2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012-2014 Ecole Normale Superieure. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials provided
15 * with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as
31 * representing official policies, either expressed or implied, of
39 #include <llvm/Support/raw_ostream.h>
40 #include <clang/AST/ASTContext.h>
41 #include <clang/AST/ASTDiagnostic.h>
42 #include <clang/AST/Expr.h>
43 #include <clang/AST/RecursiveASTVisitor.h>
46 #include <isl/space.h>
54 #include "scop_plus.h"
59 using namespace clang
;
61 #if defined(DECLREFEXPR_CREATE_REQUIRES_BOOL)
62 static DeclRefExpr
*create_DeclRefExpr(VarDecl
*var
)
64 return DeclRefExpr::Create(var
->getASTContext(), var
->getQualifierLoc(),
65 SourceLocation(), var
, false, var
->getInnerLocStart(),
66 var
->getType(), VK_LValue
);
68 #elif defined(DECLREFEXPR_CREATE_REQUIRES_SOURCELOCATION)
69 static DeclRefExpr
*create_DeclRefExpr(VarDecl
*var
)
71 return DeclRefExpr::Create(var
->getASTContext(), var
->getQualifierLoc(),
72 SourceLocation(), var
, var
->getInnerLocStart(), var
->getType(),
76 static DeclRefExpr
*create_DeclRefExpr(VarDecl
*var
)
78 return DeclRefExpr::Create(var
->getASTContext(), var
->getQualifierLoc(),
79 var
, var
->getInnerLocStart(), var
->getType(), VK_LValue
);
83 /* Check if the element type corresponding to the given array type
84 * has a const qualifier.
86 static bool const_base(QualType qt
)
88 const Type
*type
= qt
.getTypePtr();
90 if (type
->isPointerType())
91 return const_base(type
->getPointeeType());
92 if (type
->isArrayType()) {
93 const ArrayType
*atype
;
94 type
= type
->getCanonicalTypeInternal().getTypePtr();
95 atype
= cast
<ArrayType
>(type
);
96 return const_base(atype
->getElementType());
99 return qt
.isConstQualified();
102 /* Mark "decl" as having an unknown value in "assigned_value".
104 * If no (known or unknown) value was assigned to "decl" before,
105 * then it may have been treated as a parameter before and may
106 * therefore appear in a value assigned to another variable.
107 * If so, this assignment needs to be turned into an unknown value too.
109 static void clear_assignment(map
<ValueDecl
*, isl_pw_aff
*> &assigned_value
,
112 map
<ValueDecl
*, isl_pw_aff
*>::iterator it
;
114 it
= assigned_value
.find(decl
);
116 assigned_value
[decl
] = NULL
;
118 if (it
!= assigned_value
.end())
121 for (it
= assigned_value
.begin(); it
!= assigned_value
.end(); ++it
) {
122 isl_pw_aff
*pa
= it
->second
;
123 int nparam
= isl_pw_aff_dim(pa
, isl_dim_param
);
125 for (int i
= 0; i
< nparam
; ++i
) {
128 if (!isl_pw_aff_has_dim_id(pa
, isl_dim_param
, i
))
130 id
= isl_pw_aff_get_dim_id(pa
, isl_dim_param
, i
);
131 if (isl_id_get_user(id
) == decl
)
138 /* Look for any assignments to scalar variables in part of the parse
139 * tree and set assigned_value to NULL for each of them.
140 * Also reset assigned_value if the address of a scalar variable
141 * is being taken. As an exception, if the address is passed to a function
142 * that is declared to receive a const pointer, then assigned_value is
145 * This ensures that we won't use any previously stored value
146 * in the current subtree and its parents.
148 struct clear_assignments
: RecursiveASTVisitor
<clear_assignments
> {
149 map
<ValueDecl
*, isl_pw_aff
*> &assigned_value
;
150 set
<UnaryOperator
*> skip
;
152 clear_assignments(map
<ValueDecl
*, isl_pw_aff
*> &assigned_value
) :
153 assigned_value(assigned_value
) {}
155 /* Check for "address of" operators whose value is passed
156 * to a const pointer argument and add them to "skip", so that
157 * we can skip them in VisitUnaryOperator.
159 bool VisitCallExpr(CallExpr
*expr
) {
161 fd
= expr
->getDirectCallee();
164 for (int i
= 0; i
< expr
->getNumArgs(); ++i
) {
165 Expr
*arg
= expr
->getArg(i
);
167 if (arg
->getStmtClass() == Stmt::ImplicitCastExprClass
) {
168 ImplicitCastExpr
*ice
;
169 ice
= cast
<ImplicitCastExpr
>(arg
);
170 arg
= ice
->getSubExpr();
172 if (arg
->getStmtClass() != Stmt::UnaryOperatorClass
)
174 op
= cast
<UnaryOperator
>(arg
);
175 if (op
->getOpcode() != UO_AddrOf
)
177 if (const_base(fd
->getParamDecl(i
)->getType()))
183 bool VisitUnaryOperator(UnaryOperator
*expr
) {
188 switch (expr
->getOpcode()) {
198 if (skip
.find(expr
) != skip
.end())
201 arg
= expr
->getSubExpr();
202 if (arg
->getStmtClass() != Stmt::DeclRefExprClass
)
204 ref
= cast
<DeclRefExpr
>(arg
);
205 decl
= ref
->getDecl();
206 clear_assignment(assigned_value
, decl
);
210 bool VisitBinaryOperator(BinaryOperator
*expr
) {
215 if (!expr
->isAssignmentOp())
217 lhs
= expr
->getLHS();
218 if (lhs
->getStmtClass() != Stmt::DeclRefExprClass
)
220 ref
= cast
<DeclRefExpr
>(lhs
);
221 decl
= ref
->getDecl();
222 clear_assignment(assigned_value
, decl
);
227 /* Keep a copy of the currently assigned values.
229 * Any variable that is assigned a value inside the current scope
230 * is removed again when we leave the scope (either because it wasn't
231 * stored in the cache or because it has a different value in the cache).
233 struct assigned_value_cache
{
234 map
<ValueDecl
*, isl_pw_aff
*> &assigned_value
;
235 map
<ValueDecl
*, isl_pw_aff
*> cache
;
237 assigned_value_cache(map
<ValueDecl
*, isl_pw_aff
*> &assigned_value
) :
238 assigned_value(assigned_value
), cache(assigned_value
) {}
239 ~assigned_value_cache() {
240 map
<ValueDecl
*, isl_pw_aff
*>::iterator it
= cache
.begin();
241 for (it
= assigned_value
.begin(); it
!= assigned_value
.end();
244 (cache
.find(it
->first
) != cache
.end() &&
245 cache
[it
->first
] != it
->second
))
246 cache
[it
->first
] = NULL
;
248 assigned_value
= cache
;
252 /* Insert an expression into the collection of expressions,
253 * provided it is not already in there.
254 * The isl_pw_affs are freed in the destructor.
256 void PetScan::insert_expression(__isl_take isl_pw_aff
*expr
)
258 std::set
<isl_pw_aff
*>::iterator it
;
260 if (expressions
.find(expr
) == expressions
.end())
261 expressions
.insert(expr
);
263 isl_pw_aff_free(expr
);
268 std::set
<isl_pw_aff
*>::iterator it
;
270 for (it
= expressions
.begin(); it
!= expressions
.end(); ++it
)
271 isl_pw_aff_free(*it
);
273 isl_union_map_free(value_bounds
);
276 /* Report a diagnostic, unless autodetect is set.
278 void PetScan::report(Stmt
*stmt
, unsigned id
)
280 if (options
->autodetect
)
283 SourceLocation loc
= stmt
->getLocStart();
284 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
285 DiagnosticBuilder B
= diag
.Report(loc
, id
) << stmt
->getSourceRange();
288 /* Called if we found something we (currently) cannot handle.
289 * We'll provide more informative warnings later.
291 * We only actually complain if autodetect is false.
293 void PetScan::unsupported(Stmt
*stmt
)
295 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
296 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
301 /* Report a missing prototype, unless autodetect is set.
303 void PetScan::report_prototype_required(Stmt
*stmt
)
305 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
306 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
307 "prototype required");
311 /* Extract an integer from "expr".
313 __isl_give isl_val
*PetScan::extract_int(isl_ctx
*ctx
, IntegerLiteral
*expr
)
315 const Type
*type
= expr
->getType().getTypePtr();
316 int is_signed
= type
->hasSignedIntegerRepresentation();
317 llvm::APInt val
= expr
->getValue();
318 int is_negative
= is_signed
&& val
.isNegative();
324 v
= extract_unsigned(ctx
, val
);
331 /* Extract an integer from "val", which assumed to be non-negative.
333 __isl_give isl_val
*PetScan::extract_unsigned(isl_ctx
*ctx
,
334 const llvm::APInt
&val
)
337 const uint64_t *data
;
339 data
= val
.getRawData();
340 n
= val
.getNumWords();
341 return isl_val_int_from_chunks(ctx
, n
, sizeof(uint64_t), data
);
344 /* Extract an integer from "expr".
345 * Return NULL if "expr" does not (obviously) represent an integer.
347 __isl_give isl_val
*PetScan::extract_int(clang::ParenExpr
*expr
)
349 return extract_int(expr
->getSubExpr());
352 /* Extract an integer from "expr".
353 * Return NULL if "expr" does not (obviously) represent an integer.
355 __isl_give isl_val
*PetScan::extract_int(clang::Expr
*expr
)
357 if (expr
->getStmtClass() == Stmt::IntegerLiteralClass
)
358 return extract_int(ctx
, cast
<IntegerLiteral
>(expr
));
359 if (expr
->getStmtClass() == Stmt::ParenExprClass
)
360 return extract_int(cast
<ParenExpr
>(expr
));
366 /* Extract an affine expression from the IntegerLiteral "expr".
368 __isl_give isl_pw_aff
*PetScan::extract_affine(IntegerLiteral
*expr
)
370 isl_space
*dim
= isl_space_params_alloc(ctx
, 0);
371 isl_local_space
*ls
= isl_local_space_from_space(isl_space_copy(dim
));
372 isl_aff
*aff
= isl_aff_zero_on_domain(ls
);
373 isl_set
*dom
= isl_set_universe(dim
);
376 v
= extract_int(expr
);
377 aff
= isl_aff_add_constant_val(aff
, v
);
379 return isl_pw_aff_alloc(dom
, aff
);
382 /* Extract an affine expression from the APInt "val", which is assumed
383 * to be non-negative.
385 __isl_give isl_pw_aff
*PetScan::extract_affine(const llvm::APInt
&val
)
387 isl_space
*dim
= isl_space_params_alloc(ctx
, 0);
388 isl_local_space
*ls
= isl_local_space_from_space(isl_space_copy(dim
));
389 isl_aff
*aff
= isl_aff_zero_on_domain(ls
);
390 isl_set
*dom
= isl_set_universe(dim
);
393 v
= extract_unsigned(ctx
, val
);
394 aff
= isl_aff_add_constant_val(aff
, v
);
396 return isl_pw_aff_alloc(dom
, aff
);
399 __isl_give isl_pw_aff
*PetScan::extract_affine(ImplicitCastExpr
*expr
)
401 return extract_affine(expr
->getSubExpr());
404 static unsigned get_type_size(ValueDecl
*decl
)
406 return decl
->getASTContext().getIntWidth(decl
->getType());
409 /* Bound parameter "pos" of "set" to the possible values of "decl".
411 static __isl_give isl_set
*set_parameter_bounds(__isl_take isl_set
*set
,
412 unsigned pos
, ValueDecl
*decl
)
418 ctx
= isl_set_get_ctx(set
);
419 width
= get_type_size(decl
);
420 if (decl
->getType()->isUnsignedIntegerType()) {
421 set
= isl_set_lower_bound_si(set
, isl_dim_param
, pos
, 0);
422 bound
= isl_val_int_from_ui(ctx
, width
);
423 bound
= isl_val_2exp(bound
);
424 bound
= isl_val_sub_ui(bound
, 1);
425 set
= isl_set_upper_bound_val(set
, isl_dim_param
, pos
, bound
);
427 bound
= isl_val_int_from_ui(ctx
, width
- 1);
428 bound
= isl_val_2exp(bound
);
429 bound
= isl_val_sub_ui(bound
, 1);
430 set
= isl_set_upper_bound_val(set
, isl_dim_param
, pos
,
431 isl_val_copy(bound
));
432 bound
= isl_val_neg(bound
);
433 bound
= isl_val_sub_ui(bound
, 1);
434 set
= isl_set_lower_bound_val(set
, isl_dim_param
, pos
, bound
);
440 /* Extract an affine expression from the DeclRefExpr "expr".
442 * If the variable has been assigned a value, then we check whether
443 * we know what (affine) value was assigned.
444 * If so, we return this value. Otherwise we convert "expr"
445 * to an extra parameter (provided nesting_enabled is set).
447 * Otherwise, we simply return an expression that is equal
448 * to a parameter corresponding to the referenced variable.
450 __isl_give isl_pw_aff
*PetScan::extract_affine(DeclRefExpr
*expr
)
452 ValueDecl
*decl
= expr
->getDecl();
453 const Type
*type
= decl
->getType().getTypePtr();
459 if (!type
->isIntegerType()) {
464 if (assigned_value
.find(decl
) != assigned_value
.end()) {
465 if (assigned_value
[decl
])
466 return isl_pw_aff_copy(assigned_value
[decl
]);
468 return nested_access(expr
);
471 id
= isl_id_alloc(ctx
, decl
->getName().str().c_str(), decl
);
472 dim
= isl_space_params_alloc(ctx
, 1);
474 dim
= isl_space_set_dim_id(dim
, isl_dim_param
, 0, id
);
476 dom
= isl_set_universe(isl_space_copy(dim
));
477 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(dim
));
478 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_param
, 0, 1);
480 return isl_pw_aff_alloc(dom
, aff
);
483 /* Extract an affine expression from an integer division operation.
484 * In particular, if "expr" is lhs/rhs, then return
486 * lhs >= 0 ? floor(lhs/rhs) : ceil(lhs/rhs)
488 * The second argument (rhs) is required to be a (positive) integer constant.
490 __isl_give isl_pw_aff
*PetScan::extract_affine_div(BinaryOperator
*expr
)
493 isl_pw_aff
*rhs
, *lhs
;
495 rhs
= extract_affine(expr
->getRHS());
496 is_cst
= isl_pw_aff_is_cst(rhs
);
497 if (is_cst
< 0 || !is_cst
) {
498 isl_pw_aff_free(rhs
);
504 lhs
= extract_affine(expr
->getLHS());
506 return isl_pw_aff_tdiv_q(lhs
, rhs
);
509 /* Extract an affine expression from a modulo operation.
510 * In particular, if "expr" is lhs/rhs, then return
512 * lhs - rhs * (lhs >= 0 ? floor(lhs/rhs) : ceil(lhs/rhs))
514 * The second argument (rhs) is required to be a (positive) integer constant.
516 __isl_give isl_pw_aff
*PetScan::extract_affine_mod(BinaryOperator
*expr
)
519 isl_pw_aff
*rhs
, *lhs
;
521 rhs
= extract_affine(expr
->getRHS());
522 is_cst
= isl_pw_aff_is_cst(rhs
);
523 if (is_cst
< 0 || !is_cst
) {
524 isl_pw_aff_free(rhs
);
530 lhs
= extract_affine(expr
->getLHS());
532 return isl_pw_aff_tdiv_r(lhs
, rhs
);
535 /* Extract an affine expression from a multiplication operation.
536 * This is only allowed if at least one of the two arguments
537 * is a (piecewise) constant.
539 __isl_give isl_pw_aff
*PetScan::extract_affine_mul(BinaryOperator
*expr
)
544 lhs
= extract_affine(expr
->getLHS());
545 rhs
= extract_affine(expr
->getRHS());
547 if (!isl_pw_aff_is_cst(lhs
) && !isl_pw_aff_is_cst(rhs
)) {
548 isl_pw_aff_free(lhs
);
549 isl_pw_aff_free(rhs
);
554 return isl_pw_aff_mul(lhs
, rhs
);
557 /* Extract an affine expression from an addition or subtraction operation.
559 __isl_give isl_pw_aff
*PetScan::extract_affine_add(BinaryOperator
*expr
)
564 lhs
= extract_affine(expr
->getLHS());
565 rhs
= extract_affine(expr
->getRHS());
567 switch (expr
->getOpcode()) {
569 return isl_pw_aff_add(lhs
, rhs
);
571 return isl_pw_aff_sub(lhs
, rhs
);
573 isl_pw_aff_free(lhs
);
574 isl_pw_aff_free(rhs
);
584 static __isl_give isl_pw_aff
*wrap(__isl_take isl_pw_aff
*pwaff
,
590 ctx
= isl_pw_aff_get_ctx(pwaff
);
591 mod
= isl_val_int_from_ui(ctx
, width
);
592 mod
= isl_val_2exp(mod
);
594 pwaff
= isl_pw_aff_mod_val(pwaff
, mod
);
599 /* Limit the domain of "pwaff" to those elements where the function
602 * 2^{width-1} <= pwaff < 2^{width-1}
604 static __isl_give isl_pw_aff
*avoid_overflow(__isl_take isl_pw_aff
*pwaff
,
609 isl_space
*space
= isl_pw_aff_get_domain_space(pwaff
);
610 isl_local_space
*ls
= isl_local_space_from_space(space
);
615 ctx
= isl_pw_aff_get_ctx(pwaff
);
616 v
= isl_val_int_from_ui(ctx
, width
- 1);
619 bound
= isl_aff_zero_on_domain(ls
);
620 bound
= isl_aff_add_constant_val(bound
, v
);
621 b
= isl_pw_aff_from_aff(bound
);
623 dom
= isl_pw_aff_lt_set(isl_pw_aff_copy(pwaff
), isl_pw_aff_copy(b
));
624 pwaff
= isl_pw_aff_intersect_domain(pwaff
, dom
);
626 b
= isl_pw_aff_neg(b
);
627 dom
= isl_pw_aff_ge_set(isl_pw_aff_copy(pwaff
), b
);
628 pwaff
= isl_pw_aff_intersect_domain(pwaff
, dom
);
633 /* Handle potential overflows on signed computations.
635 * If options->signed_overflow is set to PET_OVERFLOW_AVOID,
636 * the we adjust the domain of "pa" to avoid overflows.
638 __isl_give isl_pw_aff
*PetScan::signed_overflow(__isl_take isl_pw_aff
*pa
,
641 if (options
->signed_overflow
== PET_OVERFLOW_AVOID
)
642 pa
= avoid_overflow(pa
, width
);
647 /* Return the piecewise affine expression "set ? 1 : 0" defined on "dom".
649 static __isl_give isl_pw_aff
*indicator_function(__isl_take isl_set
*set
,
650 __isl_take isl_set
*dom
)
653 pa
= isl_set_indicator_function(set
);
654 pa
= isl_pw_aff_intersect_domain(pa
, dom
);
658 /* Extract an affine expression from some binary operations.
659 * If the result of the expression is unsigned, then we wrap it
660 * based on the size of the type. Otherwise, we ensure that
661 * no overflow occurs.
663 __isl_give isl_pw_aff
*PetScan::extract_affine(BinaryOperator
*expr
)
668 switch (expr
->getOpcode()) {
671 res
= extract_affine_add(expr
);
674 res
= extract_affine_div(expr
);
677 res
= extract_affine_mod(expr
);
680 res
= extract_affine_mul(expr
);
690 return extract_condition(expr
);
696 width
= ast_context
.getIntWidth(expr
->getType());
697 if (expr
->getType()->isUnsignedIntegerType())
698 res
= wrap(res
, width
);
700 res
= signed_overflow(res
, width
);
705 /* Extract an affine expression from a negation operation.
707 __isl_give isl_pw_aff
*PetScan::extract_affine(UnaryOperator
*expr
)
709 if (expr
->getOpcode() == UO_Minus
)
710 return isl_pw_aff_neg(extract_affine(expr
->getSubExpr()));
711 if (expr
->getOpcode() == UO_LNot
)
712 return extract_condition(expr
);
718 __isl_give isl_pw_aff
*PetScan::extract_affine(ParenExpr
*expr
)
720 return extract_affine(expr
->getSubExpr());
723 /* Extract an affine expression from some special function calls.
724 * In particular, we handle "min", "max", "ceild" and "floord".
725 * In case of the latter two, the second argument needs to be
726 * a (positive) integer constant.
728 __isl_give isl_pw_aff
*PetScan::extract_affine(CallExpr
*expr
)
732 isl_pw_aff
*aff1
, *aff2
;
734 fd
= expr
->getDirectCallee();
740 name
= fd
->getDeclName().getAsString();
741 if (!(expr
->getNumArgs() == 2 && name
== "min") &&
742 !(expr
->getNumArgs() == 2 && name
== "max") &&
743 !(expr
->getNumArgs() == 2 && name
== "floord") &&
744 !(expr
->getNumArgs() == 2 && name
== "ceild")) {
749 if (name
== "min" || name
== "max") {
750 aff1
= extract_affine(expr
->getArg(0));
751 aff2
= extract_affine(expr
->getArg(1));
754 aff1
= isl_pw_aff_min(aff1
, aff2
);
756 aff1
= isl_pw_aff_max(aff1
, aff2
);
757 } else if (name
== "floord" || name
== "ceild") {
759 Expr
*arg2
= expr
->getArg(1);
761 if (arg2
->getStmtClass() != Stmt::IntegerLiteralClass
) {
765 aff1
= extract_affine(expr
->getArg(0));
766 v
= extract_int(cast
<IntegerLiteral
>(arg2
));
767 aff1
= isl_pw_aff_scale_down_val(aff1
, v
);
768 if (name
== "floord")
769 aff1
= isl_pw_aff_floor(aff1
);
771 aff1
= isl_pw_aff_ceil(aff1
);
780 /* This method is called when we come across an access that is
781 * nested in what is supposed to be an affine expression.
782 * If nesting is allowed, we return a new parameter that corresponds
783 * to this nested access. Otherwise, we simply complain.
785 * Note that we currently don't allow nested accesses themselves
786 * to contain any nested accesses, so we check if we can extract
787 * the access without any nesting and complain if we can't.
789 * The new parameter is resolved in resolve_nested.
791 isl_pw_aff
*PetScan::nested_access(Expr
*expr
)
797 isl_multi_pw_aff
*index
;
799 if (!nesting_enabled
) {
804 allow_nested
= false;
805 index
= extract_index(expr
);
811 isl_multi_pw_aff_free(index
);
813 id
= isl_id_alloc(ctx
, NULL
, expr
);
814 dim
= isl_space_params_alloc(ctx
, 1);
816 dim
= isl_space_set_dim_id(dim
, isl_dim_param
, 0, id
);
818 dom
= isl_set_universe(isl_space_copy(dim
));
819 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(dim
));
820 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_param
, 0, 1);
822 return isl_pw_aff_alloc(dom
, aff
);
825 /* Affine expressions are not supposed to contain array accesses,
826 * but if nesting is allowed, we return a parameter corresponding
827 * to the array access.
829 __isl_give isl_pw_aff
*PetScan::extract_affine(ArraySubscriptExpr
*expr
)
831 return nested_access(expr
);
834 /* Affine expressions are not supposed to contain member accesses,
835 * but if nesting is allowed, we return a parameter corresponding
836 * to the member access.
838 __isl_give isl_pw_aff
*PetScan::extract_affine(MemberExpr
*expr
)
840 return nested_access(expr
);
843 /* Extract an affine expression from a conditional operation.
845 __isl_give isl_pw_aff
*PetScan::extract_affine(ConditionalOperator
*expr
)
847 isl_pw_aff
*cond
, *lhs
, *rhs
;
849 cond
= extract_condition(expr
->getCond());
850 lhs
= extract_affine(expr
->getTrueExpr());
851 rhs
= extract_affine(expr
->getFalseExpr());
853 return isl_pw_aff_cond(cond
, lhs
, rhs
);
856 /* Extract an affine expression, if possible, from "expr".
857 * Otherwise return NULL.
859 __isl_give isl_pw_aff
*PetScan::extract_affine(Expr
*expr
)
861 switch (expr
->getStmtClass()) {
862 case Stmt::ImplicitCastExprClass
:
863 return extract_affine(cast
<ImplicitCastExpr
>(expr
));
864 case Stmt::IntegerLiteralClass
:
865 return extract_affine(cast
<IntegerLiteral
>(expr
));
866 case Stmt::DeclRefExprClass
:
867 return extract_affine(cast
<DeclRefExpr
>(expr
));
868 case Stmt::BinaryOperatorClass
:
869 return extract_affine(cast
<BinaryOperator
>(expr
));
870 case Stmt::UnaryOperatorClass
:
871 return extract_affine(cast
<UnaryOperator
>(expr
));
872 case Stmt::ParenExprClass
:
873 return extract_affine(cast
<ParenExpr
>(expr
));
874 case Stmt::CallExprClass
:
875 return extract_affine(cast
<CallExpr
>(expr
));
876 case Stmt::ArraySubscriptExprClass
:
877 return extract_affine(cast
<ArraySubscriptExpr
>(expr
));
878 case Stmt::MemberExprClass
:
879 return extract_affine(cast
<MemberExpr
>(expr
));
880 case Stmt::ConditionalOperatorClass
:
881 return extract_affine(cast
<ConditionalOperator
>(expr
));
888 __isl_give isl_multi_pw_aff
*PetScan::extract_index(ImplicitCastExpr
*expr
)
890 return extract_index(expr
->getSubExpr());
893 /* Return the depth of an array of the given type.
895 static int array_depth(const Type
*type
)
897 if (type
->isPointerType())
898 return 1 + array_depth(type
->getPointeeType().getTypePtr());
899 if (type
->isArrayType()) {
900 const ArrayType
*atype
;
901 type
= type
->getCanonicalTypeInternal().getTypePtr();
902 atype
= cast
<ArrayType
>(type
);
903 return 1 + array_depth(atype
->getElementType().getTypePtr());
908 /* Return the depth of the array accessed by the index expression "index".
909 * If "index" is an affine expression, i.e., if it does not access
910 * any array, then return 1.
911 * If "index" represent a member access, i.e., if its range is a wrapped
912 * relation, then return the sum of the depth of the array of structures
913 * and that of the member inside the structure.
915 static int extract_depth(__isl_keep isl_multi_pw_aff
*index
)
923 if (isl_multi_pw_aff_range_is_wrapping(index
)) {
924 int domain_depth
, range_depth
;
925 isl_multi_pw_aff
*domain
, *range
;
927 domain
= isl_multi_pw_aff_copy(index
);
928 domain
= isl_multi_pw_aff_range_factor_domain(domain
);
929 domain_depth
= extract_depth(domain
);
930 isl_multi_pw_aff_free(domain
);
931 range
= isl_multi_pw_aff_copy(index
);
932 range
= isl_multi_pw_aff_range_factor_range(range
);
933 range_depth
= extract_depth(range
);
934 isl_multi_pw_aff_free(range
);
936 return domain_depth
+ range_depth
;
939 if (!isl_multi_pw_aff_has_tuple_id(index
, isl_dim_out
))
942 id
= isl_multi_pw_aff_get_tuple_id(index
, isl_dim_out
);
945 decl
= (ValueDecl
*) isl_id_get_user(id
);
948 return array_depth(decl
->getType().getTypePtr());
951 /* Extract an index expression from a reference to a variable.
952 * If the variable has name "A", then the returned index expression
957 __isl_give isl_multi_pw_aff
*PetScan::extract_index(DeclRefExpr
*expr
)
959 return extract_index(expr
->getDecl());
962 /* Extract an index expression from a variable.
963 * If the variable has name "A", then the returned index expression
968 __isl_give isl_multi_pw_aff
*PetScan::extract_index(ValueDecl
*decl
)
970 isl_id
*id
= isl_id_alloc(ctx
, decl
->getName().str().c_str(), decl
);
971 isl_space
*space
= isl_space_alloc(ctx
, 0, 0, 0);
973 space
= isl_space_set_tuple_id(space
, isl_dim_out
, id
);
975 return isl_multi_pw_aff_zero(space
);
978 /* Extract an index expression from an integer contant.
979 * If the value of the constant is "v", then the returned access relation
984 __isl_give isl_multi_pw_aff
*PetScan::extract_index(IntegerLiteral
*expr
)
986 isl_multi_pw_aff
*mpa
;
988 mpa
= isl_multi_pw_aff_from_pw_aff(extract_affine(expr
));
989 mpa
= isl_multi_pw_aff_from_range(mpa
);
993 /* Try and extract an index expression from the given Expr.
994 * Return NULL if it doesn't work out.
996 __isl_give isl_multi_pw_aff
*PetScan::extract_index(Expr
*expr
)
998 switch (expr
->getStmtClass()) {
999 case Stmt::ImplicitCastExprClass
:
1000 return extract_index(cast
<ImplicitCastExpr
>(expr
));
1001 case Stmt::DeclRefExprClass
:
1002 return extract_index(cast
<DeclRefExpr
>(expr
));
1003 case Stmt::ArraySubscriptExprClass
:
1004 return extract_index(cast
<ArraySubscriptExpr
>(expr
));
1005 case Stmt::IntegerLiteralClass
:
1006 return extract_index(cast
<IntegerLiteral
>(expr
));
1007 case Stmt::MemberExprClass
:
1008 return extract_index(cast
<MemberExpr
>(expr
));
1015 /* Given a partial index expression "base" and an extra index "index",
1016 * append the extra index to "base" and return the result.
1017 * Additionally, add the constraints that the extra index is non-negative.
1018 * If "index" represent a member access, i.e., if its range is a wrapped
1019 * relation, then we recursively extend the range of this nested relation.
1021 static __isl_give isl_multi_pw_aff
*subscript(__isl_take isl_multi_pw_aff
*base
,
1022 __isl_take isl_pw_aff
*index
)
1026 isl_multi_pw_aff
*access
;
1029 member_access
= isl_multi_pw_aff_range_is_wrapping(base
);
1030 if (member_access
< 0)
1032 if (member_access
) {
1033 isl_multi_pw_aff
*domain
, *range
;
1036 id
= isl_multi_pw_aff_get_tuple_id(base
, isl_dim_out
);
1037 domain
= isl_multi_pw_aff_copy(base
);
1038 domain
= isl_multi_pw_aff_range_factor_domain(domain
);
1039 range
= isl_multi_pw_aff_range_factor_range(base
);
1040 range
= subscript(range
, index
);
1041 access
= isl_multi_pw_aff_range_product(domain
, range
);
1042 access
= isl_multi_pw_aff_set_tuple_id(access
, isl_dim_out
, id
);
1046 id
= isl_multi_pw_aff_get_tuple_id(base
, isl_dim_set
);
1047 index
= isl_pw_aff_from_range(index
);
1048 domain
= isl_pw_aff_nonneg_set(isl_pw_aff_copy(index
));
1049 index
= isl_pw_aff_intersect_domain(index
, domain
);
1050 access
= isl_multi_pw_aff_from_pw_aff(index
);
1051 access
= isl_multi_pw_aff_flat_range_product(base
, access
);
1052 access
= isl_multi_pw_aff_set_tuple_id(access
, isl_dim_set
, id
);
1056 isl_multi_pw_aff_free(base
);
1057 isl_pw_aff_free(index
);
1061 /* Extract an index expression from the given array subscript expression.
1062 * If nesting is allowed in general, then we turn it on while
1063 * examining the index expression.
1065 * We first extract an index expression from the base.
1066 * This will result in an index expression with a range that corresponds
1067 * to the earlier indices.
1068 * We then extract the current index, restrict its domain
1069 * to those values that result in a non-negative index and
1070 * append the index to the base index expression.
1072 __isl_give isl_multi_pw_aff
*PetScan::extract_index(ArraySubscriptExpr
*expr
)
1074 Expr
*base
= expr
->getBase();
1075 Expr
*idx
= expr
->getIdx();
1077 isl_multi_pw_aff
*base_access
;
1078 isl_multi_pw_aff
*access
;
1079 bool save_nesting
= nesting_enabled
;
1081 nesting_enabled
= allow_nested
;
1083 base_access
= extract_index(base
);
1084 index
= extract_affine(idx
);
1086 nesting_enabled
= save_nesting
;
1088 access
= subscript(base_access
, index
);
1093 /* Construct a name for a member access by concatenating the name
1094 * of the array of structures and the member, separated by an underscore.
1096 * The caller is responsible for freeing the result.
1098 static char *member_access_name(isl_ctx
*ctx
, const char *base
,
1104 len
= strlen(base
) + 1 + strlen(field
);
1105 name
= isl_alloc_array(ctx
, char, len
+ 1);
1108 snprintf(name
, len
+ 1, "%s_%s", base
, field
);
1113 /* Given an index expression "base" for an element of an array of structures
1114 * and an expression "field" for the field member being accessed, construct
1115 * an index expression for an access to that member of the given structure.
1116 * In particular, take the range product of "base" and "field" and
1117 * attach a name to the result.
1119 static __isl_give isl_multi_pw_aff
*member(__isl_take isl_multi_pw_aff
*base
,
1120 __isl_take isl_multi_pw_aff
*field
)
1123 isl_multi_pw_aff
*access
;
1124 const char *base_name
, *field_name
;
1127 ctx
= isl_multi_pw_aff_get_ctx(base
);
1129 base_name
= isl_multi_pw_aff_get_tuple_name(base
, isl_dim_out
);
1130 field_name
= isl_multi_pw_aff_get_tuple_name(field
, isl_dim_out
);
1131 name
= member_access_name(ctx
, base_name
, field_name
);
1133 access
= isl_multi_pw_aff_range_product(base
, field
);
1135 access
= isl_multi_pw_aff_set_tuple_name(access
, isl_dim_out
, name
);
1141 /* Extract an index expression from a member expression.
1143 * If the base access (to the structure containing the member)
1148 * and the member is called "f", then the member access is of
1151 * [] -> A_f[A[..] -> f[]]
1153 * If the member access is to an anonymous struct, then simply return
1157 * If the member access in the source code is of the form
1161 * then it is treated as
1165 __isl_give isl_multi_pw_aff
*PetScan::extract_index(MemberExpr
*expr
)
1167 Expr
*base
= expr
->getBase();
1168 FieldDecl
*field
= cast
<FieldDecl
>(expr
->getMemberDecl());
1169 isl_multi_pw_aff
*base_access
, *field_access
;
1173 base_access
= extract_index(base
);
1175 if (expr
->isArrow()) {
1176 isl_space
*space
= isl_space_params_alloc(ctx
, 0);
1177 isl_local_space
*ls
= isl_local_space_from_space(space
);
1178 isl_aff
*aff
= isl_aff_zero_on_domain(ls
);
1179 isl_pw_aff
*index
= isl_pw_aff_from_aff(aff
);
1180 base_access
= subscript(base_access
, index
);
1183 if (field
->isAnonymousStructOrUnion())
1186 id
= isl_id_alloc(ctx
, field
->getName().str().c_str(), field
);
1187 space
= isl_multi_pw_aff_get_domain_space(base_access
);
1188 space
= isl_space_from_domain(space
);
1189 space
= isl_space_set_tuple_id(space
, isl_dim_out
, id
);
1190 field_access
= isl_multi_pw_aff_zero(space
);
1192 return member(base_access
, field_access
);
1195 /* Check if "expr" calls function "minmax" with two arguments and if so
1196 * make lhs and rhs refer to these two arguments.
1198 static bool is_minmax(Expr
*expr
, const char *minmax
, Expr
*&lhs
, Expr
*&rhs
)
1204 if (expr
->getStmtClass() != Stmt::CallExprClass
)
1207 call
= cast
<CallExpr
>(expr
);
1208 fd
= call
->getDirectCallee();
1212 if (call
->getNumArgs() != 2)
1215 name
= fd
->getDeclName().getAsString();
1219 lhs
= call
->getArg(0);
1220 rhs
= call
->getArg(1);
1225 /* Check if "expr" is of the form min(lhs, rhs) and if so make
1226 * lhs and rhs refer to the two arguments.
1228 static bool is_min(Expr
*expr
, Expr
*&lhs
, Expr
*&rhs
)
1230 return is_minmax(expr
, "min", lhs
, rhs
);
1233 /* Check if "expr" is of the form max(lhs, rhs) and if so make
1234 * lhs and rhs refer to the two arguments.
1236 static bool is_max(Expr
*expr
, Expr
*&lhs
, Expr
*&rhs
)
1238 return is_minmax(expr
, "max", lhs
, rhs
);
1241 /* Return "lhs && rhs", defined on the shared definition domain.
1243 static __isl_give isl_pw_aff
*pw_aff_and(__isl_take isl_pw_aff
*lhs
,
1244 __isl_take isl_pw_aff
*rhs
)
1249 dom
= isl_set_intersect(isl_pw_aff_domain(isl_pw_aff_copy(lhs
)),
1250 isl_pw_aff_domain(isl_pw_aff_copy(rhs
)));
1251 cond
= isl_set_intersect(isl_pw_aff_non_zero_set(lhs
),
1252 isl_pw_aff_non_zero_set(rhs
));
1253 return indicator_function(cond
, dom
);
1256 /* Return "lhs && rhs", with shortcut semantics.
1257 * That is, if lhs is false, then the result is defined even if rhs is not.
1258 * In practice, we compute lhs ? rhs : lhs.
1260 static __isl_give isl_pw_aff
*pw_aff_and_then(__isl_take isl_pw_aff
*lhs
,
1261 __isl_take isl_pw_aff
*rhs
)
1263 return isl_pw_aff_cond(isl_pw_aff_copy(lhs
), rhs
, lhs
);
1266 /* Return "lhs || rhs", with shortcut semantics.
1267 * That is, if lhs is true, then the result is defined even if rhs is not.
1268 * In practice, we compute lhs ? lhs : rhs.
1270 static __isl_give isl_pw_aff
*pw_aff_or_else(__isl_take isl_pw_aff
*lhs
,
1271 __isl_take isl_pw_aff
*rhs
)
1273 return isl_pw_aff_cond(isl_pw_aff_copy(lhs
), lhs
, rhs
);
1276 /* Extract an affine expressions representing the comparison "LHS op RHS"
1277 * "comp" is the original statement that "LHS op RHS" is derived from
1278 * and is used for diagnostics.
1280 * If the comparison is of the form
1284 * then the expression is constructed as the conjunction of
1289 * A similar optimization is performed for max(a,b) <= c.
1290 * We do this because that will lead to simpler representations
1291 * of the expression.
1292 * If isl is ever enhanced to explicitly deal with min and max expressions,
1293 * this optimization can be removed.
1295 __isl_give isl_pw_aff
*PetScan::extract_comparison(BinaryOperatorKind op
,
1296 Expr
*LHS
, Expr
*RHS
, Stmt
*comp
)
1305 return extract_comparison(BO_LT
, RHS
, LHS
, comp
);
1307 return extract_comparison(BO_LE
, RHS
, LHS
, comp
);
1309 if (op
== BO_LT
|| op
== BO_LE
) {
1310 Expr
*expr1
, *expr2
;
1311 if (is_min(RHS
, expr1
, expr2
)) {
1312 lhs
= extract_comparison(op
, LHS
, expr1
, comp
);
1313 rhs
= extract_comparison(op
, LHS
, expr2
, comp
);
1314 return pw_aff_and(lhs
, rhs
);
1316 if (is_max(LHS
, expr1
, expr2
)) {
1317 lhs
= extract_comparison(op
, expr1
, RHS
, comp
);
1318 rhs
= extract_comparison(op
, expr2
, RHS
, comp
);
1319 return pw_aff_and(lhs
, rhs
);
1323 lhs
= extract_affine(LHS
);
1324 rhs
= extract_affine(RHS
);
1326 dom
= isl_pw_aff_domain(isl_pw_aff_copy(lhs
));
1327 dom
= isl_set_intersect(dom
, isl_pw_aff_domain(isl_pw_aff_copy(rhs
)));
1331 cond
= isl_pw_aff_lt_set(lhs
, rhs
);
1334 cond
= isl_pw_aff_le_set(lhs
, rhs
);
1337 cond
= isl_pw_aff_eq_set(lhs
, rhs
);
1340 cond
= isl_pw_aff_ne_set(lhs
, rhs
);
1343 isl_pw_aff_free(lhs
);
1344 isl_pw_aff_free(rhs
);
1350 cond
= isl_set_coalesce(cond
);
1351 res
= indicator_function(cond
, dom
);
1356 __isl_give isl_pw_aff
*PetScan::extract_comparison(BinaryOperator
*comp
)
1358 return extract_comparison(comp
->getOpcode(), comp
->getLHS(),
1359 comp
->getRHS(), comp
);
1362 /* Extract an affine expression representing the negation (logical not)
1363 * of a subexpression.
1365 __isl_give isl_pw_aff
*PetScan::extract_boolean(UnaryOperator
*op
)
1367 isl_set
*set_cond
, *dom
;
1368 isl_pw_aff
*cond
, *res
;
1370 cond
= extract_condition(op
->getSubExpr());
1372 dom
= isl_pw_aff_domain(isl_pw_aff_copy(cond
));
1374 set_cond
= isl_pw_aff_zero_set(cond
);
1376 res
= indicator_function(set_cond
, dom
);
1381 /* Extract an affine expression representing the disjunction (logical or)
1382 * or conjunction (logical and) of two subexpressions.
1384 __isl_give isl_pw_aff
*PetScan::extract_boolean(BinaryOperator
*comp
)
1386 isl_pw_aff
*lhs
, *rhs
;
1388 lhs
= extract_condition(comp
->getLHS());
1389 rhs
= extract_condition(comp
->getRHS());
1391 switch (comp
->getOpcode()) {
1393 return pw_aff_and_then(lhs
, rhs
);
1395 return pw_aff_or_else(lhs
, rhs
);
1397 isl_pw_aff_free(lhs
);
1398 isl_pw_aff_free(rhs
);
1405 __isl_give isl_pw_aff
*PetScan::extract_condition(UnaryOperator
*expr
)
1407 switch (expr
->getOpcode()) {
1409 return extract_boolean(expr
);
1416 /* Extract the affine expression "expr != 0 ? 1 : 0".
1418 __isl_give isl_pw_aff
*PetScan::extract_implicit_condition(Expr
*expr
)
1423 res
= extract_affine(expr
);
1425 dom
= isl_pw_aff_domain(isl_pw_aff_copy(res
));
1426 set
= isl_pw_aff_non_zero_set(res
);
1428 res
= indicator_function(set
, dom
);
1433 /* Extract an affine expression from a boolean expression.
1434 * In particular, return the expression "expr ? 1 : 0".
1436 * If the expression doesn't look like a condition, we assume it
1437 * is an affine expression and return the condition "expr != 0 ? 1 : 0".
1439 __isl_give isl_pw_aff
*PetScan::extract_condition(Expr
*expr
)
1441 BinaryOperator
*comp
;
1444 isl_set
*u
= isl_set_universe(isl_space_params_alloc(ctx
, 0));
1445 return indicator_function(u
, isl_set_copy(u
));
1448 if (expr
->getStmtClass() == Stmt::ParenExprClass
)
1449 return extract_condition(cast
<ParenExpr
>(expr
)->getSubExpr());
1451 if (expr
->getStmtClass() == Stmt::UnaryOperatorClass
)
1452 return extract_condition(cast
<UnaryOperator
>(expr
));
1454 if (expr
->getStmtClass() != Stmt::BinaryOperatorClass
)
1455 return extract_implicit_condition(expr
);
1457 comp
= cast
<BinaryOperator
>(expr
);
1458 switch (comp
->getOpcode()) {
1465 return extract_comparison(comp
);
1468 return extract_boolean(comp
);
1470 return extract_implicit_condition(expr
);
1474 static enum pet_op_type
UnaryOperatorKind2pet_op_type(UnaryOperatorKind kind
)
1478 return pet_op_minus
;
1482 return pet_op_post_inc
;
1484 return pet_op_post_dec
;
1486 return pet_op_pre_inc
;
1488 return pet_op_pre_dec
;
1494 static enum pet_op_type
BinaryOperatorKind2pet_op_type(BinaryOperatorKind kind
)
1498 return pet_op_add_assign
;
1500 return pet_op_sub_assign
;
1502 return pet_op_mul_assign
;
1504 return pet_op_div_assign
;
1506 return pet_op_assign
;
1544 /* Construct a pet_expr representing a unary operator expression.
1546 struct pet_expr
*PetScan::extract_expr(UnaryOperator
*expr
)
1548 struct pet_expr
*arg
;
1549 enum pet_op_type op
;
1551 op
= UnaryOperatorKind2pet_op_type(expr
->getOpcode());
1552 if (op
== pet_op_last
) {
1557 arg
= extract_expr(expr
->getSubExpr());
1559 if (expr
->isIncrementDecrementOp() &&
1560 arg
&& arg
->type
== pet_expr_access
) {
1565 return pet_expr_new_unary(ctx
, op
, arg
);
1568 /* Mark the given access pet_expr as a write.
1569 * If a scalar is being accessed, then mark its value
1570 * as unknown in assigned_value.
1572 void PetScan::mark_write(struct pet_expr
*access
)
1580 access
->acc
.write
= 1;
1581 access
->acc
.read
= 0;
1583 if (!pet_expr_is_scalar_access(access
))
1586 id
= pet_expr_access_get_id(access
);
1587 decl
= (ValueDecl
*) isl_id_get_user(id
);
1588 clear_assignment(assigned_value
, decl
);
1592 /* Assign "rhs" to "lhs".
1594 * In particular, if "lhs" is a scalar variable, then mark
1595 * the variable as having been assigned. If, furthermore, "rhs"
1596 * is an affine expression, then keep track of this value in assigned_value
1597 * so that we can plug it in when we later come across the same variable.
1599 void PetScan::assign(struct pet_expr
*lhs
, Expr
*rhs
)
1607 if (!pet_expr_is_scalar_access(lhs
))
1610 id
= pet_expr_access_get_id(lhs
);
1611 decl
= (ValueDecl
*) isl_id_get_user(id
);
1614 pa
= try_extract_affine(rhs
);
1615 clear_assignment(assigned_value
, decl
);
1618 assigned_value
[decl
] = pa
;
1619 insert_expression(pa
);
1622 /* Construct a pet_expr representing a binary operator expression.
1624 * If the top level operator is an assignment and the LHS is an access,
1625 * then we mark that access as a write. If the operator is a compound
1626 * assignment, the access is marked as both a read and a write.
1628 * If "expr" assigns something to a scalar variable, then we mark
1629 * the variable as having been assigned. If, furthermore, the expression
1630 * is affine, then keep track of this value in assigned_value
1631 * so that we can plug it in when we later come across the same variable.
1633 struct pet_expr
*PetScan::extract_expr(BinaryOperator
*expr
)
1635 struct pet_expr
*lhs
, *rhs
;
1636 enum pet_op_type op
;
1638 op
= BinaryOperatorKind2pet_op_type(expr
->getOpcode());
1639 if (op
== pet_op_last
) {
1644 lhs
= extract_expr(expr
->getLHS());
1645 rhs
= extract_expr(expr
->getRHS());
1647 if (expr
->isAssignmentOp() && lhs
&& lhs
->type
== pet_expr_access
) {
1649 if (expr
->isCompoundAssignmentOp())
1653 if (expr
->getOpcode() == BO_Assign
)
1654 assign(lhs
, expr
->getRHS());
1656 return pet_expr_new_binary(ctx
, op
, lhs
, rhs
);
1659 /* Construct a pet_scop with a single statement killing the entire
1662 struct pet_scop
*PetScan::kill(Stmt
*stmt
, struct pet_array
*array
)
1666 isl_multi_pw_aff
*index
;
1668 struct pet_expr
*expr
;
1672 access
= isl_map_from_range(isl_set_copy(array
->extent
));
1673 id
= isl_set_get_tuple_id(array
->extent
);
1674 space
= isl_space_alloc(ctx
, 0, 0, 0);
1675 space
= isl_space_set_tuple_id(space
, isl_dim_out
, id
);
1676 index
= isl_multi_pw_aff_zero(space
);
1677 expr
= pet_expr_kill_from_access_and_index(access
, index
);
1678 return extract(stmt
, expr
);
1681 /* Construct a pet_scop for a (single) variable declaration.
1683 * The scop contains the variable being declared (as an array)
1684 * and a statement killing the array.
1686 * If the variable is initialized in the AST, then the scop
1687 * also contains an assignment to the variable.
1689 struct pet_scop
*PetScan::extract(DeclStmt
*stmt
)
1693 struct pet_expr
*lhs
, *rhs
, *pe
;
1694 struct pet_scop
*scop_decl
, *scop
;
1695 struct pet_array
*array
;
1697 if (!stmt
->isSingleDecl()) {
1702 decl
= stmt
->getSingleDecl();
1703 vd
= cast
<VarDecl
>(decl
);
1705 array
= extract_array(ctx
, vd
, NULL
);
1707 array
->declared
= 1;
1708 scop_decl
= kill(stmt
, array
);
1709 scop_decl
= pet_scop_add_array(scop_decl
, array
);
1714 lhs
= extract_access_expr(vd
);
1715 rhs
= extract_expr(vd
->getInit());
1718 assign(lhs
, vd
->getInit());
1720 pe
= pet_expr_new_binary(ctx
, pet_op_assign
, lhs
, rhs
);
1721 scop
= extract(stmt
, pe
);
1723 scop_decl
= pet_scop_prefix(scop_decl
, 0);
1724 scop
= pet_scop_prefix(scop
, 1);
1726 scop
= pet_scop_add_seq(ctx
, scop_decl
, scop
);
1731 /* Construct a pet_expr representing a conditional operation.
1733 * We first try to extract the condition as an affine expression.
1734 * If that fails, we construct a pet_expr tree representing the condition.
1736 struct pet_expr
*PetScan::extract_expr(ConditionalOperator
*expr
)
1738 struct pet_expr
*cond
, *lhs
, *rhs
;
1741 pa
= try_extract_affine(expr
->getCond());
1743 isl_multi_pw_aff
*test
= isl_multi_pw_aff_from_pw_aff(pa
);
1744 test
= isl_multi_pw_aff_from_range(test
);
1745 cond
= pet_expr_from_index(test
);
1747 cond
= extract_expr(expr
->getCond());
1748 lhs
= extract_expr(expr
->getTrueExpr());
1749 rhs
= extract_expr(expr
->getFalseExpr());
1751 return pet_expr_new_ternary(ctx
, cond
, lhs
, rhs
);
1754 struct pet_expr
*PetScan::extract_expr(ImplicitCastExpr
*expr
)
1756 return extract_expr(expr
->getSubExpr());
1759 /* Construct a pet_expr representing a floating point value.
1761 * If the floating point literal does not appear in a macro,
1762 * then we use the original representation in the source code
1763 * as the string representation. Otherwise, we use the pretty
1764 * printer to produce a string representation.
1766 struct pet_expr
*PetScan::extract_expr(FloatingLiteral
*expr
)
1770 const LangOptions
&LO
= PP
.getLangOpts();
1771 SourceLocation loc
= expr
->getLocation();
1773 if (!loc
.isMacroID()) {
1774 SourceManager
&SM
= PP
.getSourceManager();
1775 unsigned len
= Lexer::MeasureTokenLength(loc
, SM
, LO
);
1776 s
= string(SM
.getCharacterData(loc
), len
);
1778 llvm::raw_string_ostream
S(s
);
1779 expr
->printPretty(S
, 0, PrintingPolicy(LO
));
1782 d
= expr
->getValueAsApproximateDouble();
1783 return pet_expr_new_double(ctx
, d
, s
.c_str());
1786 /* Extract an index expression from "expr" and then convert it into
1787 * an access pet_expr.
1789 struct pet_expr
*PetScan::extract_access_expr(Expr
*expr
)
1791 isl_multi_pw_aff
*index
;
1792 struct pet_expr
*pe
;
1795 index
= extract_index(expr
);
1796 depth
= extract_depth(index
);
1798 pe
= pet_expr_from_index_and_depth(index
, depth
);
1803 /* Extract an index expression from "decl" and then convert it into
1804 * an access pet_expr.
1806 struct pet_expr
*PetScan::extract_access_expr(ValueDecl
*decl
)
1808 isl_multi_pw_aff
*index
;
1809 struct pet_expr
*pe
;
1812 index
= extract_index(decl
);
1813 depth
= extract_depth(index
);
1815 pe
= pet_expr_from_index_and_depth(index
, depth
);
1820 struct pet_expr
*PetScan::extract_expr(ParenExpr
*expr
)
1822 return extract_expr(expr
->getSubExpr());
1825 /* Extract an assume statement from the argument "expr"
1826 * of a __pencil_assume statement.
1828 struct pet_expr
*PetScan::extract_assume(Expr
*expr
)
1831 struct pet_expr
*res
;
1833 cond
= try_extract_affine_condition(expr
);
1835 res
= extract_expr(expr
);
1837 isl_multi_pw_aff
*index
;
1838 index
= isl_multi_pw_aff_from_pw_aff(cond
);
1839 index
= isl_multi_pw_aff_from_range(index
);
1840 res
= pet_expr_from_index(index
);
1842 return pet_expr_new_unary(ctx
, pet_op_assume
, res
);
1845 /* Construct a pet_expr corresponding to the function call argument "expr".
1846 * The argument appears in position "pos" of a call to function "fd".
1848 * If we are passing along a pointer to an array element
1849 * or an entire row or even higher dimensional slice of an array,
1850 * then the function being called may write into the array.
1852 * We assume here that if the function is declared to take a pointer
1853 * to a const type, then the function will perform a read
1854 * and that otherwise, it will perform a write.
1856 struct pet_expr
*PetScan::extract_argument(FunctionDecl
*fd
, int pos
,
1859 struct pet_expr
*res
;
1864 if (expr
->getStmtClass() == Stmt::ImplicitCastExprClass
) {
1865 ImplicitCastExpr
*ice
= cast
<ImplicitCastExpr
>(expr
);
1866 expr
= ice
->getSubExpr();
1868 if (expr
->getStmtClass() == Stmt::UnaryOperatorClass
) {
1869 UnaryOperator
*op
= cast
<UnaryOperator
>(expr
);
1870 if (op
->getOpcode() == UO_AddrOf
) {
1872 expr
= op
->getSubExpr();
1875 res
= extract_expr(expr
);
1878 res
= pet_expr_new_unary(ctx
, pet_op_address_of
, res
);
1881 sc
= expr
->getStmtClass();
1882 if ((sc
== Stmt::ArraySubscriptExprClass
||
1883 sc
== Stmt::MemberExprClass
) &&
1884 array_depth(expr
->getType().getTypePtr()) > 0)
1886 if (is_addr
&& main_arg
->type
== pet_expr_access
) {
1888 if (!fd
->hasPrototype()) {
1889 report_prototype_required(expr
);
1890 return pet_expr_free(res
);
1892 parm
= fd
->getParamDecl(pos
);
1893 if (!const_base(parm
->getType()))
1894 mark_write(main_arg
);
1900 /* Construct a pet_expr representing a function call.
1902 * In the special case of a "call" to __pencil_assume,
1903 * construct an assume expression instead.
1905 struct pet_expr
*PetScan::extract_expr(CallExpr
*expr
)
1907 struct pet_expr
*res
= NULL
;
1912 fd
= expr
->getDirectCallee();
1918 name
= fd
->getDeclName().getAsString();
1919 n_arg
= expr
->getNumArgs();
1921 if (n_arg
== 1 && name
== "__pencil_assume")
1922 return extract_assume(expr
->getArg(0));
1924 res
= pet_expr_new_call(ctx
, name
.c_str(), n_arg
);
1928 for (int i
= 0; i
< n_arg
; ++i
) {
1929 Expr
*arg
= expr
->getArg(i
);
1930 res
->args
[i
] = PetScan::extract_argument(fd
, i
, arg
);
1941 /* Construct a pet_expr representing a (C style) cast.
1943 struct pet_expr
*PetScan::extract_expr(CStyleCastExpr
*expr
)
1945 struct pet_expr
*arg
;
1948 arg
= extract_expr(expr
->getSubExpr());
1952 type
= expr
->getTypeAsWritten();
1953 return pet_expr_new_cast(ctx
, type
.getAsString().c_str(), arg
);
1956 /* Try and onstruct a pet_expr representing "expr".
1958 struct pet_expr
*PetScan::extract_expr(Expr
*expr
)
1960 switch (expr
->getStmtClass()) {
1961 case Stmt::UnaryOperatorClass
:
1962 return extract_expr(cast
<UnaryOperator
>(expr
));
1963 case Stmt::CompoundAssignOperatorClass
:
1964 case Stmt::BinaryOperatorClass
:
1965 return extract_expr(cast
<BinaryOperator
>(expr
));
1966 case Stmt::ImplicitCastExprClass
:
1967 return extract_expr(cast
<ImplicitCastExpr
>(expr
));
1968 case Stmt::ArraySubscriptExprClass
:
1969 case Stmt::DeclRefExprClass
:
1970 case Stmt::IntegerLiteralClass
:
1971 case Stmt::MemberExprClass
:
1972 return extract_access_expr(expr
);
1973 case Stmt::FloatingLiteralClass
:
1974 return extract_expr(cast
<FloatingLiteral
>(expr
));
1975 case Stmt::ParenExprClass
:
1976 return extract_expr(cast
<ParenExpr
>(expr
));
1977 case Stmt::ConditionalOperatorClass
:
1978 return extract_expr(cast
<ConditionalOperator
>(expr
));
1979 case Stmt::CallExprClass
:
1980 return extract_expr(cast
<CallExpr
>(expr
));
1981 case Stmt::CStyleCastExprClass
:
1982 return extract_expr(cast
<CStyleCastExpr
>(expr
));
1989 /* Check if the given initialization statement is an assignment.
1990 * If so, return that assignment. Otherwise return NULL.
1992 BinaryOperator
*PetScan::initialization_assignment(Stmt
*init
)
1994 BinaryOperator
*ass
;
1996 if (init
->getStmtClass() != Stmt::BinaryOperatorClass
)
1999 ass
= cast
<BinaryOperator
>(init
);
2000 if (ass
->getOpcode() != BO_Assign
)
2006 /* Check if the given initialization statement is a declaration
2007 * of a single variable.
2008 * If so, return that declaration. Otherwise return NULL.
2010 Decl
*PetScan::initialization_declaration(Stmt
*init
)
2014 if (init
->getStmtClass() != Stmt::DeclStmtClass
)
2017 decl
= cast
<DeclStmt
>(init
);
2019 if (!decl
->isSingleDecl())
2022 return decl
->getSingleDecl();
2025 /* Given the assignment operator in the initialization of a for loop,
2026 * extract the induction variable, i.e., the (integer)variable being
2029 ValueDecl
*PetScan::extract_induction_variable(BinaryOperator
*init
)
2036 lhs
= init
->getLHS();
2037 if (lhs
->getStmtClass() != Stmt::DeclRefExprClass
) {
2042 ref
= cast
<DeclRefExpr
>(lhs
);
2043 decl
= ref
->getDecl();
2044 type
= decl
->getType().getTypePtr();
2046 if (!type
->isIntegerType()) {
2054 /* Given the initialization statement of a for loop and the single
2055 * declaration in this initialization statement,
2056 * extract the induction variable, i.e., the (integer) variable being
2059 VarDecl
*PetScan::extract_induction_variable(Stmt
*init
, Decl
*decl
)
2063 vd
= cast
<VarDecl
>(decl
);
2065 const QualType type
= vd
->getType();
2066 if (!type
->isIntegerType()) {
2071 if (!vd
->getInit()) {
2079 /* Check that op is of the form iv++ or iv--.
2080 * Return an affine expression "1" or "-1" accordingly.
2082 __isl_give isl_pw_aff
*PetScan::extract_unary_increment(
2083 clang::UnaryOperator
*op
, clang::ValueDecl
*iv
)
2090 if (!op
->isIncrementDecrementOp()) {
2095 sub
= op
->getSubExpr();
2096 if (sub
->getStmtClass() != Stmt::DeclRefExprClass
) {
2101 ref
= cast
<DeclRefExpr
>(sub
);
2102 if (ref
->getDecl() != iv
) {
2107 space
= isl_space_params_alloc(ctx
, 0);
2108 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(space
));
2110 if (op
->isIncrementOp())
2111 aff
= isl_aff_add_constant_si(aff
, 1);
2113 aff
= isl_aff_add_constant_si(aff
, -1);
2115 return isl_pw_aff_from_aff(aff
);
2118 /* If the isl_pw_aff on which isl_pw_aff_foreach_piece is called
2119 * has a single constant expression, then put this constant in *user.
2120 * The caller is assumed to have checked that this function will
2121 * be called exactly once.
2123 static int extract_cst(__isl_take isl_set
*set
, __isl_take isl_aff
*aff
,
2126 isl_val
**inc
= (isl_val
**)user
;
2129 if (isl_aff_is_cst(aff
))
2130 *inc
= isl_aff_get_constant_val(aff
);
2140 /* Check if op is of the form
2144 * and return inc as an affine expression.
2146 * We extract an affine expression from the RHS, subtract iv and return
2149 __isl_give isl_pw_aff
*PetScan::extract_binary_increment(BinaryOperator
*op
,
2150 clang::ValueDecl
*iv
)
2159 if (op
->getOpcode() != BO_Assign
) {
2165 if (lhs
->getStmtClass() != Stmt::DeclRefExprClass
) {
2170 ref
= cast
<DeclRefExpr
>(lhs
);
2171 if (ref
->getDecl() != iv
) {
2176 val
= extract_affine(op
->getRHS());
2178 id
= isl_id_alloc(ctx
, iv
->getName().str().c_str(), iv
);
2180 dim
= isl_space_params_alloc(ctx
, 1);
2181 dim
= isl_space_set_dim_id(dim
, isl_dim_param
, 0, id
);
2182 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(dim
));
2183 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_param
, 0, 1);
2185 val
= isl_pw_aff_sub(val
, isl_pw_aff_from_aff(aff
));
2190 /* Check that op is of the form iv += cst or iv -= cst
2191 * and return an affine expression corresponding oto cst or -cst accordingly.
2193 __isl_give isl_pw_aff
*PetScan::extract_compound_increment(
2194 CompoundAssignOperator
*op
, clang::ValueDecl
*iv
)
2200 BinaryOperatorKind opcode
;
2202 opcode
= op
->getOpcode();
2203 if (opcode
!= BO_AddAssign
&& opcode
!= BO_SubAssign
) {
2207 if (opcode
== BO_SubAssign
)
2211 if (lhs
->getStmtClass() != Stmt::DeclRefExprClass
) {
2216 ref
= cast
<DeclRefExpr
>(lhs
);
2217 if (ref
->getDecl() != iv
) {
2222 val
= extract_affine(op
->getRHS());
2224 val
= isl_pw_aff_neg(val
);
2229 /* Check that the increment of the given for loop increments
2230 * (or decrements) the induction variable "iv" and return
2231 * the increment as an affine expression if successful.
2233 __isl_give isl_pw_aff
*PetScan::extract_increment(clang::ForStmt
*stmt
,
2236 Stmt
*inc
= stmt
->getInc();
2243 if (inc
->getStmtClass() == Stmt::UnaryOperatorClass
)
2244 return extract_unary_increment(cast
<UnaryOperator
>(inc
), iv
);
2245 if (inc
->getStmtClass() == Stmt::CompoundAssignOperatorClass
)
2246 return extract_compound_increment(
2247 cast
<CompoundAssignOperator
>(inc
), iv
);
2248 if (inc
->getStmtClass() == Stmt::BinaryOperatorClass
)
2249 return extract_binary_increment(cast
<BinaryOperator
>(inc
), iv
);
2255 /* Embed the given iteration domain in an extra outer loop
2256 * with induction variable "var".
2257 * If this variable appeared as a parameter in the constraints,
2258 * it is replaced by the new outermost dimension.
2260 static __isl_give isl_set
*embed(__isl_take isl_set
*set
,
2261 __isl_take isl_id
*var
)
2265 set
= isl_set_insert_dims(set
, isl_dim_set
, 0, 1);
2266 pos
= isl_set_find_dim_by_id(set
, isl_dim_param
, var
);
2268 set
= isl_set_equate(set
, isl_dim_param
, pos
, isl_dim_set
, 0);
2269 set
= isl_set_project_out(set
, isl_dim_param
, pos
, 1);
2276 /* Return those elements in the space of "cond" that come after
2277 * (based on "sign") an element in "cond".
2279 static __isl_give isl_set
*after(__isl_take isl_set
*cond
, int sign
)
2281 isl_map
*previous_to_this
;
2284 previous_to_this
= isl_map_lex_lt(isl_set_get_space(cond
));
2286 previous_to_this
= isl_map_lex_gt(isl_set_get_space(cond
));
2288 cond
= isl_set_apply(cond
, previous_to_this
);
2293 /* Create the infinite iteration domain
2295 * { [id] : id >= 0 }
2297 * If "scop" has an affine skip of type pet_skip_later,
2298 * then remove those iterations i that have an earlier iteration
2299 * where the skip condition is satisfied, meaning that iteration i
2301 * Since we are dealing with a loop without loop iterator,
2302 * the skip condition cannot refer to the current loop iterator and
2303 * so effectively, the returned set is of the form
2305 * { [0]; [id] : id >= 1 and not skip }
2307 static __isl_give isl_set
*infinite_domain(__isl_take isl_id
*id
,
2308 struct pet_scop
*scop
)
2310 isl_ctx
*ctx
= isl_id_get_ctx(id
);
2314 domain
= isl_set_nat_universe(isl_space_set_alloc(ctx
, 0, 1));
2315 domain
= isl_set_set_dim_id(domain
, isl_dim_set
, 0, id
);
2317 if (!pet_scop_has_affine_skip(scop
, pet_skip_later
))
2320 skip
= pet_scop_get_affine_skip_domain(scop
, pet_skip_later
);
2321 skip
= embed(skip
, isl_id_copy(id
));
2322 skip
= isl_set_intersect(skip
, isl_set_copy(domain
));
2323 domain
= isl_set_subtract(domain
, after(skip
, 1));
2328 /* Create an identity affine expression on the space containing "domain",
2329 * which is assumed to be one-dimensional.
2331 static __isl_give isl_aff
*identity_aff(__isl_keep isl_set
*domain
)
2333 isl_local_space
*ls
;
2335 ls
= isl_local_space_from_space(isl_set_get_space(domain
));
2336 return isl_aff_var_on_domain(ls
, isl_dim_set
, 0);
2339 /* Create an affine expression that maps elements
2340 * of a single-dimensional array "id_test" to the previous element
2341 * (according to "inc"), provided this element belongs to "domain".
2342 * That is, create the affine expression
2344 * { id[x] -> id[x - inc] : x - inc in domain }
2346 static __isl_give isl_multi_pw_aff
*map_to_previous(__isl_take isl_id
*id_test
,
2347 __isl_take isl_set
*domain
, __isl_take isl_val
*inc
)
2350 isl_local_space
*ls
;
2352 isl_multi_pw_aff
*prev
;
2354 space
= isl_set_get_space(domain
);
2355 ls
= isl_local_space_from_space(space
);
2356 aff
= isl_aff_var_on_domain(ls
, isl_dim_set
, 0);
2357 aff
= isl_aff_add_constant_val(aff
, isl_val_neg(inc
));
2358 prev
= isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff
));
2359 domain
= isl_set_preimage_multi_pw_aff(domain
,
2360 isl_multi_pw_aff_copy(prev
));
2361 prev
= isl_multi_pw_aff_intersect_domain(prev
, domain
);
2362 prev
= isl_multi_pw_aff_set_tuple_id(prev
, isl_dim_out
, id_test
);
2367 /* Add an implication to "scop" expressing that if an element of
2368 * virtual array "id_test" has value "satisfied" then all previous elements
2369 * of this array also have that value. The set of previous elements
2370 * is bounded by "domain". If "sign" is negative then iterator
2371 * is decreasing and we express that all subsequent array elements
2372 * (but still defined previously) have the same value.
2374 static struct pet_scop
*add_implication(struct pet_scop
*scop
,
2375 __isl_take isl_id
*id_test
, __isl_take isl_set
*domain
, int sign
,
2381 domain
= isl_set_set_tuple_id(domain
, id_test
);
2382 space
= isl_set_get_space(domain
);
2384 map
= isl_map_lex_ge(space
);
2386 map
= isl_map_lex_le(space
);
2387 map
= isl_map_intersect_range(map
, domain
);
2388 scop
= pet_scop_add_implication(scop
, map
, satisfied
);
2393 /* Add a filter to "scop" that imposes that it is only executed
2394 * when the variable identified by "id_test" has a zero value
2395 * for all previous iterations of "domain".
2397 * In particular, add a filter that imposes that the array
2398 * has a zero value at the previous iteration of domain and
2399 * add an implication that implies that it then has that
2400 * value for all previous iterations.
2402 static struct pet_scop
*scop_add_break(struct pet_scop
*scop
,
2403 __isl_take isl_id
*id_test
, __isl_take isl_set
*domain
,
2404 __isl_take isl_val
*inc
)
2406 isl_multi_pw_aff
*prev
;
2407 int sign
= isl_val_sgn(inc
);
2409 prev
= map_to_previous(isl_id_copy(id_test
), isl_set_copy(domain
), inc
);
2410 scop
= add_implication(scop
, id_test
, domain
, sign
, 0);
2411 scop
= pet_scop_filter(scop
, prev
, 0);
2416 /* Construct a pet_scop for an infinite loop around the given body.
2418 * We extract a pet_scop for the body and then embed it in a loop with
2427 * If the body contains any break, then it is taken into
2428 * account in infinite_domain (if the skip condition is affine)
2429 * or in scop_add_break (if the skip condition is not affine).
2431 * If we were only able to extract part of the body, then simply
2434 struct pet_scop
*PetScan::extract_infinite_loop(Stmt
*body
)
2436 isl_id
*id
, *id_test
;
2439 struct pet_scop
*scop
;
2442 scop
= extract(body
);
2448 id
= isl_id_alloc(ctx
, "t", NULL
);
2449 domain
= infinite_domain(isl_id_copy(id
), scop
);
2450 ident
= identity_aff(domain
);
2452 has_var_break
= pet_scop_has_var_skip(scop
, pet_skip_later
);
2454 id_test
= pet_scop_get_skip_id(scop
, pet_skip_later
);
2456 scop
= pet_scop_embed(scop
, isl_set_copy(domain
),
2457 isl_map_from_aff(isl_aff_copy(ident
)), ident
, id
);
2459 scop
= scop_add_break(scop
, id_test
, domain
, isl_val_one(ctx
));
2461 isl_set_free(domain
);
2466 /* Construct a pet_scop for an infinite loop, i.e., a loop of the form
2472 struct pet_scop
*PetScan::extract_infinite_for(ForStmt
*stmt
)
2474 clear_assignments
clear(assigned_value
);
2475 clear
.TraverseStmt(stmt
->getBody());
2477 return extract_infinite_loop(stmt
->getBody());
2480 /* Create an index expression for an access to a virtual array
2481 * representing the result of a condition.
2482 * Unlike other accessed data, the id of the array is NULL as
2483 * there is no ValueDecl in the program corresponding to the virtual
2485 * The array starts out as a scalar, but grows along with the
2486 * statement writing to the array in pet_scop_embed.
2488 static __isl_give isl_multi_pw_aff
*create_test_index(isl_ctx
*ctx
, int test_nr
)
2490 isl_space
*dim
= isl_space_alloc(ctx
, 0, 0, 0);
2494 snprintf(name
, sizeof(name
), "__pet_test_%d", test_nr
);
2495 id
= isl_id_alloc(ctx
, name
, NULL
);
2496 dim
= isl_space_set_tuple_id(dim
, isl_dim_out
, id
);
2497 return isl_multi_pw_aff_zero(dim
);
2500 /* Add an array with the given extent (range of "index") to the list
2501 * of arrays in "scop" and return the extended pet_scop.
2502 * The array is marked as attaining values 0 and 1 only and
2503 * as each element being assigned at most once.
2505 static struct pet_scop
*scop_add_array(struct pet_scop
*scop
,
2506 __isl_keep isl_multi_pw_aff
*index
, clang::ASTContext
&ast_ctx
)
2508 isl_ctx
*ctx
= isl_multi_pw_aff_get_ctx(index
);
2510 struct pet_array
*array
;
2518 array
= isl_calloc_type(ctx
, struct pet_array
);
2522 access
= isl_map_from_multi_pw_aff(isl_multi_pw_aff_copy(index
));
2523 array
->extent
= isl_map_range(access
);
2524 dim
= isl_space_params_alloc(ctx
, 0);
2525 array
->context
= isl_set_universe(dim
);
2526 dim
= isl_space_set_alloc(ctx
, 0, 1);
2527 array
->value_bounds
= isl_set_universe(dim
);
2528 array
->value_bounds
= isl_set_lower_bound_si(array
->value_bounds
,
2530 array
->value_bounds
= isl_set_upper_bound_si(array
->value_bounds
,
2532 array
->element_type
= strdup("int");
2533 array
->element_size
= ast_ctx
.getTypeInfo(ast_ctx
.IntTy
).first
/ 8;
2534 array
->uniquely_defined
= 1;
2536 if (!array
->extent
|| !array
->context
)
2537 array
= pet_array_free(array
);
2539 scop
= pet_scop_add_array(scop
, array
);
2543 pet_scop_free(scop
);
2547 /* Construct a pet_scop for a while loop of the form
2552 * In particular, construct a scop for an infinite loop around body and
2553 * intersect the domain with the affine expression.
2554 * Note that this intersection may result in an empty loop.
2556 struct pet_scop
*PetScan::extract_affine_while(__isl_take isl_pw_aff
*pa
,
2559 struct pet_scop
*scop
;
2563 valid
= isl_pw_aff_domain(isl_pw_aff_copy(pa
));
2564 dom
= isl_pw_aff_non_zero_set(pa
);
2565 scop
= extract_infinite_loop(body
);
2566 scop
= pet_scop_restrict(scop
, dom
);
2567 scop
= pet_scop_restrict_context(scop
, valid
);
2572 /* Construct a scop for a while, given the scops for the condition
2573 * and the body, the filter identifier and the iteration domain of
2576 * In particular, the scop for the condition is filtered to depend
2577 * on "id_test" evaluating to true for all previous iterations
2578 * of the loop, while the scop for the body is filtered to depend
2579 * on "id_test" evaluating to true for all iterations up to the
2580 * current iteration.
2581 * The actual filter only imposes that this virtual array has
2582 * value one on the previous or the current iteration.
2583 * The fact that this condition also applies to the previous
2584 * iterations is enforced by an implication.
2586 * These filtered scops are then combined into a single scop.
2588 * "sign" is positive if the iterator increases and negative
2591 static struct pet_scop
*scop_add_while(struct pet_scop
*scop_cond
,
2592 struct pet_scop
*scop_body
, __isl_take isl_id
*id_test
,
2593 __isl_take isl_set
*domain
, __isl_take isl_val
*inc
)
2595 isl_ctx
*ctx
= isl_set_get_ctx(domain
);
2597 isl_multi_pw_aff
*test_index
;
2598 isl_multi_pw_aff
*prev
;
2599 int sign
= isl_val_sgn(inc
);
2600 struct pet_scop
*scop
;
2602 prev
= map_to_previous(isl_id_copy(id_test
), isl_set_copy(domain
), inc
);
2603 scop_cond
= pet_scop_filter(scop_cond
, prev
, 1);
2605 space
= isl_space_map_from_set(isl_set_get_space(domain
));
2606 test_index
= isl_multi_pw_aff_identity(space
);
2607 test_index
= isl_multi_pw_aff_set_tuple_id(test_index
, isl_dim_out
,
2608 isl_id_copy(id_test
));
2609 scop_body
= pet_scop_filter(scop_body
, test_index
, 1);
2611 scop
= pet_scop_add_seq(ctx
, scop_cond
, scop_body
);
2612 scop
= add_implication(scop
, id_test
, domain
, sign
, 1);
2617 /* Check if the while loop is of the form
2619 * while (affine expression)
2622 * If so, call extract_affine_while to construct a scop.
2624 * Otherwise, construct a generic while scop, with iteration domain
2625 * { [t] : t >= 0 }. The scop consists of two parts, one for
2626 * evaluating the condition and one for the body.
2627 * The schedule is adjusted to reflect that the condition is evaluated
2628 * before the body is executed and the body is filtered to depend
2629 * on the result of the condition evaluating to true on all iterations
2630 * up to the current iteration, while the evaluation the condition itself
2631 * is filtered to depend on the result of the condition evaluating to true
2632 * on all previous iterations.
2633 * The context of the scop representing the body is dropped
2634 * because we don't know how many times the body will be executed,
2637 * If the body contains any break, then it is taken into
2638 * account in infinite_domain (if the skip condition is affine)
2639 * or in scop_add_break (if the skip condition is not affine).
2641 * If we were only able to extract part of the body, then simply
2644 struct pet_scop
*PetScan::extract(WhileStmt
*stmt
)
2647 int test_nr
, stmt_nr
;
2648 isl_id
*id
, *id_test
, *id_break_test
;
2649 isl_multi_pw_aff
*test_index
;
2653 struct pet_scop
*scop
, *scop_body
;
2656 cond
= stmt
->getCond();
2662 clear_assignments
clear(assigned_value
);
2663 clear
.TraverseStmt(stmt
->getBody());
2665 pa
= try_extract_affine_condition(cond
);
2667 return extract_affine_while(pa
, stmt
->getBody());
2669 if (!allow_nested
) {
2676 scop_body
= extract(stmt
->getBody());
2680 test_index
= create_test_index(ctx
, test_nr
);
2681 scop
= extract_non_affine_condition(cond
, stmt_nr
,
2682 isl_multi_pw_aff_copy(test_index
));
2683 scop
= scop_add_array(scop
, test_index
, ast_context
);
2684 id_test
= isl_multi_pw_aff_get_tuple_id(test_index
, isl_dim_out
);
2685 isl_multi_pw_aff_free(test_index
);
2687 id
= isl_id_alloc(ctx
, "t", NULL
);
2688 domain
= infinite_domain(isl_id_copy(id
), scop_body
);
2689 ident
= identity_aff(domain
);
2691 has_var_break
= pet_scop_has_var_skip(scop_body
, pet_skip_later
);
2693 id_break_test
= pet_scop_get_skip_id(scop_body
, pet_skip_later
);
2695 scop
= pet_scop_prefix(scop
, 0);
2696 scop
= pet_scop_embed(scop
, isl_set_copy(domain
),
2697 isl_map_from_aff(isl_aff_copy(ident
)),
2698 isl_aff_copy(ident
), isl_id_copy(id
));
2699 scop_body
= pet_scop_reset_context(scop_body
);
2700 scop_body
= pet_scop_prefix(scop_body
, 1);
2701 scop_body
= pet_scop_embed(scop_body
, isl_set_copy(domain
),
2702 isl_map_from_aff(isl_aff_copy(ident
)), ident
, id
);
2704 if (has_var_break
) {
2705 scop
= scop_add_break(scop
, isl_id_copy(id_break_test
),
2706 isl_set_copy(domain
), isl_val_one(ctx
));
2707 scop_body
= scop_add_break(scop_body
, id_break_test
,
2708 isl_set_copy(domain
), isl_val_one(ctx
));
2710 scop
= scop_add_while(scop
, scop_body
, id_test
, domain
,
2716 /* Check whether "cond" expresses a simple loop bound
2717 * on the only set dimension.
2718 * In particular, if "up" is set then "cond" should contain only
2719 * upper bounds on the set dimension.
2720 * Otherwise, it should contain only lower bounds.
2722 static bool is_simple_bound(__isl_keep isl_set
*cond
, __isl_keep isl_val
*inc
)
2724 if (isl_val_is_pos(inc
))
2725 return !isl_set_dim_has_any_lower_bound(cond
, isl_dim_set
, 0);
2727 return !isl_set_dim_has_any_upper_bound(cond
, isl_dim_set
, 0);
2730 /* Extend a condition on a given iteration of a loop to one that
2731 * imposes the same condition on all previous iterations.
2732 * "domain" expresses the lower [upper] bound on the iterations
2733 * when inc is positive [negative].
2735 * In particular, we construct the condition (when inc is positive)
2737 * forall i' : (domain(i') and i' <= i) => cond(i')
2739 * which is equivalent to
2741 * not exists i' : domain(i') and i' <= i and not cond(i')
2743 * We construct this set by negating cond, applying a map
2745 * { [i'] -> [i] : domain(i') and i' <= i }
2747 * and then negating the result again.
2749 static __isl_give isl_set
*valid_for_each_iteration(__isl_take isl_set
*cond
,
2750 __isl_take isl_set
*domain
, __isl_take isl_val
*inc
)
2752 isl_map
*previous_to_this
;
2754 if (isl_val_is_pos(inc
))
2755 previous_to_this
= isl_map_lex_le(isl_set_get_space(domain
));
2757 previous_to_this
= isl_map_lex_ge(isl_set_get_space(domain
));
2759 previous_to_this
= isl_map_intersect_domain(previous_to_this
, domain
);
2761 cond
= isl_set_complement(cond
);
2762 cond
= isl_set_apply(cond
, previous_to_this
);
2763 cond
= isl_set_complement(cond
);
2770 /* Construct a domain of the form
2772 * [id] -> { : exists a: id = init + a * inc and a >= 0 }
2774 static __isl_give isl_set
*strided_domain(__isl_take isl_id
*id
,
2775 __isl_take isl_pw_aff
*init
, __isl_take isl_val
*inc
)
2781 init
= isl_pw_aff_insert_dims(init
, isl_dim_in
, 0, 1);
2782 dim
= isl_pw_aff_get_domain_space(init
);
2783 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(dim
));
2784 aff
= isl_aff_add_coefficient_val(aff
, isl_dim_in
, 0, inc
);
2785 init
= isl_pw_aff_add(init
, isl_pw_aff_from_aff(aff
));
2787 dim
= isl_space_set_alloc(isl_pw_aff_get_ctx(init
), 1, 1);
2788 dim
= isl_space_set_dim_id(dim
, isl_dim_param
, 0, id
);
2789 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(dim
));
2790 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_param
, 0, 1);
2792 set
= isl_pw_aff_eq_set(isl_pw_aff_from_aff(aff
), init
);
2794 set
= isl_set_lower_bound_si(set
, isl_dim_set
, 0, 0);
2796 return isl_set_params(set
);
2799 /* Assuming "cond" represents a bound on a loop where the loop
2800 * iterator "iv" is incremented (or decremented) by one, check if wrapping
2803 * Under the given assumptions, wrapping is only possible if "cond" allows
2804 * for the last value before wrapping, i.e., 2^width - 1 in case of an
2805 * increasing iterator and 0 in case of a decreasing iterator.
2807 static bool can_wrap(__isl_keep isl_set
*cond
, ValueDecl
*iv
,
2808 __isl_keep isl_val
*inc
)
2815 test
= isl_set_copy(cond
);
2817 ctx
= isl_set_get_ctx(test
);
2818 if (isl_val_is_neg(inc
))
2819 limit
= isl_val_zero(ctx
);
2821 limit
= isl_val_int_from_ui(ctx
, get_type_size(iv
));
2822 limit
= isl_val_2exp(limit
);
2823 limit
= isl_val_sub_ui(limit
, 1);
2826 test
= isl_set_fix_val(cond
, isl_dim_set
, 0, limit
);
2827 cw
= !isl_set_is_empty(test
);
2833 /* Given a one-dimensional space, construct the following affine expression
2836 * { [v] -> [v mod 2^width] }
2838 * where width is the number of bits used to represent the values
2839 * of the unsigned variable "iv".
2841 static __isl_give isl_aff
*compute_wrapping(__isl_take isl_space
*dim
,
2848 ctx
= isl_space_get_ctx(dim
);
2849 mod
= isl_val_int_from_ui(ctx
, get_type_size(iv
));
2850 mod
= isl_val_2exp(mod
);
2852 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(dim
));
2853 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_in
, 0, 1);
2854 aff
= isl_aff_mod_val(aff
, mod
);
2859 /* Project out the parameter "id" from "set".
2861 static __isl_give isl_set
*set_project_out_by_id(__isl_take isl_set
*set
,
2862 __isl_keep isl_id
*id
)
2866 pos
= isl_set_find_dim_by_id(set
, isl_dim_param
, id
);
2868 set
= isl_set_project_out(set
, isl_dim_param
, pos
, 1);
2873 /* Compute the set of parameters for which "set1" is a subset of "set2".
2875 * set1 is a subset of set2 if
2877 * forall i in set1 : i in set2
2881 * not exists i in set1 and i not in set2
2885 * not exists i in set1 \ set2
2887 static __isl_give isl_set
*enforce_subset(__isl_take isl_set
*set1
,
2888 __isl_take isl_set
*set2
)
2890 return isl_set_complement(isl_set_params(isl_set_subtract(set1
, set2
)));
2893 /* Compute the set of parameter values for which "cond" holds
2894 * on the next iteration for each element of "dom".
2896 * We first construct mapping { [i] -> [i + inc] }, apply that to "dom"
2897 * and then compute the set of parameters for which the result is a subset
2900 static __isl_give isl_set
*valid_on_next(__isl_take isl_set
*cond
,
2901 __isl_take isl_set
*dom
, __isl_take isl_val
*inc
)
2907 space
= isl_set_get_space(dom
);
2908 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(space
));
2909 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_in
, 0, 1);
2910 aff
= isl_aff_add_constant_val(aff
, inc
);
2911 next
= isl_map_from_basic_map(isl_basic_map_from_aff(aff
));
2913 dom
= isl_set_apply(dom
, next
);
2915 return enforce_subset(dom
, cond
);
2918 /* Does "id" refer to a nested access?
2920 static bool is_nested_parameter(__isl_keep isl_id
*id
)
2922 return id
&& isl_id_get_user(id
) && !isl_id_get_name(id
);
2925 /* Does parameter "pos" of "space" refer to a nested access?
2927 static bool is_nested_parameter(__isl_keep isl_space
*space
, int pos
)
2932 id
= isl_space_get_dim_id(space
, isl_dim_param
, pos
);
2933 nested
= is_nested_parameter(id
);
2939 /* Does "space" involve any parameters that refer to nested
2940 * accesses, i.e., parameters with no name?
2942 static bool has_nested(__isl_keep isl_space
*space
)
2946 nparam
= isl_space_dim(space
, isl_dim_param
);
2947 for (int i
= 0; i
< nparam
; ++i
)
2948 if (is_nested_parameter(space
, i
))
2954 /* Does "pa" involve any parameters that refer to nested
2955 * accesses, i.e., parameters with no name?
2957 static bool has_nested(__isl_keep isl_pw_aff
*pa
)
2962 space
= isl_pw_aff_get_space(pa
);
2963 nested
= has_nested(space
);
2964 isl_space_free(space
);
2969 /* Construct a pet_scop for a for statement.
2970 * The for loop is required to be of the form
2972 * for (i = init; condition; ++i)
2976 * for (i = init; condition; --i)
2978 * The initialization of the for loop should either be an assignment
2979 * to an integer variable, or a declaration of such a variable with
2982 * The condition is allowed to contain nested accesses, provided
2983 * they are not being written to inside the body of the loop.
2984 * Otherwise, or if the condition is otherwise non-affine, the for loop is
2985 * essentially treated as a while loop, with iteration domain
2986 * { [i] : i >= init }.
2988 * We extract a pet_scop for the body and then embed it in a loop with
2989 * iteration domain and schedule
2991 * { [i] : i >= init and condition' }
2996 * { [i] : i <= init and condition' }
2999 * Where condition' is equal to condition if the latter is
3000 * a simple upper [lower] bound and a condition that is extended
3001 * to apply to all previous iterations otherwise.
3003 * If the condition is non-affine, then we drop the condition from the
3004 * iteration domain and instead create a separate statement
3005 * for evaluating the condition. The body is then filtered to depend
3006 * on the result of the condition evaluating to true on all iterations
3007 * up to the current iteration, while the evaluation the condition itself
3008 * is filtered to depend on the result of the condition evaluating to true
3009 * on all previous iterations.
3010 * The context of the scop representing the body is dropped
3011 * because we don't know how many times the body will be executed,
3014 * If the stride of the loop is not 1, then "i >= init" is replaced by
3016 * (exists a: i = init + stride * a and a >= 0)
3018 * If the loop iterator i is unsigned, then wrapping may occur.
3019 * We therefore use a virtual iterator instead that does not wrap.
3020 * However, the condition in the code applies
3021 * to the wrapped value, so we need to change condition(i)
3022 * into condition([i % 2^width]). Similarly, we replace all accesses
3023 * to the original iterator by the wrapping of the virtual iterator.
3024 * Note that there may be no need to perform this final wrapping
3025 * if the loop condition (after wrapping) satisfies certain conditions.
3026 * However, the is_simple_bound condition is not enough since it doesn't
3027 * check if there even is an upper bound.
3029 * Wrapping on unsigned iterators can be avoided entirely if
3030 * loop condition is simple, the loop iterator is incremented
3031 * [decremented] by one and the last value before wrapping cannot
3032 * possibly satisfy the loop condition.
3034 * Before extracting a pet_scop from the body we remove all
3035 * assignments in assigned_value to variables that are assigned
3036 * somewhere in the body of the loop.
3038 * Valid parameters for a for loop are those for which the initial
3039 * value itself, the increment on each domain iteration and
3040 * the condition on both the initial value and
3041 * the result of incrementing the iterator for each iteration of the domain
3043 * If the loop condition is non-affine, then we only consider validity
3044 * of the initial value.
3046 * If the body contains any break, then we keep track of it in "skip"
3047 * (if the skip condition is affine) or it is handled in scop_add_break
3048 * (if the skip condition is not affine).
3049 * Note that the affine break condition needs to be considered with
3050 * respect to previous iterations in the virtual domain (if any).
3052 * If we were only able to extract part of the body, then simply
3055 struct pet_scop
*PetScan::extract_for(ForStmt
*stmt
)
3057 BinaryOperator
*ass
;
3065 isl_set
*cond
= NULL
;
3066 isl_set
*skip
= NULL
;
3067 isl_id
*id
, *id_test
= NULL
, *id_break_test
;
3068 struct pet_scop
*scop
, *scop_cond
= NULL
;
3069 assigned_value_cache
cache(assigned_value
);
3076 bool has_affine_break
;
3078 isl_aff
*wrap
= NULL
;
3079 isl_pw_aff
*pa
, *pa_inc
, *init_val
;
3080 isl_set
*valid_init
;
3081 isl_set
*valid_cond
;
3082 isl_set
*valid_cond_init
;
3083 isl_set
*valid_cond_next
;
3087 if (!stmt
->getInit() && !stmt
->getCond() && !stmt
->getInc())
3088 return extract_infinite_for(stmt
);
3090 init
= stmt
->getInit();
3095 if ((ass
= initialization_assignment(init
)) != NULL
) {
3096 iv
= extract_induction_variable(ass
);
3099 lhs
= ass
->getLHS();
3100 rhs
= ass
->getRHS();
3101 } else if ((decl
= initialization_declaration(init
)) != NULL
) {
3102 VarDecl
*var
= extract_induction_variable(init
, decl
);
3106 rhs
= var
->getInit();
3107 lhs
= create_DeclRefExpr(var
);
3109 unsupported(stmt
->getInit());
3113 assigned_value
.erase(iv
);
3114 clear_assignments
clear(assigned_value
);
3115 clear
.TraverseStmt(stmt
->getBody());
3117 was_assigned
= assigned_value
.find(iv
) != assigned_value
.end();
3118 clear_assignment(assigned_value
, iv
);
3119 init_val
= extract_affine(rhs
);
3121 assigned_value
.erase(iv
);
3125 pa_inc
= extract_increment(stmt
, iv
);
3127 isl_pw_aff_free(init_val
);
3132 if (isl_pw_aff_n_piece(pa_inc
) != 1 ||
3133 isl_pw_aff_foreach_piece(pa_inc
, &extract_cst
, &inc
) < 0) {
3134 isl_pw_aff_free(init_val
);
3135 isl_pw_aff_free(pa_inc
);
3136 unsupported(stmt
->getInc());
3141 pa
= try_extract_nested_condition(stmt
->getCond());
3142 if (allow_nested
&& (!pa
|| has_nested(pa
)))
3145 scop
= extract(stmt
->getBody());
3147 isl_pw_aff_free(init_val
);
3148 isl_pw_aff_free(pa_inc
);
3149 isl_pw_aff_free(pa
);
3154 valid_inc
= isl_pw_aff_domain(pa_inc
);
3156 is_unsigned
= iv
->getType()->isUnsignedIntegerType();
3158 id
= isl_id_alloc(ctx
, iv
->getName().str().c_str(), iv
);
3160 has_affine_break
= scop
&&
3161 pet_scop_has_affine_skip(scop
, pet_skip_later
);
3162 if (has_affine_break
)
3163 skip
= pet_scop_get_affine_skip_domain(scop
, pet_skip_later
);
3164 has_var_break
= scop
&& pet_scop_has_var_skip(scop
, pet_skip_later
);
3166 id_break_test
= pet_scop_get_skip_id(scop
, pet_skip_later
);
3168 if (pa
&& !is_nested_allowed(pa
, scop
)) {
3169 isl_pw_aff_free(pa
);
3173 if (!allow_nested
&& !pa
)
3174 pa
= try_extract_affine_condition(stmt
->getCond());
3175 valid_cond
= isl_pw_aff_domain(isl_pw_aff_copy(pa
));
3176 cond
= isl_pw_aff_non_zero_set(pa
);
3177 if (allow_nested
&& !cond
) {
3178 isl_multi_pw_aff
*test_index
;
3179 int save_n_stmt
= n_stmt
;
3180 test_index
= create_test_index(ctx
, n_test
++);
3182 scop_cond
= extract_non_affine_condition(stmt
->getCond(),
3183 n_stmt
++, isl_multi_pw_aff_copy(test_index
));
3184 n_stmt
= save_n_stmt
;
3185 scop_cond
= scop_add_array(scop_cond
, test_index
, ast_context
);
3186 id_test
= isl_multi_pw_aff_get_tuple_id(test_index
,
3188 isl_multi_pw_aff_free(test_index
);
3189 scop_cond
= pet_scop_prefix(scop_cond
, 0);
3190 scop
= pet_scop_reset_context(scop
);
3191 scop
= pet_scop_prefix(scop
, 1);
3192 cond
= isl_set_universe(isl_space_set_alloc(ctx
, 0, 0));
3195 cond
= embed(cond
, isl_id_copy(id
));
3196 skip
= embed(skip
, isl_id_copy(id
));
3197 valid_cond
= isl_set_coalesce(valid_cond
);
3198 valid_cond
= embed(valid_cond
, isl_id_copy(id
));
3199 valid_inc
= embed(valid_inc
, isl_id_copy(id
));
3200 is_one
= isl_val_is_one(inc
) || isl_val_is_negone(inc
);
3201 is_virtual
= is_unsigned
&& (!is_one
|| can_wrap(cond
, iv
, inc
));
3203 valid_cond_init
= enforce_subset(
3204 isl_set_from_pw_aff(isl_pw_aff_copy(init_val
)),
3205 isl_set_copy(valid_cond
));
3206 if (is_one
&& !is_virtual
) {
3207 isl_pw_aff_free(init_val
);
3208 pa
= extract_comparison(isl_val_is_pos(inc
) ? BO_GE
: BO_LE
,
3210 valid_init
= isl_pw_aff_domain(isl_pw_aff_copy(pa
));
3211 valid_init
= set_project_out_by_id(valid_init
, id
);
3212 domain
= isl_pw_aff_non_zero_set(pa
);
3214 valid_init
= isl_pw_aff_domain(isl_pw_aff_copy(init_val
));
3215 domain
= strided_domain(isl_id_copy(id
), init_val
,
3219 domain
= embed(domain
, isl_id_copy(id
));
3222 wrap
= compute_wrapping(isl_set_get_space(cond
), iv
);
3223 rev_wrap
= isl_map_from_aff(isl_aff_copy(wrap
));
3224 rev_wrap
= isl_map_reverse(rev_wrap
);
3225 cond
= isl_set_apply(cond
, isl_map_copy(rev_wrap
));
3226 skip
= isl_set_apply(skip
, isl_map_copy(rev_wrap
));
3227 valid_cond
= isl_set_apply(valid_cond
, isl_map_copy(rev_wrap
));
3228 valid_inc
= isl_set_apply(valid_inc
, rev_wrap
);
3230 is_simple
= is_simple_bound(cond
, inc
);
3232 cond
= isl_set_gist(cond
, isl_set_copy(domain
));
3233 is_simple
= is_simple_bound(cond
, inc
);
3236 cond
= valid_for_each_iteration(cond
,
3237 isl_set_copy(domain
), isl_val_copy(inc
));
3238 domain
= isl_set_intersect(domain
, cond
);
3239 if (has_affine_break
) {
3240 skip
= isl_set_intersect(skip
, isl_set_copy(domain
));
3241 skip
= after(skip
, isl_val_sgn(inc
));
3242 domain
= isl_set_subtract(domain
, skip
);
3244 domain
= isl_set_set_dim_id(domain
, isl_dim_set
, 0, isl_id_copy(id
));
3245 space
= isl_space_from_domain(isl_set_get_space(domain
));
3246 space
= isl_space_add_dims(space
, isl_dim_out
, 1);
3247 sched
= isl_map_universe(space
);
3248 if (isl_val_is_pos(inc
))
3249 sched
= isl_map_equate(sched
, isl_dim_in
, 0, isl_dim_out
, 0);
3251 sched
= isl_map_oppose(sched
, isl_dim_in
, 0, isl_dim_out
, 0);
3253 valid_cond_next
= valid_on_next(valid_cond
, isl_set_copy(domain
),
3255 valid_inc
= enforce_subset(isl_set_copy(domain
), valid_inc
);
3258 wrap
= identity_aff(domain
);
3260 scop_cond
= pet_scop_embed(scop_cond
, isl_set_copy(domain
),
3261 isl_map_copy(sched
), isl_aff_copy(wrap
), isl_id_copy(id
));
3262 scop
= pet_scop_embed(scop
, isl_set_copy(domain
), sched
, wrap
, id
);
3263 scop
= resolve_nested(scop
);
3265 scop
= scop_add_break(scop
, id_break_test
, isl_set_copy(domain
),
3268 scop
= scop_add_while(scop_cond
, scop
, id_test
, domain
,
3270 isl_set_free(valid_inc
);
3272 scop
= pet_scop_restrict_context(scop
, valid_inc
);
3273 scop
= pet_scop_restrict_context(scop
, valid_cond_next
);
3274 scop
= pet_scop_restrict_context(scop
, valid_cond_init
);
3275 isl_set_free(domain
);
3277 clear_assignment(assigned_value
, iv
);
3281 scop
= pet_scop_restrict_context(scop
, valid_init
);
3286 /* Try and construct a pet_scop corresponding to a compound statement.
3288 * "skip_declarations" is set if we should skip initial declarations
3289 * in the children of the compound statements. This then implies
3290 * that this sequence of children should not be treated as a block
3291 * since the initial statements may be skipped.
3293 struct pet_scop
*PetScan::extract(CompoundStmt
*stmt
, bool skip_declarations
)
3295 return extract(stmt
->children(), !skip_declarations
, skip_declarations
);
3298 /* Does parameter "pos" of "map" refer to a nested access?
3300 static bool is_nested_parameter(__isl_keep isl_map
*map
, int pos
)
3305 id
= isl_map_get_dim_id(map
, isl_dim_param
, pos
);
3306 nested
= is_nested_parameter(id
);
3312 /* How many parameters of "space" refer to nested accesses, i.e., have no name?
3314 static int n_nested_parameter(__isl_keep isl_space
*space
)
3319 nparam
= isl_space_dim(space
, isl_dim_param
);
3320 for (int i
= 0; i
< nparam
; ++i
)
3321 if (is_nested_parameter(space
, i
))
3327 /* How many parameters of "map" refer to nested accesses, i.e., have no name?
3329 static int n_nested_parameter(__isl_keep isl_map
*map
)
3334 space
= isl_map_get_space(map
);
3335 n
= n_nested_parameter(space
);
3336 isl_space_free(space
);
3341 /* For each nested access parameter in "space",
3342 * construct a corresponding pet_expr, place it in args and
3343 * record its position in "param2pos".
3344 * "n_arg" is the number of elements that are already in args.
3345 * The position recorded in "param2pos" takes this number into account.
3346 * If the pet_expr corresponding to a parameter is identical to
3347 * the pet_expr corresponding to an earlier parameter, then these two
3348 * parameters are made to refer to the same element in args.
3350 * Return the final number of elements in args or -1 if an error has occurred.
3352 int PetScan::extract_nested(__isl_keep isl_space
*space
,
3353 int n_arg
, struct pet_expr
**args
, std::map
<int,int> ¶m2pos
)
3357 nparam
= isl_space_dim(space
, isl_dim_param
);
3358 for (int i
= 0; i
< nparam
; ++i
) {
3360 isl_id
*id
= isl_space_get_dim_id(space
, isl_dim_param
, i
);
3363 if (!is_nested_parameter(id
)) {
3368 nested
= (Expr
*) isl_id_get_user(id
);
3369 args
[n_arg
] = extract_expr(nested
);
3374 for (j
= 0; j
< n_arg
; ++j
)
3375 if (pet_expr_is_equal(args
[j
], args
[n_arg
]))
3379 pet_expr_free(args
[n_arg
]);
3383 param2pos
[i
] = n_arg
++;
3389 /* For each nested access parameter in the access relations in "expr",
3390 * construct a corresponding pet_expr, place it in expr->args and
3391 * record its position in "param2pos".
3392 * n is the number of nested access parameters.
3394 struct pet_expr
*PetScan::extract_nested(struct pet_expr
*expr
, int n
,
3395 std::map
<int,int> ¶m2pos
)
3399 expr
->args
= isl_calloc_array(ctx
, struct pet_expr
*, n
);
3404 space
= isl_map_get_space(expr
->acc
.access
);
3405 n
= extract_nested(space
, 0, expr
->args
, param2pos
);
3406 isl_space_free(space
);
3414 pet_expr_free(expr
);
3418 /* Look for parameters in any access relation in "expr" that
3419 * refer to nested accesses. In particular, these are
3420 * parameters with no name.
3422 * If there are any such parameters, then the domain of the index
3423 * expression and the access relation, which is still [] at this point,
3424 * is replaced by [[] -> [t_1,...,t_n]], with n the number of these parameters
3425 * (after identifying identical nested accesses).
3427 * This transformation is performed in several steps.
3428 * We first extract the arguments in extract_nested.
3429 * param2pos maps the original parameter position to the position
3431 * Then we move these parameters to input dimension.
3432 * t2pos maps the positions of these temporary input dimensions
3433 * to the positions of the corresponding arguments.
3434 * Finally, we express there temporary dimensions in term of the domain
3435 * [[] -> [t_1,...,t_n]] and precompose index expression and access
3436 * relations with this function.
3438 struct pet_expr
*PetScan::resolve_nested(struct pet_expr
*expr
)
3443 isl_local_space
*ls
;
3446 std::map
<int,int> param2pos
;
3447 std::map
<int,int> t2pos
;
3452 for (int i
= 0; i
< expr
->n_arg
; ++i
) {
3453 expr
->args
[i
] = resolve_nested(expr
->args
[i
]);
3454 if (!expr
->args
[i
]) {
3455 pet_expr_free(expr
);
3460 if (expr
->type
!= pet_expr_access
)
3463 n
= n_nested_parameter(expr
->acc
.access
);
3467 expr
= extract_nested(expr
, n
, param2pos
);
3471 expr
= pet_expr_access_align_params(expr
);
3474 nparam
= isl_map_dim(expr
->acc
.access
, isl_dim_param
);
3477 for (int i
= nparam
- 1; i
>= 0; --i
) {
3478 isl_id
*id
= isl_map_get_dim_id(expr
->acc
.access
,
3480 if (!is_nested_parameter(id
)) {
3485 expr
->acc
.access
= isl_map_move_dims(expr
->acc
.access
,
3486 isl_dim_in
, n
, isl_dim_param
, i
, 1);
3487 expr
->acc
.index
= isl_multi_pw_aff_move_dims(expr
->acc
.index
,
3488 isl_dim_in
, n
, isl_dim_param
, i
, 1);
3489 t2pos
[n
] = param2pos
[i
];
3495 space
= isl_multi_pw_aff_get_space(expr
->acc
.index
);
3496 space
= isl_space_set_from_params(isl_space_params(space
));
3497 space
= isl_space_add_dims(space
, isl_dim_set
, expr
->n_arg
);
3498 space
= isl_space_wrap(isl_space_from_range(space
));
3499 ls
= isl_local_space_from_space(isl_space_copy(space
));
3500 space
= isl_space_from_domain(space
);
3501 space
= isl_space_add_dims(space
, isl_dim_out
, n
);
3502 ma
= isl_multi_aff_zero(space
);
3504 for (int i
= 0; i
< n
; ++i
) {
3505 aff
= isl_aff_var_on_domain(isl_local_space_copy(ls
),
3506 isl_dim_set
, t2pos
[i
]);
3507 ma
= isl_multi_aff_set_aff(ma
, i
, aff
);
3509 isl_local_space_free(ls
);
3511 expr
->acc
.access
= isl_map_preimage_domain_multi_aff(expr
->acc
.access
,
3512 isl_multi_aff_copy(ma
));
3513 expr
->acc
.index
= isl_multi_pw_aff_pullback_multi_aff(expr
->acc
.index
,
3519 /* Return the file offset of the expansion location of "Loc".
3521 static unsigned getExpansionOffset(SourceManager
&SM
, SourceLocation Loc
)
3523 return SM
.getFileOffset(SM
.getExpansionLoc(Loc
));
3526 #ifdef HAVE_FINDLOCATIONAFTERTOKEN
3528 /* Return a SourceLocation for the location after the first semicolon
3529 * after "loc". If Lexer::findLocationAfterToken is available, we simply
3530 * call it and also skip trailing spaces and newline.
3532 static SourceLocation
location_after_semi(SourceLocation loc
, SourceManager
&SM
,
3533 const LangOptions
&LO
)
3535 return Lexer::findLocationAfterToken(loc
, tok::semi
, SM
, LO
, true);
3540 /* Return a SourceLocation for the location after the first semicolon
3541 * after "loc". If Lexer::findLocationAfterToken is not available,
3542 * we look in the underlying character data for the first semicolon.
3544 static SourceLocation
location_after_semi(SourceLocation loc
, SourceManager
&SM
,
3545 const LangOptions
&LO
)
3548 const char *s
= SM
.getCharacterData(loc
);
3550 semi
= strchr(s
, ';');
3552 return SourceLocation();
3553 return loc
.getFileLocWithOffset(semi
+ 1 - s
);
3558 /* If the token at "loc" is the first token on the line, then return
3559 * a location referring to the start of the line.
3560 * Otherwise, return "loc".
3562 * This function is used to extend a scop to the start of the line
3563 * if the first token of the scop is also the first token on the line.
3565 * We look for the first token on the line. If its location is equal to "loc",
3566 * then the latter is the location of the first token on the line.
3568 static SourceLocation
move_to_start_of_line_if_first_token(SourceLocation loc
,
3569 SourceManager
&SM
, const LangOptions
&LO
)
3571 std::pair
<FileID
, unsigned> file_offset_pair
;
3572 llvm::StringRef file
;
3575 SourceLocation token_loc
, line_loc
;
3578 loc
= SM
.getExpansionLoc(loc
);
3579 col
= SM
.getExpansionColumnNumber(loc
);
3580 line_loc
= loc
.getLocWithOffset(1 - col
);
3581 file_offset_pair
= SM
.getDecomposedLoc(line_loc
);
3582 file
= SM
.getBufferData(file_offset_pair
.first
, NULL
);
3583 pos
= file
.data() + file_offset_pair
.second
;
3585 Lexer
lexer(SM
.getLocForStartOfFile(file_offset_pair
.first
), LO
,
3586 file
.begin(), pos
, file
.end());
3587 lexer
.LexFromRawLexer(tok
);
3588 token_loc
= tok
.getLocation();
3590 if (token_loc
== loc
)
3596 /* Convert a top-level pet_expr to a pet_scop with one statement.
3597 * This mainly involves resolving nested expression parameters
3598 * and setting the name of the iteration space.
3599 * The name is given by "label" if it is non-NULL. Otherwise,
3600 * it is of the form S_<n_stmt>.
3601 * start and end of the pet_scop are derived from those of "stmt".
3603 struct pet_scop
*PetScan::extract(Stmt
*stmt
, struct pet_expr
*expr
,
3604 __isl_take isl_id
*label
)
3606 struct pet_stmt
*ps
;
3607 struct pet_scop
*scop
;
3608 SourceLocation loc
= stmt
->getLocStart();
3609 SourceManager
&SM
= PP
.getSourceManager();
3610 const LangOptions
&LO
= PP
.getLangOpts();
3611 int line
= PP
.getSourceManager().getExpansionLineNumber(loc
);
3612 unsigned start
, end
;
3614 expr
= resolve_nested(expr
);
3615 ps
= pet_stmt_from_pet_expr(ctx
, line
, label
, n_stmt
++, expr
);
3616 scop
= pet_scop_from_pet_stmt(ctx
, ps
);
3618 loc
= move_to_start_of_line_if_first_token(loc
, SM
, LO
);
3619 start
= getExpansionOffset(SM
, loc
);
3620 loc
= stmt
->getLocEnd();
3621 loc
= location_after_semi(loc
, SM
, LO
);
3622 end
= getExpansionOffset(SM
, loc
);
3624 scop
= pet_scop_update_start_end(scop
, start
, end
);
3628 /* Check if we can extract an affine expression from "expr".
3629 * Return the expressions as an isl_pw_aff if we can and NULL otherwise.
3630 * We turn on autodetection so that we won't generate any warnings
3631 * and turn off nesting, so that we won't accept any non-affine constructs.
3633 __isl_give isl_pw_aff
*PetScan::try_extract_affine(Expr
*expr
)
3636 int save_autodetect
= options
->autodetect
;
3637 bool save_nesting
= nesting_enabled
;
3639 options
->autodetect
= 1;
3640 nesting_enabled
= false;
3642 pwaff
= extract_affine(expr
);
3644 options
->autodetect
= save_autodetect
;
3645 nesting_enabled
= save_nesting
;
3650 /* Check whether "expr" is an affine expression.
3652 bool PetScan::is_affine(Expr
*expr
)
3656 pwaff
= try_extract_affine(expr
);
3657 isl_pw_aff_free(pwaff
);
3659 return pwaff
!= NULL
;
3662 /* Check if we can extract an affine constraint from "expr".
3663 * Return the constraint as an isl_set if we can and NULL otherwise.
3664 * We turn on autodetection so that we won't generate any warnings
3665 * and turn off nesting, so that we won't accept any non-affine constructs.
3667 __isl_give isl_pw_aff
*PetScan::try_extract_affine_condition(Expr
*expr
)
3670 int save_autodetect
= options
->autodetect
;
3671 bool save_nesting
= nesting_enabled
;
3673 options
->autodetect
= 1;
3674 nesting_enabled
= false;
3676 cond
= extract_condition(expr
);
3678 options
->autodetect
= save_autodetect
;
3679 nesting_enabled
= save_nesting
;
3684 /* Check whether "expr" is an affine constraint.
3686 bool PetScan::is_affine_condition(Expr
*expr
)
3690 cond
= try_extract_affine_condition(expr
);
3691 isl_pw_aff_free(cond
);
3693 return cond
!= NULL
;
3696 /* Check if we can extract a condition from "expr".
3697 * Return the condition as an isl_pw_aff if we can and NULL otherwise.
3698 * If allow_nested is set, then the condition may involve parameters
3699 * corresponding to nested accesses.
3700 * We turn on autodetection so that we won't generate any warnings.
3702 __isl_give isl_pw_aff
*PetScan::try_extract_nested_condition(Expr
*expr
)
3705 int save_autodetect
= options
->autodetect
;
3706 bool save_nesting
= nesting_enabled
;
3708 options
->autodetect
= 1;
3709 nesting_enabled
= allow_nested
;
3710 cond
= extract_condition(expr
);
3712 options
->autodetect
= save_autodetect
;
3713 nesting_enabled
= save_nesting
;
3718 /* If the top-level expression of "stmt" is an assignment, then
3719 * return that assignment as a BinaryOperator.
3720 * Otherwise return NULL.
3722 static BinaryOperator
*top_assignment_or_null(Stmt
*stmt
)
3724 BinaryOperator
*ass
;
3728 if (stmt
->getStmtClass() != Stmt::BinaryOperatorClass
)
3731 ass
= cast
<BinaryOperator
>(stmt
);
3732 if(ass
->getOpcode() != BO_Assign
)
3738 /* Check if the given if statement is a conditional assignement
3739 * with a non-affine condition. If so, construct a pet_scop
3740 * corresponding to this conditional assignment. Otherwise return NULL.
3742 * In particular we check if "stmt" is of the form
3749 * where a is some array or scalar access.
3750 * The constructed pet_scop then corresponds to the expression
3752 * a = condition ? f(...) : g(...)
3754 * All access relations in f(...) are intersected with condition
3755 * while all access relation in g(...) are intersected with the complement.
3757 struct pet_scop
*PetScan::extract_conditional_assignment(IfStmt
*stmt
)
3759 BinaryOperator
*ass_then
, *ass_else
;
3760 isl_multi_pw_aff
*write_then
, *write_else
;
3761 isl_set
*cond
, *comp
;
3762 isl_multi_pw_aff
*index
;
3765 struct pet_expr
*pe_cond
, *pe_then
, *pe_else
, *pe
, *pe_write
;
3766 bool save_nesting
= nesting_enabled
;
3768 if (!options
->detect_conditional_assignment
)
3771 ass_then
= top_assignment_or_null(stmt
->getThen());
3772 ass_else
= top_assignment_or_null(stmt
->getElse());
3774 if (!ass_then
|| !ass_else
)
3777 if (is_affine_condition(stmt
->getCond()))
3780 write_then
= extract_index(ass_then
->getLHS());
3781 write_else
= extract_index(ass_else
->getLHS());
3783 equal
= isl_multi_pw_aff_plain_is_equal(write_then
, write_else
);
3784 isl_multi_pw_aff_free(write_else
);
3785 if (equal
< 0 || !equal
) {
3786 isl_multi_pw_aff_free(write_then
);
3790 nesting_enabled
= allow_nested
;
3791 pa
= extract_condition(stmt
->getCond());
3792 nesting_enabled
= save_nesting
;
3793 cond
= isl_pw_aff_non_zero_set(isl_pw_aff_copy(pa
));
3794 comp
= isl_pw_aff_zero_set(isl_pw_aff_copy(pa
));
3795 index
= isl_multi_pw_aff_from_range(isl_multi_pw_aff_from_pw_aff(pa
));
3797 pe_cond
= pet_expr_from_index(index
);
3799 pe_then
= extract_expr(ass_then
->getRHS());
3800 pe_then
= pet_expr_restrict(pe_then
, cond
);
3801 pe_else
= extract_expr(ass_else
->getRHS());
3802 pe_else
= pet_expr_restrict(pe_else
, comp
);
3804 pe
= pet_expr_new_ternary(ctx
, pe_cond
, pe_then
, pe_else
);
3805 pe_write
= pet_expr_from_index_and_depth(write_then
,
3806 extract_depth(write_then
));
3808 pe_write
->acc
.write
= 1;
3809 pe_write
->acc
.read
= 0;
3811 pe
= pet_expr_new_binary(ctx
, pet_op_assign
, pe_write
, pe
);
3812 return extract(stmt
, pe
);
3815 /* Create a pet_scop with a single statement with name S_<stmt_nr>,
3816 * evaluating "cond" and writing the result to a virtual scalar,
3817 * as expressed by "index".
3819 struct pet_scop
*PetScan::extract_non_affine_condition(Expr
*cond
, int stmt_nr
,
3820 __isl_take isl_multi_pw_aff
*index
)
3822 struct pet_expr
*expr
, *write
;
3823 struct pet_stmt
*ps
;
3824 struct pet_scop
*scop
;
3825 SourceLocation loc
= cond
->getLocStart();
3826 int line
= PP
.getSourceManager().getExpansionLineNumber(loc
);
3828 write
= pet_expr_from_index(index
);
3830 write
->acc
.write
= 1;
3831 write
->acc
.read
= 0;
3833 expr
= extract_expr(cond
);
3834 expr
= resolve_nested(expr
);
3835 expr
= pet_expr_new_binary(ctx
, pet_op_assign
, write
, expr
);
3836 ps
= pet_stmt_from_pet_expr(ctx
, line
, NULL
, stmt_nr
, expr
);
3837 scop
= pet_scop_from_pet_stmt(ctx
, ps
);
3838 scop
= resolve_nested(scop
);
3844 static struct pet_expr
*embed_access(struct pet_expr
*expr
, void *user
);
3847 /* Precompose the access relation and the index expression associated
3848 * to "expr" with the function pointed to by "user",
3849 * thereby embedding the access relation in the domain of this function.
3850 * The initial domain of the access relation and the index expression
3851 * is the zero-dimensional domain.
3853 static struct pet_expr
*embed_access(struct pet_expr
*expr
, void *user
)
3855 isl_multi_aff
*ma
= (isl_multi_aff
*) user
;
3857 expr
->acc
.access
= isl_map_preimage_domain_multi_aff(expr
->acc
.access
,
3858 isl_multi_aff_copy(ma
));
3859 expr
->acc
.index
= isl_multi_pw_aff_pullback_multi_aff(expr
->acc
.index
,
3860 isl_multi_aff_copy(ma
));
3861 if (!expr
->acc
.access
|| !expr
->acc
.index
)
3866 pet_expr_free(expr
);
3870 /* Precompose all access relations in "expr" with "ma", thereby
3871 * embedding them in the domain of "ma".
3873 static struct pet_expr
*embed(struct pet_expr
*expr
,
3874 __isl_keep isl_multi_aff
*ma
)
3876 return pet_expr_map_access(expr
, &embed_access
, ma
);
3879 /* How many parameters of "set" refer to nested accesses, i.e., have no name?
3881 static int n_nested_parameter(__isl_keep isl_set
*set
)
3886 space
= isl_set_get_space(set
);
3887 n
= n_nested_parameter(space
);
3888 isl_space_free(space
);
3893 /* Remove all parameters from "map" that refer to nested accesses.
3895 static __isl_give isl_map
*remove_nested_parameters(__isl_take isl_map
*map
)
3900 space
= isl_map_get_space(map
);
3901 nparam
= isl_space_dim(space
, isl_dim_param
);
3902 for (int i
= nparam
- 1; i
>= 0; --i
)
3903 if (is_nested_parameter(space
, i
))
3904 map
= isl_map_project_out(map
, isl_dim_param
, i
, 1);
3905 isl_space_free(space
);
3910 /* Remove all parameters from "mpa" that refer to nested accesses.
3912 static __isl_give isl_multi_pw_aff
*remove_nested_parameters(
3913 __isl_take isl_multi_pw_aff
*mpa
)
3918 space
= isl_multi_pw_aff_get_space(mpa
);
3919 nparam
= isl_space_dim(space
, isl_dim_param
);
3920 for (int i
= nparam
- 1; i
>= 0; --i
) {
3921 if (!is_nested_parameter(space
, i
))
3923 mpa
= isl_multi_pw_aff_drop_dims(mpa
, isl_dim_param
, i
, 1);
3925 isl_space_free(space
);
3930 /* Remove all parameters from the index expression and access relation of "expr"
3931 * that refer to nested accesses.
3933 static struct pet_expr
*remove_nested_parameters(struct pet_expr
*expr
)
3935 expr
->acc
.access
= remove_nested_parameters(expr
->acc
.access
);
3936 expr
->acc
.index
= remove_nested_parameters(expr
->acc
.index
);
3937 if (!expr
->acc
.access
|| !expr
->acc
.index
)
3942 pet_expr_free(expr
);
3947 static struct pet_expr
*expr_remove_nested_parameters(
3948 struct pet_expr
*expr
, void *user
);
3951 static struct pet_expr
*expr_remove_nested_parameters(
3952 struct pet_expr
*expr
, void *user
)
3954 return remove_nested_parameters(expr
);
3957 /* Remove all nested access parameters from the schedule and all
3958 * accesses of "stmt".
3959 * There is no need to remove them from the domain as these parameters
3960 * have already been removed from the domain when this function is called.
3962 static struct pet_stmt
*remove_nested_parameters(struct pet_stmt
*stmt
)
3966 stmt
->schedule
= remove_nested_parameters(stmt
->schedule
);
3967 stmt
->body
= pet_expr_map_access(stmt
->body
,
3968 &expr_remove_nested_parameters
, NULL
);
3969 if (!stmt
->schedule
|| !stmt
->body
)
3971 for (int i
= 0; i
< stmt
->n_arg
; ++i
) {
3972 stmt
->args
[i
] = pet_expr_map_access(stmt
->args
[i
],
3973 &expr_remove_nested_parameters
, NULL
);
3980 pet_stmt_free(stmt
);
3984 /* For each nested access parameter in the domain of "stmt",
3985 * construct a corresponding pet_expr, place it before the original
3986 * elements in stmt->args and record its position in "param2pos".
3987 * n is the number of nested access parameters.
3989 struct pet_stmt
*PetScan::extract_nested(struct pet_stmt
*stmt
, int n
,
3990 std::map
<int,int> ¶m2pos
)
3995 struct pet_expr
**args
;
3997 n_arg
= stmt
->n_arg
;
3998 args
= isl_calloc_array(ctx
, struct pet_expr
*, n
+ n_arg
);
4002 space
= isl_set_get_space(stmt
->domain
);
4003 n_arg
= extract_nested(space
, 0, args
, param2pos
);
4004 isl_space_free(space
);
4009 for (i
= 0; i
< stmt
->n_arg
; ++i
)
4010 args
[n_arg
+ i
] = stmt
->args
[i
];
4013 stmt
->n_arg
+= n_arg
;
4018 for (i
= 0; i
< n
; ++i
)
4019 pet_expr_free(args
[i
]);
4022 pet_stmt_free(stmt
);
4026 /* Check whether any of the arguments i of "stmt" starting at position "n"
4027 * is equal to one of the first "n" arguments j.
4028 * If so, combine the constraints on arguments i and j and remove
4031 static struct pet_stmt
*remove_duplicate_arguments(struct pet_stmt
*stmt
, int n
)
4040 if (n
== stmt
->n_arg
)
4043 map
= isl_set_unwrap(stmt
->domain
);
4045 for (i
= stmt
->n_arg
- 1; i
>= n
; --i
) {
4046 for (j
= 0; j
< n
; ++j
)
4047 if (pet_expr_is_equal(stmt
->args
[i
], stmt
->args
[j
]))
4052 map
= isl_map_equate(map
, isl_dim_out
, i
, isl_dim_out
, j
);
4053 map
= isl_map_project_out(map
, isl_dim_out
, i
, 1);
4055 pet_expr_free(stmt
->args
[i
]);
4056 for (j
= i
; j
+ 1 < stmt
->n_arg
; ++j
)
4057 stmt
->args
[j
] = stmt
->args
[j
+ 1];
4061 stmt
->domain
= isl_map_wrap(map
);
4066 pet_stmt_free(stmt
);
4070 /* Look for parameters in the iteration domain of "stmt" that
4071 * refer to nested accesses. In particular, these are
4072 * parameters with no name.
4074 * If there are any such parameters, then as many extra variables
4075 * (after identifying identical nested accesses) are inserted in the
4076 * range of the map wrapped inside the domain, before the original variables.
4077 * If the original domain is not a wrapped map, then a new wrapped
4078 * map is created with zero output dimensions.
4079 * The parameters are then equated to the corresponding output dimensions
4080 * and subsequently projected out, from the iteration domain,
4081 * the schedule and the access relations.
4082 * For each of the output dimensions, a corresponding argument
4083 * expression is inserted. Initially they are created with
4084 * a zero-dimensional domain, so they have to be embedded
4085 * in the current iteration domain.
4086 * param2pos maps the position of the parameter to the position
4087 * of the corresponding output dimension in the wrapped map.
4089 struct pet_stmt
*PetScan::resolve_nested(struct pet_stmt
*stmt
)
4097 std::map
<int,int> param2pos
;
4102 n
= n_nested_parameter(stmt
->domain
);
4106 n_arg
= stmt
->n_arg
;
4107 stmt
= extract_nested(stmt
, n
, param2pos
);
4111 n
= stmt
->n_arg
- n_arg
;
4112 nparam
= isl_set_dim(stmt
->domain
, isl_dim_param
);
4113 if (isl_set_is_wrapping(stmt
->domain
))
4114 map
= isl_set_unwrap(stmt
->domain
);
4116 map
= isl_map_from_domain(stmt
->domain
);
4117 map
= isl_map_insert_dims(map
, isl_dim_out
, 0, n
);
4119 for (int i
= nparam
- 1; i
>= 0; --i
) {
4122 if (!is_nested_parameter(map
, i
))
4125 id
= pet_expr_access_get_id(stmt
->args
[param2pos
[i
]]);
4126 map
= isl_map_set_dim_id(map
, isl_dim_out
, param2pos
[i
], id
);
4127 map
= isl_map_equate(map
, isl_dim_param
, i
, isl_dim_out
,
4129 map
= isl_map_project_out(map
, isl_dim_param
, i
, 1);
4132 stmt
->domain
= isl_map_wrap(map
);
4134 space
= isl_space_unwrap(isl_set_get_space(stmt
->domain
));
4135 space
= isl_space_from_domain(isl_space_domain(space
));
4136 ma
= isl_multi_aff_zero(space
);
4137 for (int pos
= 0; pos
< n
; ++pos
)
4138 stmt
->args
[pos
] = embed(stmt
->args
[pos
], ma
);
4139 isl_multi_aff_free(ma
);
4141 stmt
= remove_nested_parameters(stmt
);
4142 stmt
= remove_duplicate_arguments(stmt
, n
);
4147 /* For each statement in "scop", move the parameters that correspond
4148 * to nested access into the ranges of the domains and create
4149 * corresponding argument expressions.
4151 struct pet_scop
*PetScan::resolve_nested(struct pet_scop
*scop
)
4156 for (int i
= 0; i
< scop
->n_stmt
; ++i
) {
4157 scop
->stmts
[i
] = resolve_nested(scop
->stmts
[i
]);
4158 if (!scop
->stmts
[i
])
4164 pet_scop_free(scop
);
4168 /* Given an access expression "expr", is the variable accessed by
4169 * "expr" assigned anywhere inside "scop"?
4171 static bool is_assigned(pet_expr
*expr
, pet_scop
*scop
)
4173 bool assigned
= false;
4176 id
= pet_expr_access_get_id(expr
);
4177 assigned
= pet_scop_writes(scop
, id
);
4183 /* Are all nested access parameters in "pa" allowed given "scop".
4184 * In particular, is none of them written by anywhere inside "scop".
4186 * If "scop" has any skip conditions, then no nested access parameters
4187 * are allowed. In particular, if there is any nested access in a guard
4188 * for a piece of code containing a "continue", then we want to introduce
4189 * a separate statement for evaluating this guard so that we can express
4190 * that the result is false for all previous iterations.
4192 bool PetScan::is_nested_allowed(__isl_keep isl_pw_aff
*pa
, pet_scop
*scop
)
4199 nparam
= isl_pw_aff_dim(pa
, isl_dim_param
);
4200 for (int i
= 0; i
< nparam
; ++i
) {
4202 isl_id
*id
= isl_pw_aff_get_dim_id(pa
, isl_dim_param
, i
);
4206 if (!is_nested_parameter(id
)) {
4211 if (pet_scop_has_skip(scop
, pet_skip_now
)) {
4216 nested
= (Expr
*) isl_id_get_user(id
);
4217 expr
= extract_expr(nested
);
4218 allowed
= expr
&& expr
->type
== pet_expr_access
&&
4219 !is_assigned(expr
, scop
);
4221 pet_expr_free(expr
);
4231 /* Do we need to construct a skip condition of the given type
4232 * on an if statement, given that the if condition is non-affine?
4234 * pet_scop_filter_skip can only handle the case where the if condition
4235 * holds (the then branch) and the skip condition is universal.
4236 * In any other case, we need to construct a new skip condition.
4238 static bool need_skip(struct pet_scop
*scop_then
, struct pet_scop
*scop_else
,
4239 bool have_else
, enum pet_skip type
)
4241 if (have_else
&& scop_else
&& pet_scop_has_skip(scop_else
, type
))
4243 if (scop_then
&& pet_scop_has_skip(scop_then
, type
) &&
4244 !pet_scop_has_universal_skip(scop_then
, type
))
4249 /* Do we need to construct a skip condition of the given type
4250 * on an if statement, given that the if condition is affine?
4252 * There is no need to construct a new skip condition if all
4253 * the skip conditions are affine.
4255 static bool need_skip_aff(struct pet_scop
*scop_then
,
4256 struct pet_scop
*scop_else
, bool have_else
, enum pet_skip type
)
4258 if (scop_then
&& pet_scop_has_var_skip(scop_then
, type
))
4260 if (have_else
&& scop_else
&& pet_scop_has_var_skip(scop_else
, type
))
4265 /* Do we need to construct a skip condition of the given type
4266 * on an if statement?
4268 static bool need_skip(struct pet_scop
*scop_then
, struct pet_scop
*scop_else
,
4269 bool have_else
, enum pet_skip type
, bool affine
)
4272 return need_skip_aff(scop_then
, scop_else
, have_else
, type
);
4274 return need_skip(scop_then
, scop_else
, have_else
, type
);
4277 /* Construct an affine expression pet_expr that evaluates
4278 * to the constant "val".
4280 static struct pet_expr
*universally(isl_ctx
*ctx
, int val
)
4282 isl_local_space
*ls
;
4284 isl_multi_pw_aff
*mpa
;
4286 ls
= isl_local_space_from_space(isl_space_set_alloc(ctx
, 0, 0));
4287 aff
= isl_aff_val_on_domain(ls
, isl_val_int_from_si(ctx
, val
));
4288 mpa
= isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff
));
4290 return pet_expr_from_index(mpa
);
4293 /* Construct an affine expression pet_expr that evaluates
4294 * to the constant 1.
4296 static struct pet_expr
*universally_true(isl_ctx
*ctx
)
4298 return universally(ctx
, 1);
4301 /* Construct an affine expression pet_expr that evaluates
4302 * to the constant 0.
4304 static struct pet_expr
*universally_false(isl_ctx
*ctx
)
4306 return universally(ctx
, 0);
4309 /* Given an index expression "test_index" for the if condition,
4310 * an index expression "skip_index" for the skip condition and
4311 * scops for the then and else branches, construct a scop for
4312 * computing "skip_index".
4314 * The computed scop contains a single statement that essentially does
4316 * skip_index = test_cond ? skip_cond_then : skip_cond_else
4318 * If the skip conditions of the then and/or else branch are not affine,
4319 * then they need to be filtered by test_index.
4320 * If they are missing, then this means the skip condition is false.
4322 * Since we are constructing a skip condition for the if statement,
4323 * the skip conditions on the then and else branches are removed.
4325 static struct pet_scop
*extract_skip(PetScan
*scan
,
4326 __isl_take isl_multi_pw_aff
*test_index
,
4327 __isl_take isl_multi_pw_aff
*skip_index
,
4328 struct pet_scop
*scop_then
, struct pet_scop
*scop_else
, bool have_else
,
4331 struct pet_expr
*expr_then
, *expr_else
, *expr
, *expr_skip
;
4332 struct pet_stmt
*stmt
;
4333 struct pet_scop
*scop
;
4334 isl_ctx
*ctx
= scan
->ctx
;
4338 if (have_else
&& !scop_else
)
4341 if (pet_scop_has_skip(scop_then
, type
)) {
4342 expr_then
= pet_scop_get_skip_expr(scop_then
, type
);
4343 pet_scop_reset_skip(scop_then
, type
);
4344 if (!pet_expr_is_affine(expr_then
))
4345 expr_then
= pet_expr_filter(expr_then
,
4346 isl_multi_pw_aff_copy(test_index
), 1);
4348 expr_then
= universally_false(ctx
);
4350 if (have_else
&& pet_scop_has_skip(scop_else
, type
)) {
4351 expr_else
= pet_scop_get_skip_expr(scop_else
, type
);
4352 pet_scop_reset_skip(scop_else
, type
);
4353 if (!pet_expr_is_affine(expr_else
))
4354 expr_else
= pet_expr_filter(expr_else
,
4355 isl_multi_pw_aff_copy(test_index
), 0);
4357 expr_else
= universally_false(ctx
);
4359 expr
= pet_expr_from_index(test_index
);
4360 expr
= pet_expr_new_ternary(ctx
, expr
, expr_then
, expr_else
);
4361 expr_skip
= pet_expr_from_index(isl_multi_pw_aff_copy(skip_index
));
4363 expr_skip
->acc
.write
= 1;
4364 expr_skip
->acc
.read
= 0;
4366 expr
= pet_expr_new_binary(ctx
, pet_op_assign
, expr_skip
, expr
);
4367 stmt
= pet_stmt_from_pet_expr(ctx
, -1, NULL
, scan
->n_stmt
++, expr
);
4369 scop
= pet_scop_from_pet_stmt(ctx
, stmt
);
4370 scop
= scop_add_array(scop
, skip_index
, scan
->ast_context
);
4371 isl_multi_pw_aff_free(skip_index
);
4375 isl_multi_pw_aff_free(test_index
);
4376 isl_multi_pw_aff_free(skip_index
);
4380 /* Is scop's skip_now condition equal to its skip_later condition?
4381 * In particular, this means that it either has no skip_now condition
4382 * or both a skip_now and a skip_later condition (that are equal to each other).
4384 static bool skip_equals_skip_later(struct pet_scop
*scop
)
4386 int has_skip_now
, has_skip_later
;
4388 isl_multi_pw_aff
*skip_now
, *skip_later
;
4392 has_skip_now
= pet_scop_has_skip(scop
, pet_skip_now
);
4393 has_skip_later
= pet_scop_has_skip(scop
, pet_skip_later
);
4394 if (has_skip_now
!= has_skip_later
)
4399 skip_now
= pet_scop_get_skip(scop
, pet_skip_now
);
4400 skip_later
= pet_scop_get_skip(scop
, pet_skip_later
);
4401 equal
= isl_multi_pw_aff_is_equal(skip_now
, skip_later
);
4402 isl_multi_pw_aff_free(skip_now
);
4403 isl_multi_pw_aff_free(skip_later
);
4408 /* Drop the skip conditions of type pet_skip_later from scop1 and scop2.
4410 static void drop_skip_later(struct pet_scop
*scop1
, struct pet_scop
*scop2
)
4412 pet_scop_reset_skip(scop1
, pet_skip_later
);
4413 pet_scop_reset_skip(scop2
, pet_skip_later
);
4416 /* Structure that handles the construction of skip conditions.
4418 * scop_then and scop_else represent the then and else branches
4419 * of the if statement
4421 * skip[type] is true if we need to construct a skip condition of that type
4422 * equal is set if the skip conditions of types pet_skip_now and pet_skip_later
4423 * are equal to each other
4424 * index[type] is an index expression from a zero-dimension domain
4425 * to the virtual array representing the skip condition
4426 * scop[type] is a scop for computing the skip condition
4428 struct pet_skip_info
{
4433 isl_multi_pw_aff
*index
[2];
4434 struct pet_scop
*scop
[2];
4436 pet_skip_info(isl_ctx
*ctx
) : ctx(ctx
) {}
4438 operator bool() { return skip
[pet_skip_now
] || skip
[pet_skip_later
]; }
4441 /* Structure that handles the construction of skip conditions on if statements.
4443 * scop_then and scop_else represent the then and else branches
4444 * of the if statement
4446 struct pet_skip_info_if
: public pet_skip_info
{
4447 struct pet_scop
*scop_then
, *scop_else
;
4450 pet_skip_info_if(isl_ctx
*ctx
, struct pet_scop
*scop_then
,
4451 struct pet_scop
*scop_else
, bool have_else
, bool affine
);
4452 void extract(PetScan
*scan
, __isl_keep isl_multi_pw_aff
*index
,
4453 enum pet_skip type
);
4454 void extract(PetScan
*scan
, __isl_keep isl_multi_pw_aff
*index
);
4455 void extract(PetScan
*scan
, __isl_keep isl_pw_aff
*cond
);
4456 struct pet_scop
*add(struct pet_scop
*scop
, enum pet_skip type
,
4458 struct pet_scop
*add(struct pet_scop
*scop
, int offset
);
4461 /* Initialize a pet_skip_info_if structure based on the then and else branches
4462 * and based on whether the if condition is affine or not.
4464 pet_skip_info_if::pet_skip_info_if(isl_ctx
*ctx
, struct pet_scop
*scop_then
,
4465 struct pet_scop
*scop_else
, bool have_else
, bool affine
) :
4466 pet_skip_info(ctx
), scop_then(scop_then
), scop_else(scop_else
),
4467 have_else(have_else
)
4469 skip
[pet_skip_now
] =
4470 need_skip(scop_then
, scop_else
, have_else
, pet_skip_now
, affine
);
4471 equal
= skip
[pet_skip_now
] && skip_equals_skip_later(scop_then
) &&
4472 (!have_else
|| skip_equals_skip_later(scop_else
));
4473 skip
[pet_skip_later
] = skip
[pet_skip_now
] && !equal
&&
4474 need_skip(scop_then
, scop_else
, have_else
, pet_skip_later
, affine
);
4477 /* If we need to construct a skip condition of the given type,
4480 * "mpa" represents the if condition.
4482 void pet_skip_info_if::extract(PetScan
*scan
,
4483 __isl_keep isl_multi_pw_aff
*mpa
, enum pet_skip type
)
4490 ctx
= isl_multi_pw_aff_get_ctx(mpa
);
4491 index
[type
] = create_test_index(ctx
, scan
->n_test
++);
4492 scop
[type
] = extract_skip(scan
, isl_multi_pw_aff_copy(mpa
),
4493 isl_multi_pw_aff_copy(index
[type
]),
4494 scop_then
, scop_else
, have_else
, type
);
4497 /* Construct the required skip conditions, given the if condition "index".
4499 void pet_skip_info_if::extract(PetScan
*scan
,
4500 __isl_keep isl_multi_pw_aff
*index
)
4502 extract(scan
, index
, pet_skip_now
);
4503 extract(scan
, index
, pet_skip_later
);
4505 drop_skip_later(scop_then
, scop_else
);
4508 /* Construct the required skip conditions, given the if condition "cond".
4510 void pet_skip_info_if::extract(PetScan
*scan
, __isl_keep isl_pw_aff
*cond
)
4512 isl_multi_pw_aff
*test
;
4514 if (!skip
[pet_skip_now
] && !skip
[pet_skip_later
])
4517 test
= isl_multi_pw_aff_from_pw_aff(isl_pw_aff_copy(cond
));
4518 test
= isl_multi_pw_aff_from_range(test
);
4519 extract(scan
, test
);
4520 isl_multi_pw_aff_free(test
);
4523 /* Add the computed skip condition of the give type to "main" and
4524 * add the scop for computing the condition at the given offset.
4526 * If equal is set, then we only computed a skip condition for pet_skip_now,
4527 * but we also need to set it as main's pet_skip_later.
4529 struct pet_scop
*pet_skip_info_if::add(struct pet_scop
*main
,
4530 enum pet_skip type
, int offset
)
4535 scop
[type
] = pet_scop_prefix(scop
[type
], offset
);
4536 main
= pet_scop_add_par(ctx
, main
, scop
[type
]);
4540 main
= pet_scop_set_skip(main
, pet_skip_later
,
4541 isl_multi_pw_aff_copy(index
[type
]));
4543 main
= pet_scop_set_skip(main
, type
, index
[type
]);
4549 /* Add the computed skip conditions to "main" and
4550 * add the scops for computing the conditions at the given offset.
4552 struct pet_scop
*pet_skip_info_if::add(struct pet_scop
*scop
, int offset
)
4554 scop
= add(scop
, pet_skip_now
, offset
);
4555 scop
= add(scop
, pet_skip_later
, offset
);
4560 /* Construct a pet_scop for a non-affine if statement.
4562 * We create a separate statement that writes the result
4563 * of the non-affine condition to a virtual scalar.
4564 * A constraint requiring the value of this virtual scalar to be one
4565 * is added to the iteration domains of the then branch.
4566 * Similarly, a constraint requiring the value of this virtual scalar
4567 * to be zero is added to the iteration domains of the else branch, if any.
4568 * We adjust the schedules to ensure that the virtual scalar is written
4569 * before it is read.
4571 * If there are any breaks or continues in the then and/or else
4572 * branches, then we may have to compute a new skip condition.
4573 * This is handled using a pet_skip_info_if object.
4574 * On initialization, the object checks if skip conditions need
4575 * to be computed. If so, it does so in "extract" and adds them in "add".
4577 struct pet_scop
*PetScan::extract_non_affine_if(Expr
*cond
,
4578 struct pet_scop
*scop_then
, struct pet_scop
*scop_else
,
4579 bool have_else
, int stmt_id
)
4581 struct pet_scop
*scop
;
4582 isl_multi_pw_aff
*test_index
;
4583 int save_n_stmt
= n_stmt
;
4585 test_index
= create_test_index(ctx
, n_test
++);
4587 scop
= extract_non_affine_condition(cond
, n_stmt
++,
4588 isl_multi_pw_aff_copy(test_index
));
4589 n_stmt
= save_n_stmt
;
4590 scop
= scop_add_array(scop
, test_index
, ast_context
);
4592 pet_skip_info_if
skip(ctx
, scop_then
, scop_else
, have_else
, false);
4593 skip
.extract(this, test_index
);
4595 scop
= pet_scop_prefix(scop
, 0);
4596 scop_then
= pet_scop_prefix(scop_then
, 1);
4597 scop_then
= pet_scop_filter(scop_then
,
4598 isl_multi_pw_aff_copy(test_index
), 1);
4600 scop_else
= pet_scop_prefix(scop_else
, 1);
4601 scop_else
= pet_scop_filter(scop_else
, test_index
, 0);
4602 scop_then
= pet_scop_add_par(ctx
, scop_then
, scop_else
);
4604 isl_multi_pw_aff_free(test_index
);
4606 scop
= pet_scop_add_seq(ctx
, scop
, scop_then
);
4608 scop
= skip
.add(scop
, 2);
4613 /* Construct a pet_scop for an if statement.
4615 * If the condition fits the pattern of a conditional assignment,
4616 * then it is handled by extract_conditional_assignment.
4617 * Otherwise, we do the following.
4619 * If the condition is affine, then the condition is added
4620 * to the iteration domains of the then branch, while the
4621 * opposite of the condition in added to the iteration domains
4622 * of the else branch, if any.
4623 * We allow the condition to be dynamic, i.e., to refer to
4624 * scalars or array elements that may be written to outside
4625 * of the given if statement. These nested accesses are then represented
4626 * as output dimensions in the wrapping iteration domain.
4627 * If it also written _inside_ the then or else branch, then
4628 * we treat the condition as non-affine.
4629 * As explained in extract_non_affine_if, this will introduce
4630 * an extra statement.
4631 * For aesthetic reasons, we want this statement to have a statement
4632 * number that is lower than those of the then and else branches.
4633 * In order to evaluate if will need such a statement, however, we
4634 * first construct scops for the then and else branches.
4635 * We therefore reserve a statement number if we might have to
4636 * introduce such an extra statement.
4638 * If the condition is not affine, then the scop is created in
4639 * extract_non_affine_if.
4641 * If there are any breaks or continues in the then and/or else
4642 * branches, then we may have to compute a new skip condition.
4643 * This is handled using a pet_skip_info_if object.
4644 * On initialization, the object checks if skip conditions need
4645 * to be computed. If so, it does so in "extract" and adds them in "add".
4647 struct pet_scop
*PetScan::extract(IfStmt
*stmt
)
4649 struct pet_scop
*scop_then
, *scop_else
= NULL
, *scop
;
4655 clear_assignments
clear(assigned_value
);
4656 clear
.TraverseStmt(stmt
->getThen());
4657 if (stmt
->getElse())
4658 clear
.TraverseStmt(stmt
->getElse());
4660 scop
= extract_conditional_assignment(stmt
);
4664 cond
= try_extract_nested_condition(stmt
->getCond());
4665 if (allow_nested
&& (!cond
|| has_nested(cond
)))
4669 assigned_value_cache
cache(assigned_value
);
4670 scop_then
= extract(stmt
->getThen());
4673 if (stmt
->getElse()) {
4674 assigned_value_cache
cache(assigned_value
);
4675 scop_else
= extract(stmt
->getElse());
4676 if (options
->autodetect
) {
4677 if (scop_then
&& !scop_else
) {
4679 isl_pw_aff_free(cond
);
4682 if (!scop_then
&& scop_else
) {
4684 isl_pw_aff_free(cond
);
4691 (!is_nested_allowed(cond
, scop_then
) ||
4692 (stmt
->getElse() && !is_nested_allowed(cond
, scop_else
)))) {
4693 isl_pw_aff_free(cond
);
4696 if (allow_nested
&& !cond
)
4697 return extract_non_affine_if(stmt
->getCond(), scop_then
,
4698 scop_else
, stmt
->getElse(), stmt_id
);
4701 cond
= extract_condition(stmt
->getCond());
4703 pet_skip_info_if
skip(ctx
, scop_then
, scop_else
, stmt
->getElse(), true);
4704 skip
.extract(this, cond
);
4706 valid
= isl_pw_aff_domain(isl_pw_aff_copy(cond
));
4707 set
= isl_pw_aff_non_zero_set(cond
);
4708 scop
= pet_scop_restrict(scop_then
, isl_set_copy(set
));
4710 if (stmt
->getElse()) {
4711 set
= isl_set_subtract(isl_set_copy(valid
), set
);
4712 scop_else
= pet_scop_restrict(scop_else
, set
);
4713 scop
= pet_scop_add_par(ctx
, scop
, scop_else
);
4716 scop
= resolve_nested(scop
);
4717 scop
= pet_scop_restrict_context(scop
, valid
);
4720 scop
= pet_scop_prefix(scop
, 0);
4721 scop
= skip
.add(scop
, 1);
4726 /* Try and construct a pet_scop for a label statement.
4727 * We currently only allow labels on expression statements.
4729 struct pet_scop
*PetScan::extract(LabelStmt
*stmt
)
4734 sub
= stmt
->getSubStmt();
4735 if (!isa
<Expr
>(sub
)) {
4740 label
= isl_id_alloc(ctx
, stmt
->getName(), NULL
);
4742 return extract(sub
, extract_expr(cast
<Expr
>(sub
)), label
);
4745 /* Return a one-dimensional multi piecewise affine expression that is equal
4746 * to the constant 1 and is defined over a zero-dimensional domain.
4748 static __isl_give isl_multi_pw_aff
*one_mpa(isl_ctx
*ctx
)
4751 isl_local_space
*ls
;
4754 space
= isl_space_set_alloc(ctx
, 0, 0);
4755 ls
= isl_local_space_from_space(space
);
4756 aff
= isl_aff_zero_on_domain(ls
);
4757 aff
= isl_aff_set_constant_si(aff
, 1);
4759 return isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff
));
4762 /* Construct a pet_scop for a continue statement.
4764 * We simply create an empty scop with a universal pet_skip_now
4765 * skip condition. This skip condition will then be taken into
4766 * account by the enclosing loop construct, possibly after
4767 * being incorporated into outer skip conditions.
4769 struct pet_scop
*PetScan::extract(ContinueStmt
*stmt
)
4773 scop
= pet_scop_empty(ctx
);
4777 scop
= pet_scop_set_skip(scop
, pet_skip_now
, one_mpa(ctx
));
4782 /* Construct a pet_scop for a break statement.
4784 * We simply create an empty scop with both a universal pet_skip_now
4785 * skip condition and a universal pet_skip_later skip condition.
4786 * These skip conditions will then be taken into
4787 * account by the enclosing loop construct, possibly after
4788 * being incorporated into outer skip conditions.
4790 struct pet_scop
*PetScan::extract(BreakStmt
*stmt
)
4793 isl_multi_pw_aff
*skip
;
4795 scop
= pet_scop_empty(ctx
);
4799 skip
= one_mpa(ctx
);
4800 scop
= pet_scop_set_skip(scop
, pet_skip_now
,
4801 isl_multi_pw_aff_copy(skip
));
4802 scop
= pet_scop_set_skip(scop
, pet_skip_later
, skip
);
4807 /* Try and construct a pet_scop corresponding to "stmt".
4809 * If "stmt" is a compound statement, then "skip_declarations"
4810 * indicates whether we should skip initial declarations in the
4811 * compound statement.
4813 * If the constructed pet_scop is not a (possibly) partial representation
4814 * of "stmt", we update start and end of the pet_scop to those of "stmt".
4815 * In particular, if skip_declarations, then we may have skipped declarations
4816 * inside "stmt" and so the pet_scop may not represent the entire "stmt".
4817 * Note that this function may be called with "stmt" referring to the entire
4818 * body of the function, including the outer braces. In such cases,
4819 * skip_declarations will be set and the braces will not be taken into
4820 * account in scop->start and scop->end.
4822 struct pet_scop
*PetScan::extract(Stmt
*stmt
, bool skip_declarations
)
4824 struct pet_scop
*scop
;
4825 unsigned start
, end
;
4827 SourceManager
&SM
= PP
.getSourceManager();
4828 const LangOptions
&LO
= PP
.getLangOpts();
4830 if (isa
<Expr
>(stmt
))
4831 return extract(stmt
, extract_expr(cast
<Expr
>(stmt
)));
4833 switch (stmt
->getStmtClass()) {
4834 case Stmt::WhileStmtClass
:
4835 scop
= extract(cast
<WhileStmt
>(stmt
));
4837 case Stmt::ForStmtClass
:
4838 scop
= extract_for(cast
<ForStmt
>(stmt
));
4840 case Stmt::IfStmtClass
:
4841 scop
= extract(cast
<IfStmt
>(stmt
));
4843 case Stmt::CompoundStmtClass
:
4844 scop
= extract(cast
<CompoundStmt
>(stmt
), skip_declarations
);
4846 case Stmt::LabelStmtClass
:
4847 scop
= extract(cast
<LabelStmt
>(stmt
));
4849 case Stmt::ContinueStmtClass
:
4850 scop
= extract(cast
<ContinueStmt
>(stmt
));
4852 case Stmt::BreakStmtClass
:
4853 scop
= extract(cast
<BreakStmt
>(stmt
));
4855 case Stmt::DeclStmtClass
:
4856 scop
= extract(cast
<DeclStmt
>(stmt
));
4863 if (partial
|| skip_declarations
)
4866 loc
= stmt
->getLocStart();
4867 loc
= move_to_start_of_line_if_first_token(loc
, SM
, LO
);
4868 start
= getExpansionOffset(SM
, loc
);
4869 loc
= PP
.getLocForEndOfToken(stmt
->getLocEnd());
4870 end
= getExpansionOffset(SM
, loc
);
4871 scop
= pet_scop_update_start_end(scop
, start
, end
);
4876 /* Do we need to construct a skip condition of the given type
4877 * on a sequence of statements?
4879 * There is no need to construct a new skip condition if only
4880 * only of the two statements has a skip condition or if both
4881 * of their skip conditions are affine.
4883 * In principle we also don't need a new continuation variable if
4884 * the continuation of scop2 is affine, but then we would need
4885 * to allow more complicated forms of continuations.
4887 static bool need_skip_seq(struct pet_scop
*scop1
, struct pet_scop
*scop2
,
4890 if (!scop1
|| !pet_scop_has_skip(scop1
, type
))
4892 if (!scop2
|| !pet_scop_has_skip(scop2
, type
))
4894 if (pet_scop_has_affine_skip(scop1
, type
) &&
4895 pet_scop_has_affine_skip(scop2
, type
))
4900 /* Construct a scop for computing the skip condition of the given type and
4901 * with index expression "skip_index" for a sequence of two scops "scop1"
4904 * The computed scop contains a single statement that essentially does
4906 * skip_index = skip_cond_1 ? 1 : skip_cond_2
4908 * or, in other words, skip_cond1 || skip_cond2.
4909 * In this expression, skip_cond_2 is filtered to reflect that it is
4910 * only evaluated when skip_cond_1 is false.
4912 * The skip condition on scop1 is not removed because it still needs
4913 * to be applied to scop2 when these two scops are combined.
4915 static struct pet_scop
*extract_skip_seq(PetScan
*ps
,
4916 __isl_take isl_multi_pw_aff
*skip_index
,
4917 struct pet_scop
*scop1
, struct pet_scop
*scop2
, enum pet_skip type
)
4919 struct pet_expr
*expr1
, *expr2
, *expr
, *expr_skip
;
4920 struct pet_stmt
*stmt
;
4921 struct pet_scop
*scop
;
4922 isl_ctx
*ctx
= ps
->ctx
;
4924 if (!scop1
|| !scop2
)
4927 expr1
= pet_scop_get_skip_expr(scop1
, type
);
4928 expr2
= pet_scop_get_skip_expr(scop2
, type
);
4929 pet_scop_reset_skip(scop2
, type
);
4931 expr2
= pet_expr_filter(expr2
,
4932 isl_multi_pw_aff_copy(expr1
->acc
.index
), 0);
4934 expr
= universally_true(ctx
);
4935 expr
= pet_expr_new_ternary(ctx
, expr1
, expr
, expr2
);
4936 expr_skip
= pet_expr_from_index(isl_multi_pw_aff_copy(skip_index
));
4938 expr_skip
->acc
.write
= 1;
4939 expr_skip
->acc
.read
= 0;
4941 expr
= pet_expr_new_binary(ctx
, pet_op_assign
, expr_skip
, expr
);
4942 stmt
= pet_stmt_from_pet_expr(ctx
, -1, NULL
, ps
->n_stmt
++, expr
);
4944 scop
= pet_scop_from_pet_stmt(ctx
, stmt
);
4945 scop
= scop_add_array(scop
, skip_index
, ps
->ast_context
);
4946 isl_multi_pw_aff_free(skip_index
);
4950 isl_multi_pw_aff_free(skip_index
);
4954 /* Structure that handles the construction of skip conditions
4955 * on sequences of statements.
4957 * scop1 and scop2 represent the two statements that are combined
4959 struct pet_skip_info_seq
: public pet_skip_info
{
4960 struct pet_scop
*scop1
, *scop2
;
4962 pet_skip_info_seq(isl_ctx
*ctx
, struct pet_scop
*scop1
,
4963 struct pet_scop
*scop2
);
4964 void extract(PetScan
*scan
, enum pet_skip type
);
4965 void extract(PetScan
*scan
);
4966 struct pet_scop
*add(struct pet_scop
*scop
, enum pet_skip type
,
4968 struct pet_scop
*add(struct pet_scop
*scop
, int offset
);
4971 /* Initialize a pet_skip_info_seq structure based on
4972 * on the two statements that are going to be combined.
4974 pet_skip_info_seq::pet_skip_info_seq(isl_ctx
*ctx
, struct pet_scop
*scop1
,
4975 struct pet_scop
*scop2
) : pet_skip_info(ctx
), scop1(scop1
), scop2(scop2
)
4977 skip
[pet_skip_now
] = need_skip_seq(scop1
, scop2
, pet_skip_now
);
4978 equal
= skip
[pet_skip_now
] && skip_equals_skip_later(scop1
) &&
4979 skip_equals_skip_later(scop2
);
4980 skip
[pet_skip_later
] = skip
[pet_skip_now
] && !equal
&&
4981 need_skip_seq(scop1
, scop2
, pet_skip_later
);
4984 /* If we need to construct a skip condition of the given type,
4987 void pet_skip_info_seq::extract(PetScan
*scan
, enum pet_skip type
)
4992 index
[type
] = create_test_index(ctx
, scan
->n_test
++);
4993 scop
[type
] = extract_skip_seq(scan
, isl_multi_pw_aff_copy(index
[type
]),
4994 scop1
, scop2
, type
);
4997 /* Construct the required skip conditions.
4999 void pet_skip_info_seq::extract(PetScan
*scan
)
5001 extract(scan
, pet_skip_now
);
5002 extract(scan
, pet_skip_later
);
5004 drop_skip_later(scop1
, scop2
);
5007 /* Add the computed skip condition of the given type to "main" and
5008 * add the scop for computing the condition at the given offset (the statement
5009 * number). Within this offset, the condition is computed at position 1
5010 * to ensure that it is computed after the corresponding statement.
5012 * If equal is set, then we only computed a skip condition for pet_skip_now,
5013 * but we also need to set it as main's pet_skip_later.
5015 struct pet_scop
*pet_skip_info_seq::add(struct pet_scop
*main
,
5016 enum pet_skip type
, int offset
)
5021 scop
[type
] = pet_scop_prefix(scop
[type
], 1);
5022 scop
[type
] = pet_scop_prefix(scop
[type
], offset
);
5023 main
= pet_scop_add_par(ctx
, main
, scop
[type
]);
5027 main
= pet_scop_set_skip(main
, pet_skip_later
,
5028 isl_multi_pw_aff_copy(index
[type
]));
5030 main
= pet_scop_set_skip(main
, type
, index
[type
]);
5036 /* Add the computed skip conditions to "main" and
5037 * add the scops for computing the conditions at the given offset.
5039 struct pet_scop
*pet_skip_info_seq::add(struct pet_scop
*scop
, int offset
)
5041 scop
= add(scop
, pet_skip_now
, offset
);
5042 scop
= add(scop
, pet_skip_later
, offset
);
5047 /* Extract a clone of the kill statement in "scop".
5048 * "scop" is expected to have been created from a DeclStmt
5049 * and should have the kill as its first statement.
5051 struct pet_stmt
*PetScan::extract_kill(struct pet_scop
*scop
)
5053 struct pet_expr
*kill
;
5054 struct pet_stmt
*stmt
;
5055 isl_multi_pw_aff
*index
;
5060 if (scop
->n_stmt
< 1)
5061 isl_die(ctx
, isl_error_internal
,
5062 "expecting at least one statement", return NULL
);
5063 stmt
= scop
->stmts
[0];
5064 if (stmt
->body
->type
!= pet_expr_unary
||
5065 stmt
->body
->op
!= pet_op_kill
)
5066 isl_die(ctx
, isl_error_internal
,
5067 "expecting kill statement", return NULL
);
5069 index
= isl_multi_pw_aff_copy(stmt
->body
->args
[0]->acc
.index
);
5070 access
= isl_map_copy(stmt
->body
->args
[0]->acc
.access
);
5071 index
= isl_multi_pw_aff_reset_tuple_id(index
, isl_dim_in
);
5072 access
= isl_map_reset_tuple_id(access
, isl_dim_in
);
5073 kill
= pet_expr_kill_from_access_and_index(access
, index
);
5074 return pet_stmt_from_pet_expr(ctx
, stmt
->line
, NULL
, n_stmt
++, kill
);
5077 /* Mark all arrays in "scop" as being exposed.
5079 static struct pet_scop
*mark_exposed(struct pet_scop
*scop
)
5083 for (int i
= 0; i
< scop
->n_array
; ++i
)
5084 scop
->arrays
[i
]->exposed
= 1;
5088 /* Try and construct a pet_scop corresponding to (part of)
5089 * a sequence of statements.
5091 * "block" is set if the sequence respresents the children of
5092 * a compound statement.
5093 * "skip_declarations" is set if we should skip initial declarations
5094 * in the sequence of statements.
5096 * If there are any breaks or continues in the individual statements,
5097 * then we may have to compute a new skip condition.
5098 * This is handled using a pet_skip_info_seq object.
5099 * On initialization, the object checks if skip conditions need
5100 * to be computed. If so, it does so in "extract" and adds them in "add".
5102 * If "block" is set, then we need to insert kill statements at
5103 * the end of the block for any array that has been declared by
5104 * one of the statements in the sequence. Each of these declarations
5105 * results in the construction of a kill statement at the place
5106 * of the declaration, so we simply collect duplicates of
5107 * those kill statements and append these duplicates to the constructed scop.
5109 * If "block" is not set, then any array declared by one of the statements
5110 * in the sequence is marked as being exposed.
5112 * If autodetect is set, then we allow the extraction of only a subrange
5113 * of the sequence of statements. However, if there is at least one statement
5114 * for which we could not construct a scop and the final range contains
5115 * either no statements or at least one kill, then we discard the entire
5118 struct pet_scop
*PetScan::extract(StmtRange stmt_range
, bool block
,
5119 bool skip_declarations
)
5124 bool partial_range
= false;
5125 set
<struct pet_stmt
*> kills
;
5126 set
<struct pet_stmt
*>::iterator it
;
5128 scop
= pet_scop_empty(ctx
);
5129 for (i
= stmt_range
.first
, j
= 0; i
!= stmt_range
.second
; ++i
, ++j
) {
5131 struct pet_scop
*scop_i
;
5133 if (scop
->n_stmt
== 0 && skip_declarations
&&
5134 child
->getStmtClass() == Stmt::DeclStmtClass
)
5137 scop_i
= extract(child
);
5138 if (scop
->n_stmt
!= 0 && partial
) {
5139 pet_scop_free(scop_i
);
5142 pet_skip_info_seq
skip(ctx
, scop
, scop_i
);
5145 scop_i
= pet_scop_prefix(scop_i
, 0);
5146 if (scop_i
&& child
->getStmtClass() == Stmt::DeclStmtClass
) {
5148 kills
.insert(extract_kill(scop_i
));
5150 scop_i
= mark_exposed(scop_i
);
5152 scop_i
= pet_scop_prefix(scop_i
, j
);
5153 if (options
->autodetect
) {
5155 scop
= pet_scop_add_seq(ctx
, scop
, scop_i
);
5157 partial_range
= true;
5158 if (scop
->n_stmt
!= 0 && !scop_i
)
5161 scop
= pet_scop_add_seq(ctx
, scop
, scop_i
);
5164 scop
= skip
.add(scop
, j
);
5166 if (partial
|| !scop
)
5170 for (it
= kills
.begin(); it
!= kills
.end(); ++it
) {
5172 scop_j
= pet_scop_from_pet_stmt(ctx
, *it
);
5173 scop_j
= pet_scop_prefix(scop_j
, j
);
5174 scop
= pet_scop_add_seq(ctx
, scop
, scop_j
);
5177 if (scop
&& partial_range
) {
5178 if (scop
->n_stmt
== 0 || kills
.size() != 0) {
5179 pet_scop_free(scop
);
5188 /* Check if the scop marked by the user is exactly this Stmt
5189 * or part of this Stmt.
5190 * If so, return a pet_scop corresponding to the marked region.
5191 * Otherwise, return NULL.
5193 struct pet_scop
*PetScan::scan(Stmt
*stmt
)
5195 SourceManager
&SM
= PP
.getSourceManager();
5196 unsigned start_off
, end_off
;
5198 start_off
= getExpansionOffset(SM
, stmt
->getLocStart());
5199 end_off
= getExpansionOffset(SM
, stmt
->getLocEnd());
5201 if (start_off
> loc
.end
)
5203 if (end_off
< loc
.start
)
5205 if (start_off
>= loc
.start
&& end_off
<= loc
.end
) {
5206 return extract(stmt
);
5210 for (start
= stmt
->child_begin(); start
!= stmt
->child_end(); ++start
) {
5211 Stmt
*child
= *start
;
5214 start_off
= getExpansionOffset(SM
, child
->getLocStart());
5215 end_off
= getExpansionOffset(SM
, child
->getLocEnd());
5216 if (start_off
< loc
.start
&& end_off
>= loc
.end
)
5218 if (start_off
>= loc
.start
)
5223 for (end
= start
; end
!= stmt
->child_end(); ++end
) {
5225 start_off
= SM
.getFileOffset(child
->getLocStart());
5226 if (start_off
>= loc
.end
)
5230 return extract(StmtRange(start
, end
), false, false);
5233 /* Set the size of index "pos" of "array" to "size".
5234 * In particular, add a constraint of the form
5238 * to array->extent and a constraint of the form
5242 * to array->context.
5244 static struct pet_array
*update_size(struct pet_array
*array
, int pos
,
5245 __isl_take isl_pw_aff
*size
)
5255 valid
= isl_pw_aff_nonneg_set(isl_pw_aff_copy(size
));
5256 array
->context
= isl_set_intersect(array
->context
, valid
);
5258 dim
= isl_set_get_space(array
->extent
);
5259 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(dim
));
5260 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_in
, pos
, 1);
5261 univ
= isl_set_universe(isl_aff_get_domain_space(aff
));
5262 index
= isl_pw_aff_alloc(univ
, aff
);
5264 size
= isl_pw_aff_add_dims(size
, isl_dim_in
,
5265 isl_set_dim(array
->extent
, isl_dim_set
));
5266 id
= isl_set_get_tuple_id(array
->extent
);
5267 size
= isl_pw_aff_set_tuple_id(size
, isl_dim_in
, id
);
5268 bound
= isl_pw_aff_lt_set(index
, size
);
5270 array
->extent
= isl_set_intersect(array
->extent
, bound
);
5272 if (!array
->context
|| !array
->extent
)
5277 pet_array_free(array
);
5281 /* Figure out the size of the array at position "pos" and all
5282 * subsequent positions from "type" and update "array" accordingly.
5284 struct pet_array
*PetScan::set_upper_bounds(struct pet_array
*array
,
5285 const Type
*type
, int pos
)
5287 const ArrayType
*atype
;
5293 if (type
->isPointerType()) {
5294 type
= type
->getPointeeType().getTypePtr();
5295 return set_upper_bounds(array
, type
, pos
+ 1);
5297 if (!type
->isArrayType())
5300 type
= type
->getCanonicalTypeInternal().getTypePtr();
5301 atype
= cast
<ArrayType
>(type
);
5303 if (type
->isConstantArrayType()) {
5304 const ConstantArrayType
*ca
= cast
<ConstantArrayType
>(atype
);
5305 size
= extract_affine(ca
->getSize());
5306 array
= update_size(array
, pos
, size
);
5307 } else if (type
->isVariableArrayType()) {
5308 const VariableArrayType
*vla
= cast
<VariableArrayType
>(atype
);
5309 size
= extract_affine(vla
->getSizeExpr());
5310 array
= update_size(array
, pos
, size
);
5313 type
= atype
->getElementType().getTypePtr();
5315 return set_upper_bounds(array
, type
, pos
+ 1);
5318 /* Is "T" the type of a variable length array with static size?
5320 static bool is_vla_with_static_size(QualType T
)
5322 const VariableArrayType
*vlatype
;
5324 if (!T
->isVariableArrayType())
5326 vlatype
= cast
<VariableArrayType
>(T
);
5327 return vlatype
->getSizeModifier() == VariableArrayType::Static
;
5330 /* Return the type of "decl" as an array.
5332 * In particular, if "decl" is a parameter declaration that
5333 * is a variable length array with a static size, then
5334 * return the original type (i.e., the variable length array).
5335 * Otherwise, return the type of decl.
5337 static QualType
get_array_type(ValueDecl
*decl
)
5342 parm
= dyn_cast
<ParmVarDecl
>(decl
);
5344 return decl
->getType();
5346 T
= parm
->getOriginalType();
5347 if (!is_vla_with_static_size(T
))
5348 return decl
->getType();
5352 /* Does "decl" have definition that we can keep track of in a pet_type?
5354 static bool has_printable_definition(RecordDecl
*decl
)
5356 if (!decl
->getDeclName())
5358 return decl
->getLexicalDeclContext() == decl
->getDeclContext();
5361 /* Construct and return a pet_array corresponding to the variable "decl".
5362 * In particular, initialize array->extent to
5364 * { name[i_1,...,i_d] : i_1,...,i_d >= 0 }
5366 * and then call set_upper_bounds to set the upper bounds on the indices
5367 * based on the type of the variable.
5369 * If the base type is that of a record with a top-level definition and
5370 * if "types" is not null, then the RecordDecl corresponding to the type
5371 * is added to "types".
5373 * If the base type is that of a record with no top-level definition,
5374 * then we replace it by "<subfield>".
5376 struct pet_array
*PetScan::extract_array(isl_ctx
*ctx
, ValueDecl
*decl
,
5377 lex_recorddecl_set
*types
)
5379 struct pet_array
*array
;
5380 QualType qt
= get_array_type(decl
);
5381 const Type
*type
= qt
.getTypePtr();
5382 int depth
= array_depth(type
);
5383 QualType base
= pet_clang_base_type(qt
);
5388 array
= isl_calloc_type(ctx
, struct pet_array
);
5392 id
= isl_id_alloc(ctx
, decl
->getName().str().c_str(), decl
);
5393 dim
= isl_space_set_alloc(ctx
, 0, depth
);
5394 dim
= isl_space_set_tuple_id(dim
, isl_dim_set
, id
);
5396 array
->extent
= isl_set_nat_universe(dim
);
5398 dim
= isl_space_params_alloc(ctx
, 0);
5399 array
->context
= isl_set_universe(dim
);
5401 array
= set_upper_bounds(array
, type
, 0);
5405 name
= base
.getAsString();
5407 if (types
&& base
->isRecordType()) {
5408 RecordDecl
*decl
= pet_clang_record_decl(base
);
5409 if (has_printable_definition(decl
))
5410 types
->insert(decl
);
5412 name
= "<subfield>";
5415 array
->element_type
= strdup(name
.c_str());
5416 array
->element_is_record
= base
->isRecordType();
5417 array
->element_size
= decl
->getASTContext().getTypeInfo(base
).first
/ 8;
5422 /* Construct and return a pet_array corresponding to the sequence
5423 * of declarations "decls".
5424 * If the sequence contains a single declaration, then it corresponds
5425 * to a simple array access. Otherwise, it corresponds to a member access,
5426 * with the declaration for the substructure following that of the containing
5427 * structure in the sequence of declarations.
5428 * We start with the outermost substructure and then combine it with
5429 * information from the inner structures.
5431 * Additionally, keep track of all required types in "types".
5433 struct pet_array
*PetScan::extract_array(isl_ctx
*ctx
,
5434 vector
<ValueDecl
*> decls
, lex_recorddecl_set
*types
)
5436 struct pet_array
*array
;
5437 vector
<ValueDecl
*>::iterator it
;
5441 array
= extract_array(ctx
, *it
, types
);
5443 for (++it
; it
!= decls
.end(); ++it
) {
5444 struct pet_array
*parent
;
5445 const char *base_name
, *field_name
;
5449 array
= extract_array(ctx
, *it
, types
);
5451 return pet_array_free(parent
);
5453 base_name
= isl_set_get_tuple_name(parent
->extent
);
5454 field_name
= isl_set_get_tuple_name(array
->extent
);
5455 product_name
= member_access_name(ctx
, base_name
, field_name
);
5457 array
->extent
= isl_set_product(isl_set_copy(parent
->extent
),
5460 array
->extent
= isl_set_set_tuple_name(array
->extent
,
5462 array
->context
= isl_set_intersect(array
->context
,
5463 isl_set_copy(parent
->context
));
5465 pet_array_free(parent
);
5468 if (!array
->extent
|| !array
->context
|| !product_name
)
5469 return pet_array_free(array
);
5475 /* Add a pet_type corresponding to "decl" to "scop, provided
5476 * it is a member of "types" and it has not been added before
5477 * (i.e., it is not a member of "types_done".
5479 * Since we want the user to be able to print the types
5480 * in the order in which they appear in the scop, we need to
5481 * make sure that types of fields in a structure appear before
5482 * that structure. We therefore call ourselves recursively
5483 * on the types of all record subfields.
5485 static struct pet_scop
*add_type(isl_ctx
*ctx
, struct pet_scop
*scop
,
5486 RecordDecl
*decl
, Preprocessor
&PP
, lex_recorddecl_set
&types
,
5487 lex_recorddecl_set
&types_done
)
5490 llvm::raw_string_ostream
S(s
);
5491 RecordDecl::field_iterator it
;
5493 if (types
.find(decl
) == types
.end())
5495 if (types_done
.find(decl
) != types_done
.end())
5498 for (it
= decl
->field_begin(); it
!= decl
->field_end(); ++it
) {
5500 QualType type
= it
->getType();
5502 if (!type
->isRecordType())
5504 record
= pet_clang_record_decl(type
);
5505 scop
= add_type(ctx
, scop
, record
, PP
, types
, types_done
);
5508 if (strlen(decl
->getName().str().c_str()) == 0)
5511 decl
->print(S
, PrintingPolicy(PP
.getLangOpts()));
5514 scop
->types
[scop
->n_type
] = pet_type_alloc(ctx
,
5515 decl
->getName().str().c_str(), s
.c_str());
5516 if (!scop
->types
[scop
->n_type
])
5517 return pet_scop_free(scop
);
5519 types_done
.insert(decl
);
5526 /* Construct a list of pet_arrays, one for each array (or scalar)
5527 * accessed inside "scop", add this list to "scop" and return the result.
5529 * The context of "scop" is updated with the intersection of
5530 * the contexts of all arrays, i.e., constraints on the parameters
5531 * that ensure that the arrays have a valid (non-negative) size.
5533 * If the any of the extracted arrays refers to a member access,
5534 * then also add the required types to "scop".
5536 struct pet_scop
*PetScan::scan_arrays(struct pet_scop
*scop
)
5539 set
<vector
<ValueDecl
*> > arrays
;
5540 set
<vector
<ValueDecl
*> >::iterator it
;
5541 lex_recorddecl_set types
;
5542 lex_recorddecl_set types_done
;
5543 lex_recorddecl_set::iterator types_it
;
5545 struct pet_array
**scop_arrays
;
5550 pet_scop_collect_arrays(scop
, arrays
);
5551 if (arrays
.size() == 0)
5554 n_array
= scop
->n_array
;
5556 scop_arrays
= isl_realloc_array(ctx
, scop
->arrays
, struct pet_array
*,
5557 n_array
+ arrays
.size());
5560 scop
->arrays
= scop_arrays
;
5562 for (it
= arrays
.begin(), i
= 0; it
!= arrays
.end(); ++it
, ++i
) {
5563 struct pet_array
*array
;
5564 array
= extract_array(ctx
, *it
, &types
);
5565 scop
->arrays
[n_array
+ i
] = array
;
5566 if (!scop
->arrays
[n_array
+ i
])
5569 scop
->context
= isl_set_intersect(scop
->context
,
5570 isl_set_copy(array
->context
));
5575 if (types
.size() == 0)
5578 scop
->types
= isl_alloc_array(ctx
, struct pet_type
*, types
.size());
5582 for (types_it
= types
.begin(); types_it
!= types
.end(); ++types_it
)
5583 scop
= add_type(ctx
, scop
, *types_it
, PP
, types
, types_done
);
5587 pet_scop_free(scop
);
5591 /* Bound all parameters in scop->context to the possible values
5592 * of the corresponding C variable.
5594 static struct pet_scop
*add_parameter_bounds(struct pet_scop
*scop
)
5601 n
= isl_set_dim(scop
->context
, isl_dim_param
);
5602 for (int i
= 0; i
< n
; ++i
) {
5606 id
= isl_set_get_dim_id(scop
->context
, isl_dim_param
, i
);
5607 if (is_nested_parameter(id
)) {
5609 isl_die(isl_set_get_ctx(scop
->context
),
5611 "unresolved nested parameter", goto error
);
5613 decl
= (ValueDecl
*) isl_id_get_user(id
);
5616 scop
->context
= set_parameter_bounds(scop
->context
, i
, decl
);
5624 pet_scop_free(scop
);
5628 /* Construct a pet_scop from the given function.
5630 * If the scop was delimited by scop and endscop pragmas, then we override
5631 * the file offsets by those derived from the pragmas.
5633 struct pet_scop
*PetScan::scan(FunctionDecl
*fd
)
5638 stmt
= fd
->getBody();
5640 if (options
->autodetect
)
5641 scop
= extract(stmt
, true);
5644 scop
= pet_scop_update_start_end(scop
, loc
.start
, loc
.end
);
5646 scop
= pet_scop_detect_parameter_accesses(scop
);
5647 scop
= scan_arrays(scop
);
5648 scop
= add_parameter_bounds(scop
);
5649 scop
= pet_scop_gist(scop
, value_bounds
);