 * We need to use comparison of TransactionIds here in order to do the right
918 * thing with wraparound XID arithmetic. However, TransactionIdPrecedes()
919 * would get weird about permanent xact IDs. So, offset both such that xid1,
920 * xid2, and xid2 + CLOG_XACTS_PER_PAGE - 1 are all normal XIDs; this offset
921 * is relevant to page 0 and to the page preceding page 0.
923 * The page containing oldestXact-2^31 is the important edge case. The
924 * portion of that page equaling or following oldestXact-2^31 is expendable,
925 * but the portion preceding oldestXact-2^31 is not. When oldestXact-2^31 is
926 * the first XID of a page and segment, the entire page and segment is
927 * expendable, and we could truncate the segment. Recognizing that case would
928 * require making oldestXact, not just the page containing oldestXact,
929 * available to this callback. The benefit would be rare and small, so we
930 * don't optimize that edge case.
932 static bool
933 CLOGPagePrecedes(int page1, int page2)
935 TransactionId xid1;
936 TransactionId xid2;
938 xid1 = ((TransactionId) page1) * CLOG_XACTS_PER_PAGE;
939 xid1 += FirstNormalTransactionId + 1;
940 xid2 = ((TransactionId) page2) * CLOG_XACTS_PER_PAGE;
941 xid2 += FirstNormalTransactionId + 1;
943 return (TransactionIdPrecedes(xid1, xid2) &&
944 TransactionIdPrecedes(xid1, xid2 + CLOG_XACTS_PER_PAGE - 1));
949 * Write a ZEROPAGE xlog record
951 static void
952 WriteZeroPageXlogRec(int pageno)
954 XLogBeginInsert();
955 XLogRegisterData((char *) (&pageno), sizeof(int));
956 (void) XLogInsert(RM_CLOG_ID, CLOG_ZEROPAGE);
960 * Write a TRUNCATE xlog record
962 * We must flush the xlog record to disk before returning --- see notes
963 * in TruncateCLOG().
965 static void
966 WriteTruncateXlogRec(int pageno, TransactionId oldestXact, Oid oldestXactDb)
968 XLogRecPtr recptr;
969 xl_clog_truncate xlrec;
971 xlrec.pageno = pageno;
972 xlrec.oldestXact = oldestXact;
973 xlrec.oldestXactDb = oldestXactDb;
975 XLogBeginInsert();
976 XLogRegisterData((char *) (&xlrec), sizeof(xl_clog_truncate));
977 recptr = XLogInsert(RM_CLOG_ID, CLOG_TRUNCATE);
978 XLogFlush(recptr);
982 * CLOG resource manager's routines
984 void
985 clog_redo(XLogReaderState *record)
987 uint8 info = XLogRecGetInfo(record) & ~XLR_INFO_MASK;
989 /* Backup blocks are not used in clog records */
990 Assert(!XLogRecHasAnyBlockRefs(record));
992 if (info == CLOG_ZEROPAGE)
994 int pageno;
995 int slotno;
997 memcpy(&pageno, XLogRecGetData(record), sizeof(int));
999 LWLockAcquire(XactSLRULock, LW_EXCLUSIVE);
1001 slotno = ZeroCLOGPage(pageno, false);
1002 SimpleLruWritePage(XactCtl, slotno);
1003 Assert(!XactCtl->shared->page_dirty[slotno]);
1005 LWLockRelease(XactSLRULock);
1007 else if (info == CLOG_TRUNCATE)
1009 xl_clog_truncate xlrec;
1011 memcpy(&xlrec, XLogRecGetData(record), sizeof(xl_clog_truncate));
1013 AdvanceOldestClogXid(xlrec.oldestXact);
1015 SimpleLruTruncate(XactCtl, xlrec.pageno);
1017 else
1018 elog(PANIC, "clog_redo: unknown op code %u", info);
1022 * Entrypoint for sync.c to sync clog files.
1025 clogsyncfiletag(const FileTag *ftag, char *path)
1027 return SlruSyncFileTag(XactCtl, ftag, path);