tree2scop.c: handle_writes: separate out handling of assignments
[pet.git] / tree2scop.c
blob372165ee0765d919280171dcf3ad1c9f8882e397
1 /*
2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012-2014 Ecole Normale Superieure. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials provided
15 * with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as
31 * representing official policies, either expressed or implied, of
32 * Leiden University.
35 #include <isl/id_to_pw_aff.h>
37 #include "aff.h"
38 #include "expr.h"
39 #include "expr_arg.h"
40 #include "nest.h"
41 #include "scop.h"
42 #include "skip.h"
43 #include "state.h"
44 #include "tree2scop.h"
46 /* Update "pc" by taking into account the writes in "stmt".
47 * That is, mark all scalar variables that are written by "stmt"
48 * as having an unknown value.
50 static __isl_give pet_context *handle_writes(struct pet_stmt *stmt,
51 __isl_take pet_context *pc)
53 return pet_context_clear_writes_in_expr(pc, stmt->body);
56 /* Update "pc" based on the write accesses in "scop".
58 static __isl_give pet_context *scop_handle_writes(struct pet_scop *scop,
59 __isl_take pet_context *pc)
61 int i;
63 if (!scop)
64 return pet_context_free(pc);
65 for (i = 0; i < scop->n_stmt; ++i)
66 pc = handle_writes(scop->stmts[i], pc);
68 return pc;
71 /* Convert a top-level pet_expr to a pet_scop with one statement
72 * within the context "pc".
73 * This mainly involves resolving nested expression parameters
74 * and setting the name of the iteration space.
75 * The name is given by "label" if it is non-NULL. Otherwise,
76 * it is of the form S_<stmt_nr>.
77 * The location of the statement is set to "loc".
79 static struct pet_scop *scop_from_expr(__isl_take pet_expr *expr,
80 __isl_take isl_id *label, int stmt_nr, __isl_take pet_loc *loc,
81 __isl_keep pet_context *pc)
83 isl_set *domain;
84 struct pet_stmt *ps;
86 expr = pet_expr_plug_in_args(expr, pc);
87 expr = pet_expr_resolve_nested(expr);
88 expr = pet_expr_resolve_assume(expr, pc);
89 domain = pet_context_get_domain(pc);
90 ps = pet_stmt_from_pet_expr(domain, loc, label, stmt_nr, expr);
91 return pet_scop_from_pet_stmt(pet_context_get_space(pc), ps);
94 /* Construct a pet_scop with a single statement killing the entire
95 * array "array".
96 * The location of the statement is set to "loc".
98 static struct pet_scop *kill(__isl_take pet_loc *loc, struct pet_array *array,
99 __isl_keep pet_context *pc, struct pet_state *state)
101 isl_ctx *ctx;
102 isl_id *id;
103 isl_space *space;
104 isl_multi_pw_aff *index;
105 isl_map *access;
106 pet_expr *expr;
107 struct pet_scop *scop;
109 if (!array)
110 goto error;
111 ctx = isl_set_get_ctx(array->extent);
112 access = isl_map_from_range(isl_set_copy(array->extent));
113 id = isl_set_get_tuple_id(array->extent);
114 space = isl_space_alloc(ctx, 0, 0, 0);
115 space = isl_space_set_tuple_id(space, isl_dim_out, id);
116 index = isl_multi_pw_aff_zero(space);
117 expr = pet_expr_kill_from_access_and_index(access, index);
118 return scop_from_expr(expr, NULL, state->n_stmt++, loc, pc);
119 error:
120 pet_loc_free(loc);
121 return NULL;
124 /* Construct and return a pet_array corresponding to the variable
125 * accessed by "access" by calling the extract_array callback.
127 static struct pet_array *extract_array(__isl_keep pet_expr *access,
128 __isl_keep pet_context *pc, struct pet_state *state)
130 return state->extract_array(access, pc, state->user);
133 /* Construct a pet_scop for a (single) variable declaration
134 * within the context "pc".
136 * The scop contains the variable being declared (as an array)
137 * and a statement killing the array.
139 * If the declaration comes with an initialization, then the scop
140 * also contains an assignment to the variable.
142 static struct pet_scop *scop_from_decl(__isl_keep pet_tree *tree,
143 __isl_keep pet_context *pc, struct pet_state *state)
145 int type_size;
146 isl_ctx *ctx;
147 struct pet_array *array;
148 struct pet_scop *scop_decl, *scop;
149 pet_expr *lhs, *rhs, *pe;
151 array = extract_array(tree->u.d.var, pc, state);
152 if (array)
153 array->declared = 1;
154 scop_decl = kill(pet_tree_get_loc(tree), array, pc, state);
155 scop_decl = pet_scop_add_array(scop_decl, array);
157 if (tree->type != pet_tree_decl_init)
158 return scop_decl;
160 lhs = pet_expr_copy(tree->u.d.var);
161 rhs = pet_expr_copy(tree->u.d.init);
162 type_size = pet_expr_get_type_size(lhs);
163 pe = pet_expr_new_binary(type_size, pet_op_assign, lhs, rhs);
164 scop = scop_from_expr(pe, NULL, state->n_stmt++,
165 pet_tree_get_loc(tree), pc);
167 scop_decl = pet_scop_prefix(scop_decl, 0);
168 scop = pet_scop_prefix(scop, 1);
170 ctx = pet_tree_get_ctx(tree);
171 scop = pet_scop_add_seq(ctx, scop_decl, scop);
173 return scop;
176 /* Embed the given iteration domain in an extra outer loop
177 * with induction variable "var".
178 * If this variable appeared as a parameter in the constraints,
179 * it is replaced by the new outermost dimension.
181 static __isl_give isl_set *embed(__isl_take isl_set *set,
182 __isl_take isl_id *var)
184 int pos;
186 set = isl_set_insert_dims(set, isl_dim_set, 0, 1);
187 pos = isl_set_find_dim_by_id(set, isl_dim_param, var);
188 if (pos >= 0) {
189 set = isl_set_equate(set, isl_dim_param, pos, isl_dim_set, 0);
190 set = isl_set_project_out(set, isl_dim_param, pos, 1);
193 isl_id_free(var);
194 return set;
197 /* Return those elements in the space of "cond" that come after
198 * (based on "sign") an element in "cond".
200 static __isl_give isl_set *after(__isl_take isl_set *cond, int sign)
202 isl_map *previous_to_this;
204 if (sign > 0)
205 previous_to_this = isl_map_lex_lt(isl_set_get_space(cond));
206 else
207 previous_to_this = isl_map_lex_gt(isl_set_get_space(cond));
209 cond = isl_set_apply(cond, previous_to_this);
211 return cond;
214 /* Remove those iterations of "domain" that have an earlier iteration
215 * (based on "sign") where "skip" is satisfied.
216 * "domain" has an extra outer loop compared to "skip".
217 * The skip condition is first embedded in the same space as "domain".
218 * If "apply_skip_map" is set, then "skip_map" is first applied
219 * to the embedded skip condition before removing it from the domain.
221 static __isl_give isl_set *apply_affine_break(__isl_take isl_set *domain,
222 __isl_take isl_set *skip, int sign,
223 int apply_skip_map, __isl_keep isl_map *skip_map)
225 skip = embed(skip, isl_set_get_dim_id(domain, isl_dim_set, 0));
226 if (apply_skip_map)
227 skip = isl_set_apply(skip, isl_map_copy(skip_map));
228 skip = isl_set_intersect(skip , isl_set_copy(domain));
229 return isl_set_subtract(domain, after(skip, sign));
232 /* Create the infinite iteration domain
234 * { [id] : id >= 0 }
236 static __isl_give isl_set *infinite_domain(__isl_take isl_id *id)
238 isl_ctx *ctx = isl_id_get_ctx(id);
239 isl_set *domain;
241 domain = isl_set_nat_universe(isl_space_set_alloc(ctx, 0, 1));
242 domain = isl_set_set_dim_id(domain, isl_dim_set, 0, id);
244 return domain;
247 /* Create an identity affine expression on the space containing "domain",
248 * which is assumed to be one-dimensional.
250 static __isl_give isl_aff *identity_aff(__isl_keep isl_set *domain)
252 isl_local_space *ls;
254 ls = isl_local_space_from_space(isl_set_get_space(domain));
255 return isl_aff_var_on_domain(ls, isl_dim_set, 0);
258 /* Create an affine expression that maps elements
259 * of a single-dimensional array "id_test" to the previous element
260 * (according to "inc"), provided this element belongs to "domain".
261 * That is, create the affine expression
263 * { id[x] -> id[x - inc] : x - inc in domain }
265 static __isl_give isl_multi_pw_aff *map_to_previous(__isl_take isl_id *id_test,
266 __isl_take isl_set *domain, __isl_take isl_val *inc)
268 isl_space *space;
269 isl_local_space *ls;
270 isl_aff *aff;
271 isl_multi_pw_aff *prev;
273 space = isl_set_get_space(domain);
274 ls = isl_local_space_from_space(space);
275 aff = isl_aff_var_on_domain(ls, isl_dim_set, 0);
276 aff = isl_aff_add_constant_val(aff, isl_val_neg(inc));
277 prev = isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff));
278 domain = isl_set_preimage_multi_pw_aff(domain,
279 isl_multi_pw_aff_copy(prev));
280 prev = isl_multi_pw_aff_intersect_domain(prev, domain);
281 prev = isl_multi_pw_aff_set_tuple_id(prev, isl_dim_out, id_test);
283 return prev;
286 /* Add an implication to "scop" expressing that if an element of
287 * virtual array "id_test" has value "satisfied" then all previous elements
288 * of this array also have that value. The set of previous elements
289 * is bounded by "domain". If "sign" is negative then the iterator
290 * is decreasing and we express that all subsequent array elements
291 * (but still defined previously) have the same value.
293 static struct pet_scop *add_implication(struct pet_scop *scop,
294 __isl_take isl_id *id_test, __isl_take isl_set *domain, int sign,
295 int satisfied)
297 isl_space *space;
298 isl_map *map;
300 domain = isl_set_set_tuple_id(domain, id_test);
301 space = isl_set_get_space(domain);
302 if (sign > 0)
303 map = isl_map_lex_ge(space);
304 else
305 map = isl_map_lex_le(space);
306 map = isl_map_intersect_range(map, domain);
307 scop = pet_scop_add_implication(scop, map, satisfied);
309 return scop;
312 /* Add a filter to "scop" that imposes that it is only executed
313 * when the variable identified by "id_test" has a zero value
314 * for all previous iterations of "domain".
316 * In particular, add a filter that imposes that the array
317 * has a zero value at the previous iteration of domain and
318 * add an implication that implies that it then has that
319 * value for all previous iterations.
321 static struct pet_scop *scop_add_break(struct pet_scop *scop,
322 __isl_take isl_id *id_test, __isl_take isl_set *domain,
323 __isl_take isl_val *inc)
325 isl_multi_pw_aff *prev;
326 int sign = isl_val_sgn(inc);
328 prev = map_to_previous(isl_id_copy(id_test), isl_set_copy(domain), inc);
329 scop = add_implication(scop, id_test, domain, sign, 0);
330 scop = pet_scop_filter(scop, prev, 0);
332 return scop;
335 static struct pet_scop *scop_from_tree(__isl_keep pet_tree *tree,
336 __isl_keep pet_context *pc, struct pet_state *state);
338 /* Construct a pet_scop for an infinite loop around the given body
339 * within the context "pc".
341 * We extract a pet_scop for the body and then embed it in a loop with
342 * iteration domain
344 * { [t] : t >= 0 }
346 * and schedule
348 * { [t] -> [t] }
350 * If the body contains any break, then it is taken into
351 * account in apply_affine_break (if the skip condition is affine)
352 * or in scop_add_break (if the skip condition is not affine).
354 * Note that in case of an affine skip condition,
355 * since we are dealing with a loop without loop iterator,
356 * the skip condition cannot refer to the current loop iterator and
357 * so effectively, the iteration domain is of the form
359 * { [0]; [t] : t >= 1 and not skip }
361 static struct pet_scop *scop_from_infinite_loop(__isl_keep pet_tree *body,
362 __isl_keep pet_context *pc, struct pet_state *state)
364 isl_ctx *ctx;
365 isl_id *id, *id_test;
366 isl_set *domain;
367 isl_set *skip;
368 isl_aff *ident;
369 struct pet_scop *scop;
370 int has_affine_break;
371 int has_var_break;
373 ctx = pet_tree_get_ctx(body);
374 id = isl_id_alloc(ctx, "t", NULL);
375 domain = infinite_domain(isl_id_copy(id));
376 ident = identity_aff(domain);
378 scop = scop_from_tree(body, pc, state);
380 has_affine_break = pet_scop_has_affine_skip(scop, pet_skip_later);
381 if (has_affine_break)
382 skip = pet_scop_get_affine_skip_domain(scop, pet_skip_later);
383 has_var_break = pet_scop_has_var_skip(scop, pet_skip_later);
384 if (has_var_break)
385 id_test = pet_scop_get_skip_id(scop, pet_skip_later);
387 scop = pet_scop_embed(scop, isl_set_copy(domain),
388 isl_aff_copy(ident), ident, id);
389 if (has_affine_break) {
390 domain = apply_affine_break(domain, skip, 1, 0, NULL);
391 scop = pet_scop_intersect_domain_prefix(scop,
392 isl_set_copy(domain));
394 if (has_var_break)
395 scop = scop_add_break(scop, id_test, domain, isl_val_one(ctx));
396 else
397 isl_set_free(domain);
399 return scop;
402 /* Construct a pet_scop for an infinite loop, i.e., a loop of the form
404 * for (;;)
405 * body
407 * within the context "pc".
409 static struct pet_scop *scop_from_infinite_for(__isl_keep pet_tree *tree,
410 __isl_keep pet_context *pc, struct pet_state *state)
412 struct pet_scop *scop;
414 pc = pet_context_copy(pc);
415 pc = pet_context_clear_writes_in_tree(pc, tree->u.l.body);
417 scop = scop_from_infinite_loop(tree->u.l.body, pc, state);
419 pet_context_free(pc);
421 return scop;
424 /* Construct a pet_scop for a while loop of the form
426 * while (pa)
427 * body
429 * within the context "pc".
430 * In particular, construct a scop for an infinite loop around body and
431 * intersect the domain with the affine expression.
432 * Note that this intersection may result in an empty loop.
434 static struct pet_scop *scop_from_affine_while(__isl_keep pet_tree *tree,
435 __isl_take isl_pw_aff *pa, __isl_take pet_context *pc,
436 struct pet_state *state)
438 struct pet_scop *scop;
439 isl_set *dom;
440 isl_set *valid;
442 valid = isl_pw_aff_domain(isl_pw_aff_copy(pa));
443 dom = isl_pw_aff_non_zero_set(pa);
444 scop = scop_from_infinite_loop(tree->u.l.body, pc, state);
445 scop = pet_scop_restrict(scop, isl_set_params(dom));
446 scop = pet_scop_restrict_context(scop, isl_set_params(valid));
448 pet_context_free(pc);
449 return scop;
452 /* Construct a scop for a while, given the scops for the condition
453 * and the body, the filter identifier and the iteration domain of
454 * the while loop.
456 * In particular, the scop for the condition is filtered to depend
457 * on "id_test" evaluating to true for all previous iterations
458 * of the loop, while the scop for the body is filtered to depend
459 * on "id_test" evaluating to true for all iterations up to the
460 * current iteration.
461 * The actual filter only imposes that this virtual array has
462 * value one on the previous or the current iteration.
463 * The fact that this condition also applies to the previous
464 * iterations is enforced by an implication.
466 * These filtered scops are then combined into a single scop.
468 * "sign" is positive if the iterator increases and negative
469 * if it decreases.
471 static struct pet_scop *scop_add_while(struct pet_scop *scop_cond,
472 struct pet_scop *scop_body, __isl_take isl_id *id_test,
473 __isl_take isl_set *domain, __isl_take isl_val *inc)
475 isl_ctx *ctx = isl_set_get_ctx(domain);
476 isl_space *space;
477 isl_multi_pw_aff *test_index;
478 isl_multi_pw_aff *prev;
479 int sign = isl_val_sgn(inc);
480 struct pet_scop *scop;
482 prev = map_to_previous(isl_id_copy(id_test), isl_set_copy(domain), inc);
483 scop_cond = pet_scop_filter(scop_cond, prev, 1);
485 space = isl_space_map_from_set(isl_set_get_space(domain));
486 test_index = isl_multi_pw_aff_identity(space);
487 test_index = isl_multi_pw_aff_set_tuple_id(test_index, isl_dim_out,
488 isl_id_copy(id_test));
489 scop_body = pet_scop_filter(scop_body, test_index, 1);
491 scop = pet_scop_add_seq(ctx, scop_cond, scop_body);
492 scop = add_implication(scop, id_test, domain, sign, 1);
494 return scop;
497 /* Create a pet_scop with a single statement with name S_<stmt_nr>,
498 * evaluating "cond" and writing the result to a virtual scalar,
499 * as expressed by "index".
500 * Do so within the context "pc".
501 * The location of the statement is set to "loc".
503 static struct pet_scop *scop_from_non_affine_condition(
504 __isl_take pet_expr *cond, int stmt_nr,
505 __isl_take isl_multi_pw_aff *index,
506 __isl_take pet_loc *loc, __isl_keep pet_context *pc)
508 pet_expr *expr, *write;
510 write = pet_expr_from_index(index);
511 write = pet_expr_access_set_write(write, 1);
512 write = pet_expr_access_set_read(write, 0);
513 expr = pet_expr_new_binary(1, pet_op_assign, write, cond);
515 return scop_from_expr(expr, NULL, stmt_nr, loc, pc);
518 /* Construct a generic while scop, with iteration domain
519 * { [t] : t >= 0 } around the scop for "tree_body" within the context "pc".
520 * The scop consists of two parts,
521 * one for evaluating the condition "cond" and one for the body.
522 * If "expr_inc" is not NULL, then a scop for evaluating this expression
523 * is added at the end of the body,
524 * after replacing any skip conditions resulting from continue statements
525 * by the skip conditions resulting from break statements (if any).
527 * The schedule is adjusted to reflect that the condition is evaluated
528 * before the body is executed and the body is filtered to depend
529 * on the result of the condition evaluating to true on all iterations
530 * up to the current iteration, while the evaluation of the condition itself
531 * is filtered to depend on the result of the condition evaluating to true
532 * on all previous iterations.
533 * The context of the scop representing the body is dropped
534 * because we don't know how many times the body will be executed,
535 * if at all.
537 * If the body contains any break, then it is taken into
538 * account in apply_affine_break (if the skip condition is affine)
539 * or in scop_add_break (if the skip condition is not affine).
541 * Note that in case of an affine skip condition,
542 * since we are dealing with a loop without loop iterator,
543 * the skip condition cannot refer to the current loop iterator and
544 * so effectively, the iteration domain is of the form
546 * { [0]; [t] : t >= 1 and not skip }
548 static struct pet_scop *scop_from_non_affine_while(__isl_take pet_expr *cond,
549 __isl_take pet_loc *loc, __isl_keep pet_tree *tree_body,
550 __isl_take pet_expr *expr_inc, __isl_take pet_context *pc,
551 struct pet_state *state)
553 isl_ctx *ctx;
554 isl_id *id, *id_test, *id_break_test;
555 isl_space *space;
556 isl_multi_pw_aff *test_index;
557 isl_set *domain;
558 isl_set *skip;
559 isl_aff *ident;
560 struct pet_scop *scop, *scop_body;
561 int has_affine_break;
562 int has_var_break;
564 ctx = state->ctx;
565 space = pet_context_get_space(pc);
566 test_index = pet_create_test_index(space, state->n_test++);
567 scop = scop_from_non_affine_condition(cond, state->n_stmt++,
568 isl_multi_pw_aff_copy(test_index),
569 pet_loc_copy(loc), pc);
570 id_test = isl_multi_pw_aff_get_tuple_id(test_index, isl_dim_out);
571 domain = pet_context_get_domain(pc);
572 scop = pet_scop_add_boolean_array(scop, domain,
573 test_index, state->int_size);
575 id = isl_id_alloc(ctx, "t", NULL);
576 domain = infinite_domain(isl_id_copy(id));
577 ident = identity_aff(domain);
579 scop_body = scop_from_tree(tree_body, pc, state);
581 has_affine_break = pet_scop_has_affine_skip(scop_body, pet_skip_later);
582 if (has_affine_break)
583 skip = pet_scop_get_affine_skip_domain(scop_body,
584 pet_skip_later);
585 has_var_break = pet_scop_has_var_skip(scop_body, pet_skip_later);
586 if (has_var_break)
587 id_break_test = pet_scop_get_skip_id(scop_body, pet_skip_later);
589 scop = pet_scop_prefix(scop, 0);
590 scop = pet_scop_embed(scop, isl_set_copy(domain), isl_aff_copy(ident),
591 isl_aff_copy(ident), isl_id_copy(id));
592 scop_body = pet_scop_reset_context(scop_body);
593 scop_body = pet_scop_prefix(scop_body, 1);
594 if (expr_inc) {
595 struct pet_scop *scop_inc;
596 scop_inc = scop_from_expr(expr_inc, NULL, state->n_stmt++,
597 loc, pc);
598 scop_inc = pet_scop_prefix(scop_inc, 2);
599 if (pet_scop_has_skip(scop_body, pet_skip_later)) {
600 isl_multi_pw_aff *skip;
601 skip = pet_scop_get_skip(scop_body, pet_skip_later);
602 scop_body = pet_scop_set_skip(scop_body,
603 pet_skip_now, skip);
604 } else
605 pet_scop_reset_skip(scop_body, pet_skip_now);
606 scop_body = pet_scop_add_seq(ctx, scop_body, scop_inc);
607 } else
608 pet_loc_free(loc);
609 scop_body = pet_scop_embed(scop_body, isl_set_copy(domain),
610 isl_aff_copy(ident), ident, id);
612 if (has_affine_break) {
613 domain = apply_affine_break(domain, skip, 1, 0, NULL);
614 scop = pet_scop_intersect_domain_prefix(scop,
615 isl_set_copy(domain));
616 scop_body = pet_scop_intersect_domain_prefix(scop_body,
617 isl_set_copy(domain));
619 if (has_var_break) {
620 scop = scop_add_break(scop, isl_id_copy(id_break_test),
621 isl_set_copy(domain), isl_val_one(ctx));
622 scop_body = scop_add_break(scop_body, id_break_test,
623 isl_set_copy(domain), isl_val_one(ctx));
625 scop = scop_add_while(scop, scop_body, id_test, domain,
626 isl_val_one(ctx));
628 pet_context_free(pc);
629 return scop;
632 /* Check if the while loop is of the form
634 * while (affine expression)
635 * body
637 * If so, call scop_from_affine_while to construct a scop.
639 * Otherwise, pass control to scop_from_non_affine_while.
641 * "pc" is the context in which the affine expressions in the scop are created.
643 static struct pet_scop *scop_from_while(__isl_keep pet_tree *tree,
644 __isl_keep pet_context *pc, struct pet_state *state)
646 pet_expr *cond_expr;
647 isl_pw_aff *pa;
649 if (!tree)
650 return NULL;
652 pc = pet_context_copy(pc);
653 pc = pet_context_clear_writes_in_tree(pc, tree->u.l.body);
655 cond_expr = pet_expr_copy(tree->u.l.cond);
656 cond_expr = pet_expr_plug_in_args(cond_expr, pc);
657 pa = pet_expr_extract_affine_condition(cond_expr, pc);
658 pet_expr_free(cond_expr);
660 if (!pa)
661 goto error;
663 if (!isl_pw_aff_involves_nan(pa))
664 return scop_from_affine_while(tree, pa, pc, state);
665 isl_pw_aff_free(pa);
666 return scop_from_non_affine_while(pet_expr_copy(tree->u.l.cond),
667 pet_tree_get_loc(tree), tree->u.l.body, NULL,
668 pc, state);
669 error:
670 pet_context_free(pc);
671 return NULL;
674 /* Check whether "cond" expresses a simple loop bound
675 * on the only set dimension.
676 * In particular, if "up" is set then "cond" should contain only
677 * upper bounds on the set dimension.
678 * Otherwise, it should contain only lower bounds.
680 static int is_simple_bound(__isl_keep isl_set *cond, __isl_keep isl_val *inc)
682 if (isl_val_is_pos(inc))
683 return !isl_set_dim_has_any_lower_bound(cond, isl_dim_set, 0);
684 else
685 return !isl_set_dim_has_any_upper_bound(cond, isl_dim_set, 0);
688 /* Extend a condition on a given iteration of a loop to one that
689 * imposes the same condition on all previous iterations.
690 * "domain" expresses the lower [upper] bound on the iterations
691 * when inc is positive [negative].
693 * In particular, we construct the condition (when inc is positive)
695 * forall i' : (domain(i') and i' <= i) => cond(i')
697 * which is equivalent to
699 * not exists i' : domain(i') and i' <= i and not cond(i')
701 * We construct this set by negating cond, applying a map
703 * { [i'] -> [i] : domain(i') and i' <= i }
705 * and then negating the result again.
707 static __isl_give isl_set *valid_for_each_iteration(__isl_take isl_set *cond,
708 __isl_take isl_set *domain, __isl_take isl_val *inc)
710 isl_map *previous_to_this;
712 if (isl_val_is_pos(inc))
713 previous_to_this = isl_map_lex_le(isl_set_get_space(domain));
714 else
715 previous_to_this = isl_map_lex_ge(isl_set_get_space(domain));
717 previous_to_this = isl_map_intersect_domain(previous_to_this, domain);
719 cond = isl_set_complement(cond);
720 cond = isl_set_apply(cond, previous_to_this);
721 cond = isl_set_complement(cond);
723 isl_val_free(inc);
725 return cond;
728 /* Construct a domain of the form
730 * [id] -> { : exists a: id = init + a * inc and a >= 0 }
732 static __isl_give isl_set *strided_domain(__isl_take isl_id *id,
733 __isl_take isl_pw_aff *init, __isl_take isl_val *inc)
735 isl_aff *aff;
736 isl_space *dim;
737 isl_set *set;
739 init = isl_pw_aff_insert_dims(init, isl_dim_in, 0, 1);
740 dim = isl_pw_aff_get_domain_space(init);
741 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
742 aff = isl_aff_add_coefficient_val(aff, isl_dim_in, 0, inc);
743 init = isl_pw_aff_add(init, isl_pw_aff_from_aff(aff));
745 dim = isl_space_set_alloc(isl_pw_aff_get_ctx(init), 1, 1);
746 dim = isl_space_set_dim_id(dim, isl_dim_param, 0, id);
747 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
748 aff = isl_aff_add_coefficient_si(aff, isl_dim_param, 0, 1);
750 set = isl_pw_aff_eq_set(isl_pw_aff_from_aff(aff), init);
752 set = isl_set_lower_bound_si(set, isl_dim_set, 0, 0);
754 return isl_set_params(set);
757 /* Assuming "cond" represents a bound on a loop where the loop
758 * iterator "iv" is incremented (or decremented) by one, check if wrapping
759 * is possible.
761 * Under the given assumptions, wrapping is only possible if "cond" allows
762 * for the last value before wrapping, i.e., 2^width - 1 in case of an
763 * increasing iterator and 0 in case of a decreasing iterator.
765 static int can_wrap(__isl_keep isl_set *cond, __isl_keep pet_expr *iv,
766 __isl_keep isl_val *inc)
768 int cw;
769 isl_ctx *ctx;
770 isl_val *limit;
771 isl_set *test;
773 test = isl_set_copy(cond);
775 ctx = isl_set_get_ctx(test);
776 if (isl_val_is_neg(inc))
777 limit = isl_val_zero(ctx);
778 else {
779 limit = isl_val_int_from_ui(ctx, pet_expr_get_type_size(iv));
780 limit = isl_val_2exp(limit);
781 limit = isl_val_sub_ui(limit, 1);
784 test = isl_set_fix_val(cond, isl_dim_set, 0, limit);
785 cw = !isl_set_is_empty(test);
786 isl_set_free(test);
788 return cw;
791 /* Given a one-dimensional space, construct the following affine expression
792 * on this space
794 * { [v] -> [v mod 2^width] }
796 * where width is the number of bits used to represent the values
797 * of the unsigned variable "iv".
799 static __isl_give isl_aff *compute_wrapping(__isl_take isl_space *dim,
800 __isl_keep pet_expr *iv)
802 isl_ctx *ctx;
803 isl_val *mod;
804 isl_aff *aff;
806 ctx = isl_space_get_ctx(dim);
807 mod = isl_val_int_from_ui(ctx, pet_expr_get_type_size(iv));
808 mod = isl_val_2exp(mod);
810 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
811 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
812 aff = isl_aff_mod_val(aff, mod);
814 return aff;
817 /* Project out the parameter "id" from "set".
819 static __isl_give isl_set *set_project_out_by_id(__isl_take isl_set *set,
820 __isl_keep isl_id *id)
822 int pos;
824 pos = isl_set_find_dim_by_id(set, isl_dim_param, id);
825 if (pos >= 0)
826 set = isl_set_project_out(set, isl_dim_param, pos, 1);
828 return set;
831 /* Compute the set of parameters for which "set1" is a subset of "set2".
833 * set1 is a subset of set2 if
835 * forall i in set1 : i in set2
837 * or
839 * not exists i in set1 and i not in set2
841 * i.e.,
843 * not exists i in set1 \ set2
845 static __isl_give isl_set *enforce_subset(__isl_take isl_set *set1,
846 __isl_take isl_set *set2)
848 return isl_set_complement(isl_set_params(isl_set_subtract(set1, set2)));
851 /* Compute the set of parameter values for which "cond" holds
852 * on the next iteration for each element of "dom".
854 * We first construct mapping { [i] -> [i + inc] }, apply that to "dom"
855 * and then compute the set of parameters for which the result is a subset
856 * of "cond".
858 static __isl_give isl_set *valid_on_next(__isl_take isl_set *cond,
859 __isl_take isl_set *dom, __isl_take isl_val *inc)
861 isl_space *space;
862 isl_aff *aff;
863 isl_map *next;
865 space = isl_set_get_space(dom);
866 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
867 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
868 aff = isl_aff_add_constant_val(aff, inc);
869 next = isl_map_from_basic_map(isl_basic_map_from_aff(aff));
871 dom = isl_set_apply(dom, next);
873 return enforce_subset(dom, cond);
876 /* Extract the for loop "tree" as a while loop within the context "pc".
878 * That is, the for loop has the form
880 * for (iv = init; cond; iv += inc)
881 * body;
883 * and is treated as
885 * iv = init;
886 * while (cond) {
887 * body;
888 * iv += inc;
891 * except that the skips resulting from any continue statements
892 * in body do not apply to the increment, but are replaced by the skips
893 * resulting from break statements.
895 * If the loop iterator is declared in the for loop, then it is killed before
896 * and after the loop.
898 static struct pet_scop *scop_from_non_affine_for(__isl_keep pet_tree *tree,
899 __isl_take pet_context *pc, struct pet_state *state)
901 int declared;
902 isl_id *iv;
903 pet_expr *expr_iv, *init, *inc;
904 struct pet_scop *scop_init, *scop;
905 int type_size;
906 struct pet_array *array;
907 struct pet_scop *scop_kill;
909 iv = pet_expr_access_get_id(tree->u.l.iv);
910 pc = pet_context_mark_assigned(pc, iv);
912 declared = tree->u.l.declared;
914 expr_iv = pet_expr_copy(tree->u.l.iv);
915 type_size = pet_expr_get_type_size(expr_iv);
916 init = pet_expr_copy(tree->u.l.init);
917 init = pet_expr_new_binary(type_size, pet_op_assign, expr_iv, init);
918 scop_init = scop_from_expr(init, NULL, state->n_stmt++,
919 pet_tree_get_loc(tree), pc);
920 scop_init = pet_scop_prefix(scop_init, declared);
922 expr_iv = pet_expr_copy(tree->u.l.iv);
923 type_size = pet_expr_get_type_size(expr_iv);
924 inc = pet_expr_copy(tree->u.l.inc);
925 inc = pet_expr_new_binary(type_size, pet_op_add_assign, expr_iv, inc);
927 scop = scop_from_non_affine_while(pet_expr_copy(tree->u.l.cond),
928 pet_tree_get_loc(tree), tree->u.l.body, inc,
929 pet_context_copy(pc), state);
931 scop = pet_scop_prefix(scop, declared + 1);
932 scop = pet_scop_add_seq(state->ctx, scop_init, scop);
934 if (!declared) {
935 pet_context_free(pc);
936 return scop;
939 array = extract_array(tree->u.l.iv, pc, state);
940 if (array)
941 array->declared = 1;
942 scop_kill = kill(pet_tree_get_loc(tree), array, pc, state);
943 scop_kill = pet_scop_prefix(scop_kill, 0);
944 scop = pet_scop_add_seq(state->ctx, scop_kill, scop);
945 scop_kill = kill(pet_tree_get_loc(tree), array, pc, state);
946 scop_kill = pet_scop_add_array(scop_kill, array);
947 scop_kill = pet_scop_prefix(scop_kill, 3);
948 scop = pet_scop_add_seq(state->ctx, scop, scop_kill);
950 pet_context_free(pc);
951 return scop;
954 /* Given an access expression "expr", is the variable accessed by
955 * "expr" assigned anywhere inside "tree"?
957 static int is_assigned(__isl_keep pet_expr *expr, __isl_keep pet_tree *tree)
959 int assigned = 0;
960 isl_id *id;
962 id = pet_expr_access_get_id(expr);
963 assigned = pet_tree_writes(tree, id);
964 isl_id_free(id);
966 return assigned;
969 /* Are all nested access parameters in "pa" allowed given "tree".
970 * In particular, is none of them written by anywhere inside "tree".
972 * If "tree" has any continue nodes in the current loop level,
973 * then no nested access parameters are allowed.
974 * In particular, if there is any nested access in a guard
975 * for a piece of code containing a "continue", then we want to introduce
976 * a separate statement for evaluating this guard so that we can express
977 * that the result is false for all previous iterations.
979 static int is_nested_allowed(__isl_keep isl_pw_aff *pa,
980 __isl_keep pet_tree *tree)
982 int i, nparam;
984 if (!tree)
985 return -1;
987 if (!pet_nested_any_in_pw_aff(pa))
988 return 1;
990 if (pet_tree_has_continue(tree))
991 return 0;
993 nparam = isl_pw_aff_dim(pa, isl_dim_param);
994 for (i = 0; i < nparam; ++i) {
995 isl_id *id = isl_pw_aff_get_dim_id(pa, isl_dim_param, i);
996 pet_expr *expr;
997 int allowed;
999 if (!pet_nested_in_id(id)) {
1000 isl_id_free(id);
1001 continue;
1004 expr = pet_nested_extract_expr(id);
1005 allowed = pet_expr_get_type(expr) == pet_expr_access &&
1006 !is_assigned(expr, tree);
1008 pet_expr_free(expr);
1009 isl_id_free(id);
1011 if (!allowed)
1012 return 0;
1015 return 1;
1018 /* Construct a pet_scop for a for tree with static affine initialization
1019 * and constant increment within the context "pc".
1021 * The condition is allowed to contain nested accesses, provided
1022 * they are not being written to inside the body of the loop.
1023 * Otherwise, or if the condition is otherwise non-affine, the for loop is
1024 * essentially treated as a while loop, with iteration domain
1025 * { [i] : i >= init }.
1027 * We extract a pet_scop for the body and then embed it in a loop with
1028 * iteration domain and schedule
1030 * { [i] : i >= init and condition' }
1031 * { [i] -> [i] }
1033 * or
1035 * { [i] : i <= init and condition' }
1036 * { [i] -> [-i] }
1038 * Where condition' is equal to condition if the latter is
1039 * a simple upper [lower] bound and a condition that is extended
1040 * to apply to all previous iterations otherwise.
1042 * If the condition is non-affine, then we drop the condition from the
1043 * iteration domain and instead create a separate statement
1044 * for evaluating the condition. The body is then filtered to depend
1045 * on the result of the condition evaluating to true on all iterations
1046 * up to the current iteration, while the evaluation the condition itself
1047 * is filtered to depend on the result of the condition evaluating to true
1048 * on all previous iterations.
1049 * The context of the scop representing the body is dropped
1050 * because we don't know how many times the body will be executed,
1051 * if at all.
1053 * If the stride of the loop is not 1, then "i >= init" is replaced by
1055 * (exists a: i = init + stride * a and a >= 0)
1057 * If the loop iterator i is unsigned, then wrapping may occur.
1058 * We therefore use a virtual iterator instead that does not wrap.
1059 * However, the condition in the code applies
1060 * to the wrapped value, so we need to change condition(i)
1061 * into condition([i % 2^width]). Similarly, we replace all accesses
1062 * to the original iterator by the wrapping of the virtual iterator.
1063 * Note that there may be no need to perform this final wrapping
1064 * if the loop condition (after wrapping) satisfies certain conditions.
1065 * However, the is_simple_bound condition is not enough since it doesn't
1066 * check if there even is an upper bound.
1068 * Wrapping on unsigned iterators can be avoided entirely if
1069 * loop condition is simple, the loop iterator is incremented
1070 * [decremented] by one and the last value before wrapping cannot
1071 * possibly satisfy the loop condition.
1073 * Valid parameters for a for loop are those for which the initial
1074 * value itself, the increment on each domain iteration and
1075 * the condition on both the initial value and
1076 * the result of incrementing the iterator for each iteration of the domain
1077 * can be evaluated.
1078 * If the loop condition is non-affine, then we only consider validity
1079 * of the initial value.
1081 * If the body contains any break, then we keep track of it in "skip"
1082 * (if the skip condition is affine) or it is handled in scop_add_break
1083 * (if the skip condition is not affine).
1084 * Note that the affine break condition needs to be considered with
1085 * respect to previous iterations in the virtual domain (if any).
1087 static struct pet_scop *scop_from_affine_for(__isl_keep pet_tree *tree,
1088 __isl_take isl_pw_aff *init_val, __isl_take isl_pw_aff *pa_inc,
1089 __isl_take isl_val *inc, __isl_take pet_context *pc,
1090 struct pet_state *state)
1092 isl_local_space *ls;
1093 isl_set *domain;
1094 isl_aff *sched;
1095 isl_set *cond = NULL;
1096 isl_set *skip = NULL;
1097 isl_id *id, *id_test = NULL, *id_break_test;
1098 struct pet_scop *scop, *scop_cond = NULL;
1099 int is_one;
1100 int is_unsigned;
1101 int is_simple;
1102 int is_virtual;
1103 int is_non_affine;
1104 int has_affine_break;
1105 int has_var_break;
1106 isl_map *rev_wrap = NULL;
1107 isl_aff *wrap = NULL;
1108 isl_pw_aff *pa;
1109 isl_set *valid_init;
1110 isl_set *valid_cond;
1111 isl_set *valid_cond_init;
1112 isl_set *valid_cond_next;
1113 isl_set *valid_inc;
1114 pet_expr *cond_expr;
1115 pet_context *pc_nested;
1117 id = pet_expr_access_get_id(tree->u.l.iv);
1119 cond_expr = pet_expr_copy(tree->u.l.cond);
1120 cond_expr = pet_expr_plug_in_args(cond_expr, pc);
1121 pc_nested = pet_context_copy(pc);
1122 pc_nested = pet_context_set_allow_nested(pc_nested, 1);
1123 pa = pet_expr_extract_affine_condition(cond_expr, pc_nested);
1124 pet_context_free(pc_nested);
1125 pet_expr_free(cond_expr);
1127 valid_inc = isl_pw_aff_domain(pa_inc);
1129 is_unsigned = pet_expr_get_type_size(tree->u.l.iv) > 0;
1131 is_non_affine = isl_pw_aff_involves_nan(pa) ||
1132 !is_nested_allowed(pa, tree->u.l.body);
1133 if (is_non_affine)
1134 pa = isl_pw_aff_free(pa);
1136 valid_cond = isl_pw_aff_domain(isl_pw_aff_copy(pa));
1137 cond = isl_pw_aff_non_zero_set(pa);
1138 if (is_non_affine)
1139 cond = isl_set_universe(isl_space_set_alloc(state->ctx, 0, 0));
1141 cond = embed(cond, isl_id_copy(id));
1142 valid_cond = isl_set_coalesce(valid_cond);
1143 valid_cond = embed(valid_cond, isl_id_copy(id));
1144 valid_inc = embed(valid_inc, isl_id_copy(id));
1145 is_one = isl_val_is_one(inc) || isl_val_is_negone(inc);
1146 is_virtual = is_unsigned &&
1147 (!is_one || can_wrap(cond, tree->u.l.iv, inc));
1149 valid_cond_init = enforce_subset(
1150 isl_map_range(isl_map_from_pw_aff(isl_pw_aff_copy(init_val))),
1151 isl_set_copy(valid_cond));
1152 if (is_one && !is_virtual) {
1153 isl_pw_aff_free(init_val);
1154 pa = pet_expr_extract_comparison(
1155 isl_val_is_pos(inc) ? pet_op_ge : pet_op_le,
1156 tree->u.l.iv, tree->u.l.init, pc);
1157 valid_init = isl_pw_aff_domain(isl_pw_aff_copy(pa));
1158 valid_init = set_project_out_by_id(valid_init, id);
1159 domain = isl_pw_aff_non_zero_set(pa);
1160 } else {
1161 valid_init = isl_pw_aff_domain(isl_pw_aff_copy(init_val));
1162 domain = strided_domain(isl_id_copy(id), init_val,
1163 isl_val_copy(inc));
1166 domain = embed(domain, isl_id_copy(id));
1167 if (is_virtual) {
1168 wrap = compute_wrapping(isl_set_get_space(cond), tree->u.l.iv);
1169 rev_wrap = isl_map_from_aff(isl_aff_copy(wrap));
1170 rev_wrap = isl_map_reverse(rev_wrap);
1171 cond = isl_set_apply(cond, isl_map_copy(rev_wrap));
1172 valid_cond = isl_set_apply(valid_cond, isl_map_copy(rev_wrap));
1173 valid_inc = isl_set_apply(valid_inc, isl_map_copy(rev_wrap));
1175 is_simple = is_simple_bound(cond, inc);
1176 if (!is_simple) {
1177 cond = isl_set_gist(cond, isl_set_copy(domain));
1178 is_simple = is_simple_bound(cond, inc);
1180 if (!is_simple)
1181 cond = valid_for_each_iteration(cond,
1182 isl_set_copy(domain), isl_val_copy(inc));
1183 domain = isl_set_intersect(domain, cond);
1184 domain = isl_set_set_dim_id(domain, isl_dim_set, 0, isl_id_copy(id));
1185 ls = isl_local_space_from_space(isl_set_get_space(domain));
1186 sched = isl_aff_var_on_domain(ls, isl_dim_set, 0);
1187 if (isl_val_is_neg(inc))
1188 sched = isl_aff_neg(sched);
1190 valid_cond_next = valid_on_next(valid_cond, isl_set_copy(domain),
1191 isl_val_copy(inc));
1192 valid_inc = enforce_subset(isl_set_copy(domain), valid_inc);
1194 if (!is_virtual)
1195 wrap = identity_aff(domain);
1197 if (is_non_affine) {
1198 isl_space *space;
1199 isl_multi_pw_aff *test_index;
1200 space = pet_context_get_space(pc);
1201 test_index = pet_create_test_index(space, state->n_test++);
1202 scop_cond = scop_from_non_affine_condition(
1203 pet_expr_copy(tree->u.l.cond), state->n_stmt++,
1204 isl_multi_pw_aff_copy(test_index),
1205 pet_tree_get_loc(tree), pc);
1206 id_test = isl_multi_pw_aff_get_tuple_id(test_index,
1207 isl_dim_out);
1208 scop_cond = pet_scop_add_boolean_array(scop_cond,
1209 pet_context_get_domain(pc), test_index,
1210 state->int_size);
1211 scop_cond = pet_scop_prefix(scop_cond, 0);
1212 scop_cond = pet_scop_embed(scop_cond, isl_set_copy(domain),
1213 isl_aff_copy(sched), isl_aff_copy(wrap),
1214 isl_id_copy(id));
1217 scop = scop_from_tree(tree->u.l.body, pc, state);
1218 has_affine_break = scop &&
1219 pet_scop_has_affine_skip(scop, pet_skip_later);
1220 if (has_affine_break)
1221 skip = pet_scop_get_affine_skip_domain(scop, pet_skip_later);
1222 has_var_break = scop && pet_scop_has_var_skip(scop, pet_skip_later);
1223 if (has_var_break)
1224 id_break_test = pet_scop_get_skip_id(scop, pet_skip_later);
1225 if (is_non_affine) {
1226 scop = pet_scop_reset_context(scop);
1227 scop = pet_scop_prefix(scop, 1);
1229 scop = pet_scop_embed(scop, isl_set_copy(domain), sched, wrap, id);
1230 scop = pet_scop_resolve_nested(scop);
1231 if (has_affine_break) {
1232 domain = apply_affine_break(domain, skip, isl_val_sgn(inc),
1233 is_virtual, rev_wrap);
1234 scop = pet_scop_intersect_domain_prefix(scop,
1235 isl_set_copy(domain));
1237 isl_map_free(rev_wrap);
1238 if (has_var_break)
1239 scop = scop_add_break(scop, id_break_test, isl_set_copy(domain),
1240 isl_val_copy(inc));
1241 if (is_non_affine) {
1242 scop = scop_add_while(scop_cond, scop, id_test, domain,
1243 isl_val_copy(inc));
1244 isl_set_free(valid_inc);
1245 } else {
1246 scop = pet_scop_restrict_context(scop, valid_inc);
1247 scop = pet_scop_restrict_context(scop, valid_cond_next);
1248 scop = pet_scop_restrict_context(scop, valid_cond_init);
1249 isl_set_free(domain);
1252 isl_val_free(inc);
1254 scop = pet_scop_restrict_context(scop, isl_set_params(valid_init));
1256 pet_context_free(pc);
1257 return scop;
1260 /* Construct a pet_scop for a for statement within the context of "pc".
1262 * We update the context to reflect the writes to the loop variable and
1263 * the writes inside the body.
1265 * Then we check if the initialization of the for loop
1266 * is a static affine value and the increment is a constant.
1267 * If so, we construct the pet_scop using scop_from_affine_for.
1268 * Otherwise, we treat the for loop as a while loop
1269 * in scop_from_non_affine_for.
1271 static struct pet_scop *scop_from_for(__isl_keep pet_tree *tree,
1272 __isl_keep pet_context *pc, struct pet_state *state)
1274 isl_id *iv;
1275 isl_val *inc;
1276 isl_pw_aff *pa_inc, *init_val;
1277 pet_context *pc_init_val;
1279 if (!tree)
1280 return NULL;
1282 iv = pet_expr_access_get_id(tree->u.l.iv);
1283 pc = pet_context_copy(pc);
1284 pc = pet_context_clear_value(pc, iv);
1285 pc = pet_context_clear_writes_in_tree(pc, tree->u.l.body);
1287 pc_init_val = pet_context_copy(pc);
1288 pc_init_val = pet_context_mark_unknown(pc_init_val, isl_id_copy(iv));
1289 init_val = pet_expr_extract_affine(tree->u.l.init, pc_init_val);
1290 pet_context_free(pc_init_val);
1291 pa_inc = pet_expr_extract_affine(tree->u.l.inc, pc);
1292 inc = pet_extract_cst(pa_inc);
1293 if (!pa_inc || !init_val || !inc)
1294 goto error;
1295 if (!isl_pw_aff_involves_nan(pa_inc) &&
1296 !isl_pw_aff_involves_nan(init_val) && !isl_val_is_nan(inc))
1297 return scop_from_affine_for(tree, init_val, pa_inc, inc,
1298 pc, state);
1300 isl_pw_aff_free(pa_inc);
1301 isl_pw_aff_free(init_val);
1302 isl_val_free(inc);
1303 return scop_from_non_affine_for(tree, pc, state);
1304 error:
1305 isl_pw_aff_free(pa_inc);
1306 isl_pw_aff_free(init_val);
1307 isl_val_free(inc);
1308 pet_context_free(pc);
1309 return NULL;
1312 /* Check whether "expr" is an affine constraint within the context "pc".
1314 static int is_affine_condition(__isl_keep pet_expr *expr,
1315 __isl_keep pet_context *pc)
1317 isl_pw_aff *pa;
1318 int is_affine;
1320 pa = pet_expr_extract_affine_condition(expr, pc);
1321 if (!pa)
1322 return -1;
1323 is_affine = !isl_pw_aff_involves_nan(pa);
1324 isl_pw_aff_free(pa);
1326 return is_affine;
1329 /* Check if the given if statement is a conditional assignement
1330 * with a non-affine condition.
1332 * In particular we check if "stmt" is of the form
1334 * if (condition)
1335 * a = f(...);
1336 * else
1337 * a = g(...);
1339 * where the condition is non-affine and a is some array or scalar access.
1341 static int is_conditional_assignment(__isl_keep pet_tree *tree,
1342 __isl_keep pet_context *pc)
1344 int equal;
1345 isl_ctx *ctx;
1346 pet_expr *expr1, *expr2;
1348 ctx = pet_tree_get_ctx(tree);
1349 if (!pet_options_get_detect_conditional_assignment(ctx))
1350 return 0;
1351 if (tree->type != pet_tree_if_else)
1352 return 0;
1353 if (tree->u.i.then_body->type != pet_tree_expr)
1354 return 0;
1355 if (tree->u.i.else_body->type != pet_tree_expr)
1356 return 0;
1357 expr1 = tree->u.i.then_body->u.e.expr;
1358 expr2 = tree->u.i.else_body->u.e.expr;
1359 if (pet_expr_get_type(expr1) != pet_expr_op)
1360 return 0;
1361 if (pet_expr_get_type(expr2) != pet_expr_op)
1362 return 0;
1363 if (pet_expr_op_get_type(expr1) != pet_op_assign)
1364 return 0;
1365 if (pet_expr_op_get_type(expr2) != pet_op_assign)
1366 return 0;
1367 expr1 = pet_expr_get_arg(expr1, 0);
1368 expr2 = pet_expr_get_arg(expr2, 0);
1369 equal = pet_expr_is_equal(expr1, expr2);
1370 pet_expr_free(expr1);
1371 pet_expr_free(expr2);
1372 if (equal < 0 || !equal)
1373 return 0;
1374 if (is_affine_condition(tree->u.i.cond, pc))
1375 return 0;
1377 return 1;
1380 /* Given that "tree" is of the form
1382 * if (condition)
1383 * a = f(...);
1384 * else
1385 * a = g(...);
1387 * where a is some array or scalar access, construct a pet_scop
1388 * corresponding to this conditional assignment within the context "pc".
1390 * The constructed pet_scop then corresponds to the expression
1392 * a = condition ? f(...) : g(...)
1394 * All access relations in f(...) are intersected with condition
1395 * while all access relation in g(...) are intersected with the complement.
1397 static struct pet_scop *scop_from_conditional_assignment(
1398 __isl_keep pet_tree *tree, __isl_take pet_context *pc,
1399 struct pet_state *state)
1401 int type_size;
1402 isl_pw_aff *pa;
1403 isl_set *cond, *comp;
1404 isl_multi_pw_aff *index;
1405 pet_expr *expr1, *expr2;
1406 pet_expr *pe_cond, *pe_then, *pe_else, *pe, *pe_write;
1407 pet_context *pc_nested;
1408 struct pet_scop *scop;
1410 pe_cond = pet_expr_copy(tree->u.i.cond);
1411 pe_cond = pet_expr_plug_in_args(pe_cond, pc);
1412 pc_nested = pet_context_copy(pc);
1413 pc_nested = pet_context_set_allow_nested(pc_nested, 1);
1414 pa = pet_expr_extract_affine_condition(pe_cond, pc_nested);
1415 pet_context_free(pc_nested);
1416 pet_expr_free(pe_cond);
1417 cond = isl_pw_aff_non_zero_set(isl_pw_aff_copy(pa));
1418 comp = isl_pw_aff_zero_set(isl_pw_aff_copy(pa));
1419 index = isl_multi_pw_aff_from_pw_aff(pa);
1421 expr1 = tree->u.i.then_body->u.e.expr;
1422 expr2 = tree->u.i.else_body->u.e.expr;
1424 pe_cond = pet_expr_from_index(index);
1426 pe_then = pet_expr_get_arg(expr1, 1);
1427 pe_then = pet_expr_restrict(pe_then, cond);
1428 pe_else = pet_expr_get_arg(expr2, 1);
1429 pe_else = pet_expr_restrict(pe_else, comp);
1430 pe_write = pet_expr_get_arg(expr1, 0);
1432 pe = pet_expr_new_ternary(pe_cond, pe_then, pe_else);
1433 type_size = pet_expr_get_type_size(pe_write);
1434 pe = pet_expr_new_binary(type_size, pet_op_assign, pe_write, pe);
1436 scop = scop_from_expr(pe, NULL, state->n_stmt++,
1437 pet_tree_get_loc(tree), pc);
1439 pet_context_free(pc);
1441 return scop;
1444 /* Construct a pet_scop for a non-affine if statement within the context "pc".
1446 * We create a separate statement that writes the result
1447 * of the non-affine condition to a virtual scalar.
1448 * A constraint requiring the value of this virtual scalar to be one
1449 * is added to the iteration domains of the then branch.
1450 * Similarly, a constraint requiring the value of this virtual scalar
1451 * to be zero is added to the iteration domains of the else branch, if any.
1452 * We adjust the schedules to ensure that the virtual scalar is written
1453 * before it is read.
1455 * If there are any breaks or continues in the then and/or else
1456 * branches, then we may have to compute a new skip condition.
1457 * This is handled using a pet_skip_info object.
1458 * On initialization, the object checks if skip conditions need
1459 * to be computed. If so, it does so in pet_skip_info_if_extract_index and
1460 * adds them in pet_skip_info_if_add.
1462 static struct pet_scop *scop_from_non_affine_if(__isl_keep pet_tree *tree,
1463 __isl_take pet_context *pc, struct pet_state *state)
1465 int has_else;
1466 isl_space *space;
1467 isl_set *domain;
1468 isl_multi_pw_aff *test_index;
1469 struct pet_skip_info skip;
1470 struct pet_scop *scop, *scop_then, *scop_else = NULL;
1472 has_else = tree->type == pet_tree_if_else;
1474 space = pet_context_get_space(pc);
1475 test_index = pet_create_test_index(space, state->n_test++);
1476 scop = scop_from_non_affine_condition(pet_expr_copy(tree->u.i.cond),
1477 state->n_stmt++, isl_multi_pw_aff_copy(test_index),
1478 pet_tree_get_loc(tree), pc);
1479 domain = pet_context_get_domain(pc);
1480 scop = pet_scop_add_boolean_array(scop, domain,
1481 isl_multi_pw_aff_copy(test_index), state->int_size);
1483 scop_then = scop_from_tree(tree->u.i.then_body, pc, state);
1484 if (has_else)
1485 scop_else = scop_from_tree(tree->u.i.else_body, pc, state);
1487 pet_skip_info_if_init(&skip, state->ctx, scop_then, scop_else,
1488 has_else, 0);
1489 pet_skip_info_if_extract_index(&skip, test_index, pc, state);
1491 scop = pet_scop_prefix(scop, 0);
1492 scop_then = pet_scop_prefix(scop_then, 1);
1493 scop_then = pet_scop_filter(scop_then,
1494 isl_multi_pw_aff_copy(test_index), 1);
1495 if (has_else) {
1496 scop_else = pet_scop_prefix(scop_else, 1);
1497 scop_else = pet_scop_filter(scop_else, test_index, 0);
1498 scop_then = pet_scop_add_par(state->ctx, scop_then, scop_else);
1499 } else
1500 isl_multi_pw_aff_free(test_index);
1502 scop = pet_scop_add_seq(state->ctx, scop, scop_then);
1504 scop = pet_skip_info_if_add(&skip, scop, 2);
1506 pet_context_free(pc);
1507 return scop;
1510 /* Construct a pet_scop for an affine if statement within the context "pc".
1512 * The condition is added to the iteration domains of the then branch,
1513 * while the opposite of the condition in added to the iteration domains
1514 * of the else branch, if any.
1516 * If there are any breaks or continues in the then and/or else
1517 * branches, then we may have to compute a new skip condition.
1518 * This is handled using a pet_skip_info_if object.
1519 * On initialization, the object checks if skip conditions need
1520 * to be computed. If so, it does so in pet_skip_info_if_extract_cond and
1521 * adds them in pet_skip_info_if_add.
1523 static struct pet_scop *scop_from_affine_if(__isl_keep pet_tree *tree,
1524 __isl_take isl_pw_aff *cond, __isl_take pet_context *pc,
1525 struct pet_state *state)
1527 int has_else;
1528 isl_ctx *ctx;
1529 isl_set *set;
1530 isl_set *valid;
1531 struct pet_skip_info skip;
1532 struct pet_scop *scop, *scop_then, *scop_else = NULL;
1534 ctx = pet_tree_get_ctx(tree);
1536 has_else = tree->type == pet_tree_if_else;
1538 scop_then = scop_from_tree(tree->u.i.then_body, pc, state);
1539 if (has_else)
1540 scop_else = scop_from_tree(tree->u.i.else_body, pc, state);
1542 pet_skip_info_if_init(&skip, ctx, scop_then, scop_else, has_else, 1);
1543 pet_skip_info_if_extract_cond(&skip, cond, pc, state);
1545 valid = isl_pw_aff_domain(isl_pw_aff_copy(cond));
1546 set = isl_pw_aff_non_zero_set(cond);
1547 scop = pet_scop_restrict(scop_then, isl_set_params(isl_set_copy(set)));
1549 if (has_else) {
1550 set = isl_set_subtract(isl_set_copy(valid), set);
1551 scop_else = pet_scop_restrict(scop_else, isl_set_params(set));
1552 scop = pet_scop_add_par(ctx, scop, scop_else);
1553 } else
1554 isl_set_free(set);
1555 scop = pet_scop_resolve_nested(scop);
1556 scop = pet_scop_restrict_context(scop, isl_set_params(valid));
1558 if (pet_skip_info_has_skip(&skip))
1559 scop = pet_scop_prefix(scop, 0);
1560 scop = pet_skip_info_if_add(&skip, scop, 1);
1562 pet_context_free(pc);
1563 return scop;
1566 /* Construct a pet_scop for an if statement within the context "pc".
1568 * If the condition fits the pattern of a conditional assignment,
1569 * then it is handled by scop_from_conditional_assignment.
1571 * Otherwise, we check if the condition is affine.
1572 * If so, we construct the scop in scop_from_affine_if.
1573 * Otherwise, we construct the scop in scop_from_non_affine_if.
1575 * We allow the condition to be dynamic, i.e., to refer to
1576 * scalars or array elements that may be written to outside
1577 * of the given if statement. These nested accesses are then represented
1578 * as output dimensions in the wrapping iteration domain.
1579 * If it is also written _inside_ the then or else branch, then
1580 * we treat the condition as non-affine.
1581 * As explained in extract_non_affine_if, this will introduce
1582 * an extra statement.
1583 * For aesthetic reasons, we want this statement to have a statement
1584 * number that is lower than those of the then and else branches.
1585 * In order to evaluate if we will need such a statement, however, we
1586 * first construct scops for the then and else branches.
1587 * We therefore reserve a statement number if we might have to
1588 * introduce such an extra statement.
1590 static struct pet_scop *scop_from_if(__isl_keep pet_tree *tree,
1591 __isl_keep pet_context *pc, struct pet_state *state)
1593 int has_else;
1594 isl_pw_aff *cond;
1595 pet_expr *cond_expr;
1596 pet_context *pc_nested;
1598 if (!tree)
1599 return NULL;
1601 has_else = tree->type == pet_tree_if_else;
1603 pc = pet_context_copy(pc);
1604 pc = pet_context_clear_writes_in_tree(pc, tree->u.i.then_body);
1605 if (has_else)
1606 pc = pet_context_clear_writes_in_tree(pc, tree->u.i.else_body);
1608 if (is_conditional_assignment(tree, pc))
1609 return scop_from_conditional_assignment(tree, pc, state);
1611 cond_expr = pet_expr_copy(tree->u.i.cond);
1612 cond_expr = pet_expr_plug_in_args(cond_expr, pc);
1613 pc_nested = pet_context_copy(pc);
1614 pc_nested = pet_context_set_allow_nested(pc_nested, 1);
1615 cond = pet_expr_extract_affine_condition(cond_expr, pc_nested);
1616 pet_context_free(pc_nested);
1617 pet_expr_free(cond_expr);
1619 if (!cond) {
1620 pet_context_free(pc);
1621 return NULL;
1624 if (isl_pw_aff_involves_nan(cond)) {
1625 isl_pw_aff_free(cond);
1626 return scop_from_non_affine_if(tree, pc, state);
1629 if ((!is_nested_allowed(cond, tree->u.i.then_body) ||
1630 (has_else && !is_nested_allowed(cond, tree->u.i.else_body)))) {
1631 isl_pw_aff_free(cond);
1632 return scop_from_non_affine_if(tree, pc, state);
1635 return scop_from_affine_if(tree, cond, pc, state);
1638 /* Return a one-dimensional multi piecewise affine expression that is equal
1639 * to the constant 1 and is defined over the given domain.
1641 static __isl_give isl_multi_pw_aff *one_mpa(__isl_take isl_space *space)
1643 isl_local_space *ls;
1644 isl_aff *aff;
1646 ls = isl_local_space_from_space(space);
1647 aff = isl_aff_zero_on_domain(ls);
1648 aff = isl_aff_set_constant_si(aff, 1);
1650 return isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff));
1653 /* Construct a pet_scop for a continue statement with the given domain space.
1655 * We simply create an empty scop with a universal pet_skip_now
1656 * skip condition. This skip condition will then be taken into
1657 * account by the enclosing loop construct, possibly after
1658 * being incorporated into outer skip conditions.
1660 static struct pet_scop *scop_from_continue(__isl_keep pet_tree *tree,
1661 __isl_take isl_space *space)
1663 struct pet_scop *scop;
1665 scop = pet_scop_empty(isl_space_copy(space));
1667 scop = pet_scop_set_skip(scop, pet_skip_now, one_mpa(space));
1669 return scop;
1672 /* Construct a pet_scop for a break statement with the given domain space.
1674 * We simply create an empty scop with both a universal pet_skip_now
1675 * skip condition and a universal pet_skip_later skip condition.
1676 * These skip conditions will then be taken into
1677 * account by the enclosing loop construct, possibly after
1678 * being incorporated into outer skip conditions.
1680 static struct pet_scop *scop_from_break(__isl_keep pet_tree *tree,
1681 __isl_take isl_space *space)
1683 struct pet_scop *scop;
1684 isl_multi_pw_aff *skip;
1686 scop = pet_scop_empty(isl_space_copy(space));
1688 skip = one_mpa(space);
1689 scop = pet_scop_set_skip(scop, pet_skip_now,
1690 isl_multi_pw_aff_copy(skip));
1691 scop = pet_scop_set_skip(scop, pet_skip_later, skip);
1693 return scop;
1696 /* Extract a clone of the kill statement in "scop".
1697 * The domain of the clone is given by "domain".
1698 * "scop" is expected to have been created from a DeclStmt
1699 * and should have the kill as its first statement.
1701 static struct pet_scop *extract_kill(__isl_keep isl_set *domain,
1702 struct pet_scop *scop, struct pet_state *state)
1704 pet_expr *kill;
1705 struct pet_stmt *stmt;
1706 isl_multi_pw_aff *index;
1707 isl_map *access;
1708 pet_expr *arg;
1710 if (!domain || !scop)
1711 return NULL;
1712 if (scop->n_stmt < 1)
1713 isl_die(isl_set_get_ctx(domain), isl_error_internal,
1714 "expecting at least one statement", return NULL);
1715 stmt = scop->stmts[0];
1716 if (!pet_stmt_is_kill(stmt))
1717 isl_die(isl_set_get_ctx(domain), isl_error_internal,
1718 "expecting kill statement", return NULL);
1720 arg = pet_expr_get_arg(stmt->body, 0);
1721 index = pet_expr_access_get_index(arg);
1722 access = pet_expr_access_get_access(arg);
1723 pet_expr_free(arg);
1724 index = isl_multi_pw_aff_reset_tuple_id(index, isl_dim_in);
1725 access = isl_map_reset_tuple_id(access, isl_dim_in);
1726 kill = pet_expr_kill_from_access_and_index(access, index);
1727 stmt = pet_stmt_from_pet_expr(isl_set_copy(domain),
1728 pet_loc_copy(stmt->loc), NULL, state->n_stmt++, kill);
1729 return pet_scop_from_pet_stmt(isl_set_get_space(domain), stmt);
1732 /* Does "tree" represent an assignment to a variable?
1734 * The assignment may be one of
1735 * - a declaration with initialization
1736 * - an expression with a top-level assignment operator
1738 static int is_assignment(__isl_keep pet_tree *tree)
1740 if (!tree)
1741 return 0;
1742 if (tree->type == pet_tree_decl_init)
1743 return 1;
1744 return pet_tree_is_assign(tree);
1747 /* Update "pc" by taking into account the assignment performed by "tree",
1748 * where "tree" satisfies is_assignment.
1750 * In particular, if the lhs of the assignment is a scalar variable and
1751 * if the rhs is an affine expression, then keep track of this value in "pc"
1752 * so that we can plug it in when we later come across the same variable.
1754 * The variable has already been marked as having been assigned
1755 * an unknown value by scop_handle_writes.
1757 static __isl_give pet_context *handle_assignment(__isl_take pet_context *pc,
1758 __isl_keep pet_tree *tree)
1760 pet_expr *var, *val;
1761 isl_id *id;
1762 isl_pw_aff *pa;
1764 if (pet_tree_get_type(tree) == pet_tree_decl_init) {
1765 var = pet_tree_decl_get_var(tree);
1766 val = pet_tree_decl_get_init(tree);
1767 } else {
1768 pet_expr *expr;
1769 expr = pet_tree_expr_get_expr(tree);
1770 var = pet_expr_get_arg(expr, 0);
1771 val = pet_expr_get_arg(expr, 1);
1772 pet_expr_free(expr);
1775 if (!pet_expr_is_scalar_access(var)) {
1776 pet_expr_free(var);
1777 pet_expr_free(val);
1778 return pc;
1781 pa = pet_expr_extract_affine(val, pc);
1782 if (!pa)
1783 pc = pet_context_free(pc);
1785 if (!isl_pw_aff_involves_nan(pa)) {
1786 id = pet_expr_access_get_id(var);
1787 pc = pet_context_set_value(pc, id, pa);
1788 } else {
1789 isl_pw_aff_free(pa);
1791 pet_expr_free(var);
1792 pet_expr_free(val);
1794 return pc;
1797 /* Mark all arrays in "scop" as being exposed.
1799 static struct pet_scop *mark_exposed(struct pet_scop *scop)
1801 int i;
1803 if (!scop)
1804 return NULL;
1805 for (i = 0; i < scop->n_array; ++i)
1806 scop->arrays[i]->exposed = 1;
1807 return scop;
1810 /* Try and construct a pet_scop corresponding to (part of)
1811 * a sequence of statements within the context "pc".
1813 * After extracting a statement, we update "pc"
1814 * based on the top-level assignments in the statement
1815 * so that we can exploit them in subsequent statements in the same block.
1817 * If there are any breaks or continues in the individual statements,
1818 * then we may have to compute a new skip condition.
1819 * This is handled using a pet_skip_info object.
1820 * On initialization, the object checks if skip conditions need
1821 * to be computed. If so, it does so in pet_skip_info_seq_extract and
1822 * adds them in pet_skip_info_seq_add.
1824 * If "block" is set, then we need to insert kill statements at
1825 * the end of the block for any array that has been declared by
1826 * one of the statements in the sequence. Each of these declarations
1827 * results in the construction of a kill statement at the place
1828 * of the declaration, so we simply collect duplicates of
1829 * those kill statements and append these duplicates to the constructed scop.
1831 * If "block" is not set, then any array declared by one of the statements
1832 * in the sequence is marked as being exposed.
1834 * If autodetect is set, then we allow the extraction of only a subrange
1835 * of the sequence of statements. However, if there is at least one statement
1836 * for which we could not construct a scop and the final range contains
1837 * either no statements or at least one kill, then we discard the entire
1838 * range.
1840 static struct pet_scop *scop_from_block(__isl_keep pet_tree *tree,
1841 __isl_keep pet_context *pc, struct pet_state *state)
1843 int i;
1844 isl_ctx *ctx;
1845 isl_space *space;
1846 isl_set *domain;
1847 struct pet_scop *scop, *kills;
1849 ctx = pet_tree_get_ctx(tree);
1851 space = pet_context_get_space(pc);
1852 domain = pet_context_get_domain(pc);
1853 pc = pet_context_copy(pc);
1854 scop = pet_scop_empty(isl_space_copy(space));
1855 kills = pet_scop_empty(space);
1856 for (i = 0; i < tree->u.b.n; ++i) {
1857 struct pet_scop *scop_i;
1859 scop_i = scop_from_tree(tree->u.b.child[i], pc, state);
1860 pc = scop_handle_writes(scop_i, pc);
1861 if (is_assignment(tree->u.b.child[i]))
1862 pc = handle_assignment(pc, tree->u.b.child[i]);
1863 struct pet_skip_info skip;
1864 pet_skip_info_seq_init(&skip, ctx, scop, scop_i);
1865 pet_skip_info_seq_extract(&skip, pc, state);
1866 if (pet_skip_info_has_skip(&skip))
1867 scop_i = pet_scop_prefix(scop_i, 0);
1868 if (scop_i && pet_tree_is_decl(tree->u.b.child[i])) {
1869 if (tree->u.b.block) {
1870 struct pet_scop *kill;
1871 kill = extract_kill(domain, scop_i, state);
1872 kills = pet_scop_add_par(ctx, kills, kill);
1873 } else
1874 scop_i = mark_exposed(scop_i);
1876 scop_i = pet_scop_prefix(scop_i, i);
1877 scop = pet_scop_add_seq(ctx, scop, scop_i);
1879 scop = pet_skip_info_seq_add(&skip, scop, i);
1881 if (!scop)
1882 break;
1884 isl_set_free(domain);
1886 kills = pet_scop_prefix(kills, tree->u.b.n);
1887 scop = pet_scop_add_seq(ctx, scop, kills);
1889 pet_context_free(pc);
1891 return scop;
1894 /* Construct a pet_scop that corresponds to the pet_tree "tree"
1895 * within the context "pc" by calling the appropriate function
1896 * based on the type of "tree".
1898 static struct pet_scop *scop_from_tree(__isl_keep pet_tree *tree,
1899 __isl_keep pet_context *pc, struct pet_state *state)
1901 if (!tree)
1902 return NULL;
1904 switch (tree->type) {
1905 case pet_tree_error:
1906 return NULL;
1907 case pet_tree_block:
1908 return scop_from_block(tree, pc, state);
1909 case pet_tree_break:
1910 return scop_from_break(tree, pet_context_get_space(pc));
1911 case pet_tree_continue:
1912 return scop_from_continue(tree, pet_context_get_space(pc));
1913 case pet_tree_decl:
1914 case pet_tree_decl_init:
1915 return scop_from_decl(tree, pc, state);
1916 case pet_tree_expr:
1917 return scop_from_expr(pet_expr_copy(tree->u.e.expr),
1918 isl_id_copy(tree->label),
1919 state->n_stmt++,
1920 pet_tree_get_loc(tree), pc);
1921 case pet_tree_if:
1922 case pet_tree_if_else:
1923 return scop_from_if(tree, pc, state);
1924 case pet_tree_for:
1925 return scop_from_for(tree, pc, state);
1926 case pet_tree_while:
1927 return scop_from_while(tree, pc, state);
1928 case pet_tree_infinite_loop:
1929 return scop_from_infinite_for(tree, pc, state);
1932 isl_die(tree->ctx, isl_error_internal, "unhandled type",
1933 return NULL);
1936 /* Construct a pet_scop that corresponds to the pet_tree "tree".
1937 * "int_size" is the number of bytes need to represent an integer.
1938 * "extract_array" is a callback that we can use to create a pet_array
1939 * that corresponds to the variable accessed by an expression.
1941 * Initialize the global state, construct a context and then
1942 * construct the pet_scop by recursively visiting the tree.
1944 struct pet_scop *pet_scop_from_pet_tree(__isl_take pet_tree *tree, int int_size,
1945 struct pet_array *(*extract_array)(__isl_keep pet_expr *access,
1946 __isl_keep pet_context *pc, void *user), void *user,
1947 __isl_keep pet_context *pc)
1949 struct pet_scop *scop;
1950 struct pet_state state = { 0 };
1952 if (!tree)
1953 return NULL;
1955 state.ctx = pet_tree_get_ctx(tree);
1956 state.int_size = int_size;
1957 state.extract_array = extract_array;
1958 state.user = user;
1960 scop = scop_from_tree(tree, pc, &state);
1961 scop = pet_scop_set_loc(scop, pet_tree_get_loc(tree));
1963 pet_tree_free(tree);
1965 return scop;