properly handle generic conditions in for loops
[pet.git] / scan.cc
blob822db5eee5cc1d3b7c3b683bcd5d167e4c8cad94
1 #include <set>
2 #include <map>
3 #include <iostream>
4 #include <clang/AST/ASTDiagnostic.h>
5 #include <clang/AST/Expr.h>
6 #include <clang/AST/RecursiveASTVisitor.h>
8 #include <isl/id.h>
9 #include <isl/dim.h>
10 #include <isl/aff.h>
11 #include <isl/set.h>
13 #include "scan.h"
14 #include "scop.h"
15 #include "scop_plus.h"
17 #include "config.h"
19 using namespace std;
20 using namespace clang;
22 /* Look for any assignments to variables in part of the parse
23 * tree and set assigned_value to NULL for each of them.
25 * This ensures that we won't use any previously stored value
26 * in the current subtree and its parents.
28 struct clear_assignments : RecursiveASTVisitor<clear_assignments> {
29 map<ValueDecl *, Expr *> &assigned_value;
31 clear_assignments(map<ValueDecl *, Expr *> &assigned_value) :
32 assigned_value(assigned_value) {}
34 bool VisitBinaryOperator(BinaryOperator *expr) {
35 Expr *lhs;
36 DeclRefExpr *ref;
37 ValueDecl *decl;
39 if (!expr->isAssignmentOp())
40 return true;
41 lhs = expr->getLHS();
42 if (lhs->getStmtClass() != Stmt::DeclRefExprClass)
43 return true;
44 ref = cast<DeclRefExpr>(lhs);
45 decl = ref->getDecl();
46 assigned_value[decl] = NULL;
47 return true;
51 /* Keep a copy of the currently assigned values.
53 * Any variable that is assigned a value inside the current scope
54 * is removed again when we leave the scope (either because it wasn't
55 * stored in the cache or because it has a different value in the cache).
57 struct assigned_value_cache {
58 map<ValueDecl *, Expr *> &assigned_value;
59 map<ValueDecl *, Expr *> cache;
61 assigned_value_cache(map<ValueDecl *, Expr *> &assigned_value) :
62 assigned_value(assigned_value), cache(assigned_value) {}
63 ~assigned_value_cache() {
64 map<ValueDecl *, Expr *>::iterator it = cache.begin();
65 for (it = assigned_value.begin(); it != assigned_value.end();
66 ++it) {
67 if (!it->second ||
68 (cache.find(it->first) != cache.end() &&
69 cache[it->first] != it->second))
70 cache[it->first] = NULL;
72 assigned_value = cache;
76 /* Called if we found something we (currently) cannot handle.
77 * We'll provide more informative warnings later.
79 * We only actually complain if autodetect is false.
81 void PetScan::unsupported(Stmt *stmt)
83 if (autodetect)
84 return;
86 SourceLocation loc = stmt->getLocStart();
87 Diagnostic &diag = PP.getDiagnostics();
88 unsigned id = diag.getCustomDiagID(Diagnostic::Warning, "unsupported");
89 DiagnosticBuilder B = diag.Report(loc, id) << stmt->getSourceRange();
92 /* Extract an integer from "expr" and store it in "v".
94 int PetScan::extract_int(IntegerLiteral *expr, isl_int *v)
96 const Type *type = expr->getType().getTypePtr();
97 int is_signed = type->hasSignedIntegerRepresentation();
99 if (is_signed) {
100 int64_t i = expr->getValue().getSExtValue();
101 isl_int_set_si(*v, i);
102 } else {
103 uint64_t i = expr->getValue().getZExtValue();
104 isl_int_set_ui(*v, i);
107 return 0;
110 /* Extract an affine expression from the IntegerLiteral "expr".
112 __isl_give isl_pw_aff *PetScan::extract_affine(IntegerLiteral *expr)
114 isl_dim *dim = isl_dim_set_alloc(ctx, 0, 0);
115 isl_local_space *ls = isl_local_space_from_dim(isl_dim_copy(dim));
116 isl_aff *aff = isl_aff_zero(ls);
117 isl_set *dom = isl_set_universe(dim);
118 isl_int v;
120 isl_int_init(v);
121 extract_int(expr, &v);
122 aff = isl_aff_add_constant(aff, v);
123 isl_int_clear(v);
125 return isl_pw_aff_alloc(dom, aff);
128 /* Extract an affine expression from the APInt "val".
130 __isl_give isl_pw_aff *PetScan::extract_affine(const llvm::APInt &val)
132 isl_dim *dim = isl_dim_set_alloc(ctx, 0, 0);
133 isl_local_space *ls = isl_local_space_from_dim(isl_dim_copy(dim));
134 isl_aff *aff = isl_aff_zero(ls);
135 isl_set *dom = isl_set_universe(dim);
136 isl_int v;
138 isl_int_init(v);
139 isl_int_set_ui(v, val.getZExtValue());
140 aff = isl_aff_add_constant(aff, v);
141 isl_int_clear(v);
143 return isl_pw_aff_alloc(dom, aff);
146 __isl_give isl_pw_aff *PetScan::extract_affine(ImplicitCastExpr *expr)
148 return extract_affine(expr->getSubExpr());
151 /* Extract an affine expression from the DeclRefExpr "expr".
153 * If we have recorded an expression that was assigned to the variable
154 * before, then we convert this expressoin to an isl_pw_aff if it is
155 * affine and to an extra parameter otherwise (provided nesting_enabled is set).
157 * Otherwise, we simply return an expression that is equal
158 * to a parameter corresponding to the referenced variable.
160 __isl_give isl_pw_aff *PetScan::extract_affine(DeclRefExpr *expr)
162 ValueDecl *decl = expr->getDecl();
163 const Type *type = decl->getType().getTypePtr();
164 isl_id *id;
165 isl_dim *dim;
166 isl_aff *aff;
167 isl_set *dom;
169 if (!type->isIntegerType()) {
170 unsupported(expr);
171 return NULL;
174 if (assigned_value.find(decl) != assigned_value.end() &&
175 assigned_value[decl] != NULL) {
176 if (is_affine(assigned_value[decl]))
177 return extract_affine(assigned_value[decl]);
178 else
179 return non_affine(expr);
182 id = isl_id_alloc(ctx, decl->getName().str().c_str(), decl);
183 dim = isl_dim_set_alloc(ctx, 1, 0);
185 dim = isl_dim_set_dim_id(dim, isl_dim_param, 0, id);
187 dom = isl_set_universe(isl_dim_copy(dim));
188 aff = isl_aff_zero(isl_local_space_from_dim(dim));
189 aff = isl_aff_add_coefficient_si(aff, isl_dim_param, 0, 1);
191 return isl_pw_aff_alloc(dom, aff);
194 /* Extract an affine expression from an integer division operation.
195 * In particular, if "expr" is lhs/rhs, then return
197 * lhs >= 0 ? floor(lhs/rhs) : ceil(lhs/rhs)
199 * The second argument (rhs) is required to be a (positive) integer constant.
201 __isl_give isl_pw_aff *PetScan::extract_affine_div(BinaryOperator *expr)
203 Expr *rhs_expr;
204 isl_pw_aff *lhs, *lhs_f, *lhs_c;
205 isl_pw_aff *res;
206 isl_int v;
207 isl_set *cond;
209 rhs_expr = expr->getRHS();
210 if (rhs_expr->getStmtClass() != Stmt::IntegerLiteralClass) {
211 unsupported(expr);
212 return NULL;
215 lhs = extract_affine(expr->getLHS());
216 cond = isl_pw_aff_nonneg_set(isl_pw_aff_copy(lhs));
218 isl_int_init(v);
219 extract_int(cast<IntegerLiteral>(rhs_expr), &v);
220 lhs = isl_pw_aff_scale_down(lhs, v);
221 isl_int_clear(v);
223 lhs_f = isl_pw_aff_floor(isl_pw_aff_copy(lhs));
224 lhs_c = isl_pw_aff_ceil(lhs);
225 res = isl_pw_aff_cond(cond, lhs_f, lhs_c);
227 return res;
230 /* Extract an affine expression from a modulo operation.
231 * In particular, if "expr" is lhs/rhs, then return
233 * lhs - rhs * (lhs >= 0 ? floor(lhs/rhs) : ceil(lhs/rhs))
235 * The second argument (rhs) is required to be a (positive) integer constant.
237 __isl_give isl_pw_aff *PetScan::extract_affine_mod(BinaryOperator *expr)
239 Expr *rhs_expr;
240 isl_pw_aff *lhs, *lhs_f, *lhs_c;
241 isl_pw_aff *res;
242 isl_int v;
243 isl_set *cond;
245 rhs_expr = expr->getRHS();
246 if (rhs_expr->getStmtClass() != Stmt::IntegerLiteralClass) {
247 unsupported(expr);
248 return NULL;
251 lhs = extract_affine(expr->getLHS());
252 cond = isl_pw_aff_nonneg_set(isl_pw_aff_copy(lhs));
254 isl_int_init(v);
255 extract_int(cast<IntegerLiteral>(rhs_expr), &v);
256 res = isl_pw_aff_scale_down(isl_pw_aff_copy(lhs), v);
258 lhs_f = isl_pw_aff_floor(isl_pw_aff_copy(res));
259 lhs_c = isl_pw_aff_ceil(res);
260 res = isl_pw_aff_cond(cond, lhs_f, lhs_c);
262 res = isl_pw_aff_scale(res, v);
263 isl_int_clear(v);
265 res = isl_pw_aff_sub(lhs, res);
267 return res;
270 /* Extract an affine expression from a multiplication operation.
271 * This is only allowed if at least one of the two arguments
272 * is a (piecewise) constant.
274 __isl_give isl_pw_aff *PetScan::extract_affine_mul(BinaryOperator *expr)
276 isl_pw_aff *lhs;
277 isl_pw_aff *rhs;
279 lhs = extract_affine(expr->getLHS());
280 rhs = extract_affine(expr->getRHS());
282 if (!isl_pw_aff_is_cst(lhs) && !isl_pw_aff_is_cst(rhs)) {
283 isl_pw_aff_free(lhs);
284 isl_pw_aff_free(rhs);
285 unsupported(expr);
286 return NULL;
289 return isl_pw_aff_mul(lhs, rhs);
292 /* Extract an affine expression from some binary operations.
294 __isl_give isl_pw_aff *PetScan::extract_affine(BinaryOperator *expr)
296 isl_pw_aff *lhs;
297 isl_pw_aff *rhs;
298 isl_pw_aff *res;
300 switch (expr->getOpcode()) {
301 case BO_Add:
302 case BO_Sub:
303 break;
304 case BO_Div:
305 return extract_affine_div(expr);
306 case BO_Rem:
307 return extract_affine_mod(expr);
308 case BO_Mul:
309 return extract_affine_mul(expr);
310 default:
311 unsupported(expr);
312 return NULL;
315 lhs = extract_affine(expr->getLHS());
316 rhs = extract_affine(expr->getRHS());
318 switch (expr->getOpcode()) {
319 case BO_Add:
320 res = isl_pw_aff_add(lhs, rhs);
321 break;
322 case BO_Sub:
323 res = isl_pw_aff_sub(lhs, rhs);
324 break;
325 default:
329 return res;
332 /* Extract an affine expression from a negation operation.
334 __isl_give isl_pw_aff *PetScan::extract_affine(UnaryOperator *expr)
336 if (expr->getOpcode() == UO_Minus)
337 return isl_pw_aff_neg(extract_affine(expr->getSubExpr()));
339 unsupported(expr);
340 return NULL;
343 __isl_give isl_pw_aff *PetScan::extract_affine(ParenExpr *expr)
345 return extract_affine(expr->getSubExpr());
348 /* Extract an affine expression from some special function calls.
349 * In particular, we handle "min", "max", "ceild" and "floord".
350 * In case of the latter two, the second argument needs to be
351 * a (positive) integer constant.
353 __isl_give isl_pw_aff *PetScan::extract_affine(CallExpr *expr)
355 FunctionDecl *fd;
356 string name;
357 isl_pw_aff *aff1, *aff2;
359 fd = expr->getDirectCallee();
360 if (!fd) {
361 unsupported(expr);
362 return NULL;
365 name = fd->getDeclName().getAsString();
366 if (!(expr->getNumArgs() == 2 && name == "min") &&
367 !(expr->getNumArgs() == 2 && name == "max") &&
368 !(expr->getNumArgs() == 2 && name == "floord") &&
369 !(expr->getNumArgs() == 2 && name == "ceild")) {
370 unsupported(expr);
371 return NULL;
374 if (name == "min" || name == "max") {
375 aff1 = extract_affine(expr->getArg(0));
376 aff2 = extract_affine(expr->getArg(1));
378 if (name == "min")
379 aff1 = isl_pw_aff_min(aff1, aff2);
380 else
381 aff1 = isl_pw_aff_max(aff1, aff2);
382 } else if (name == "floord" || name == "ceild") {
383 isl_int v;
384 Expr *arg2 = expr->getArg(1);
386 if (arg2->getStmtClass() != Stmt::IntegerLiteralClass) {
387 unsupported(expr);
388 return NULL;
390 aff1 = extract_affine(expr->getArg(0));
391 isl_int_init(v);
392 extract_int(cast<IntegerLiteral>(arg2), &v);
393 aff1 = isl_pw_aff_scale_down(aff1, v);
394 isl_int_clear(v);
395 if (name == "floord")
396 aff1 = isl_pw_aff_floor(aff1);
397 else
398 aff1 = isl_pw_aff_ceil(aff1);
399 } else {
400 unsupported(expr);
401 return NULL;
404 return aff1;
408 /* This method is called when we come across a non-affine expression.
409 * If nesting is allowed, we return a new parameter that corresponds
410 * to the non-affine expression. Otherwise, we simply complain.
412 * The new parameter is resolved in resolve_nested.
414 isl_pw_aff *PetScan::non_affine(Expr *expr)
416 isl_id *id;
417 isl_dim *dim;
418 isl_aff *aff;
419 isl_set *dom;
421 if (!nesting_enabled) {
422 unsupported(expr);
423 return NULL;
426 id = isl_id_alloc(ctx, NULL, expr);
427 dim = isl_dim_set_alloc(ctx, 1, 0);
429 dim = isl_dim_set_dim_id(dim, isl_dim_param, 0, id);
431 dom = isl_set_universe(isl_dim_copy(dim));
432 aff = isl_aff_zero(isl_local_space_from_dim(dim));
433 aff = isl_aff_add_coefficient_si(aff, isl_dim_param, 0, 1);
435 return isl_pw_aff_alloc(dom, aff);
438 /* Affine expressions are not supposed to contain array accesses,
439 * but if nesting is allowed, we return a parameter corresponding
440 * to the array access.
442 __isl_give isl_pw_aff *PetScan::extract_affine(ArraySubscriptExpr *expr)
444 return non_affine(expr);
447 /* Extract an affine expression from a conditional operation.
449 __isl_give isl_pw_aff *PetScan::extract_affine(ConditionalOperator *expr)
451 isl_set *cond;
452 isl_pw_aff *lhs, *rhs;
454 cond = extract_condition(expr->getCond());
455 lhs = extract_affine(expr->getTrueExpr());
456 rhs = extract_affine(expr->getFalseExpr());
458 return isl_pw_aff_cond(cond, lhs, rhs);
461 /* Extract an affine expression, if possible, from "expr".
462 * Otherwise return NULL.
464 __isl_give isl_pw_aff *PetScan::extract_affine(Expr *expr)
466 switch (expr->getStmtClass()) {
467 case Stmt::ImplicitCastExprClass:
468 return extract_affine(cast<ImplicitCastExpr>(expr));
469 case Stmt::IntegerLiteralClass:
470 return extract_affine(cast<IntegerLiteral>(expr));
471 case Stmt::DeclRefExprClass:
472 return extract_affine(cast<DeclRefExpr>(expr));
473 case Stmt::BinaryOperatorClass:
474 return extract_affine(cast<BinaryOperator>(expr));
475 case Stmt::UnaryOperatorClass:
476 return extract_affine(cast<UnaryOperator>(expr));
477 case Stmt::ParenExprClass:
478 return extract_affine(cast<ParenExpr>(expr));
479 case Stmt::CallExprClass:
480 return extract_affine(cast<CallExpr>(expr));
481 case Stmt::ArraySubscriptExprClass:
482 return extract_affine(cast<ArraySubscriptExpr>(expr));
483 case Stmt::ConditionalOperatorClass:
484 return extract_affine(cast<ConditionalOperator>(expr));
485 default:
486 unsupported(expr);
488 return NULL;
491 __isl_give isl_map *PetScan::extract_access(ImplicitCastExpr *expr)
493 return extract_access(expr->getSubExpr());
496 /* Return the depth of an array of the given type.
498 static int array_depth(const Type *type)
500 if (type->isPointerType())
501 return 1 + array_depth(type->getPointeeType().getTypePtr());
502 if (type->isArrayType()) {
503 const ArrayType *atype;
504 type = type->getCanonicalTypeInternal().getTypePtr();
505 atype = cast<ArrayType>(type);
506 return 1 + array_depth(atype->getElementType().getTypePtr());
508 return 0;
511 /* Return the element type of the given array type.
513 static QualType base_type(QualType qt)
515 const Type *type = qt.getTypePtr();
517 if (type->isPointerType())
518 return base_type(type->getPointeeType());
519 if (type->isArrayType()) {
520 const ArrayType *atype;
521 type = type->getCanonicalTypeInternal().getTypePtr();
522 atype = cast<ArrayType>(type);
523 return base_type(atype->getElementType());
525 return qt;
528 /* Check if the element type corresponding to the given array type
529 * has a const qualifier.
531 static bool const_base(QualType qt)
533 const Type *type = qt.getTypePtr();
535 if (type->isPointerType())
536 return const_base(type->getPointeeType());
537 if (type->isArrayType()) {
538 const ArrayType *atype;
539 type = type->getCanonicalTypeInternal().getTypePtr();
540 atype = cast<ArrayType>(type);
541 return const_base(atype->getElementType());
544 return qt.isConstQualified();
547 /* Extract an access relation from a reference to a variable.
548 * If the variable has name "A" and its type corresponds to an
549 * array of depth d, then the returned access relation is of the
550 * form
552 * { [] -> A[i_1,...,i_d] }
554 __isl_give isl_map *PetScan::extract_access(DeclRefExpr *expr)
556 ValueDecl *decl = expr->getDecl();
557 int depth = array_depth(decl->getType().getTypePtr());
558 isl_id *id = isl_id_alloc(ctx, decl->getName().str().c_str(), decl);
559 isl_dim *dim = isl_dim_alloc(ctx, 0, 0, depth);
560 isl_map *access_rel;
562 dim = isl_dim_set_tuple_id(dim, isl_dim_out, id);
564 access_rel = isl_map_universe(dim);
566 return access_rel;
569 /* Extract an access relation from an integer contant.
570 * If the value of the constant is "v", then the returned access relation
571 * is
573 * { [] -> [v] }
575 __isl_give isl_map *PetScan::extract_access(IntegerLiteral *expr)
577 return isl_map_from_pw_aff(extract_affine(expr));
580 /* Try and extract an access relation from the given Expr.
581 * Return NULL if it doesn't work out.
583 __isl_give isl_map *PetScan::extract_access(Expr *expr)
585 switch (expr->getStmtClass()) {
586 case Stmt::ImplicitCastExprClass:
587 return extract_access(cast<ImplicitCastExpr>(expr));
588 case Stmt::DeclRefExprClass:
589 return extract_access(cast<DeclRefExpr>(expr));
590 case Stmt::ArraySubscriptExprClass:
591 return extract_access(cast<ArraySubscriptExpr>(expr));
592 default:
593 unsupported(expr);
595 return NULL;
598 /* Assign the affine expression "index" to the output dimension "pos" of "map"
599 * and return the result.
601 __isl_give isl_map *set_index(__isl_take isl_map *map, int pos,
602 __isl_take isl_pw_aff *index)
604 isl_map *index_map;
605 int len = isl_map_dim(map, isl_dim_out);
606 isl_id *id;
608 index_map = isl_map_from_pw_aff(index);
609 index_map = isl_map_insert(index_map, isl_dim_out, 0, pos);
610 index_map = isl_map_add_dims(index_map, isl_dim_out, len - pos - 1);
611 id = isl_map_get_tuple_id(map, isl_dim_out);
612 index_map = isl_map_set_tuple_id(index_map, isl_dim_out, id);
614 map = isl_map_intersect(map, index_map);
616 return map;
619 /* Extract an access relation from the given array subscript expression.
620 * If nesting is allowed in general, then we turn it on while
621 * examining the index expression.
623 * We first extract an access relation from the base.
624 * This will result in an access relation with a range that corresponds
625 * to the array being accessed and with earlier indices filled in already.
626 * We then extract the current index and fill that in as well.
627 * The position of the current index is based on the type of base.
628 * If base is the actual array variable, then the depth of this type
629 * will be the same as the depth of the array and we will fill in
630 * the first array index.
631 * Otherwise, the depth of the base type will be smaller and we will fill
632 * in a later index.
634 __isl_give isl_map *PetScan::extract_access(ArraySubscriptExpr *expr)
636 Expr *base = expr->getBase();
637 Expr *idx = expr->getIdx();
638 isl_pw_aff *index;
639 isl_map *base_access;
640 isl_map *access;
641 int depth = array_depth(base->getType().getTypePtr());
642 int pos;
643 bool save_nesting = nesting_enabled;
645 nesting_enabled = allow_nested;
647 base_access = extract_access(base);
648 index = extract_affine(idx);
650 nesting_enabled = save_nesting;
652 pos = isl_map_dim(base_access, isl_dim_out) - depth;
653 access = set_index(base_access, pos, index);
655 return access;
658 /* Check if "expr" calls function "minmax" with two arguments and if so
659 * make lhs and rhs refer to these two arguments.
661 static bool is_minmax(Expr *expr, const char *minmax, Expr *&lhs, Expr *&rhs)
663 CallExpr *call;
664 FunctionDecl *fd;
665 string name;
667 if (expr->getStmtClass() != Stmt::CallExprClass)
668 return false;
670 call = cast<CallExpr>(expr);
671 fd = call->getDirectCallee();
672 if (!fd)
673 return false;
675 if (call->getNumArgs() != 2)
676 return false;
678 name = fd->getDeclName().getAsString();
679 if (name != minmax)
680 return false;
682 lhs = call->getArg(0);
683 rhs = call->getArg(1);
685 return true;
688 /* Check if "expr" is of the form min(lhs, rhs) and if so make
689 * lhs and rhs refer to the two arguments.
691 static bool is_min(Expr *expr, Expr *&lhs, Expr *&rhs)
693 return is_minmax(expr, "min", lhs, rhs);
696 /* Check if "expr" is of the form max(lhs, rhs) and if so make
697 * lhs and rhs refer to the two arguments.
699 static bool is_max(Expr *expr, Expr *&lhs, Expr *&rhs)
701 return is_minmax(expr, "max", lhs, rhs);
704 /* Extract a set of values satisfying the comparison "LHS op RHS"
705 * "comp" is the original expression that "LHS op RHS" is derived from
706 * and is used for diagnostics.
708 * If the comparison is of the form
710 * a <= min(b,c)
712 * then the set is constructed as the intersection of the set corresponding
713 * to the comparisons
715 * a <= b and a <= c
717 * A similar optimization is performed for max(a,b) <= c.
718 * We do this because that will lead to simpler representations of the set.
719 * If isl is ever enhanced to explicitly deal with min and max expressions,
720 * this optimization can be removed.
722 __isl_give isl_set *PetScan::extract_comparison(BinaryOperatorKind op,
723 Expr *LHS, Expr *RHS, Expr *comp)
725 isl_pw_aff *lhs;
726 isl_pw_aff *rhs;
727 isl_set *cond;
729 if (op == BO_GT)
730 return extract_comparison(BO_LT, RHS, LHS, comp);
731 if (op == BO_GE)
732 return extract_comparison(BO_LE, RHS, LHS, comp);
734 if (op == BO_LT || op == BO_LE) {
735 Expr *expr1, *expr2;
736 isl_set *set1, *set2;
737 if (is_min(RHS, expr1, expr2)) {
738 set1 = extract_comparison(op, LHS, expr1, comp);
739 set2 = extract_comparison(op, LHS, expr2, comp);
740 return isl_set_intersect(set1, set2);
742 if (is_max(LHS, expr1, expr2)) {
743 set1 = extract_comparison(op, expr1, RHS, comp);
744 set2 = extract_comparison(op, expr2, RHS, comp);
745 return isl_set_intersect(set1, set2);
749 lhs = extract_affine(LHS);
750 rhs = extract_affine(RHS);
752 switch (op) {
753 case BO_LT:
754 cond = isl_pw_aff_lt_set(lhs, rhs);
755 break;
756 case BO_LE:
757 cond = isl_pw_aff_le_set(lhs, rhs);
758 break;
759 case BO_EQ:
760 cond = isl_pw_aff_eq_set(lhs, rhs);
761 break;
762 case BO_NE:
763 cond = isl_pw_aff_ne_set(lhs, rhs);
764 break;
765 default:
766 isl_pw_aff_free(lhs);
767 isl_pw_aff_free(rhs);
768 unsupported(comp);
769 return NULL;
772 cond = isl_set_coalesce(cond);
774 return cond;
777 __isl_give isl_set *PetScan::extract_comparison(BinaryOperator *comp)
779 return extract_comparison(comp->getOpcode(), comp->getLHS(),
780 comp->getRHS(), comp);
783 /* Extract a set of values satisfying the negation (logical not)
784 * of a subexpression.
786 __isl_give isl_set *PetScan::extract_boolean(UnaryOperator *op)
788 isl_set *cond;
790 cond = extract_condition(op->getSubExpr());
792 return isl_set_complement(cond);
795 /* Extract a set of values satisfying the union (logical or)
796 * or intersection (logical and) of two subexpressions.
798 __isl_give isl_set *PetScan::extract_boolean(BinaryOperator *comp)
800 isl_set *lhs;
801 isl_set *rhs;
802 isl_set *cond;
804 lhs = extract_condition(comp->getLHS());
805 rhs = extract_condition(comp->getRHS());
807 switch (comp->getOpcode()) {
808 case BO_LAnd:
809 cond = isl_set_intersect(lhs, rhs);
810 break;
811 case BO_LOr:
812 cond = isl_set_union(lhs, rhs);
813 break;
814 default:
815 isl_set_free(lhs);
816 isl_set_free(rhs);
817 unsupported(comp);
818 return NULL;
821 return cond;
824 __isl_give isl_set *PetScan::extract_condition(UnaryOperator *expr)
826 switch (expr->getOpcode()) {
827 case UO_LNot:
828 return extract_boolean(expr);
829 default:
830 unsupported(expr);
831 return NULL;
835 /* Extract a set of values satisfying the condition "expr != 0".
837 __isl_give isl_set *PetScan::extract_implicit_condition(Expr *expr)
839 return isl_pw_aff_non_zero_set(extract_affine(expr));
842 /* Extract a set of values satisfying the condition expressed by "expr".
844 * If the expression doesn't look like a condition, we assume it
845 * is an affine expression and return the condition "expr != 0".
847 __isl_give isl_set *PetScan::extract_condition(Expr *expr)
849 BinaryOperator *comp;
851 if (!expr)
852 return isl_set_universe(isl_dim_set_alloc(ctx, 0, 0));
854 if (expr->getStmtClass() == Stmt::ParenExprClass)
855 return extract_condition(cast<ParenExpr>(expr)->getSubExpr());
857 if (expr->getStmtClass() == Stmt::UnaryOperatorClass)
858 return extract_condition(cast<UnaryOperator>(expr));
860 if (expr->getStmtClass() != Stmt::BinaryOperatorClass)
861 return extract_implicit_condition(expr);
863 comp = cast<BinaryOperator>(expr);
864 switch (comp->getOpcode()) {
865 case BO_LT:
866 case BO_LE:
867 case BO_GT:
868 case BO_GE:
869 case BO_EQ:
870 case BO_NE:
871 return extract_comparison(comp);
872 case BO_LAnd:
873 case BO_LOr:
874 return extract_boolean(comp);
875 default:
876 return extract_implicit_condition(expr);
880 static enum pet_op_type UnaryOperatorKind2pet_op_type(UnaryOperatorKind kind)
882 switch (kind) {
883 case UO_Minus:
884 return pet_op_minus;
885 default:
886 return pet_op_last;
890 static enum pet_op_type BinaryOperatorKind2pet_op_type(BinaryOperatorKind kind)
892 switch (kind) {
893 case BO_AddAssign:
894 return pet_op_add_assign;
895 case BO_SubAssign:
896 return pet_op_sub_assign;
897 case BO_MulAssign:
898 return pet_op_mul_assign;
899 case BO_DivAssign:
900 return pet_op_div_assign;
901 case BO_Assign:
902 return pet_op_assign;
903 case BO_Add:
904 return pet_op_add;
905 case BO_Sub:
906 return pet_op_sub;
907 case BO_Mul:
908 return pet_op_mul;
909 case BO_Div:
910 return pet_op_div;
911 case BO_LE:
912 return pet_op_le;
913 case BO_LT:
914 return pet_op_lt;
915 case BO_GT:
916 return pet_op_gt;
917 default:
918 return pet_op_last;
922 /* Construct a pet_expr representing a unary operator expression.
924 struct pet_expr *PetScan::extract_expr(UnaryOperator *expr)
926 struct pet_expr *arg;
927 enum pet_op_type op;
929 op = UnaryOperatorKind2pet_op_type(expr->getOpcode());
930 if (op == pet_op_last) {
931 unsupported(expr);
932 return NULL;
935 arg = extract_expr(expr->getSubExpr());
937 return pet_expr_new_unary(ctx, op, arg);
940 /* Construct a pet_expr representing a binary operator expression.
942 * If the top level operator is an assignment and the LHS is an access,
943 * then we mark that access as a write. If the operator is a compound
944 * assignment, the access is marked as both a read and a write.
946 * If "expr" assigns something to a scalar variable, then we keep track
947 * of the assigned expression in assigned_value so that we can plug
948 * it in when we later come across the same variable.
950 struct pet_expr *PetScan::extract_expr(BinaryOperator *expr)
952 struct pet_expr *lhs, *rhs;
953 enum pet_op_type op;
955 op = BinaryOperatorKind2pet_op_type(expr->getOpcode());
956 if (op == pet_op_last) {
957 unsupported(expr);
958 return NULL;
961 lhs = extract_expr(expr->getLHS());
962 rhs = extract_expr(expr->getRHS());
964 if (expr->isAssignmentOp() && lhs && lhs->type == pet_expr_access) {
965 lhs->acc.write = 1;
966 if (!expr->isCompoundAssignmentOp())
967 lhs->acc.read = 0;
970 if (expr->getOpcode() == BO_Assign &&
971 lhs && lhs->type == pet_expr_access &&
972 isl_map_dim(lhs->acc.access, isl_dim_out) == 0) {
973 isl_id *id = isl_map_get_tuple_id(lhs->acc.access, isl_dim_out);
974 ValueDecl *decl = (ValueDecl *) isl_id_get_user(id);
975 assigned_value[decl] = expr->getRHS();
976 isl_id_free(id);
979 return pet_expr_new_binary(ctx, op, lhs, rhs);
982 /* Construct a pet_expr representing a conditional operation.
984 struct pet_expr *PetScan::extract_expr(ConditionalOperator *expr)
986 struct pet_expr *cond, *lhs, *rhs;
988 cond = extract_expr(expr->getCond());
989 lhs = extract_expr(expr->getTrueExpr());
990 rhs = extract_expr(expr->getFalseExpr());
992 return pet_expr_new_ternary(ctx, cond, lhs, rhs);
995 struct pet_expr *PetScan::extract_expr(ImplicitCastExpr *expr)
997 return extract_expr(expr->getSubExpr());
1000 /* Construct a pet_expr representing a floating point value.
1002 struct pet_expr *PetScan::extract_expr(FloatingLiteral *expr)
1004 return pet_expr_new_double(ctx, expr->getValueAsApproximateDouble());
1007 /* Extract an access relation from "expr" and then convert it into
1008 * a pet_expr.
1010 struct pet_expr *PetScan::extract_access_expr(Expr *expr)
1012 isl_map *access;
1013 struct pet_expr *pe;
1015 switch (expr->getStmtClass()) {
1016 case Stmt::ArraySubscriptExprClass:
1017 access = extract_access(cast<ArraySubscriptExpr>(expr));
1018 break;
1019 case Stmt::DeclRefExprClass:
1020 access = extract_access(cast<DeclRefExpr>(expr));
1021 break;
1022 case Stmt::IntegerLiteralClass:
1023 access = extract_access(cast<IntegerLiteral>(expr));
1024 break;
1025 default:
1026 unsupported(expr);
1027 return NULL;
1030 pe = pet_expr_from_access(access);
1032 return pe;
1035 struct pet_expr *PetScan::extract_expr(ParenExpr *expr)
1037 return extract_expr(expr->getSubExpr());
1040 /* Construct a pet_expr representing a function call.
1042 * If we are passing along a pointer to an array element
1043 * or an entire row or even higher dimensional slice of an array,
1044 * then the function being called may write into the array.
1046 * We assume here that if the function is declared to take a pointer
1047 * to a const type, then the function will perform a read
1048 * and that otherwise, it will perform a write.
1050 struct pet_expr *PetScan::extract_expr(CallExpr *expr)
1052 struct pet_expr *res = NULL;
1053 FunctionDecl *fd;
1054 string name;
1056 fd = expr->getDirectCallee();
1057 if (!fd) {
1058 unsupported(expr);
1059 return NULL;
1062 name = fd->getDeclName().getAsString();
1063 res = pet_expr_new_call(ctx, name.c_str(), expr->getNumArgs());
1064 if (!res)
1065 return NULL;
1067 for (int i = 0; i < expr->getNumArgs(); ++i) {
1068 Expr *arg = expr->getArg(i);
1069 int is_addr = 0;
1071 if (arg->getStmtClass() == Stmt::ImplicitCastExprClass) {
1072 ImplicitCastExpr *ice = cast<ImplicitCastExpr>(arg);
1073 arg = ice->getSubExpr();
1075 if (arg->getStmtClass() == Stmt::UnaryOperatorClass) {
1076 UnaryOperator *op = cast<UnaryOperator>(arg);
1077 if (op->getOpcode() == UO_AddrOf) {
1078 is_addr = 1;
1079 arg = op->getSubExpr();
1082 res->args[i] = PetScan::extract_expr(arg);
1083 if (!res->args[i])
1084 goto error;
1085 if (arg->getStmtClass() == Stmt::ArraySubscriptExprClass &&
1086 array_depth(arg->getType().getTypePtr()) > 0)
1087 is_addr = 1;
1088 if (is_addr && res->args[i]->type == pet_expr_access) {
1089 ParmVarDecl *parm = fd->getParamDecl(i);
1090 if (!const_base(parm->getType())) {
1091 res->args[i]->acc.write = 1;
1092 res->args[i]->acc.read = 0;
1097 return res;
1098 error:
1099 pet_expr_free(res);
1100 return NULL;
1103 /* Try and onstruct a pet_expr representing "expr".
1105 struct pet_expr *PetScan::extract_expr(Expr *expr)
1107 switch (expr->getStmtClass()) {
1108 case Stmt::UnaryOperatorClass:
1109 return extract_expr(cast<UnaryOperator>(expr));
1110 case Stmt::CompoundAssignOperatorClass:
1111 case Stmt::BinaryOperatorClass:
1112 return extract_expr(cast<BinaryOperator>(expr));
1113 case Stmt::ImplicitCastExprClass:
1114 return extract_expr(cast<ImplicitCastExpr>(expr));
1115 case Stmt::ArraySubscriptExprClass:
1116 case Stmt::DeclRefExprClass:
1117 case Stmt::IntegerLiteralClass:
1118 return extract_access_expr(expr);
1119 case Stmt::FloatingLiteralClass:
1120 return extract_expr(cast<FloatingLiteral>(expr));
1121 case Stmt::ParenExprClass:
1122 return extract_expr(cast<ParenExpr>(expr));
1123 case Stmt::ConditionalOperatorClass:
1124 return extract_expr(cast<ConditionalOperator>(expr));
1125 case Stmt::CallExprClass:
1126 return extract_expr(cast<CallExpr>(expr));
1127 default:
1128 unsupported(expr);
1130 return NULL;
1133 /* Extract the initialization part of a for loop.
1134 * The initialization is required to be an assignment.
1135 * Return this assignment operator.
1137 BinaryOperator *PetScan::extract_initialization(ForStmt *stmt)
1139 Stmt *init = stmt->getInit();
1140 BinaryOperator *ass;
1142 if (!init) {
1143 unsupported(stmt);
1144 return NULL;
1147 if (init->getStmtClass() != Stmt::BinaryOperatorClass) {
1148 unsupported(init);
1149 return NULL;
1152 ass = cast<BinaryOperator>(init);
1153 if (ass->getOpcode() != BO_Assign) {
1154 unsupported(init);
1155 return NULL;
1158 return ass;
1161 /* Given the assignment operator in the initialization of a for loop,
1162 * extract the induction variable, i.e., the (integer)variable being
1163 * assigned.
1165 ValueDecl *PetScan::extract_induction_variable(BinaryOperator *init)
1167 Expr *lhs;
1168 DeclRefExpr *ref;
1169 ValueDecl *decl;
1170 const Type *type;
1172 lhs = init->getLHS();
1173 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
1174 unsupported(init);
1175 return NULL;
1178 ref = cast<DeclRefExpr>(lhs);
1179 decl = ref->getDecl();
1180 type = decl->getType().getTypePtr();
1182 if (!type->isIntegerType()) {
1183 unsupported(lhs);
1184 return NULL;
1187 return decl;
1190 /* Check that the increment of the given for loop increments
1191 * (or decrements) the induction variable "iv".
1192 * "up" is set to true if the induction variable is incremented.
1194 bool PetScan::check_increment(ForStmt *stmt, ValueDecl *iv, bool &up)
1196 Stmt *inc = stmt->getInc();
1197 UnaryOperator *op;
1198 Expr *sub;
1199 DeclRefExpr *ref;
1201 if (!inc) {
1202 unsupported(stmt);
1203 return false;
1206 if (inc->getStmtClass() != Stmt::UnaryOperatorClass) {
1207 unsupported(inc);
1208 return false;
1211 op = cast<UnaryOperator>(inc);
1212 if (!op->isIncrementDecrementOp()) {
1213 unsupported(inc);
1214 return false;
1217 up = op->isIncrementOp();
1219 sub = op->getSubExpr();
1220 if (sub->getStmtClass() != Stmt::DeclRefExprClass) {
1221 unsupported(inc);
1222 return false;
1225 ref = cast<DeclRefExpr>(sub);
1226 if (ref->getDecl() != iv) {
1227 unsupported(inc);
1228 return false;
1231 return true;
1234 /* Embed the given iteration domain in an extra outer loop
1235 * with induction variable "var".
1236 * If this variable appeared as a parameter in the constraints,
1237 * it is replaced by the new outermost dimension.
1239 static __isl_give isl_set *embed(__isl_take isl_set *set,
1240 __isl_take isl_id *var)
1242 int pos;
1244 set = isl_set_insert(set, isl_dim_set, 0, 1);
1245 pos = isl_set_find_dim_by_id(set, isl_dim_param, var);
1246 if (pos >= 0) {
1247 set = isl_set_equate(set, isl_dim_param, pos, isl_dim_set, 0);
1248 set = isl_set_project_out(set, isl_dim_param, pos, 1);
1251 isl_id_free(var);
1252 return set;
1255 /* Construct a pet_scop for an infinite loop, i.e., a loop of the form
1257 * for (;;)
1258 * body
1260 * We extract a pet_scop for the body and then embed it in a loop with
1261 * iteration domain
1263 * { [t] : t >= 0 }
1265 * and schedule
1267 * { [t] -> [t] }
1269 struct pet_scop *PetScan::extract_infinite_for(ForStmt *stmt)
1271 isl_id *id;
1272 isl_dim *dim;
1273 isl_set *domain;
1274 isl_map *sched;
1275 struct pet_scop *scop;
1277 scop = extract(stmt->getBody());
1278 if (!scop)
1279 return NULL;
1281 id = isl_id_alloc(ctx, "t", NULL);
1282 domain = isl_set_nat_universe(isl_dim_set_alloc(ctx, 0, 1));
1283 domain = isl_set_set_dim_id(domain, isl_dim_set, 0, isl_id_copy(id));
1284 dim = isl_dim_from_domain(isl_set_get_dim(domain));
1285 dim = isl_dim_add(dim, isl_dim_out, 1);
1286 sched = isl_map_universe(dim);
1287 sched = isl_map_equate(sched, isl_dim_in, 0, isl_dim_out, 0);
1288 scop = pet_scop_embed(scop, domain, sched, id);
1290 return scop;
1293 /* Check whether "expr" expresses a simple loop bound on "iv".
1294 * In particular, if "up" is set then "expr" should be of the form
1296 * iv < ... or iv <= ...
1298 * otherwise, it should be of the form
1300 * iv > ... or iv >= ...
1302 static bool is_simple_bound(Expr *expr, ValueDecl *iv, bool up)
1304 BinaryOperator *op;
1305 BinaryOperatorKind opcode;
1306 Expr *lhs;
1308 if (!expr)
1309 return false;
1311 if (expr->getStmtClass() != Stmt::BinaryOperatorClass)
1312 return false;
1314 op = cast<BinaryOperator>(expr);
1315 opcode = op->getOpcode();
1317 if (up) {
1318 if (opcode != BO_LT && opcode != BO_LE)
1319 return false;
1320 } else {
1321 if (opcode != BO_GT && opcode != BO_GE)
1322 return false;
1325 lhs = op->getLHS();
1326 if (lhs->getStmtClass() == Stmt::ImplicitCastExprClass)
1327 lhs = cast<ImplicitCastExpr>(lhs)->getSubExpr();
1328 if (lhs->getStmtClass() != Stmt::DeclRefExprClass)
1329 return false;
1331 if (cast<DeclRefExpr>(lhs)->getDecl() != iv)
1332 return false;
1334 return true;
1337 /* Extend a condition on a given iteration of a loop to one that
1338 * imposes the same condition on all previous iterations.
1339 * "domain" expresses the lower [upper] bound on the iterations
1340 * when up is set [not set].
1342 * In particular, we construct the condition (when up is set)
1344 * forall i' : (domain(i') and i' <= i) => cond(i')
1346 * which is equivalent to
1348 * not exists i' : domain(i') and i' <= i and not cond(i')
1350 * We construct this set by negating cond, applying a map
1352 * { [i'] -> [i] : domain(i') and i' <= i }
1354 * and then negating the result again.
1356 static __isl_give isl_set *valid_for_each_iteration(__isl_take isl_set *cond,
1357 __isl_take isl_set *domain, bool up)
1359 isl_map *previous_to_this;
1361 if (up)
1362 previous_to_this = isl_map_lex_le(isl_set_get_dim(domain));
1363 else
1364 previous_to_this = isl_map_lex_ge(isl_set_get_dim(domain));
1366 previous_to_this = isl_map_intersect_domain(previous_to_this, domain);
1368 cond = isl_set_complement(cond);
1369 cond = isl_set_apply(cond, previous_to_this);
1370 cond = isl_set_complement(cond);
1372 return cond;
1375 /* Construct a pet_scop for a for statement.
1376 * The for loop is required to be of the form
1378 * for (i = init; condition; ++i)
1380 * or
1382 * for (i = init; condition; --i)
1384 * We extract a pet_scop for the body and then embed it in a loop with
1385 * iteration domain and schedule
1387 * { [i] : i >= init and condition' }
1388 * { [i] -> [i] }
1390 * or
1392 * { [i] : i <= init and condition' }
1393 * { [i] -> [-i] }
1395 * Where condition' is equal to condition if the latter is
1396 * a simple upper [lower] bound and a condition that is extended
1397 * to apply to all previous iterations otherwise.
1399 * Before extracting a pet_scop from the body we remove all
1400 * assignments in assigned_value to variables that are assigned
1401 * somewhere in the body of the loop.
1403 struct pet_scop *PetScan::extract_for(ForStmt *stmt)
1405 BinaryOperator *init;
1406 ValueDecl *iv;
1407 isl_dim *dim;
1408 isl_set *domain;
1409 isl_map *sched;
1410 isl_set *cond;
1411 isl_id *id;
1412 struct pet_scop *scop;
1413 bool up = true;
1414 assigned_value_cache cache(assigned_value);
1416 if (!stmt->getInit() && !stmt->getCond() && !stmt->getInc())
1417 return extract_infinite_for(stmt);
1419 init = PetScan::extract_initialization(stmt);
1420 if (!init)
1421 return NULL;
1422 iv = extract_induction_variable(init);
1423 if (!iv)
1424 return NULL;
1426 if (!check_increment(stmt, iv, up))
1427 return NULL;
1429 assigned_value[iv] = NULL;
1430 clear_assignments clear(assigned_value);
1431 clear.TraverseStmt(stmt->getBody());
1433 domain = extract_comparison(up ? BO_GE : BO_LE,
1434 init->getLHS(), init->getRHS(), init);
1436 id = isl_id_alloc(ctx, iv->getName().str().c_str(), iv);
1438 cond = extract_condition(stmt->getCond());
1439 cond = embed(cond, isl_id_copy(id));
1440 domain = embed(domain, isl_id_copy(id));
1441 if (!is_simple_bound(stmt->getCond(), iv, up))
1442 cond = valid_for_each_iteration(cond, isl_set_copy(domain), up);
1443 domain = isl_set_intersect(domain, cond);
1444 domain = isl_set_set_dim_id(domain, isl_dim_set, 0, isl_id_copy(id));
1445 dim = isl_dim_from_domain(isl_set_get_dim(domain));
1446 dim = isl_dim_add(dim, isl_dim_out, 1);
1447 sched = isl_map_universe(dim);
1448 if (up)
1449 sched = isl_map_equate(sched, isl_dim_in, 0, isl_dim_out, 0);
1450 else
1451 sched = isl_map_oppose(sched, isl_dim_in, 0, isl_dim_out, 0);
1453 scop = extract(stmt->getBody());
1454 scop = pet_scop_embed(scop, domain, sched, id);
1456 return scop;
1459 struct pet_scop *PetScan::extract(CompoundStmt *stmt)
1461 return extract(stmt->children());
1464 /* Look for parameters in any access relation in "expr" that
1465 * refer to non-affine constructs. In particular, these are
1466 * parameters with no name.
1468 * If there are any such parameters, then the domain of the access
1469 * relation, which is still [] at this point, is replaced by
1470 * [[] -> [t_1,...,t_n]], with n the number of these parameters
1471 * (after identifying identical non-affine constructs).
1472 * The parameters are then equated to the corresponding t dimensions
1473 * and subsequently projected out.
1474 * param2pos maps the position of the parameter to the position
1475 * of the corresponding t dimension.
1477 struct pet_expr *PetScan::resolve_nested(struct pet_expr *expr)
1479 int n;
1480 int nparam;
1481 int n_in;
1482 isl_dim *dim;
1483 isl_map *map;
1484 std::map<int,int> param2pos;
1486 if (!expr)
1487 return expr;
1489 for (int i = 0; i < expr->n_arg; ++i) {
1490 expr->args[i] = resolve_nested(expr->args[i]);
1491 if (!expr->args[i]) {
1492 pet_expr_free(expr);
1493 return NULL;
1497 if (expr->type != pet_expr_access)
1498 return expr;
1500 nparam = isl_map_dim(expr->acc.access, isl_dim_param);
1501 n = 0;
1502 for (int i = 0; i < nparam; ++i) {
1503 isl_id *id = isl_map_get_dim_id(expr->acc.access,
1504 isl_dim_param, i);
1505 if (id && isl_id_get_user(id) && !isl_id_get_name(id))
1506 n++;
1507 isl_id_free(id);
1510 if (n == 0)
1511 return expr;
1513 expr->n_arg = n;
1514 expr->args = isl_calloc_array(ctx, struct pet_expr *, n);
1515 if (!expr->args)
1516 goto error;
1518 n_in = isl_map_dim(expr->acc.access, isl_dim_in);
1519 for (int i = 0, pos = 0; i < nparam; ++i) {
1520 int j;
1521 isl_id *id = isl_map_get_dim_id(expr->acc.access,
1522 isl_dim_param, i);
1523 Expr *nested;
1525 if (!(id && isl_id_get_user(id) && !isl_id_get_name(id))) {
1526 isl_id_free(id);
1527 continue;
1530 nested = (Expr *) isl_id_get_user(id);
1531 expr->args[pos] = extract_expr(nested);
1533 for (j = 0; j < pos; ++j)
1534 if (pet_expr_is_equal(expr->args[j], expr->args[pos]))
1535 break;
1537 if (j < pos) {
1538 pet_expr_free(expr->args[pos]);
1539 param2pos[i] = n_in + j;
1540 n--;
1541 } else
1542 param2pos[i] = n_in + pos++;
1544 isl_id_free(id);
1546 expr->n_arg = n;
1548 dim = isl_map_get_dim(expr->acc.access);
1549 dim = isl_dim_domain(dim);
1550 dim = isl_dim_from_domain(dim);
1551 dim = isl_dim_add(dim, isl_dim_out, n);
1552 map = isl_map_universe(dim);
1553 map = isl_map_domain_map(map);
1554 map = isl_map_reverse(map);
1555 expr->acc.access = isl_map_apply_domain(expr->acc.access, map);
1557 for (int i = nparam - 1; i >= 0; --i) {
1558 isl_id *id = isl_map_get_dim_id(expr->acc.access,
1559 isl_dim_param, i);
1560 if (!(id && isl_id_get_user(id) && !isl_id_get_name(id))) {
1561 isl_id_free(id);
1562 continue;
1565 expr->acc.access = isl_map_equate(expr->acc.access,
1566 isl_dim_param, i, isl_dim_in,
1567 param2pos[i]);
1568 expr->acc.access = isl_map_project_out(expr->acc.access,
1569 isl_dim_param, i, 1);
1571 isl_id_free(id);
1574 return expr;
1575 error:
1576 pet_expr_free(expr);
1577 return NULL;
1580 /* Convert a top-level pet_expr to a pet_scop with one statement.
1581 * This mainly involves resolving nested expression parameters
1582 * and setting the name of the iteration space.
1584 struct pet_scop *PetScan::extract(Stmt *stmt, struct pet_expr *expr)
1586 struct pet_stmt *ps;
1587 SourceLocation loc = stmt->getLocStart();
1588 int line = PP.getSourceManager().getExpansionLineNumber(loc);
1590 expr = resolve_nested(expr);
1591 ps = pet_stmt_from_pet_expr(ctx, line, n_stmt++, expr);
1592 return pet_scop_from_pet_stmt(ctx, ps);
1595 /* Check whether "expr" is an affine expression.
1596 * We turn on autodetection so that we won't generate any warnings
1597 * and turn off nesting, so that we won't accept any non-affine constructs.
1599 bool PetScan::is_affine(Expr *expr)
1601 isl_pw_aff *pwaff;
1602 int save_autodetect = autodetect;
1603 bool save_nesting = nesting_enabled;
1605 autodetect = 1;
1606 nesting_enabled = false;
1608 pwaff = extract_affine(expr);
1609 isl_pw_aff_free(pwaff);
1611 autodetect = save_autodetect;
1612 nesting_enabled = save_nesting;
1614 return pwaff != NULL;
1617 /* Check whether "expr" is an affine constraint.
1618 * We turn on autodetection so that we won't generate any warnings
1619 * and turn off nesting, so that we won't accept any non-affine constructs.
1621 bool PetScan::is_affine_condition(Expr *expr)
1623 isl_set *set;
1624 int save_autodetect = autodetect;
1625 bool save_nesting = nesting_enabled;
1627 autodetect = 1;
1628 nesting_enabled = false;
1630 set = extract_condition(expr);
1631 isl_set_free(set);
1633 autodetect = save_autodetect;
1634 nesting_enabled = save_nesting;
1636 return set != NULL;
1639 /* If the top-level expression of "stmt" is an assignment, then
1640 * return that assignment as a BinaryOperator.
1641 * Otherwise return NULL.
1643 static BinaryOperator *top_assignment_or_null(Stmt *stmt)
1645 BinaryOperator *ass;
1647 if (!stmt)
1648 return NULL;
1649 if (stmt->getStmtClass() != Stmt::BinaryOperatorClass)
1650 return NULL;
1652 ass = cast<BinaryOperator>(stmt);
1653 if(ass->getOpcode() != BO_Assign)
1654 return NULL;
1656 return ass;
1659 /* Check if the given if statement is a conditional assignement
1660 * with a non-affine condition. If so, construct a pet_scop
1661 * corresponding to this conditional assignment. Otherwise return NULL.
1663 * In particular we check if "stmt" is of the form
1665 * if (condition)
1666 * a = f(...);
1667 * else
1668 * a = g(...);
1670 * where a is some array or scalar access.
1671 * The constructed pet_scop then corresponds to the expression
1673 * a = condition ? f(...) : g(...)
1675 * All access relations in f(...) are intersected with condition
1676 * while all access relation in g(...) are intersected with the complement.
1678 struct pet_scop *PetScan::extract_conditional_assignment(IfStmt *stmt)
1680 BinaryOperator *ass_then, *ass_else;
1681 isl_map *write_then, *write_else;
1682 isl_set *cond, *comp;
1683 isl_map *map, *map_true, *map_false;
1684 int equal;
1685 struct pet_expr *pe_cond, *pe_then, *pe_else, *pe, *pe_write;
1686 bool save_nesting = nesting_enabled;
1688 ass_then = top_assignment_or_null(stmt->getThen());
1689 ass_else = top_assignment_or_null(stmt->getElse());
1691 if (!ass_then || !ass_else)
1692 return NULL;
1694 if (is_affine_condition(stmt->getCond()))
1695 return NULL;
1697 write_then = extract_access(ass_then->getLHS());
1698 write_else = extract_access(ass_else->getLHS());
1700 equal = isl_map_is_equal(write_then, write_else);
1701 isl_map_free(write_else);
1702 if (equal < 0 || !equal) {
1703 isl_map_free(write_then);
1704 return NULL;
1707 nesting_enabled = allow_nested;
1708 cond = extract_condition(stmt->getCond());
1709 nesting_enabled = save_nesting;
1710 comp = isl_set_complement(isl_set_copy(cond));
1711 map_true = isl_map_from_domain(isl_set_copy(cond));
1712 map_true = isl_map_add_dims(map_true, isl_dim_out, 1);
1713 map_true = isl_map_fix_si(map_true, isl_dim_out, 0, 1);
1714 map_false = isl_map_from_domain(isl_set_copy(comp));
1715 map_false = isl_map_add_dims(map_false, isl_dim_out, 1);
1716 map_false = isl_map_fix_si(map_false, isl_dim_out, 0, 0);
1717 map = isl_map_union_disjoint(map_true, map_false);
1719 pe_cond = pet_expr_from_access(map);
1721 pe_then = extract_expr(ass_then->getRHS());
1722 pe_then = pet_expr_restrict(pe_then, cond);
1723 pe_else = extract_expr(ass_else->getRHS());
1724 pe_else = pet_expr_restrict(pe_else, comp);
1726 pe = pet_expr_new_ternary(ctx, pe_cond, pe_then, pe_else);
1727 pe_write = pet_expr_from_access(write_then);
1728 if (pe_write) {
1729 pe_write->acc.write = 1;
1730 pe_write->acc.read = 0;
1732 pe = pet_expr_new_binary(ctx, pet_op_assign, pe_write, pe);
1733 return extract(stmt, pe);
1736 /* Construct a pet_scop for an if statement.
1738 struct pet_scop *PetScan::extract(IfStmt *stmt)
1740 isl_set *cond;
1741 struct pet_scop *scop_then, *scop_else, *scop;
1742 assigned_value_cache cache(assigned_value);
1744 scop = extract_conditional_assignment(stmt);
1745 if (scop)
1746 return scop;
1748 scop_then = extract(stmt->getThen());
1750 if (stmt->getElse()) {
1751 scop_else = extract(stmt->getElse());
1752 if (autodetect) {
1753 if (scop_then && !scop_else) {
1754 partial = true;
1755 return scop_then;
1757 if (!scop_then && scop_else) {
1758 partial = true;
1759 return scop_else;
1764 cond = extract_condition(stmt->getCond());
1765 scop = pet_scop_restrict(scop_then, isl_set_copy(cond));
1767 if (stmt->getElse()) {
1768 cond = isl_set_complement(cond);
1769 scop_else = pet_scop_restrict(scop_else, cond);
1770 scop = pet_scop_add(ctx, scop, scop_else);
1771 } else
1772 isl_set_free(cond);
1774 return scop;
1777 /* Try and construct a pet_scop corresponding to "stmt".
1779 struct pet_scop *PetScan::extract(Stmt *stmt)
1781 if (isa<Expr>(stmt))
1782 return extract(stmt, extract_expr(cast<Expr>(stmt)));
1784 switch (stmt->getStmtClass()) {
1785 case Stmt::ForStmtClass:
1786 return extract_for(cast<ForStmt>(stmt));
1787 case Stmt::IfStmtClass:
1788 return extract(cast<IfStmt>(stmt));
1789 case Stmt::CompoundStmtClass:
1790 return extract(cast<CompoundStmt>(stmt));
1791 default:
1792 unsupported(stmt);
1795 return NULL;
1798 /* Try and construct a pet_scop corresponding to (part of)
1799 * a sequence of statements.
1801 struct pet_scop *PetScan::extract(StmtRange stmt_range)
1803 pet_scop *scop;
1804 StmtIterator i;
1805 int j;
1806 bool partial_range = false;
1808 if (autodetect)
1809 scop = NULL;
1810 else
1811 scop = pet_scop_empty(ctx);
1812 for (i = stmt_range.first, j = 0; i != stmt_range.second; ++i, ++j) {
1813 Stmt *child = *i;
1814 struct pet_scop *scop_i;
1815 scop_i = extract(child);
1816 if (scop && partial) {
1817 pet_scop_free(scop_i);
1818 break;
1820 scop_i = pet_scop_prefix(scop_i, j);
1821 if (autodetect) {
1822 if (!scop) {
1823 if (j != 0)
1824 partial_range = true;
1825 scop = scop_i;
1826 } else if (scop_i)
1827 scop = pet_scop_add(ctx, scop, scop_i);
1828 else
1829 partial = true;
1830 } else {
1831 scop = pet_scop_add(ctx, scop, scop_i);
1833 if (partial)
1834 break;
1837 if (scop && partial_range)
1838 partial = true;
1840 return scop;
1843 /* Check if the scop marked by the user is exactly this Stmt
1844 * or part of this Stmt.
1845 * If so, return a pet_scop corresponding to the marked region.
1846 * Otherwise, return NULL.
1848 struct pet_scop *PetScan::scan(Stmt *stmt)
1850 SourceManager &SM = PP.getSourceManager();
1851 unsigned start_off, end_off;
1853 start_off = SM.getFileOffset(stmt->getLocStart());
1854 end_off = SM.getFileOffset(stmt->getLocEnd());
1856 if (start_off > loc.end)
1857 return NULL;
1858 if (end_off < loc.start)
1859 return NULL;
1860 if (start_off >= loc.start && end_off <= loc.end) {
1861 return extract(stmt);
1864 StmtIterator start;
1865 for (start = stmt->child_begin(); start != stmt->child_end(); ++start) {
1866 Stmt *child = *start;
1867 start_off = SM.getFileOffset(child->getLocStart());
1868 end_off = SM.getFileOffset(child->getLocEnd());
1869 if (start_off < loc.start && end_off > loc.end)
1870 return scan(child);
1871 if (start_off >= loc.start)
1872 break;
1875 StmtIterator end;
1876 for (end = start; end != stmt->child_end(); ++end) {
1877 Stmt *child = *end;
1878 start_off = SM.getFileOffset(child->getLocStart());
1879 if (start_off >= loc.end)
1880 break;
1883 return extract(StmtRange(start, end));
1886 /* Set the size of index "pos" of "array" to "size".
1887 * In particular, add a constraint of the form
1889 * i_pos < size
1891 * to array->extent and a constraint of the form
1893 * size >= 0
1895 * to array->context.
1897 static struct pet_array *update_size(struct pet_array *array, int pos,
1898 __isl_take isl_pw_aff *size)
1900 isl_set *valid;
1901 isl_set *univ;
1902 isl_set *bound;
1903 isl_dim *dim;
1904 isl_aff *aff;
1905 isl_pw_aff *index;
1906 isl_id *id;
1908 valid = isl_pw_aff_nonneg_set(isl_pw_aff_copy(size));
1909 array->context = isl_set_intersect(array->context, valid);
1911 dim = isl_set_get_dim(array->extent);
1912 aff = isl_aff_zero(isl_local_space_from_dim(dim));
1913 aff = isl_aff_add_coefficient_si(aff, isl_dim_set, pos, 1);
1914 univ = isl_set_universe(isl_aff_get_dim(aff));
1915 index = isl_pw_aff_alloc(univ, aff);
1917 size = isl_pw_aff_add_dims(size, isl_dim_set,
1918 isl_set_dim(array->extent, isl_dim_set));
1919 id = isl_set_get_tuple_id(array->extent);
1920 size = isl_pw_aff_set_tuple_id(size, id);
1921 bound = isl_pw_aff_lt_set(index, size);
1923 array->extent = isl_set_intersect(array->extent, bound);
1925 if (!array->context || !array->extent)
1926 goto error;
1928 return array;
1929 error:
1930 pet_array_free(array);
1931 return NULL;
1934 /* Figure out the size of the array at position "pos" and all
1935 * subsequent positions from "type" and update "array" accordingly.
1937 struct pet_array *PetScan::set_upper_bounds(struct pet_array *array,
1938 const Type *type, int pos)
1940 const ArrayType *atype;
1941 isl_pw_aff *size;
1943 if (type->isPointerType()) {
1944 type = type->getPointeeType().getTypePtr();
1945 return set_upper_bounds(array, type, pos + 1);
1947 if (!type->isArrayType())
1948 return array;
1950 type = type->getCanonicalTypeInternal().getTypePtr();
1951 atype = cast<ArrayType>(type);
1953 if (type->isConstantArrayType()) {
1954 const ConstantArrayType *ca = cast<ConstantArrayType>(atype);
1955 size = extract_affine(ca->getSize());
1956 array = update_size(array, pos, size);
1957 } else if (type->isVariableArrayType()) {
1958 const VariableArrayType *vla = cast<VariableArrayType>(atype);
1959 size = extract_affine(vla->getSizeExpr());
1960 array = update_size(array, pos, size);
1963 type = atype->getElementType().getTypePtr();
1965 return set_upper_bounds(array, type, pos + 1);
1968 /* Construct and return a pet_array corresponding to the variable "decl".
1969 * In particular, initialize array->extent to
1971 * { name[i_1,...,i_d] : i_1,...,i_d >= 0 }
1973 * and then call set_upper_bounds to set the upper bounds on the indices
1974 * based on the type of the variable.
1976 struct pet_array *PetScan::extract_array(isl_ctx *ctx, ValueDecl *decl)
1978 struct pet_array *array;
1979 QualType qt = decl->getType();
1980 const Type *type = qt.getTypePtr();
1981 int depth = array_depth(type);
1982 QualType base = base_type(qt);
1983 string name;
1984 isl_id *id;
1985 isl_dim *dim;
1987 array = isl_calloc_type(ctx, struct pet_array);
1988 if (!array)
1989 return NULL;
1991 id = isl_id_alloc(ctx, decl->getName().str().c_str(), decl);
1992 dim = isl_dim_set_alloc(ctx, 0, depth);
1993 dim = isl_dim_set_tuple_id(dim, isl_dim_set, id);
1995 array->extent = isl_set_nat_universe(dim);
1997 dim = isl_dim_set_alloc(ctx, 0, 0);
1998 array->context = isl_set_universe(dim);
2000 array = set_upper_bounds(array, type, 0);
2001 if (!array)
2002 return NULL;
2004 name = base.getAsString();
2005 array->element_type = strdup(name.c_str());
2007 return array;
2010 /* Construct a list of pet_arrays, one for each array (or scalar)
2011 * accessed inside "scop" add this list to "scop" and return the result.
2013 * The context of "scop" is updated with the intesection of
2014 * the contexts of all arrays, i.e., constraints on the parameters
2015 * that ensure that the arrays have a valid (non-negative) size.
2017 struct pet_scop *PetScan::scan_arrays(struct pet_scop *scop)
2019 int i;
2020 set<ValueDecl *> arrays;
2021 set<ValueDecl *>::iterator it;
2023 if (!scop)
2024 return NULL;
2026 pet_scop_collect_arrays(scop, arrays);
2028 scop->n_array = arrays.size();
2029 if (scop->n_array == 0)
2030 return scop;
2032 scop->arrays = isl_calloc_array(ctx, struct pet_array *, scop->n_array);
2033 if (!scop->arrays)
2034 goto error;
2036 for (it = arrays.begin(), i = 0; it != arrays.end(); ++it, ++i) {
2037 struct pet_array *array;
2038 scop->arrays[i] = array = extract_array(ctx, *it);
2039 if (!scop->arrays[i])
2040 goto error;
2041 scop->context = isl_set_intersect(scop->context,
2042 isl_set_copy(array->context));
2043 if (!scop->context)
2044 goto error;
2047 return scop;
2048 error:
2049 pet_scop_free(scop);
2050 return NULL;
2053 /* Construct a pet_scop from the given function.
2055 struct pet_scop *PetScan::scan(FunctionDecl *fd)
2057 pet_scop *scop;
2058 Stmt *stmt;
2060 stmt = fd->getBody();
2062 if (autodetect)
2063 scop = extract(stmt);
2064 else
2065 scop = scan(stmt);
2066 scop = pet_scop_detect_parameter_accesses(scop);
2067 scop = scan_arrays(scop);
2069 return scop;