pet 0.10
[pet.git] / scop.c
blob3b5ac370e26bc9e3b7f435b92595cd2409a71d7e
1 /*
2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012-2014 Ecole Normale Superieure. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials provided
15 * with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as
31 * representing official policies, either expressed or implied, of
32 * Leiden University.
33 */
35 #include <string.h>
36 #include <isl/ctx.h>
37 #include <isl/id.h>
38 #include <isl/space.h>
39 #include <isl/local_space.h>
40 #include <isl/constraint.h>
41 #include <isl/val.h>
42 #include <isl/aff.h>
43 #include <isl/set.h>
44 #include <isl/map.h>
45 #include <isl/union_set.h>
46 #include <isl/union_map.h>
47 #include <isl/schedule_node.h>
49 #include "aff.h"
50 #include "expr.h"
51 #include "expr_access_type.h"
52 #include "filter.h"
53 #include "loc.h"
54 #include "nest.h"
55 #include "scop.h"
56 #include "tree.h"
57 #include "print.h"
58 #include "value_bounds.h"
60 /* pet_scop with extra information that is used during parsing and printing.
62 * In particular, we keep track of conditions under which we want
63 * to skip the rest of the current loop iteration (skip[pet_skip_now])
64 * and of conditions under which we want to skip subsequent
65 * loop iterations (skip[pet_skip_later]).
67 * The conditions are represented as index expressions defined
68 * over the outer loop iterators. The index expression is either
69 * a boolean affine expression or an access to a variable, which
70 * is assumed to attain values zero and one. The condition holds
71 * if the variable has value one or if the affine expression
72 * has value one (typically for only part of the domain).
74 * A missing condition (skip[type] == NULL) means that we don't want
75 * to skip anything.
77 * Additionally, we keep track of the original input file
78 * inside pet_transform_C_source.
80 struct pet_scop_ext {
81 struct pet_scop scop;
83 isl_multi_pw_aff *skip[2];
84 FILE *input;
87 /* Construct a pet_stmt with given domain and statement number from a pet_tree.
88 * The input domain is anonymous and is the same as the domains
89 * of the access expressions inside "tree".
90 * These domains are modified to include the name of the statement.
91 * This name is given by tree->label if it is non-NULL.
92 * Otherwise, the name is constructed as S_<id>.
94 struct pet_stmt *pet_stmt_from_pet_tree(__isl_take isl_set *domain,
95 int id, __isl_take pet_tree *tree)
97 struct pet_stmt *stmt;
98 isl_ctx *ctx;
99 isl_id *label;
100 isl_space *space;
101 isl_multi_aff *ma;
102 isl_multi_pw_aff *add_name;
103 char name[50];
105 if (!domain || !tree)
106 goto error;
108 ctx = pet_tree_get_ctx(tree);
109 stmt = isl_calloc_type(ctx, struct pet_stmt);
110 if (!stmt)
111 goto error;
113 if (tree->label) {
114 label = isl_id_copy(tree->label);
115 } else {
116 snprintf(name, sizeof(name), "S_%d", id);
117 label = isl_id_alloc(ctx, name, NULL);
119 domain = isl_set_set_tuple_id(domain, label);
120 space = isl_set_get_space(domain);
121 space = pet_nested_remove_from_space(space);
122 ma = pet_prefix_projection(space, isl_space_dim(space, isl_dim_set));
124 add_name = isl_multi_pw_aff_from_multi_aff(ma);
125 tree = pet_tree_update_domain(tree, add_name);
127 stmt->loc = pet_tree_get_loc(tree);
128 stmt->domain = domain;
129 stmt->body = tree;
131 if (!stmt->domain || !stmt->body)
132 return pet_stmt_free(stmt);
134 return stmt;
135 error:
136 isl_set_free(domain);
137 pet_tree_free(tree);
138 return NULL;
141 void *pet_stmt_free(struct pet_stmt *stmt)
143 int i;
145 if (!stmt)
146 return NULL;
148 pet_loc_free(stmt->loc);
149 isl_set_free(stmt->domain);
150 pet_tree_free(stmt->body);
152 for (i = 0; i < stmt->n_arg; ++i)
153 pet_expr_free(stmt->args[i]);
154 free(stmt->args);
156 free(stmt);
157 return NULL;
160 /* Return the iteration space of "stmt".
162 * If the statement has arguments, then stmt->domain is a wrapped map
163 * mapping the iteration domain to the values of the arguments
164 * for which this statement is executed.
165 * In this case, we need to extract the domain space of this wrapped map.
167 __isl_give isl_space *pet_stmt_get_space(struct pet_stmt *stmt)
169 isl_space *space;
171 if (!stmt)
172 return NULL;
174 space = isl_set_get_space(stmt->domain);
175 if (isl_space_is_wrapping(space))
176 space = isl_space_domain(isl_space_unwrap(space));
178 return space;
181 static void stmt_dump(struct pet_stmt *stmt, int indent)
183 int i;
185 if (!stmt)
186 return;
188 fprintf(stderr, "%*s%d\n", indent, "", pet_loc_get_line(stmt->loc));
189 fprintf(stderr, "%*s", indent, "");
190 isl_set_dump(stmt->domain);
191 pet_tree_dump_with_indent(stmt->body, indent);
192 for (i = 0; i < stmt->n_arg; ++i)
193 pet_expr_dump_with_indent(stmt->args[i], indent + 2);
196 void pet_stmt_dump(struct pet_stmt *stmt)
198 stmt_dump(stmt, 0);
201 /* Allocate a new pet_type with the given "name" and "definition".
203 struct pet_type *pet_type_alloc(isl_ctx *ctx, const char *name,
204 const char *definition)
206 struct pet_type *type;
208 type = isl_alloc_type(ctx, struct pet_type);
209 if (!type)
210 return NULL;
212 type->name = strdup(name);
213 type->definition = strdup(definition);
215 if (!type->name || !type->definition)
216 return pet_type_free(type);
218 return type;
221 /* Free "type" and return NULL.
223 struct pet_type *pet_type_free(struct pet_type *type)
225 if (!type)
226 return NULL;
228 free(type->name);
229 free(type->definition);
231 free(type);
232 return NULL;
235 struct pet_array *pet_array_free(struct pet_array *array)
237 if (!array)
238 return NULL;
240 isl_set_free(array->context);
241 isl_set_free(array->extent);
242 isl_set_free(array->value_bounds);
243 free(array->element_type);
245 free(array);
246 return NULL;
249 void pet_array_dump(struct pet_array *array)
251 if (!array)
252 return;
254 isl_set_dump(array->context);
255 isl_set_dump(array->extent);
256 isl_set_dump(array->value_bounds);
257 fprintf(stderr, "%s%s%s\n", array->element_type,
258 array->element_is_record ? " element-is-record" : "",
259 array->live_out ? " live-out" : "");
262 /* Alloc a pet_scop structure, with extra room for information that
263 * is only used during parsing.
265 struct pet_scop *pet_scop_alloc(isl_ctx *ctx)
267 return &isl_calloc_type(ctx, struct pet_scop_ext)->scop;
270 /* Construct a pet_scop in the given space, with the given schedule and
271 * room for n statements.
273 * The context is initialized as a universe set in "space".
275 * Since no information on the location is known at this point,
276 * scop->loc is initialized with pet_loc_dummy.
278 static struct pet_scop *scop_alloc(__isl_take isl_space *space, int n,
279 __isl_take isl_schedule *schedule)
281 isl_ctx *ctx;
282 struct pet_scop *scop;
284 if (!space || !schedule)
285 goto error;
287 ctx = isl_space_get_ctx(space);
288 scop = pet_scop_alloc(ctx);
289 if (!scop)
290 goto error;
292 scop->context = isl_set_universe(isl_space_copy(space));
293 scop->context_value = isl_set_universe(isl_space_params(space));
294 scop->stmts = isl_calloc_array(ctx, struct pet_stmt *, n);
295 scop->schedule = schedule;
296 if (!scop->context || !scop->stmts)
297 return pet_scop_free(scop);
299 scop->loc = &pet_loc_dummy;
300 scop->n_stmt = n;
302 return scop;
303 error:
304 isl_space_free(space);
305 isl_schedule_free(schedule);
306 return NULL;
309 /* Construct a pet_scop in the given space containing 0 statements
310 * (and therefore an empty iteration domain).
312 struct pet_scop *pet_scop_empty(__isl_take isl_space *space)
314 isl_schedule *schedule;
316 schedule = isl_schedule_empty(isl_space_copy(space));
318 return scop_alloc(space, 0, schedule);
321 /* Given either an iteration domain or a wrapped map with
322 * the iteration domain in the domain and some arguments
323 * in the range, return the iteration domain.
324 * That is, drop the arguments if there are any.
326 static __isl_give isl_set *drop_arguments(__isl_take isl_set *domain)
328 if (isl_set_is_wrapping(domain))
329 domain = isl_map_domain(isl_set_unwrap(domain));
330 return domain;
333 /* Update "context" with the constraints imposed on the outer iteration
334 * domain by access expression "expr".
335 * "context" lives in an anonymous space, while the domain of the access
336 * relation of "expr" refers to a particular statement.
337 * This reference therefore needs to be stripped off.
339 static __isl_give isl_set *access_extract_context(__isl_keep pet_expr *expr,
340 __isl_take isl_set *context)
342 isl_multi_pw_aff *mpa;
343 isl_set *domain;
345 mpa = pet_expr_access_get_index(expr);
346 domain = drop_arguments(isl_multi_pw_aff_domain(mpa));
347 domain = isl_set_reset_tuple_id(domain);
348 context = isl_set_intersect(context, domain);
349 return context;
352 /* Update "context" with the constraints imposed on the outer iteration
353 * domain by "expr".
355 * "context" lives in an anonymous space, while the domains of
356 * the access relations in "expr" refer to a particular statement.
357 * This reference therefore needs to be stripped off.
359 * If "expr" represents a conditional operator, then a parameter or outer
360 * iterator value needs to be valid for the condition and
361 * for at least one of the remaining two arguments.
362 * If the condition is an affine expression, then we can be a bit more specific.
363 * The value then has to be valid for the second argument for
364 * non-zero accesses and valid for the third argument for zero accesses.
366 * If "expr" represents a kill statement, then its argument is the entire
367 * extent of the array being killed. Do not update "context" based
368 * on this argument as that would impose constraints that ensure that
369 * the array is non-empty.
371 static __isl_give isl_set *expr_extract_context(__isl_keep pet_expr *expr,
372 __isl_take isl_set *context)
374 int i;
376 if (expr->type == pet_expr_op && expr->op == pet_op_kill)
377 return context;
379 if (expr->type == pet_expr_op && expr->op == pet_op_cond) {
380 int is_aff;
381 isl_set *context1, *context2;
383 is_aff = pet_expr_is_affine(expr->args[0]);
384 if (is_aff < 0)
385 goto error;
387 context = expr_extract_context(expr->args[0], context);
388 context1 = expr_extract_context(expr->args[1],
389 isl_set_copy(context));
390 context2 = expr_extract_context(expr->args[2], context);
392 if (is_aff) {
393 isl_multi_pw_aff *mpa;
394 isl_pw_aff *pa;
395 isl_set *zero_set;
397 mpa = pet_expr_access_get_index(expr->args[0]);
398 pa = isl_multi_pw_aff_get_pw_aff(mpa, 0);
399 isl_multi_pw_aff_free(mpa);
400 zero_set = drop_arguments(isl_pw_aff_zero_set(pa));
401 zero_set = isl_set_reset_tuple_id(zero_set);
402 context1 = isl_set_subtract(context1,
403 isl_set_copy(zero_set));
404 context2 = isl_set_intersect(context2, zero_set);
407 context = isl_set_union(context1, context2);
408 context = isl_set_coalesce(context);
410 return context;
413 for (i = 0; i < expr->n_arg; ++i)
414 context = expr_extract_context(expr->args[i], context);
416 if (expr->type == pet_expr_access)
417 context = access_extract_context(expr, context);
419 return context;
420 error:
421 isl_set_free(context);
422 return NULL;
425 /* Is "stmt" an assume statement with an affine assumption?
427 isl_bool pet_stmt_is_affine_assume(struct pet_stmt *stmt)
429 if (!stmt)
430 return isl_bool_error;
431 return pet_tree_is_affine_assume(stmt->body);
434 /* Given an assume statement "stmt" with an access argument,
435 * return the index expression of the argument.
437 __isl_give isl_multi_pw_aff *pet_stmt_assume_get_index(struct pet_stmt *stmt)
439 if (!stmt)
440 return NULL;
441 return pet_tree_assume_get_index(stmt->body);
444 /* Assuming "stmt" is an assume statement with an affine assumption,
445 * return the assumption as a set.
447 __isl_give isl_set *pet_stmt_assume_get_affine_condition(struct pet_stmt *stmt)
449 isl_multi_pw_aff *index;
450 isl_pw_aff *pa;
452 index = pet_stmt_assume_get_index(stmt);
453 pa = isl_multi_pw_aff_get_pw_aff(index, 0);
454 isl_multi_pw_aff_free(index);
455 return isl_pw_aff_non_zero_set(pa);
458 /* Update "context" with the constraints imposed on the outer iteration
459 * domain by "stmt".
461 * If the statement is an assume statement with an affine expression,
462 * then intersect "context" with that expression.
463 * Otherwise, if the statement body is an expression tree,
464 * then intersect "context" with the context of this expression.
465 * Note that we cannot safely extract a context from subtrees
466 * of the statement body since we cannot tell when those subtrees
467 * are executed, if at all.
469 static __isl_give isl_set *stmt_extract_context(struct pet_stmt *stmt,
470 __isl_take isl_set *context)
472 int i;
473 isl_bool affine;
474 pet_expr *body;
476 affine = pet_stmt_is_affine_assume(stmt);
477 if (affine < 0)
478 return isl_set_free(context);
479 if (affine) {
480 isl_set *cond;
482 cond = pet_stmt_assume_get_affine_condition(stmt);
483 cond = isl_set_reset_tuple_id(cond);
484 return isl_set_intersect(context, cond);
487 for (i = 0; i < stmt->n_arg; ++i)
488 context = expr_extract_context(stmt->args[i], context);
490 if (pet_tree_get_type(stmt->body) != pet_tree_expr)
491 return context;
493 body = pet_tree_expr_get_expr(stmt->body);
494 context = expr_extract_context(body, context);
495 pet_expr_free(body);
497 return context;
500 /* Construct a pet_scop in the given space that contains the given pet_stmt.
501 * The initial schedule consists of only the iteration domain.
503 struct pet_scop *pet_scop_from_pet_stmt(__isl_take isl_space *space,
504 struct pet_stmt *stmt)
506 struct pet_scop *scop;
507 isl_set *set;
508 isl_union_set *domain;
509 isl_schedule *schedule;
511 if (!stmt) {
512 isl_space_free(space);
513 return NULL;
516 set = pet_nested_remove_from_set(isl_set_copy(stmt->domain));
517 domain = isl_union_set_from_set(set);
518 schedule = isl_schedule_from_domain(domain);
520 scop = scop_alloc(space, 1, schedule);
521 if (!scop)
522 goto error;
524 scop->context = stmt_extract_context(stmt, scop->context);
525 if (!scop->context)
526 goto error;
528 scop->stmts[0] = stmt;
529 scop->loc = pet_loc_copy(stmt->loc);
531 if (!scop->loc)
532 return pet_scop_free(scop);
534 return scop;
535 error:
536 pet_stmt_free(stmt);
537 pet_scop_free(scop);
538 return NULL;
541 /* Does "mpa" represent an access to an element of an unnamed space, i.e.,
542 * does it represent an affine expression?
544 static int multi_pw_aff_is_affine(__isl_keep isl_multi_pw_aff *mpa)
546 int has_id;
548 has_id = isl_multi_pw_aff_has_tuple_id(mpa, isl_dim_out);
549 if (has_id < 0)
550 return -1;
552 return !has_id;
555 /* Return the piecewise affine expression "set ? 1 : 0" defined on "dom".
557 static __isl_give isl_pw_aff *indicator_function(__isl_take isl_set *set,
558 __isl_take isl_set *dom)
560 isl_pw_aff *pa;
561 pa = isl_set_indicator_function(set);
562 pa = isl_pw_aff_intersect_domain(pa, dom);
563 return pa;
566 /* Return "lhs || rhs", defined on the shared definition domain.
568 static __isl_give isl_pw_aff *pw_aff_or(__isl_take isl_pw_aff *lhs,
569 __isl_take isl_pw_aff *rhs)
571 isl_set *cond;
572 isl_set *dom;
574 dom = isl_set_intersect(isl_pw_aff_domain(isl_pw_aff_copy(lhs)),
575 isl_pw_aff_domain(isl_pw_aff_copy(rhs)));
576 cond = isl_set_union(isl_pw_aff_non_zero_set(lhs),
577 isl_pw_aff_non_zero_set(rhs));
578 cond = isl_set_coalesce(cond);
579 return indicator_function(cond, dom);
582 /* Combine ext1->skip[type] and ext2->skip[type] into ext->skip[type].
583 * ext may be equal to either ext1 or ext2.
585 * The two skips that need to be combined are assumed to be affine expressions.
587 * We need to skip in ext if we need to skip in either ext1 or ext2.
588 * We don't need to skip in ext if we don't need to skip in both ext1 and ext2.
590 static struct pet_scop_ext *combine_skips(struct pet_scop_ext *ext,
591 struct pet_scop_ext *ext1, struct pet_scop_ext *ext2,
592 enum pet_skip type)
594 isl_pw_aff *skip, *skip1, *skip2;
596 if (!ext)
597 return NULL;
598 if (!ext1->skip[type] && !ext2->skip[type])
599 return ext;
600 if (!ext1->skip[type]) {
601 if (ext == ext2)
602 return ext;
603 ext->skip[type] = ext2->skip[type];
604 ext2->skip[type] = NULL;
605 return ext;
607 if (!ext2->skip[type]) {
608 if (ext == ext1)
609 return ext;
610 ext->skip[type] = ext1->skip[type];
611 ext1->skip[type] = NULL;
612 return ext;
615 if (!multi_pw_aff_is_affine(ext1->skip[type]) ||
616 !multi_pw_aff_is_affine(ext2->skip[type]))
617 isl_die(isl_multi_pw_aff_get_ctx(ext1->skip[type]),
618 isl_error_internal, "can only combine affine skips",
619 goto error);
621 skip1 = isl_multi_pw_aff_get_pw_aff(ext1->skip[type], 0);
622 skip2 = isl_multi_pw_aff_get_pw_aff(ext2->skip[type], 0);
623 skip = pw_aff_or(skip1, skip2);
624 isl_multi_pw_aff_free(ext1->skip[type]);
625 ext1->skip[type] = NULL;
626 isl_multi_pw_aff_free(ext2->skip[type]);
627 ext2->skip[type] = NULL;
628 ext->skip[type] = isl_multi_pw_aff_from_pw_aff(skip);
629 if (!ext->skip[type])
630 goto error;
632 return ext;
633 error:
634 pet_scop_free(&ext->scop);
635 return NULL;
638 /* Combine scop1->skip[type] and scop2->skip[type] into scop->skip[type],
639 * where type takes on the values pet_skip_now and pet_skip_later.
640 * scop may be equal to either scop1 or scop2.
642 static struct pet_scop *scop_combine_skips(struct pet_scop *scop,
643 struct pet_scop *scop1, struct pet_scop *scop2)
645 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
646 struct pet_scop_ext *ext1 = (struct pet_scop_ext *) scop1;
647 struct pet_scop_ext *ext2 = (struct pet_scop_ext *) scop2;
649 ext = combine_skips(ext, ext1, ext2, pet_skip_now);
650 ext = combine_skips(ext, ext1, ext2, pet_skip_later);
651 return &ext->scop;
654 /* Update start and end of scop->loc to include the region from "start"
655 * to "end". In particular, if scop->loc == &pet_loc_dummy, then "scop"
656 * does not have any offset information yet and we simply take the information
657 * from "start" and "end". Otherwise, we update loc using "start" and "end".
659 struct pet_scop *pet_scop_update_start_end(struct pet_scop *scop,
660 unsigned start, unsigned end)
662 if (!scop)
663 return NULL;
665 if (scop->loc == &pet_loc_dummy)
666 scop->loc = pet_loc_alloc(isl_set_get_ctx(scop->context),
667 start, end, -1, strdup(""));
668 else
669 scop->loc = pet_loc_update_start_end(scop->loc, start, end);
671 if (!scop->loc)
672 return pet_scop_free(scop);
674 return scop;
677 /* Update start and end of scop->loc to include the region identified
678 * by "loc".
680 struct pet_scop *pet_scop_update_start_end_from_loc(struct pet_scop *scop,
681 __isl_keep pet_loc *loc)
683 return pet_scop_update_start_end(scop, pet_loc_get_start(loc),
684 pet_loc_get_end(loc));
687 /* Replace the location of "scop" by "loc".
689 struct pet_scop *pet_scop_set_loc(struct pet_scop *scop,
690 __isl_take pet_loc *loc)
692 if (!scop || !loc)
693 goto error;
695 pet_loc_free(scop->loc);
696 scop->loc = loc;
698 return scop;
699 error:
700 pet_loc_free(loc);
701 pet_scop_free(scop);
702 return NULL;
705 /* Does "implication" appear in the list of implications of "scop"?
707 static int is_known_implication(struct pet_scop *scop,
708 struct pet_implication *implication)
710 int i;
712 for (i = 0; i < scop->n_implication; ++i) {
713 struct pet_implication *pi = scop->implications[i];
714 int equal;
716 if (pi->satisfied != implication->satisfied)
717 continue;
718 equal = isl_map_is_equal(pi->extension, implication->extension);
719 if (equal < 0)
720 return -1;
721 if (equal)
722 return 1;
725 return 0;
728 /* Store the concatenation of the implications of "scop1" and "scop2"
729 * in "scop", removing duplicates (i.e., implications in "scop2" that
730 * already appear in "scop1").
732 static struct pet_scop *scop_collect_implications(isl_ctx *ctx,
733 struct pet_scop *scop, struct pet_scop *scop1, struct pet_scop *scop2)
735 int i, j;
737 if (!scop)
738 return NULL;
740 if (scop2->n_implication == 0) {
741 scop->n_implication = scop1->n_implication;
742 scop->implications = scop1->implications;
743 scop1->n_implication = 0;
744 scop1->implications = NULL;
745 return scop;
748 if (scop1->n_implication == 0) {
749 scop->n_implication = scop2->n_implication;
750 scop->implications = scop2->implications;
751 scop2->n_implication = 0;
752 scop2->implications = NULL;
753 return scop;
756 scop->implications = isl_calloc_array(ctx, struct pet_implication *,
757 scop1->n_implication + scop2->n_implication);
758 if (!scop->implications)
759 return pet_scop_free(scop);
761 for (i = 0; i < scop1->n_implication; ++i) {
762 scop->implications[i] = scop1->implications[i];
763 scop1->implications[i] = NULL;
766 scop->n_implication = scop1->n_implication;
767 j = scop1->n_implication;
768 for (i = 0; i < scop2->n_implication; ++i) {
769 int known;
771 known = is_known_implication(scop, scop2->implications[i]);
772 if (known < 0)
773 return pet_scop_free(scop);
774 if (known)
775 continue;
776 scop->implications[j++] = scop2->implications[i];
777 scop2->implications[i] = NULL;
779 scop->n_implication = j;
781 return scop;
784 /* Combine the offset information of "scop1" and "scop2" into "scop".
786 static struct pet_scop *scop_combine_start_end(struct pet_scop *scop,
787 struct pet_scop *scop1, struct pet_scop *scop2)
789 if (scop1->loc != &pet_loc_dummy)
790 scop = pet_scop_update_start_end_from_loc(scop, scop1->loc);
791 if (scop2->loc != &pet_loc_dummy)
792 scop = pet_scop_update_start_end_from_loc(scop, scop2->loc);
793 return scop;
796 /* Create and return an independence that filters out the dependences
797 * in "filter" with local variables "local".
799 static struct pet_independence *new_independence(
800 __isl_take isl_union_map *filter, __isl_take isl_union_set *local)
802 isl_ctx *ctx;
803 struct pet_independence *independence;
805 if (!filter || !local)
806 goto error;
807 ctx = isl_union_map_get_ctx(filter);
808 independence = isl_alloc_type(ctx, struct pet_independence);
809 if (!independence)
810 goto error;
812 independence->filter = filter;
813 independence->local = local;
815 return independence;
816 error:
817 isl_union_map_free(filter);
818 isl_union_set_free(local);
819 return NULL;
822 /* Add an independence that filters out the dependences
823 * in "filter" with local variables "local" to "scop".
825 struct pet_scop *pet_scop_add_independence(struct pet_scop *scop,
826 __isl_take isl_union_map *filter, __isl_take isl_union_set *local)
828 isl_ctx *ctx;
829 struct pet_independence *independence;
830 struct pet_independence **independences;
832 ctx = isl_union_map_get_ctx(filter);
833 independence = new_independence(filter, local);
834 if (!scop || !independence)
835 goto error;
837 independences = isl_realloc_array(ctx, scop->independences,
838 struct pet_independence *,
839 scop->n_independence + 1);
840 if (!independences)
841 goto error;
842 scop->independences = independences;
843 scop->independences[scop->n_independence] = independence;
844 scop->n_independence++;
846 return scop;
847 error:
848 pet_independence_free(independence);
849 pet_scop_free(scop);
850 return NULL;
853 /* Store the concatenation of the independences of "scop1" and "scop2"
854 * in "scop".
856 static struct pet_scop *scop_collect_independences(isl_ctx *ctx,
857 struct pet_scop *scop, struct pet_scop *scop1, struct pet_scop *scop2)
859 int i, off;
861 if (!scop)
862 return NULL;
864 if (scop2->n_independence == 0) {
865 scop->n_independence = scop1->n_independence;
866 scop->independences = scop1->independences;
867 scop1->n_independence = 0;
868 scop1->independences = NULL;
869 return scop;
872 if (scop1->n_independence == 0) {
873 scop->n_independence = scop2->n_independence;
874 scop->independences = scop2->independences;
875 scop2->n_independence = 0;
876 scop2->independences = NULL;
877 return scop;
880 scop->independences = isl_calloc_array(ctx, struct pet_independence *,
881 scop1->n_independence + scop2->n_independence);
882 if (!scop->independences)
883 return pet_scop_free(scop);
885 for (i = 0; i < scop1->n_independence; ++i) {
886 scop->independences[i] = scop1->independences[i];
887 scop1->independences[i] = NULL;
890 off = scop1->n_independence;
891 for (i = 0; i < scop2->n_independence; ++i) {
892 scop->independences[off + i] = scop2->independences[i];
893 scop2->independences[i] = NULL;
895 scop->n_independence = scop1->n_independence + scop2->n_independence;
897 return scop;
900 /* Construct a pet_scop with the given schedule
901 * that contains the offset information,
902 * arrays, statements and skip information in "scop1" and "scop2".
904 static struct pet_scop *pet_scop_add(isl_ctx *ctx,
905 __isl_take isl_schedule *schedule, struct pet_scop *scop1,
906 struct pet_scop *scop2)
908 int i;
909 isl_space *space;
910 struct pet_scop *scop = NULL;
912 if (!scop1 || !scop2)
913 goto error;
915 if (scop1->n_stmt == 0) {
916 scop2 = scop_combine_skips(scop2, scop1, scop2);
917 pet_scop_free(scop1);
918 isl_schedule_free(schedule);
919 return scop2;
922 if (scop2->n_stmt == 0) {
923 scop1 = scop_combine_skips(scop1, scop1, scop2);
924 pet_scop_free(scop2);
925 isl_schedule_free(schedule);
926 return scop1;
929 space = isl_set_get_space(scop1->context);
930 scop = scop_alloc(space, scop1->n_stmt + scop2->n_stmt,
931 isl_schedule_copy(schedule));
932 if (!scop)
933 goto error;
935 scop->arrays = isl_calloc_array(ctx, struct pet_array *,
936 scop1->n_array + scop2->n_array);
937 if (!scop->arrays)
938 goto error;
939 scop->n_array = scop1->n_array + scop2->n_array;
941 for (i = 0; i < scop1->n_stmt; ++i) {
942 scop->stmts[i] = scop1->stmts[i];
943 scop1->stmts[i] = NULL;
946 for (i = 0; i < scop2->n_stmt; ++i) {
947 scop->stmts[scop1->n_stmt + i] = scop2->stmts[i];
948 scop2->stmts[i] = NULL;
951 for (i = 0; i < scop1->n_array; ++i) {
952 scop->arrays[i] = scop1->arrays[i];
953 scop1->arrays[i] = NULL;
956 for (i = 0; i < scop2->n_array; ++i) {
957 scop->arrays[scop1->n_array + i] = scop2->arrays[i];
958 scop2->arrays[i] = NULL;
961 scop = scop_collect_implications(ctx, scop, scop1, scop2);
962 scop = pet_scop_restrict_context(scop, isl_set_copy(scop1->context));
963 scop = pet_scop_restrict_context(scop, isl_set_copy(scop2->context));
964 scop = scop_combine_skips(scop, scop1, scop2);
965 scop = scop_combine_start_end(scop, scop1, scop2);
966 scop = scop_collect_independences(ctx, scop, scop1, scop2);
968 pet_scop_free(scop1);
969 pet_scop_free(scop2);
970 isl_schedule_free(schedule);
971 return scop;
972 error:
973 pet_scop_free(scop1);
974 pet_scop_free(scop2);
975 pet_scop_free(scop);
976 isl_schedule_free(schedule);
977 return NULL;
980 /* Apply the skip condition "skip" to "scop".
981 * That is, make sure "scop" is not executed when the condition holds.
983 * If "skip" is an affine expression, we add the conditions under
984 * which the expression is zero to the context and the skip conditions
985 * of "scop".
986 * Otherwise, we add a filter on the variable attaining the value zero.
988 static struct pet_scop *restrict_skip(struct pet_scop *scop,
989 __isl_take isl_multi_pw_aff *skip)
991 isl_set *zero;
992 isl_pw_aff *pa;
993 int is_aff;
995 if (!scop || !skip)
996 goto error;
998 is_aff = multi_pw_aff_is_affine(skip);
999 if (is_aff < 0)
1000 goto error;
1002 if (!is_aff)
1003 return pet_scop_filter(scop, skip, 0);
1005 pa = isl_multi_pw_aff_get_pw_aff(skip, 0);
1006 isl_multi_pw_aff_free(skip);
1007 zero = isl_pw_aff_zero_set(pa);
1008 scop = pet_scop_restrict(scop, zero);
1010 return scop;
1011 error:
1012 isl_multi_pw_aff_free(skip);
1013 return pet_scop_free(scop);
1016 /* Construct a pet_scop that contains the arrays, statements and
1017 * skip information in "scop1" and "scop2", where the two scops
1018 * are executed "in sequence". That is, breaks and continues
1019 * in scop1 have an effect on scop2 and the schedule of the result
1020 * is the sequence of the schedules of "scop1" and "scop2".
1022 struct pet_scop *pet_scop_add_seq(isl_ctx *ctx, struct pet_scop *scop1,
1023 struct pet_scop *scop2)
1025 isl_schedule *schedule;
1027 if (!scop1 || !scop2)
1028 goto error;
1030 if (scop1 && pet_scop_has_skip(scop1, pet_skip_now))
1031 scop2 = restrict_skip(scop2,
1032 pet_scop_get_skip(scop1, pet_skip_now));
1033 schedule = isl_schedule_sequence(isl_schedule_copy(scop1->schedule),
1034 isl_schedule_copy(scop2->schedule));
1035 return pet_scop_add(ctx, schedule, scop1, scop2);
1036 error:
1037 pet_scop_free(scop1);
1038 pet_scop_free(scop2);
1039 return NULL;
1042 /* Construct a pet_scop that contains the arrays, statements and
1043 * skip information in "scop1" and "scop2", where the two scops
1044 * are executed "in parallel". That is, any break or continue
1045 * in scop1 has no effect on scop2 and the schedule of the result
1046 * is the set of the schedules of "scop1" and "scop2".
1048 struct pet_scop *pet_scop_add_par(isl_ctx *ctx, struct pet_scop *scop1,
1049 struct pet_scop *scop2)
1051 isl_schedule *schedule;
1053 if (!scop1 || !scop2)
1054 goto error;
1056 schedule = isl_schedule_set(isl_schedule_copy(scop1->schedule),
1057 isl_schedule_copy(scop2->schedule));
1058 return pet_scop_add(ctx, schedule, scop1, scop2);
1059 error:
1060 pet_scop_free(scop1);
1061 pet_scop_free(scop2);
1062 return NULL;
1065 void *pet_implication_free(struct pet_implication *implication)
1067 int i;
1069 if (!implication)
1070 return NULL;
1072 isl_map_free(implication->extension);
1074 free(implication);
1075 return NULL;
1078 void *pet_independence_free(struct pet_independence *independence)
1080 if (!independence)
1081 return NULL;
1083 isl_union_map_free(independence->filter);
1084 isl_union_set_free(independence->local);
1086 free(independence);
1087 return NULL;
1090 struct pet_scop *pet_scop_free(struct pet_scop *scop)
1092 int i;
1093 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
1095 if (!scop)
1096 return NULL;
1097 pet_loc_free(scop->loc);
1098 isl_set_free(scop->context);
1099 isl_set_free(scop->context_value);
1100 isl_schedule_free(scop->schedule);
1101 if (scop->types)
1102 for (i = 0; i < scop->n_type; ++i)
1103 pet_type_free(scop->types[i]);
1104 free(scop->types);
1105 if (scop->arrays)
1106 for (i = 0; i < scop->n_array; ++i)
1107 pet_array_free(scop->arrays[i]);
1108 free(scop->arrays);
1109 if (scop->stmts)
1110 for (i = 0; i < scop->n_stmt; ++i)
1111 pet_stmt_free(scop->stmts[i]);
1112 free(scop->stmts);
1113 if (scop->implications)
1114 for (i = 0; i < scop->n_implication; ++i)
1115 pet_implication_free(scop->implications[i]);
1116 free(scop->implications);
1117 if (scop->independences)
1118 for (i = 0; i < scop->n_independence; ++i)
1119 pet_independence_free(scop->independences[i]);
1120 free(scop->independences);
1121 isl_multi_pw_aff_free(ext->skip[pet_skip_now]);
1122 isl_multi_pw_aff_free(ext->skip[pet_skip_later]);
1123 free(scop);
1124 return NULL;
1127 void pet_type_dump(struct pet_type *type)
1129 if (!type)
1130 return;
1132 fprintf(stderr, "%s -> %s\n", type->name, type->definition);
1135 void pet_implication_dump(struct pet_implication *implication)
1137 if (!implication)
1138 return;
1140 fprintf(stderr, "%d\n", implication->satisfied);
1141 isl_map_dump(implication->extension);
1144 void pet_scop_dump(struct pet_scop *scop)
1146 int i;
1147 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
1149 if (!scop)
1150 return;
1152 isl_set_dump(scop->context);
1153 isl_set_dump(scop->context_value);
1154 isl_schedule_dump(scop->schedule);
1155 for (i = 0; i < scop->n_type; ++i)
1156 pet_type_dump(scop->types[i]);
1157 for (i = 0; i < scop->n_array; ++i)
1158 pet_array_dump(scop->arrays[i]);
1159 for (i = 0; i < scop->n_stmt; ++i)
1160 pet_stmt_dump(scop->stmts[i]);
1161 for (i = 0; i < scop->n_implication; ++i)
1162 pet_implication_dump(scop->implications[i]);
1164 if (ext->skip[0]) {
1165 fprintf(stderr, "skip\n");
1166 isl_multi_pw_aff_dump(ext->skip[0]);
1167 isl_multi_pw_aff_dump(ext->skip[1]);
1171 /* Return 1 if the two pet_arrays are equivalent.
1173 * We don't compare element_size as this may be target dependent.
1175 int pet_array_is_equal(struct pet_array *array1, struct pet_array *array2)
1177 if (!array1 || !array2)
1178 return 0;
1180 if (!isl_set_is_equal(array1->context, array2->context))
1181 return 0;
1182 if (!isl_set_is_equal(array1->extent, array2->extent))
1183 return 0;
1184 if (!!array1->value_bounds != !!array2->value_bounds)
1185 return 0;
1186 if (array1->value_bounds &&
1187 !isl_set_is_equal(array1->value_bounds, array2->value_bounds))
1188 return 0;
1189 if (strcmp(array1->element_type, array2->element_type))
1190 return 0;
1191 if (array1->element_is_record != array2->element_is_record)
1192 return 0;
1193 if (array1->live_out != array2->live_out)
1194 return 0;
1195 if (array1->uniquely_defined != array2->uniquely_defined)
1196 return 0;
1197 if (array1->declared != array2->declared)
1198 return 0;
1199 if (array1->exposed != array2->exposed)
1200 return 0;
1202 return 1;
1205 /* Return 1 if the two pet_stmts are equivalent.
1207 int pet_stmt_is_equal(struct pet_stmt *stmt1, struct pet_stmt *stmt2)
1209 int i;
1211 if (!stmt1 || !stmt2)
1212 return 0;
1214 if (pet_loc_get_line(stmt1->loc) != pet_loc_get_line(stmt2->loc))
1215 return 0;
1216 if (!isl_set_is_equal(stmt1->domain, stmt2->domain))
1217 return 0;
1218 if (!pet_tree_is_equal(stmt1->body, stmt2->body))
1219 return 0;
1220 if (stmt1->n_arg != stmt2->n_arg)
1221 return 0;
1222 for (i = 0; i < stmt1->n_arg; ++i) {
1223 if (!pet_expr_is_equal(stmt1->args[i], stmt2->args[i]))
1224 return 0;
1227 return 1;
1230 /* Return 1 if the two pet_types are equivalent.
1232 * We only compare the names of the types since the exact representation
1233 * of the definition may depend on the version of clang being used.
1235 int pet_type_is_equal(struct pet_type *type1, struct pet_type *type2)
1237 if (!type1 || !type2)
1238 return 0;
1240 if (strcmp(type1->name, type2->name))
1241 return 0;
1243 return 1;
1246 /* Return 1 if the two pet_implications are equivalent.
1248 int pet_implication_is_equal(struct pet_implication *implication1,
1249 struct pet_implication *implication2)
1251 if (!implication1 || !implication2)
1252 return 0;
1254 if (implication1->satisfied != implication2->satisfied)
1255 return 0;
1256 if (!isl_map_is_equal(implication1->extension, implication2->extension))
1257 return 0;
1259 return 1;
1262 /* Return 1 if the two pet_independences are equivalent.
1264 int pet_independence_is_equal(struct pet_independence *independence1,
1265 struct pet_independence *independence2)
1267 if (!independence1 || !independence2)
1268 return 0;
1270 if (!isl_union_map_is_equal(independence1->filter,
1271 independence2->filter))
1272 return 0;
1273 if (!isl_union_set_is_equal(independence1->local, independence2->local))
1274 return 0;
1276 return 1;
1279 /* Return 1 if the two pet_scops are equivalent.
1281 int pet_scop_is_equal(struct pet_scop *scop1, struct pet_scop *scop2)
1283 int i;
1284 int equal;
1286 if (!scop1 || !scop2)
1287 return 0;
1289 if (!isl_set_is_equal(scop1->context, scop2->context))
1290 return 0;
1291 if (!isl_set_is_equal(scop1->context_value, scop2->context_value))
1292 return 0;
1293 equal = isl_schedule_plain_is_equal(scop1->schedule, scop2->schedule);
1294 if (equal < 0)
1295 return -1;
1296 if (!equal)
1297 return 0;
1299 if (scop1->n_type != scop2->n_type)
1300 return 0;
1301 for (i = 0; i < scop1->n_type; ++i)
1302 if (!pet_type_is_equal(scop1->types[i], scop2->types[i]))
1303 return 0;
1305 if (scop1->n_array != scop2->n_array)
1306 return 0;
1307 for (i = 0; i < scop1->n_array; ++i)
1308 if (!pet_array_is_equal(scop1->arrays[i], scop2->arrays[i]))
1309 return 0;
1311 if (scop1->n_stmt != scop2->n_stmt)
1312 return 0;
1313 for (i = 0; i < scop1->n_stmt; ++i)
1314 if (!pet_stmt_is_equal(scop1->stmts[i], scop2->stmts[i]))
1315 return 0;
1317 if (scop1->n_implication != scop2->n_implication)
1318 return 0;
1319 for (i = 0; i < scop1->n_implication; ++i)
1320 if (!pet_implication_is_equal(scop1->implications[i],
1321 scop2->implications[i]))
1322 return 0;
1324 if (scop1->n_independence != scop2->n_independence)
1325 return 0;
1326 for (i = 0; i < scop1->n_independence; ++i)
1327 if (!pet_independence_is_equal(scop1->independences[i],
1328 scop2->independences[i]))
1329 return 0;
1331 return 1;
1334 /* Does the set "extent" reference a virtual array, i.e.,
1335 * one with user pointer equal to NULL?
1336 * A virtual array does not have any members.
1338 static int extent_is_virtual_array(__isl_keep isl_set *extent)
1340 isl_id *id;
1341 int is_virtual;
1343 if (!isl_set_has_tuple_id(extent))
1344 return 0;
1345 if (isl_set_is_wrapping(extent))
1346 return 0;
1347 id = isl_set_get_tuple_id(extent);
1348 is_virtual = !isl_id_get_user(id);
1349 isl_id_free(id);
1351 return is_virtual;
1354 /* Intersect the initial dimensions of "array" with "domain", provided
1355 * that "array" represents a virtual array.
1357 * If "array" is virtual, then We take the preimage of "domain"
1358 * over the projection of the extent of "array" onto its initial dimensions
1359 * and intersect this extent with the result.
1361 static struct pet_array *virtual_array_intersect_domain_prefix(
1362 struct pet_array *array, __isl_take isl_set *domain)
1364 int n;
1365 isl_space *space;
1366 isl_multi_aff *ma;
1368 if (!array || !extent_is_virtual_array(array->extent)) {
1369 isl_set_free(domain);
1370 return array;
1373 space = isl_set_get_space(array->extent);
1374 n = isl_set_dim(domain, isl_dim_set);
1375 ma = pet_prefix_projection(space, n);
1376 domain = isl_set_preimage_multi_aff(domain, ma);
1378 array->extent = isl_set_intersect(array->extent, domain);
1379 if (!array->extent)
1380 return pet_array_free(array);
1382 return array;
1385 /* Intersect the initial dimensions of the domain of "stmt"
1386 * with "domain".
1388 * We take the preimage of "domain" over the projection of the
1389 * domain of "stmt" onto its initial dimensions and intersect
1390 * the domain of "stmt" with the result.
1392 static struct pet_stmt *stmt_intersect_domain_prefix(struct pet_stmt *stmt,
1393 __isl_take isl_set *domain)
1395 int n;
1396 isl_space *space;
1397 isl_multi_aff *ma;
1399 if (!stmt)
1400 goto error;
1402 space = isl_set_get_space(stmt->domain);
1403 n = isl_set_dim(domain, isl_dim_set);
1404 ma = pet_prefix_projection(space, n);
1405 domain = isl_set_preimage_multi_aff(domain, ma);
1407 stmt->domain = isl_set_intersect(stmt->domain, domain);
1408 if (!stmt->domain)
1409 return pet_stmt_free(stmt);
1411 return stmt;
1412 error:
1413 isl_set_free(domain);
1414 return pet_stmt_free(stmt);
1417 /* Intersect the initial dimensions of the domain of "implication"
1418 * with "domain".
1420 * We take the preimage of "domain" over the projection of the
1421 * domain of "implication" onto its initial dimensions and intersect
1422 * the domain of "implication" with the result.
1424 static struct pet_implication *implication_intersect_domain_prefix(
1425 struct pet_implication *implication, __isl_take isl_set *domain)
1427 int n;
1428 isl_space *space;
1429 isl_multi_aff *ma;
1431 if (!implication)
1432 goto error;
1434 space = isl_map_get_space(implication->extension);
1435 n = isl_set_dim(domain, isl_dim_set);
1436 ma = pet_prefix_projection(isl_space_domain(space), n);
1437 domain = isl_set_preimage_multi_aff(domain, ma);
1439 implication->extension =
1440 isl_map_intersect_domain(implication->extension, domain);
1441 if (!implication->extension)
1442 return pet_implication_free(implication);
1444 return implication;
1445 error:
1446 isl_set_free(domain);
1447 return pet_implication_free(implication);
1450 /* Intersect the initial dimensions of the domains in "scop" with "domain".
1452 * The extents of the virtual arrays match the iteration domains,
1453 * so if the iteration domain changes, we need to change those extents too.
1455 * The domain of the schedule is intersected with (i.e., replaced by)
1456 * the union of the updated iteration domains.
1458 struct pet_scop *pet_scop_intersect_domain_prefix(struct pet_scop *scop,
1459 __isl_take isl_set *domain)
1461 int i;
1463 if (!scop)
1464 goto error;
1466 for (i = 0; i < scop->n_array; ++i) {
1467 scop->arrays[i] = virtual_array_intersect_domain_prefix(
1468 scop->arrays[i], isl_set_copy(domain));
1469 if (!scop->arrays[i])
1470 goto error;
1473 for (i = 0; i < scop->n_stmt; ++i) {
1474 scop->stmts[i] = stmt_intersect_domain_prefix(scop->stmts[i],
1475 isl_set_copy(domain));
1476 if (!scop->stmts[i])
1477 goto error;
1480 for (i = 0; i < scop->n_implication; ++i) {
1481 scop->implications[i] =
1482 implication_intersect_domain_prefix(scop->implications[i],
1483 isl_set_copy(domain));
1484 if (!scop->implications[i])
1485 return pet_scop_free(scop);
1488 scop->schedule = isl_schedule_intersect_domain(scop->schedule,
1489 pet_scop_get_instance_set(scop));
1490 if (!scop->schedule)
1491 goto error;
1493 isl_set_free(domain);
1494 return scop;
1495 error:
1496 isl_set_free(domain);
1497 return pet_scop_free(scop);
1500 /* Update the context with respect to an embedding into a loop
1501 * with iteration domain "dom".
1502 * The input context lives in the same space as "dom".
1503 * The output context has the inner dimension removed.
1505 * An outer loop iterator value is invalid for the embedding if
1506 * any of the corresponding inner iterator values is invalid.
1507 * That is, an outer loop iterator value is valid only if all the corresponding
1508 * inner iterator values are valid.
1509 * We therefore compute the set of outer loop iterators l
1511 * forall i: dom(l,i) => valid(l,i)
1513 * or
1515 * forall i: not dom(l,i) or valid(l,i)
1517 * or
1519 * not exists i: dom(l,i) and not valid(l,i)
1521 * i.e.,
1523 * not exists i: (dom \ valid)(l,i)
1525 * If there are any unnamed parameters in "dom", then we consider
1526 * a parameter value to be valid if it is valid for any value of those
1527 * unnamed parameters. They are therefore projected out at the end.
1529 static __isl_give isl_set *context_embed(__isl_take isl_set *context,
1530 __isl_keep isl_set *dom)
1532 int pos;
1534 pos = isl_set_dim(context, isl_dim_set) - 1;
1535 context = isl_set_subtract(isl_set_copy(dom), context);
1536 context = isl_set_project_out(context, isl_dim_set, pos, 1);
1537 context = isl_set_complement(context);
1538 context = pet_nested_remove_from_set(context);
1540 return context;
1543 /* Update the implication with respect to an embedding into a loop
1544 * with iteration domain "dom".
1546 * Since embed_access extends virtual arrays along with the domain
1547 * of the access, we need to do the same with domain and range
1548 * of the implication. Since the original implication is only valid
1549 * within a given iteration of the loop, the extended implication
1550 * maps the extra array dimension corresponding to the extra loop
1551 * to itself.
1553 static struct pet_implication *pet_implication_embed(
1554 struct pet_implication *implication, __isl_take isl_set *dom)
1556 isl_id *id;
1557 isl_map *map;
1559 if (!implication)
1560 goto error;
1562 map = isl_set_identity(dom);
1563 id = isl_map_get_tuple_id(implication->extension, isl_dim_in);
1564 map = isl_map_flat_product(map, implication->extension);
1565 map = isl_map_set_tuple_id(map, isl_dim_in, isl_id_copy(id));
1566 map = isl_map_set_tuple_id(map, isl_dim_out, id);
1567 implication->extension = map;
1568 if (!implication->extension)
1569 return pet_implication_free(implication);
1571 return implication;
1572 error:
1573 isl_set_free(dom);
1574 return NULL;
1577 /* Internal data structure for outer_projection_mupa.
1579 * "n" is the number of outer dimensions onto which to project.
1580 * "res" collects the result.
1582 struct pet_outer_projection_data {
1583 int n;
1584 isl_union_pw_multi_aff *res;
1587 /* Create a function that maps "set" onto its outer data->n dimensions and
1588 * add it to data->res.
1590 static isl_stat add_outer_projection(__isl_take isl_set *set, void *user)
1592 struct pet_outer_projection_data *data = user;
1593 int dim;
1594 isl_space *space;
1595 isl_pw_multi_aff *pma;
1597 dim = isl_set_dim(set, isl_dim_set);
1598 space = isl_set_get_space(set);
1599 pma = isl_pw_multi_aff_project_out_map(space,
1600 isl_dim_set, data->n, dim - data->n);
1601 data->res = isl_union_pw_multi_aff_add_pw_multi_aff(data->res, pma);
1603 isl_set_free(set);
1605 return isl_stat_ok;
1608 /* Create and return a function that maps the sets in "domain"
1609 * onto their outer "n" dimensions.
1611 static __isl_give isl_multi_union_pw_aff *outer_projection_mupa(
1612 __isl_take isl_union_set *domain, int n)
1614 struct pet_outer_projection_data data;
1615 isl_space *space;
1617 space = isl_union_set_get_space(domain);
1618 data.n = n;
1619 data.res = isl_union_pw_multi_aff_empty(space);
1620 if (isl_union_set_foreach_set(domain, &add_outer_projection, &data) < 0)
1621 data.res = isl_union_pw_multi_aff_free(data.res);
1623 isl_union_set_free(domain);
1624 return isl_multi_union_pw_aff_from_union_pw_multi_aff(data.res);
1627 /* Embed "schedule" in a loop with schedule "prefix".
1628 * The domain of "prefix" corresponds to the outer dimensions
1629 * of the iteration domains.
1630 * We therefore construct a projection onto these outer dimensions,
1631 * compose it with "prefix" and then add the result as a band schedule.
1633 * If the domain of the schedule is empty, then there is no need
1634 * to insert any node.
1636 static __isl_give isl_schedule *schedule_embed(
1637 __isl_take isl_schedule *schedule, __isl_keep isl_multi_aff *prefix)
1639 int n;
1640 int empty;
1641 isl_union_set *domain;
1642 isl_multi_aff *ma;
1643 isl_multi_union_pw_aff *mupa;
1645 domain = isl_schedule_get_domain(schedule);
1646 empty = isl_union_set_is_empty(domain);
1647 if (empty < 0 || empty) {
1648 isl_union_set_free(domain);
1649 return empty < 0 ? isl_schedule_free(schedule) : schedule;
1652 n = isl_multi_aff_dim(prefix, isl_dim_in);
1653 mupa = outer_projection_mupa(domain, n);
1654 ma = isl_multi_aff_copy(prefix);
1655 mupa = isl_multi_union_pw_aff_apply_multi_aff(mupa, ma);
1656 schedule = isl_schedule_insert_partial_schedule(schedule, mupa);
1658 return schedule;
1661 /* Adjust the context and the schedule according to an embedding
1662 * in a loop with iteration domain "dom" and schedule "sched".
1664 struct pet_scop *pet_scop_embed(struct pet_scop *scop, __isl_take isl_set *dom,
1665 __isl_take isl_multi_aff *sched)
1667 int i;
1669 if (!scop)
1670 goto error;
1672 scop->context = context_embed(scop->context, dom);
1673 if (!scop->context)
1674 goto error;
1676 scop->schedule = schedule_embed(scop->schedule, sched);
1677 if (!scop->schedule)
1678 goto error;
1680 isl_set_free(dom);
1681 isl_multi_aff_free(sched);
1682 return scop;
1683 error:
1684 isl_set_free(dom);
1685 isl_multi_aff_free(sched);
1686 return pet_scop_free(scop);
1689 /* Add extra conditions to scop->skip[type].
1691 * The new skip condition only holds if it held before
1692 * and the condition is true. It does not hold if it did not hold
1693 * before or the condition is false.
1695 * The skip condition is assumed to be an affine expression.
1697 static struct pet_scop *pet_scop_restrict_skip(struct pet_scop *scop,
1698 enum pet_skip type, __isl_keep isl_set *cond)
1700 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
1701 isl_pw_aff *skip;
1702 isl_set *dom;
1704 if (!scop)
1705 return NULL;
1706 if (!ext->skip[type])
1707 return scop;
1709 if (!multi_pw_aff_is_affine(ext->skip[type]))
1710 isl_die(isl_multi_pw_aff_get_ctx(ext->skip[type]),
1711 isl_error_internal, "can only restrict affine skips",
1712 return pet_scop_free(scop));
1714 skip = isl_multi_pw_aff_get_pw_aff(ext->skip[type], 0);
1715 dom = isl_pw_aff_domain(isl_pw_aff_copy(skip));
1716 cond = isl_set_copy(cond);
1717 cond = isl_set_intersect(cond, isl_pw_aff_non_zero_set(skip));
1718 skip = indicator_function(cond, dom);
1719 isl_multi_pw_aff_free(ext->skip[type]);
1720 ext->skip[type] = isl_multi_pw_aff_from_pw_aff(skip);
1721 if (!ext->skip[type])
1722 return pet_scop_free(scop);
1724 return scop;
1727 /* Adjust the context and the skip conditions to the fact that
1728 * the scop was created in a context where "cond" holds.
1730 * An outer loop iterator or parameter value is valid for the result
1731 * if it was valid for the original scop and satisfies "cond" or if it does
1732 * not satisfy "cond" as in this case the scop is not executed
1733 * and the original constraints on these values are irrelevant.
1735 struct pet_scop *pet_scop_restrict(struct pet_scop *scop,
1736 __isl_take isl_set *cond)
1738 int i;
1740 scop = pet_scop_restrict_skip(scop, pet_skip_now, cond);
1741 scop = pet_scop_restrict_skip(scop, pet_skip_later, cond);
1743 if (!scop)
1744 goto error;
1746 scop->context = isl_set_intersect(scop->context, isl_set_copy(cond));
1747 scop->context = isl_set_union(scop->context,
1748 isl_set_complement(isl_set_copy(cond)));
1749 scop->context = isl_set_coalesce(scop->context);
1750 scop->context = pet_nested_remove_from_set(scop->context);
1751 if (!scop->context)
1752 goto error;
1754 isl_set_free(cond);
1755 return scop;
1756 error:
1757 isl_set_free(cond);
1758 return pet_scop_free(scop);
1761 /* Insert an argument expression corresponding to "test" in front
1762 * of the list of arguments described by *n_arg and *args.
1764 static int args_insert_access(unsigned *n_arg, pet_expr ***args,
1765 __isl_keep isl_multi_pw_aff *test)
1767 int i;
1768 isl_ctx *ctx = isl_multi_pw_aff_get_ctx(test);
1770 if (!test)
1771 return -1;
1773 if (!*args) {
1774 *args = isl_calloc_array(ctx, pet_expr *, 1);
1775 if (!*args)
1776 return -1;
1777 } else {
1778 pet_expr **ext;
1779 ext = isl_calloc_array(ctx, pet_expr *, 1 + *n_arg);
1780 if (!ext)
1781 return -1;
1782 for (i = 0; i < *n_arg; ++i)
1783 ext[1 + i] = (*args)[i];
1784 free(*args);
1785 *args = ext;
1787 (*n_arg)++;
1788 (*args)[0] = pet_expr_from_index(isl_multi_pw_aff_copy(test));
1789 if (!(*args)[0])
1790 return -1;
1792 return 0;
1795 /* Look through the applications in "scop" for any that can be
1796 * applied to the filter expressed by "map" and "satisified".
1797 * If there is any, then apply it to "map" and return the result.
1798 * Otherwise, return "map".
1799 * "id" is the identifier of the virtual array.
1801 * We only introduce at most one implication for any given virtual array,
1802 * so we can apply the implication and return as soon as we find one.
1804 static __isl_give isl_map *apply_implications(struct pet_scop *scop,
1805 __isl_take isl_map *map, __isl_keep isl_id *id, int satisfied)
1807 int i;
1809 for (i = 0; i < scop->n_implication; ++i) {
1810 struct pet_implication *pi = scop->implications[i];
1811 isl_id *pi_id;
1813 if (pi->satisfied != satisfied)
1814 continue;
1815 pi_id = isl_map_get_tuple_id(pi->extension, isl_dim_in);
1816 isl_id_free(pi_id);
1817 if (pi_id != id)
1818 continue;
1820 return isl_map_apply_range(map, isl_map_copy(pi->extension));
1823 return map;
1826 /* Is the filter expressed by "test" and "satisfied" implied
1827 * by filter "pos" on "domain", with filter "expr", taking into
1828 * account the implications of "scop"?
1830 * For filter on domain implying that expressed by "test" and "satisfied",
1831 * the filter needs to be an access to the same (virtual) array as "test" and
1832 * the filter value needs to be equal to "satisfied".
1833 * Moreover, the filter access relation, possibly extended by
1834 * the implications in "scop" needs to contain "test".
1836 static int implies_filter(struct pet_scop *scop,
1837 __isl_keep isl_map *domain, int pos, __isl_keep pet_expr *expr,
1838 __isl_keep isl_map *test, int satisfied)
1840 isl_id *test_id, *arg_id;
1841 isl_val *val;
1842 int is_int;
1843 int s;
1844 int is_subset;
1845 isl_map *implied;
1847 if (expr->type != pet_expr_access)
1848 return 0;
1849 test_id = isl_map_get_tuple_id(test, isl_dim_out);
1850 arg_id = pet_expr_access_get_id(expr);
1851 isl_id_free(arg_id);
1852 isl_id_free(test_id);
1853 if (test_id != arg_id)
1854 return 0;
1855 val = isl_map_plain_get_val_if_fixed(domain, isl_dim_out, pos);
1856 is_int = isl_val_is_int(val);
1857 if (is_int)
1858 s = isl_val_get_num_si(val);
1859 isl_val_free(val);
1860 if (!val)
1861 return -1;
1862 if (!is_int)
1863 return 0;
1864 if (s != satisfied)
1865 return 0;
1867 implied = isl_map_from_multi_pw_aff(pet_expr_access_get_index(expr));
1868 implied = apply_implications(scop, implied, test_id, satisfied);
1869 is_subset = isl_map_is_subset(test, implied);
1870 isl_map_free(implied);
1872 return is_subset;
1875 /* Is the filter expressed by "test" and "satisfied" implied
1876 * by any of the filters on the domain of "stmt", taking into
1877 * account the implications of "scop"?
1879 static int filter_implied(struct pet_scop *scop,
1880 struct pet_stmt *stmt, __isl_keep isl_multi_pw_aff *test, int satisfied)
1882 int i;
1883 int implied;
1884 isl_id *test_id;
1885 isl_map *domain;
1886 isl_map *test_map;
1888 if (!scop || !stmt || !test)
1889 return -1;
1890 if (scop->n_implication == 0)
1891 return 0;
1892 if (stmt->n_arg == 0)
1893 return 0;
1895 domain = isl_set_unwrap(isl_set_copy(stmt->domain));
1896 test_map = isl_map_from_multi_pw_aff(isl_multi_pw_aff_copy(test));
1898 implied = 0;
1899 for (i = 0; i < stmt->n_arg; ++i) {
1900 implied = implies_filter(scop, domain, i, stmt->args[i],
1901 test_map, satisfied);
1902 if (implied < 0 || implied)
1903 break;
1906 isl_map_free(test_map);
1907 isl_map_free(domain);
1908 return implied;
1911 /* Make the statement "stmt" depend on the value of "test"
1912 * being equal to "satisfied" by adjusting stmt->domain.
1914 * The domain of "test" corresponds to the (zero or more) outer dimensions
1915 * of the iteration domain.
1917 * We first extend "test" to apply to the entire iteration domain and
1918 * then check if the filter that we are about to add is implied
1919 * by any of the current filters, possibly taking into account
1920 * the implications in "scop". If so, we leave "stmt" untouched and return.
1922 * Otherwise, we insert an argument corresponding to a read to "test"
1923 * from the iteration domain of "stmt" in front of the list of arguments.
1924 * We also insert a corresponding output dimension in the wrapped
1925 * map contained in stmt->domain, with value set to "satisfied".
1927 static struct pet_stmt *stmt_filter(struct pet_scop *scop,
1928 struct pet_stmt *stmt, __isl_take isl_multi_pw_aff *test, int satisfied)
1930 int i;
1931 int implied;
1932 isl_id *id;
1933 isl_ctx *ctx;
1934 isl_pw_multi_aff *pma;
1935 isl_multi_aff *add_dom;
1936 isl_space *space;
1937 isl_local_space *ls;
1938 int n_test_dom;
1940 if (!stmt || !test)
1941 goto error;
1943 space = pet_stmt_get_space(stmt);
1944 n_test_dom = isl_multi_pw_aff_dim(test, isl_dim_in);
1945 space = isl_space_from_domain(space);
1946 space = isl_space_add_dims(space, isl_dim_out, n_test_dom);
1947 add_dom = isl_multi_aff_zero(isl_space_copy(space));
1948 ls = isl_local_space_from_space(isl_space_domain(space));
1949 for (i = 0; i < n_test_dom; ++i) {
1950 isl_aff *aff;
1951 aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
1952 isl_dim_set, i);
1953 add_dom = isl_multi_aff_set_aff(add_dom, i, aff);
1955 isl_local_space_free(ls);
1956 test = isl_multi_pw_aff_pullback_multi_aff(test, add_dom);
1958 implied = filter_implied(scop, stmt, test, satisfied);
1959 if (implied < 0)
1960 goto error;
1961 if (implied) {
1962 isl_multi_pw_aff_free(test);
1963 return stmt;
1966 id = isl_multi_pw_aff_get_tuple_id(test, isl_dim_out);
1967 pma = pet_filter_insert_pma(isl_set_get_space(stmt->domain),
1968 id, satisfied);
1969 stmt->domain = isl_set_preimage_pw_multi_aff(stmt->domain, pma);
1971 if (args_insert_access(&stmt->n_arg, &stmt->args, test) < 0)
1972 goto error;
1974 isl_multi_pw_aff_free(test);
1975 return stmt;
1976 error:
1977 isl_multi_pw_aff_free(test);
1978 return pet_stmt_free(stmt);
1981 /* Does "scop" have a skip condition of the given "type"?
1983 int pet_scop_has_skip(struct pet_scop *scop, enum pet_skip type)
1985 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
1987 if (!scop)
1988 return -1;
1989 return ext->skip[type] != NULL;
1992 /* Does "scop" have a skip condition of the given "type" that
1993 * is an affine expression?
1995 int pet_scop_has_affine_skip(struct pet_scop *scop, enum pet_skip type)
1997 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
1999 if (!scop)
2000 return -1;
2001 if (!ext->skip[type])
2002 return 0;
2003 return multi_pw_aff_is_affine(ext->skip[type]);
2006 /* Does "scop" have a skip condition of the given "type" that
2007 * is not an affine expression?
2009 int pet_scop_has_var_skip(struct pet_scop *scop, enum pet_skip type)
2011 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
2012 int aff;
2014 if (!scop)
2015 return -1;
2016 if (!ext->skip[type])
2017 return 0;
2018 aff = multi_pw_aff_is_affine(ext->skip[type]);
2019 if (aff < 0)
2020 return -1;
2021 return !aff;
2024 /* Does "scop" have a skip condition of the given "type" that
2025 * is affine and holds on the entire domain?
2027 int pet_scop_has_universal_skip(struct pet_scop *scop, enum pet_skip type)
2029 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
2030 isl_pw_aff *pa;
2031 isl_set *set;
2032 int is_aff;
2033 int is_univ;
2035 is_aff = pet_scop_has_affine_skip(scop, type);
2036 if (is_aff < 0 || !is_aff)
2037 return is_aff;
2039 pa = isl_multi_pw_aff_get_pw_aff(ext->skip[type], 0);
2040 set = isl_pw_aff_non_zero_set(pa);
2041 is_univ = isl_set_plain_is_universe(set);
2042 isl_set_free(set);
2044 return is_univ;
2047 /* Replace scop->skip[type] by "skip".
2049 struct pet_scop *pet_scop_set_skip(struct pet_scop *scop,
2050 enum pet_skip type, __isl_take isl_multi_pw_aff *skip)
2052 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
2054 if (!scop || !skip)
2055 goto error;
2057 isl_multi_pw_aff_free(ext->skip[type]);
2058 ext->skip[type] = skip;
2060 return scop;
2061 error:
2062 isl_multi_pw_aff_free(skip);
2063 return pet_scop_free(scop);
2066 /* Return a copy of scop->skip[type].
2068 __isl_give isl_multi_pw_aff *pet_scop_get_skip(struct pet_scop *scop,
2069 enum pet_skip type)
2071 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
2073 if (!scop)
2074 return NULL;
2076 return isl_multi_pw_aff_copy(ext->skip[type]);
2079 /* Assuming scop->skip[type] is an affine expression,
2080 * return the constraints on the outer loop domain for which the skip condition
2081 * holds.
2083 __isl_give isl_set *pet_scop_get_affine_skip_domain(struct pet_scop *scop,
2084 enum pet_skip type)
2086 isl_multi_pw_aff *skip;
2087 isl_pw_aff *pa;
2089 skip = pet_scop_get_skip(scop, type);
2090 pa = isl_multi_pw_aff_get_pw_aff(skip, 0);
2091 isl_multi_pw_aff_free(skip);
2092 return isl_pw_aff_non_zero_set(pa);
2095 /* Return the identifier of the variable that is accessed by
2096 * the skip condition of the given type.
2098 * The skip condition is assumed not to be an affine condition.
2100 __isl_give isl_id *pet_scop_get_skip_id(struct pet_scop *scop,
2101 enum pet_skip type)
2103 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
2105 if (!scop)
2106 return NULL;
2108 return isl_multi_pw_aff_get_tuple_id(ext->skip[type], isl_dim_out);
2111 /* Return an access pet_expr corresponding to the skip condition
2112 * of the given type.
2114 __isl_give pet_expr *pet_scop_get_skip_expr(struct pet_scop *scop,
2115 enum pet_skip type)
2117 return pet_expr_from_index(pet_scop_get_skip(scop, type));
2120 /* Drop the skip condition scop->skip[type].
2122 void pet_scop_reset_skip(struct pet_scop *scop, enum pet_skip type)
2124 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
2126 if (!scop)
2127 return;
2129 isl_multi_pw_aff_free(ext->skip[type]);
2130 ext->skip[type] = NULL;
2133 /* Drop all skip conditions on "scop".
2135 struct pet_scop *pet_scop_reset_skips(struct pet_scop *scop)
2137 pet_scop_reset_skip(scop, pet_skip_now);
2138 pet_scop_reset_skip(scop, pet_skip_later);
2140 return scop;
2143 /* Make the skip condition (if any) depend on the value of "test" being
2144 * equal to "satisfied".
2146 * We only support the case where the original skip condition is universal,
2147 * i.e., where skipping is unconditional, and where satisfied == 1.
2148 * In this case, the skip condition is changed to skip only when
2149 * "test" is equal to one.
2151 static struct pet_scop *pet_scop_filter_skip(struct pet_scop *scop,
2152 enum pet_skip type, __isl_keep isl_multi_pw_aff *test, int satisfied)
2154 int is_univ = 0;
2156 if (!scop)
2157 return NULL;
2158 if (!pet_scop_has_skip(scop, type))
2159 return scop;
2161 if (satisfied)
2162 is_univ = pet_scop_has_universal_skip(scop, type);
2163 if (is_univ < 0)
2164 return pet_scop_free(scop);
2165 if (satisfied && is_univ) {
2166 isl_multi_pw_aff *skip;
2167 skip = isl_multi_pw_aff_copy(test);
2168 scop = pet_scop_set_skip(scop, type, skip);
2169 if (!scop)
2170 return NULL;
2171 } else {
2172 isl_die(isl_multi_pw_aff_get_ctx(test), isl_error_internal,
2173 "skip expression cannot be filtered",
2174 return pet_scop_free(scop));
2177 return scop;
2180 /* Make all statements in "scop" depend on the value of "test"
2181 * being equal to "satisfied" by adjusting their domains.
2183 struct pet_scop *pet_scop_filter(struct pet_scop *scop,
2184 __isl_take isl_multi_pw_aff *test, int satisfied)
2186 int i;
2188 scop = pet_scop_filter_skip(scop, pet_skip_now, test, satisfied);
2189 scop = pet_scop_filter_skip(scop, pet_skip_later, test, satisfied);
2191 if (!scop || !test)
2192 goto error;
2194 for (i = 0; i < scop->n_stmt; ++i) {
2195 scop->stmts[i] = stmt_filter(scop, scop->stmts[i],
2196 isl_multi_pw_aff_copy(test), satisfied);
2197 if (!scop->stmts[i])
2198 goto error;
2201 isl_multi_pw_aff_free(test);
2202 return scop;
2203 error:
2204 isl_multi_pw_aff_free(test);
2205 return pet_scop_free(scop);
2208 /* Add the parameters of the access expression "expr" to "space".
2210 static int access_collect_params(__isl_keep pet_expr *expr, void *user)
2212 int i;
2213 isl_space *expr_space;
2214 isl_space **space = user;
2216 expr_space = pet_expr_access_get_parameter_space(expr);
2217 *space = isl_space_align_params(*space, expr_space);
2219 return *space ? 0 : -1;
2222 /* Add all parameters in "stmt" to "space" and return the result.
2224 static __isl_give isl_space *stmt_collect_params(struct pet_stmt *stmt,
2225 __isl_take isl_space *space)
2227 int i;
2229 if (!stmt)
2230 return isl_space_free(space);
2232 space = isl_space_align_params(space, isl_set_get_space(stmt->domain));
2233 for (i = 0; i < stmt->n_arg; ++i)
2234 if (pet_expr_foreach_access_expr(stmt->args[i],
2235 &access_collect_params, &space) < 0)
2236 space = isl_space_free(space);
2237 if (pet_tree_foreach_access_expr(stmt->body, &access_collect_params,
2238 &space) < 0)
2239 space = isl_space_free(space);
2241 return space;
2244 /* Add all parameters in "array" to "space" and return the result.
2246 static __isl_give isl_space *array_collect_params(struct pet_array *array,
2247 __isl_take isl_space *space)
2249 if (!array)
2250 return isl_space_free(space);
2252 space = isl_space_align_params(space,
2253 isl_set_get_space(array->context));
2254 space = isl_space_align_params(space, isl_set_get_space(array->extent));
2256 return space;
2259 /* Add all parameters in "independence" to "space" and return the result.
2261 static __isl_give isl_space *independence_collect_params(
2262 struct pet_independence *independence, __isl_take isl_space *space)
2264 if (!independence)
2265 return isl_space_free(space);
2267 space = isl_space_align_params(space,
2268 isl_union_map_get_space(independence->filter));
2269 space = isl_space_align_params(space,
2270 isl_union_set_get_space(independence->local));
2272 return space;
2275 /* Collect all parameters in "scop" in a parameter space and return the result.
2277 static __isl_give isl_space *scop_collect_params(struct pet_scop *scop)
2279 isl_space *space;
2280 int i;
2282 if (!scop)
2283 return NULL;
2285 space = isl_set_get_space(scop->context);
2287 for (i = 0; i < scop->n_array; ++i)
2288 space = array_collect_params(scop->arrays[i], space);
2290 for (i = 0; i < scop->n_stmt; ++i)
2291 space = stmt_collect_params(scop->stmts[i], space);
2293 for (i = 0; i < scop->n_independence; ++i)
2294 space = independence_collect_params(scop->independences[i],
2295 space);
2297 return space;
2300 /* Add all parameters in "space" to the domain and
2301 * all access relations in "stmt".
2303 static struct pet_stmt *stmt_propagate_params(struct pet_stmt *stmt,
2304 __isl_take isl_space *space)
2306 int i;
2308 if (!stmt)
2309 goto error;
2311 stmt->domain = isl_set_align_params(stmt->domain,
2312 isl_space_copy(space));
2314 for (i = 0; i < stmt->n_arg; ++i) {
2315 stmt->args[i] = pet_expr_align_params(stmt->args[i],
2316 isl_space_copy(space));
2317 if (!stmt->args[i])
2318 goto error;
2320 stmt->body = pet_tree_align_params(stmt->body, isl_space_copy(space));
2322 if (!stmt->domain || !stmt->body)
2323 goto error;
2325 isl_space_free(space);
2326 return stmt;
2327 error:
2328 isl_space_free(space);
2329 return pet_stmt_free(stmt);
2332 /* Add all parameters in "space" to "array".
2334 static struct pet_array *array_propagate_params(struct pet_array *array,
2335 __isl_take isl_space *space)
2337 if (!array)
2338 goto error;
2340 array->context = isl_set_align_params(array->context,
2341 isl_space_copy(space));
2342 array->extent = isl_set_align_params(array->extent,
2343 isl_space_copy(space));
2344 if (array->value_bounds) {
2345 array->value_bounds = isl_set_align_params(array->value_bounds,
2346 isl_space_copy(space));
2347 if (!array->value_bounds)
2348 goto error;
2351 if (!array->context || !array->extent)
2352 goto error;
2354 isl_space_free(space);
2355 return array;
2356 error:
2357 isl_space_free(space);
2358 return pet_array_free(array);
2361 /* Add all parameters in "space" to "independence".
2363 static struct pet_independence *independence_propagate_params(
2364 struct pet_independence *independence, __isl_take isl_space *space)
2366 if (!independence)
2367 goto error;
2369 independence->filter = isl_union_map_align_params(independence->filter,
2370 isl_space_copy(space));
2371 independence->local = isl_union_set_align_params(independence->local,
2372 isl_space_copy(space));
2373 if (!independence->filter || !independence->local)
2374 goto error;
2376 isl_space_free(space);
2377 return independence;
2378 error:
2379 isl_space_free(space);
2380 return pet_independence_free(independence);
2383 /* Add all parameters in "space" to "scop".
2385 static struct pet_scop *scop_propagate_params(struct pet_scop *scop,
2386 __isl_take isl_space *space)
2388 int i;
2390 if (!scop)
2391 goto error;
2393 scop->context = isl_set_align_params(scop->context,
2394 isl_space_copy(space));
2395 scop->schedule = isl_schedule_align_params(scop->schedule,
2396 isl_space_copy(space));
2397 if (!scop->context || !scop->schedule)
2398 goto error;
2400 for (i = 0; i < scop->n_array; ++i) {
2401 scop->arrays[i] = array_propagate_params(scop->arrays[i],
2402 isl_space_copy(space));
2403 if (!scop->arrays[i])
2404 goto error;
2407 for (i = 0; i < scop->n_stmt; ++i) {
2408 scop->stmts[i] = stmt_propagate_params(scop->stmts[i],
2409 isl_space_copy(space));
2410 if (!scop->stmts[i])
2411 goto error;
2414 for (i = 0; i < scop->n_independence; ++i) {
2415 scop->independences[i] = independence_propagate_params(
2416 scop->independences[i], isl_space_copy(space));
2417 if (!scop->independences[i])
2418 goto error;
2421 isl_space_free(space);
2422 return scop;
2423 error:
2424 isl_space_free(space);
2425 return pet_scop_free(scop);
2428 /* Update all isl_sets and isl_maps in "scop" such that they all
2429 * have the same parameters.
2431 struct pet_scop *pet_scop_align_params(struct pet_scop *scop)
2433 isl_space *space;
2435 if (!scop)
2436 return NULL;
2438 space = scop_collect_params(scop);
2440 scop = scop_propagate_params(scop, space);
2442 return scop;
2445 /* Add the access relation of the give "type" of the access expression "expr"
2446 * to "accesses" and return the result.
2447 * The domain of the access relation is intersected with "domain".
2448 * If "tag" is set, then the access relation is tagged with
2449 * the corresponding reference identifier.
2451 static __isl_give isl_union_map *expr_collect_access(__isl_keep pet_expr *expr,
2452 enum pet_expr_access_type type, int tag,
2453 __isl_take isl_union_map *accesses, __isl_keep isl_union_set *domain)
2455 isl_union_map *access;
2457 access = pet_expr_access_get_access(expr, type);
2458 access = isl_union_map_intersect_domain(access,
2459 isl_union_set_copy(domain));
2460 if (tag)
2461 access = pet_expr_tag_access(expr, access);
2462 return isl_union_map_union(accesses, access);
2465 /* Internal data structure for expr_collect_accesses.
2467 * "type" is the type of accesses we want to collect.
2468 * "tag" is set if the access relations should be tagged with
2469 * the corresponding reference identifiers.
2470 * "domain" are constraints on the domain of the access relations.
2471 * "accesses" collects the results.
2473 struct pet_expr_collect_accesses_data {
2474 enum pet_expr_access_type type;
2475 int tag;
2476 isl_union_set *domain;
2478 isl_union_map *accesses;
2481 /* Add the access relation of the access expression "expr"
2482 * to data->accesses if the access expression is a read and we are collecting
2483 * reads and/or it is a write and we are collecting writes.
2484 * The domains of the access relations are intersected with data->domain.
2485 * If data->tag is set, then the access relations are tagged with
2486 * the corresponding reference identifiers.
2488 * If data->type is pet_expr_access_must_write, then we only add
2489 * the accesses that are definitely performed. Otherwise, we add
2490 * all potential accesses.
2491 * In particular, if the access has any arguments, then in case of
2492 * pet_expr_access_must_write we currently skip the access completely.
2493 * In other cases, we project out the values of the access arguments.
2495 static int expr_collect_accesses(__isl_keep pet_expr *expr, void *user)
2497 struct pet_expr_collect_accesses_data *data = user;
2498 int i;
2499 isl_id *id;
2500 isl_space *dim;
2502 if (!expr)
2503 return -1;
2505 if (pet_expr_is_affine(expr))
2506 return 0;
2507 if (data->type == pet_expr_access_must_write && expr->n_arg != 0)
2508 return 0;
2510 if ((data->type == pet_expr_access_may_read && expr->acc.read) ||
2511 ((data->type == pet_expr_access_may_write ||
2512 data->type == pet_expr_access_must_write) && expr->acc.write))
2513 data->accesses = expr_collect_access(expr,
2514 data->type, data->tag,
2515 data->accesses, data->domain);
2517 return data->accesses ? 0 : -1;
2520 /* Collect and return all access relations of the given "type" in "stmt".
2521 * If "tag" is set, then the access relations are tagged with
2522 * the corresponding reference identifiers.
2523 * If "type" is pet_expr_access_killed, then "stmt" is a kill statement and
2524 * we simply add the argument of the kill operation.
2526 * If we are looking for definite accesses (pet_expr_access_must_write
2527 * or pet_expr_access_killed), then we only add the accesses that are
2528 * definitely performed. Otherwise, we add all potential accesses.
2529 * In particular, if the statement has any arguments, then if we are looking
2530 * for definite accesses we currently skip the statement completely. Othewise,
2531 * we project out the values of the statement arguments.
2532 * If the statement body is not an expression tree, then we cannot
2533 * know for sure if/when the accesses inside the tree are performed.
2534 * We therefore ignore such statements when we are looking for
2535 * definite accesses.
2537 static __isl_give isl_union_map *stmt_collect_accesses(struct pet_stmt *stmt,
2538 enum pet_expr_access_type type, int tag, __isl_take isl_space *dim)
2540 struct pet_expr_collect_accesses_data data = { type, tag };
2541 int must;
2542 isl_set *domain;
2544 if (!stmt)
2545 return NULL;
2547 data.accesses = isl_union_map_empty(dim);
2549 if (type == pet_expr_access_must_write ||
2550 type == pet_expr_access_killed)
2551 must = 1;
2552 else
2553 must = 0;
2555 if (must && stmt->n_arg > 0)
2556 return data.accesses;
2557 if (must && pet_tree_get_type(stmt->body) != pet_tree_expr)
2558 return data.accesses;
2560 domain = drop_arguments(isl_set_copy(stmt->domain));
2561 data.domain = isl_union_set_from_set(domain);
2563 if (type == pet_expr_access_killed) {
2564 pet_expr *body, *arg;
2566 body = pet_tree_expr_get_expr(stmt->body);
2567 arg = pet_expr_get_arg(body, 0);
2568 data.accesses = expr_collect_access(arg,
2569 pet_expr_access_killed, tag,
2570 data.accesses, data.domain);
2571 pet_expr_free(arg);
2572 pet_expr_free(body);
2573 } else if (pet_tree_foreach_access_expr(stmt->body,
2574 &expr_collect_accesses, &data) < 0)
2575 data.accesses = isl_union_map_free(data.accesses);
2577 isl_union_set_free(data.domain);
2579 return data.accesses;
2582 /* Is "stmt" an assignment statement?
2584 int pet_stmt_is_assign(struct pet_stmt *stmt)
2586 if (!stmt)
2587 return 0;
2588 return pet_tree_is_assign(stmt->body);
2591 /* Is "stmt" a kill statement?
2593 int pet_stmt_is_kill(struct pet_stmt *stmt)
2595 if (!stmt)
2596 return 0;
2597 return pet_tree_is_kill(stmt->body);
2600 /* Is "stmt" an assume statement?
2602 int pet_stmt_is_assume(struct pet_stmt *stmt)
2604 if (!stmt)
2605 return 0;
2606 return pet_tree_is_assume(stmt->body);
2609 /* Helper function to add a domain gisted copy of "map" (wrt "set") to "umap".
2611 static __isl_give isl_union_map *add_gisted(__isl_take isl_union_map *umap,
2612 __isl_keep isl_map *map, __isl_keep isl_set *set)
2614 isl_map *gist;
2616 gist = isl_map_copy(map);
2617 gist = isl_map_gist_domain(gist, isl_set_copy(set));
2618 return isl_union_map_add_map(umap, gist);
2621 /* Compute a mapping from all arrays (of structs) in scop
2622 * to their members.
2624 * If "from_outermost" is set, then the domain only consists
2625 * of outermost arrays.
2626 * If "to_innermost" is set, then the range only consists
2627 * of innermost arrays.
2629 static __isl_give isl_union_map *compute_to_inner(struct pet_scop *scop,
2630 int from_outermost, int to_innermost)
2632 int i;
2633 isl_union_map *to_inner;
2635 if (!scop)
2636 return NULL;
2638 to_inner = isl_union_map_empty(isl_set_get_space(scop->context));
2640 for (i = 0; i < scop->n_array; ++i) {
2641 struct pet_array *array = scop->arrays[i];
2642 isl_set *set;
2643 isl_map *map;
2645 if (to_innermost && array->element_is_record)
2646 continue;
2648 set = isl_set_copy(array->extent);
2649 map = isl_set_identity(isl_set_copy(set));
2651 while (set && isl_set_is_wrapping(set)) {
2652 isl_id *id;
2653 isl_map *wrapped;
2655 if (!from_outermost)
2656 to_inner = add_gisted(to_inner, map, set);
2658 id = isl_set_get_tuple_id(set);
2659 wrapped = isl_set_unwrap(set);
2660 wrapped = isl_map_domain_map(wrapped);
2661 wrapped = isl_map_set_tuple_id(wrapped, isl_dim_in, id);
2662 map = isl_map_apply_domain(map, wrapped);
2663 set = isl_map_domain(isl_map_copy(map));
2666 map = isl_map_gist_domain(map, set);
2667 to_inner = isl_union_map_add_map(to_inner, map);
2670 return to_inner;
2673 /* Compute a mapping from all arrays (of structs) in scop
2674 * to their innermost arrays.
2676 * In particular, for each array of a primitive type, the result
2677 * contains the identity mapping on that array.
2678 * For each array involving member accesses, the result
2679 * contains a mapping from the elements of any intermediate array of structs
2680 * to all corresponding elements of the innermost nested arrays.
2682 static __isl_give isl_union_map *pet_scop_compute_any_to_inner(
2683 struct pet_scop *scop)
2685 return compute_to_inner(scop, 0, 1);
2688 /* Compute a mapping from all outermost arrays (of structs) in scop
2689 * to their innermost members.
2691 __isl_give isl_union_map *pet_scop_compute_outer_to_inner(struct pet_scop *scop)
2693 return compute_to_inner(scop, 1, 1);
2696 /* Compute a mapping from all outermost arrays (of structs) in scop
2697 * to their members, including the outermost arrays themselves.
2699 __isl_give isl_union_map *pet_scop_compute_outer_to_any(struct pet_scop *scop)
2701 return compute_to_inner(scop, 1, 0);
2704 /* Collect and return all access relations of the given "type" in "scop".
2705 * If "type" is pet_expr_access_killed, then we only add the arguments of
2706 * kill operations.
2707 * If we are looking for definite accesses (pet_expr_access_must_write
2708 * or pet_expr_access_killed), then we only add the accesses that are
2709 * definitely performed. Otherwise, we add all potential accesses.
2710 * If "tag" is set, then the access relations are tagged with
2711 * the corresponding reference identifiers.
2712 * For accesses to structures, the returned access relation accesses
2713 * all individual fields in the structures.
2715 static __isl_give isl_union_map *scop_collect_accesses(struct pet_scop *scop,
2716 enum pet_expr_access_type type, int tag)
2718 int i;
2719 isl_union_map *accesses;
2720 isl_union_set *arrays;
2721 isl_union_map *to_inner;
2723 if (!scop)
2724 return NULL;
2726 accesses = isl_union_map_empty(isl_set_get_space(scop->context));
2728 for (i = 0; i < scop->n_stmt; ++i) {
2729 struct pet_stmt *stmt = scop->stmts[i];
2730 isl_union_map *accesses_i;
2731 isl_space *space;
2733 if (type == pet_expr_access_killed && !pet_stmt_is_kill(stmt))
2734 continue;
2736 space = isl_set_get_space(scop->context);
2737 accesses_i = stmt_collect_accesses(stmt, type, tag, space);
2738 accesses = isl_union_map_union(accesses, accesses_i);
2741 arrays = isl_union_set_empty(isl_union_map_get_space(accesses));
2742 for (i = 0; i < scop->n_array; ++i) {
2743 isl_set *extent = isl_set_copy(scop->arrays[i]->extent);
2744 arrays = isl_union_set_add_set(arrays, extent);
2746 accesses = isl_union_map_intersect_range(accesses, arrays);
2748 to_inner = pet_scop_compute_any_to_inner(scop);
2749 accesses = isl_union_map_apply_range(accesses, to_inner);
2751 return accesses;
2754 /* Return the potential read access relation.
2756 __isl_give isl_union_map *pet_scop_get_may_reads(struct pet_scop *scop)
2758 return scop_collect_accesses(scop, pet_expr_access_may_read, 0);
2761 /* Return the potential write access relation.
2763 __isl_give isl_union_map *pet_scop_get_may_writes(struct pet_scop *scop)
2765 return scop_collect_accesses(scop, pet_expr_access_may_write, 0);
2768 /* Return the definite write access relation.
2770 __isl_give isl_union_map *pet_scop_get_must_writes(struct pet_scop *scop)
2772 return scop_collect_accesses(scop, pet_expr_access_must_write, 0);
2775 /* Return the definite kill access relation.
2777 __isl_give isl_union_map *pet_scop_get_must_kills(struct pet_scop *scop)
2779 return scop_collect_accesses(scop, pet_expr_access_killed, 0);
2782 /* Return the tagged potential read access relation.
2784 __isl_give isl_union_map *pet_scop_get_tagged_may_reads(
2785 struct pet_scop *scop)
2787 return scop_collect_accesses(scop, pet_expr_access_may_read, 1);
2790 /* Return the tagged potential write access relation.
2792 __isl_give isl_union_map *pet_scop_get_tagged_may_writes(
2793 struct pet_scop *scop)
2795 return scop_collect_accesses(scop, pet_expr_access_may_write, 1);
2798 /* Return the tagged definite write access relation.
2800 __isl_give isl_union_map *pet_scop_get_tagged_must_writes(
2801 struct pet_scop *scop)
2803 return scop_collect_accesses(scop, pet_expr_access_must_write, 1);
2806 /* Return the tagged definite kill access relation.
2808 __isl_give isl_union_map *pet_scop_get_tagged_must_kills(
2809 struct pet_scop *scop)
2811 return scop_collect_accesses(scop, pet_expr_access_killed, 1);
2814 /* Collect and return the set of all statement instances in "scop".
2816 __isl_give isl_union_set *pet_scop_get_instance_set(struct pet_scop *scop)
2818 int i;
2819 isl_set *domain_i;
2820 isl_union_set *domain;
2822 if (!scop)
2823 return NULL;
2825 domain = isl_union_set_empty(isl_set_get_space(scop->context));
2827 for (i = 0; i < scop->n_stmt; ++i) {
2828 domain_i = isl_set_copy(scop->stmts[i]->domain);
2829 if (scop->stmts[i]->n_arg > 0)
2830 domain_i = isl_map_domain(isl_set_unwrap(domain_i));
2831 domain = isl_union_set_add_set(domain, domain_i);
2834 return domain;
2837 /* Return the context of "scop".
2839 __isl_give isl_set *pet_scop_get_context(__isl_keep pet_scop *scop)
2841 if (!scop)
2842 return NULL;
2844 return isl_set_copy(scop->context);
2847 /* Return the schedule of "scop".
2849 __isl_give isl_schedule *pet_scop_get_schedule(__isl_keep pet_scop *scop)
2851 if (!scop)
2852 return NULL;
2854 return isl_schedule_copy(scop->schedule);
2857 /* Add a reference identifier to all access expressions in "stmt".
2858 * "n_ref" points to an integer that contains the sequence number
2859 * of the next reference.
2861 static struct pet_stmt *stmt_add_ref_ids(struct pet_stmt *stmt, int *n_ref)
2863 int i;
2865 if (!stmt)
2866 return NULL;
2868 for (i = 0; i < stmt->n_arg; ++i) {
2869 stmt->args[i] = pet_expr_add_ref_ids(stmt->args[i], n_ref);
2870 if (!stmt->args[i])
2871 return pet_stmt_free(stmt);
2874 stmt->body = pet_tree_add_ref_ids(stmt->body, n_ref);
2875 if (!stmt->body)
2876 return pet_stmt_free(stmt);
2878 return stmt;
2881 /* Add a reference identifier to all access expressions in "scop".
2883 struct pet_scop *pet_scop_add_ref_ids(struct pet_scop *scop)
2885 int i;
2886 int n_ref;
2888 if (!scop)
2889 return NULL;
2891 n_ref = 0;
2892 for (i = 0; i < scop->n_stmt; ++i) {
2893 scop->stmts[i] = stmt_add_ref_ids(scop->stmts[i], &n_ref);
2894 if (!scop->stmts[i])
2895 return pet_scop_free(scop);
2898 return scop;
2901 /* Reset the user pointer on all parameter ids in "array".
2903 static struct pet_array *array_anonymize(struct pet_array *array)
2905 if (!array)
2906 return NULL;
2908 array->context = isl_set_reset_user(array->context);
2909 array->extent = isl_set_reset_user(array->extent);
2910 if (!array->context || !array->extent)
2911 return pet_array_free(array);
2913 return array;
2916 /* Reset the user pointer on all parameter and tuple ids in "stmt".
2918 static struct pet_stmt *stmt_anonymize(struct pet_stmt *stmt)
2920 int i;
2921 isl_space *space;
2922 isl_set *domain;
2924 if (!stmt)
2925 return NULL;
2927 stmt->domain = isl_set_reset_user(stmt->domain);
2928 if (!stmt->domain)
2929 return pet_stmt_free(stmt);
2931 for (i = 0; i < stmt->n_arg; ++i) {
2932 stmt->args[i] = pet_expr_anonymize(stmt->args[i]);
2933 if (!stmt->args[i])
2934 return pet_stmt_free(stmt);
2937 stmt->body = pet_tree_anonymize(stmt->body);
2938 if (!stmt->body)
2939 return pet_stmt_free(stmt);
2941 return stmt;
2944 /* Reset the user pointer on the tuple ids and all parameter ids
2945 * in "implication".
2947 static struct pet_implication *implication_anonymize(
2948 struct pet_implication *implication)
2950 if (!implication)
2951 return NULL;
2953 implication->extension = isl_map_reset_user(implication->extension);
2954 if (!implication->extension)
2955 return pet_implication_free(implication);
2957 return implication;
2960 /* Reset the user pointer on the tuple ids and all parameter ids
2961 * in "independence".
2963 static struct pet_independence *independence_anonymize(
2964 struct pet_independence *independence)
2966 if (!independence)
2967 return NULL;
2969 independence->filter = isl_union_map_reset_user(independence->filter);
2970 independence->local = isl_union_set_reset_user(independence->local);
2971 if (!independence->filter || !independence->local)
2972 return pet_independence_free(independence);
2974 return independence;
2977 /* Reset the user pointer on all parameter and tuple ids in "scop".
2979 struct pet_scop *pet_scop_anonymize(struct pet_scop *scop)
2981 int i;
2983 if (!scop)
2984 return NULL;
2986 scop->context = isl_set_reset_user(scop->context);
2987 scop->context_value = isl_set_reset_user(scop->context_value);
2988 scop->schedule = isl_schedule_reset_user(scop->schedule);
2989 if (!scop->context || !scop->context_value || !scop->schedule)
2990 return pet_scop_free(scop);
2992 for (i = 0; i < scop->n_array; ++i) {
2993 scop->arrays[i] = array_anonymize(scop->arrays[i]);
2994 if (!scop->arrays[i])
2995 return pet_scop_free(scop);
2998 for (i = 0; i < scop->n_stmt; ++i) {
2999 scop->stmts[i] = stmt_anonymize(scop->stmts[i]);
3000 if (!scop->stmts[i])
3001 return pet_scop_free(scop);
3004 for (i = 0; i < scop->n_implication; ++i) {
3005 scop->implications[i] =
3006 implication_anonymize(scop->implications[i]);
3007 if (!scop->implications[i])
3008 return pet_scop_free(scop);
3011 for (i = 0; i < scop->n_independence; ++i) {
3012 scop->independences[i] =
3013 independence_anonymize(scop->independences[i]);
3014 if (!scop->independences[i])
3015 return pet_scop_free(scop);
3018 return scop;
3021 /* Compute the gist of the iteration domain and all access relations
3022 * of "stmt" based on the constraints on the parameters specified by "context"
3023 * and the constraints on the values of nested accesses specified
3024 * by "value_bounds".
3026 static struct pet_stmt *stmt_gist(struct pet_stmt *stmt,
3027 __isl_keep isl_set *context, __isl_keep isl_union_map *value_bounds)
3029 int i;
3030 isl_set *domain;
3032 if (!stmt)
3033 return NULL;
3035 domain = isl_set_copy(stmt->domain);
3036 if (stmt->n_arg > 0)
3037 domain = isl_map_domain(isl_set_unwrap(domain));
3039 domain = isl_set_intersect_params(domain, isl_set_copy(context));
3041 for (i = 0; i < stmt->n_arg; ++i) {
3042 stmt->args[i] = pet_expr_gist(stmt->args[i],
3043 domain, value_bounds);
3044 if (!stmt->args[i])
3045 goto error;
3048 stmt->body = pet_tree_gist(stmt->body, domain, value_bounds);
3049 if (!stmt->body)
3050 goto error;
3052 isl_set_free(domain);
3054 domain = isl_set_universe(pet_stmt_get_space(stmt));
3055 domain = isl_set_intersect_params(domain, isl_set_copy(context));
3056 if (stmt->n_arg > 0)
3057 domain = pet_value_bounds_apply(domain, stmt->n_arg, stmt->args,
3058 value_bounds);
3059 stmt->domain = isl_set_gist(stmt->domain, domain);
3060 if (!stmt->domain)
3061 return pet_stmt_free(stmt);
3063 return stmt;
3064 error:
3065 isl_set_free(domain);
3066 return pet_stmt_free(stmt);
3069 /* Compute the gist of the extent of the array
3070 * based on the constraints on the parameters specified by "context".
3072 static struct pet_array *array_gist(struct pet_array *array,
3073 __isl_keep isl_set *context)
3075 if (!array)
3076 return NULL;
3078 array->extent = isl_set_gist_params(array->extent,
3079 isl_set_copy(context));
3080 if (!array->extent)
3081 return pet_array_free(array);
3083 return array;
3086 /* Compute the gist of all sets and relations in "scop"
3087 * based on the constraints on the parameters specified by "scop->context"
3088 * and the constraints on the values of nested accesses specified
3089 * by "value_bounds".
3091 struct pet_scop *pet_scop_gist(struct pet_scop *scop,
3092 __isl_keep isl_union_map *value_bounds)
3094 int i;
3096 if (!scop)
3097 return NULL;
3099 scop->context = isl_set_coalesce(scop->context);
3100 if (!scop->context)
3101 return pet_scop_free(scop);
3103 scop->schedule = isl_schedule_gist_domain_params(scop->schedule,
3104 isl_set_copy(scop->context));
3105 if (!scop->schedule)
3106 return pet_scop_free(scop);
3108 for (i = 0; i < scop->n_array; ++i) {
3109 scop->arrays[i] = array_gist(scop->arrays[i], scop->context);
3110 if (!scop->arrays[i])
3111 return pet_scop_free(scop);
3114 for (i = 0; i < scop->n_stmt; ++i) {
3115 scop->stmts[i] = stmt_gist(scop->stmts[i], scop->context,
3116 value_bounds);
3117 if (!scop->stmts[i])
3118 return pet_scop_free(scop);
3121 return scop;
3124 /* Intersect the context of "scop" with "context".
3125 * To ensure that we don't introduce any unnamed parameters in
3126 * the context of "scop", we first remove the unnamed parameters
3127 * from "context".
3129 struct pet_scop *pet_scop_restrict_context(struct pet_scop *scop,
3130 __isl_take isl_set *context)
3132 if (!scop)
3133 goto error;
3135 context = pet_nested_remove_from_set(context);
3136 scop->context = isl_set_intersect(scop->context, context);
3137 if (!scop->context)
3138 return pet_scop_free(scop);
3140 return scop;
3141 error:
3142 isl_set_free(context);
3143 return pet_scop_free(scop);
3146 /* Drop the current context of "scop". That is, replace the context
3147 * by a universal set.
3149 struct pet_scop *pet_scop_reset_context(struct pet_scop *scop)
3151 isl_space *space;
3153 if (!scop)
3154 return NULL;
3156 space = isl_set_get_space(scop->context);
3157 isl_set_free(scop->context);
3158 scop->context = isl_set_universe(space);
3159 if (!scop->context)
3160 return pet_scop_free(scop);
3162 return scop;
3165 /* Append "array" to the arrays of "scop".
3167 struct pet_scop *pet_scop_add_array(struct pet_scop *scop,
3168 struct pet_array *array)
3170 isl_ctx *ctx;
3171 struct pet_array **arrays;
3173 if (!array || !scop)
3174 goto error;
3176 ctx = isl_set_get_ctx(scop->context);
3177 arrays = isl_realloc_array(ctx, scop->arrays, struct pet_array *,
3178 scop->n_array + 1);
3179 if (!arrays)
3180 goto error;
3181 scop->arrays = arrays;
3182 scop->arrays[scop->n_array] = array;
3183 scop->n_array++;
3184 scop->context = isl_set_intersect_params(scop->context,
3185 isl_set_copy(array->context));
3186 if (!scop->context)
3187 return pet_scop_free(scop);
3189 return scop;
3190 error:
3191 pet_array_free(array);
3192 return pet_scop_free(scop);
3195 /* Create an index expression for an access to a virtual array
3196 * representing the result of a condition.
3197 * Unlike other accessed data, the id of the array is NULL as
3198 * there is no ValueDecl in the program corresponding to the virtual
3199 * array.
3200 * The index expression is created as an identity mapping on "space".
3201 * That is, the dimension of the array is the same as that of "space".
3203 __isl_give isl_multi_pw_aff *pet_create_test_index(__isl_take isl_space *space,
3204 int test_nr)
3206 isl_id *id;
3207 char name[50];
3209 snprintf(name, sizeof(name), "__pet_test_%d", test_nr);
3210 id = isl_id_alloc(isl_space_get_ctx(space), name, NULL);
3211 space = isl_space_map_from_set(space);
3212 space = isl_space_set_tuple_id(space, isl_dim_out, id);
3213 return isl_multi_pw_aff_identity(space);
3216 /* Add an array with the given extent to the list
3217 * of arrays in "scop" and return the extended pet_scop.
3218 * Specifically, the extent is determined by the image of "domain"
3219 * under "index".
3220 * "int_size" is the number of bytes needed to represent values of type "int".
3221 * The array is marked as attaining values 0 and 1 only and
3222 * as each element being assigned at most once.
3224 struct pet_scop *pet_scop_add_boolean_array(struct pet_scop *scop,
3225 __isl_take isl_set *domain, __isl_take isl_multi_pw_aff *index,
3226 int int_size)
3228 isl_ctx *ctx;
3229 isl_space *space;
3230 struct pet_array *array;
3231 isl_map *access;
3233 if (!scop || !domain || !index)
3234 goto error;
3236 ctx = isl_multi_pw_aff_get_ctx(index);
3237 array = isl_calloc_type(ctx, struct pet_array);
3238 if (!array)
3239 goto error;
3241 access = isl_map_from_multi_pw_aff(index);
3242 access = isl_map_intersect_domain(access, domain);
3243 array->extent = isl_map_range(access);
3244 space = isl_space_params_alloc(ctx, 0);
3245 array->context = isl_set_universe(space);
3246 space = isl_space_set_alloc(ctx, 0, 1);
3247 array->value_bounds = isl_set_universe(space);
3248 array->value_bounds = isl_set_lower_bound_si(array->value_bounds,
3249 isl_dim_set, 0, 0);
3250 array->value_bounds = isl_set_upper_bound_si(array->value_bounds,
3251 isl_dim_set, 0, 1);
3252 array->element_type = strdup("int");
3253 array->element_size = int_size;
3254 array->uniquely_defined = 1;
3256 if (!array->extent || !array->context)
3257 array = pet_array_free(array);
3259 scop = pet_scop_add_array(scop, array);
3261 return scop;
3262 error:
3263 isl_set_free(domain);
3264 isl_multi_pw_aff_free(index);
3265 return pet_scop_free(scop);
3268 /* Create and return an implication on filter values equal to "satisfied"
3269 * with extension "map".
3271 static struct pet_implication *new_implication(__isl_take isl_map *map,
3272 int satisfied)
3274 isl_ctx *ctx;
3275 struct pet_implication *implication;
3277 if (!map)
3278 return NULL;
3279 ctx = isl_map_get_ctx(map);
3280 implication = isl_alloc_type(ctx, struct pet_implication);
3281 if (!implication)
3282 goto error;
3284 implication->extension = map;
3285 implication->satisfied = satisfied;
3287 return implication;
3288 error:
3289 isl_map_free(map);
3290 return NULL;
3293 /* Add an implication on filter values equal to "satisfied"
3294 * with extension "map" to "scop".
3296 struct pet_scop *pet_scop_add_implication(struct pet_scop *scop,
3297 __isl_take isl_map *map, int satisfied)
3299 isl_ctx *ctx;
3300 struct pet_implication *implication;
3301 struct pet_implication **implications;
3303 implication = new_implication(map, satisfied);
3304 if (!scop || !implication)
3305 goto error;
3307 ctx = isl_set_get_ctx(scop->context);
3308 implications = isl_realloc_array(ctx, scop->implications,
3309 struct pet_implication *,
3310 scop->n_implication + 1);
3311 if (!implications)
3312 goto error;
3313 scop->implications = implications;
3314 scop->implications[scop->n_implication] = implication;
3315 scop->n_implication++;
3317 return scop;
3318 error:
3319 pet_implication_free(implication);
3320 return pet_scop_free(scop);
3323 /* Create and return a function that maps the iteration domains
3324 * of the statements in "scop" onto their outer "n" dimensions.
3325 * "space" is the parameters space of the created function.
3327 static __isl_give isl_union_pw_multi_aff *outer_projection(
3328 struct pet_scop *scop, __isl_take isl_space *space, int n)
3330 int i;
3331 isl_union_pw_multi_aff *res;
3333 res = isl_union_pw_multi_aff_empty(space);
3335 if (!scop)
3336 return isl_union_pw_multi_aff_free(res);
3338 for (i = 0; i < scop->n_stmt; ++i) {
3339 struct pet_stmt *stmt = scop->stmts[i];
3340 isl_space *space;
3341 isl_multi_aff *ma;
3342 isl_pw_multi_aff *pma;
3344 space = pet_stmt_get_space(stmt);
3345 ma = pet_prefix_projection(space, n);
3346 pma = isl_pw_multi_aff_from_multi_aff(ma);
3347 res = isl_union_pw_multi_aff_add_pw_multi_aff(res, pma);
3350 return res;
3353 /* Add an independence to "scop" for the inner iterator of "domain"
3354 * with local variables "local", where "domain" represents the outer
3355 * loop iterators of all statements in "scop".
3356 * If "sign" is positive, then the inner iterator increases.
3357 * Otherwise it decreases.
3359 * The independence is supposed to filter out any dependence of
3360 * an iteration of domain on a previous iteration along the inner dimension.
3361 * We therefore create a mapping from an iteration to later iterations and
3362 * then plug in the projection of the iterations domains of "scop"
3363 * onto the outer loop iterators.
3365 struct pet_scop *pet_scop_set_independent(struct pet_scop *scop,
3366 __isl_keep isl_set *domain, __isl_take isl_union_set *local, int sign)
3368 int i, dim;
3369 isl_space *space;
3370 isl_map *map;
3371 isl_union_map *independence;
3372 isl_union_pw_multi_aff *proj;
3374 if (!scop || !domain || !local)
3375 goto error;
3377 dim = isl_set_dim(domain, isl_dim_set);
3378 space = isl_space_map_from_set(isl_set_get_space(domain));
3379 map = isl_map_universe(space);
3380 for (i = 0; i + 1 < dim; ++i)
3381 map = isl_map_equate(map, isl_dim_in, i, isl_dim_out, i);
3382 if (sign > 0)
3383 map = isl_map_order_lt(map,
3384 isl_dim_in, dim - 1, isl_dim_out, dim - 1);
3385 else
3386 map = isl_map_order_gt(map,
3387 isl_dim_in, dim - 1, isl_dim_out, dim - 1);
3389 independence = isl_union_map_from_map(map);
3390 space = isl_space_params(isl_set_get_space(domain));
3391 proj = outer_projection(scop, space, dim);
3392 independence = isl_union_map_preimage_domain_union_pw_multi_aff(
3393 independence, isl_union_pw_multi_aff_copy(proj));
3394 independence = isl_union_map_preimage_range_union_pw_multi_aff(
3395 independence, proj);
3397 scop = pet_scop_add_independence(scop, independence, local);
3399 return scop;
3400 error:
3401 isl_union_set_free(local);
3402 return pet_scop_free(scop);
3405 /* Given an access expression, check if it is data dependent.
3406 * If so, set *found and abort the search.
3408 static int is_data_dependent(__isl_keep pet_expr *expr, void *user)
3410 int *found = user;
3412 if (pet_expr_get_n_arg(expr) > 0) {
3413 *found = 1;
3414 return -1;
3417 return 0;
3420 /* Does "scop" contain any data dependent accesses?
3422 * Check the body of each statement for such accesses.
3424 int pet_scop_has_data_dependent_accesses(struct pet_scop *scop)
3426 int i;
3427 int found = 0;
3429 if (!scop)
3430 return -1;
3432 for (i = 0; i < scop->n_stmt; ++i) {
3433 int r = pet_tree_foreach_access_expr(scop->stmts[i]->body,
3434 &is_data_dependent, &found);
3435 if (r < 0 && !found)
3436 return -1;
3437 if (found)
3438 return found;
3441 return found;
3444 /* Does "scop" contain and data dependent conditions?
3446 int pet_scop_has_data_dependent_conditions(struct pet_scop *scop)
3448 int i;
3450 if (!scop)
3451 return -1;
3453 for (i = 0; i < scop->n_stmt; ++i)
3454 if (scop->stmts[i]->n_arg > 0)
3455 return 1;
3457 return 0;
3460 /* Keep track of the "input" file inside the (extended) "scop".
3462 struct pet_scop *pet_scop_set_input_file(struct pet_scop *scop, FILE *input)
3464 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
3466 if (!scop)
3467 return NULL;
3469 ext->input = input;
3471 return scop;
3474 /* Print the original code corresponding to "scop" to printer "p".
3476 * pet_scop_print_original can only be called from
3477 * a pet_transform_C_source callback. This means that the input
3478 * file is stored in the extended scop and that the printer prints
3479 * to a file.
3481 __isl_give isl_printer *pet_scop_print_original(struct pet_scop *scop,
3482 __isl_take isl_printer *p)
3484 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
3485 FILE *output;
3486 unsigned start, end;
3488 if (!scop || !p)
3489 return isl_printer_free(p);
3491 if (!ext->input)
3492 isl_die(isl_printer_get_ctx(p), isl_error_invalid,
3493 "no input file stored in scop",
3494 return isl_printer_free(p));
3496 output = isl_printer_get_file(p);
3497 if (!output)
3498 return isl_printer_free(p);
3500 start = pet_loc_get_start(scop->loc);
3501 end = pet_loc_get_end(scop->loc);
3502 if (copy(ext->input, output, start, end) < 0)
3503 return isl_printer_free(p);
3505 return p;