add pet_tree_map_call_expr
[pet.git] / tree.c
blob2d8eca66ff42d4fd5f1053d40d55c3354d7446a4
1 /*
2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2014 Ecole Normale Superieure. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials provided
15 * with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as
31 * representing official policies, either expressed or implied, of
32 * Leiden University.
35 #include <string.h>
37 #include "expr.h"
38 #include "loc.h"
39 #include "tree.h"
41 #define ARRAY_SIZE(array) (sizeof(array)/sizeof(*array))
43 static const char *type_str[] = {
44 [pet_tree_block] = "block",
45 [pet_tree_break] = "break",
46 [pet_tree_continue] = "continue",
47 [pet_tree_decl] = "declaration",
48 [pet_tree_decl_init] = "declaration-init",
49 [pet_tree_expr] = "expression",
50 [pet_tree_for] = "for",
51 [pet_tree_infinite_loop] = "infinite-loop",
52 [pet_tree_if] = "if",
53 [pet_tree_if_else] = "if-else",
54 [pet_tree_while] = "while",
57 /* Return a textual representation of the type "type".
59 const char *pet_tree_type_str(enum pet_tree_type type)
61 if (type < 0)
62 return "error";
63 return type_str[type];
66 /* Extract a type from its textual representation "str".
68 enum pet_tree_type pet_tree_str_type(const char *str)
70 int i;
72 for (i = 0; i < ARRAY_SIZE(type_str); ++i)
73 if (!strcmp(type_str[i], str))
74 return i;
76 return pet_tree_error;
79 /* Return a new pet_tree of the given type.
81 * The location is initializaed to pet_loc_dummy.
83 __isl_give pet_tree *pet_tree_alloc(isl_ctx *ctx, enum pet_tree_type type)
85 pet_tree *tree;
87 tree = isl_calloc_type(ctx, struct pet_tree);
88 if (!tree)
89 return NULL;
91 tree->ctx = ctx;
92 isl_ctx_ref(ctx);
93 tree->ref = 1;
94 tree->type = type;
95 tree->loc = &pet_loc_dummy;
97 return tree;
100 /* Return a new pet_tree representing the declaration (without initialization)
101 * of the variable "var".
103 __isl_give pet_tree *pet_tree_new_decl(__isl_take pet_expr *var)
105 isl_ctx *ctx;
106 pet_tree *tree;
108 if (!var)
109 return NULL;
110 ctx = pet_expr_get_ctx(var);
111 tree = pet_tree_alloc(ctx, pet_tree_decl);
112 if (!tree)
113 goto error;
115 tree->u.d.var = var;
117 return tree;
118 error:
119 pet_expr_free(var);
120 return NULL;
123 /* Return a new pet_tree representing the declaration of the variable "var"
124 * with initial value "init".
126 __isl_give pet_tree *pet_tree_new_decl_init(__isl_take pet_expr *var,
127 __isl_take pet_expr *init)
129 isl_ctx *ctx;
130 pet_tree *tree;
132 if (!var || !init)
133 goto error;
134 ctx = pet_expr_get_ctx(var);
135 tree = pet_tree_alloc(ctx, pet_tree_decl_init);
136 if (!tree)
137 goto error;
139 tree->u.d.var = var;
140 tree->u.d.init = init;
142 return tree;
143 error:
144 pet_expr_free(var);
145 pet_expr_free(init);
146 return NULL;
149 /* Return a new pet_tree representing the expression "expr".
151 __isl_give pet_tree *pet_tree_new_expr(__isl_take pet_expr *expr)
153 isl_ctx *ctx;
154 pet_tree *tree;
156 if (!expr)
157 return NULL;
158 ctx = pet_expr_get_ctx(expr);
159 tree = pet_tree_alloc(ctx, pet_tree_expr);
160 if (!tree)
161 goto error;
163 tree->u.e.expr = expr;
165 return tree;
166 error:
167 pet_expr_free(expr);
168 return NULL;
171 /* Return a new pet_tree representing an intially empty sequence
172 * of trees with room for "n" trees.
173 * "block" indicates whether the sequence has its own scope.
175 __isl_give pet_tree *pet_tree_new_block(isl_ctx *ctx, int block, int n)
177 pet_tree *tree;
179 tree = pet_tree_alloc(ctx, pet_tree_block);
180 if (!tree)
181 return NULL;
182 tree->u.b.block = block;
183 tree->u.b.n = 0;
184 tree->u.b.max = n;
185 tree->u.b.child = isl_calloc_array(ctx, pet_tree *, n);
186 if (n && !tree->u.b.child)
187 return pet_tree_free(tree);
189 return tree;
192 /* Return a new pet_tree representing a break statement.
194 __isl_give pet_tree *pet_tree_new_break(isl_ctx *ctx)
196 return pet_tree_alloc(ctx, pet_tree_break);
199 /* Return a new pet_tree representing a continue statement.
201 __isl_give pet_tree *pet_tree_new_continue(isl_ctx *ctx)
203 return pet_tree_alloc(ctx, pet_tree_continue);
206 /* Return a new pet_tree representing a for loop
207 * with induction variable "iv", initial value for the induction
208 * variable "init", loop condition "cond", induction variable increment "inc"
209 * and loop body "body". "declared" indicates whether the induction variable
210 * is declared by the loop. "independent" is set if the for loop is marked
211 * independent.
213 * The location of the loop is initialized to that of the body.
215 __isl_give pet_tree *pet_tree_new_for(int independent, int declared,
216 __isl_take pet_expr *iv, __isl_take pet_expr *init,
217 __isl_take pet_expr *cond, __isl_take pet_expr *inc,
218 __isl_take pet_tree *body)
220 isl_ctx *ctx;
221 pet_tree *tree;
223 if (!iv || !init || !cond || !inc || !body)
224 goto error;
225 ctx = pet_tree_get_ctx(body);
226 tree = pet_tree_alloc(ctx, pet_tree_for);
227 if (!tree)
228 goto error;
230 tree->u.l.independent = independent;
231 tree->u.l.declared = declared;
232 tree->u.l.iv = iv;
233 tree->u.l.init = init;
234 tree->u.l.cond = cond;
235 tree->u.l.inc = inc;
236 tree->u.l.body = body;
237 tree->loc = pet_tree_get_loc(body);
238 if (!tree->loc)
239 return pet_tree_free(tree);
241 return tree;
242 error:
243 pet_expr_free(iv);
244 pet_expr_free(init);
245 pet_expr_free(cond);
246 pet_expr_free(inc);
247 pet_tree_free(body);
248 return NULL;
251 /* Return a new pet_tree representing a while loop
252 * with loop condition "cond" and loop body "body".
254 * The location of the loop is initialized to that of the body.
256 __isl_give pet_tree *pet_tree_new_while(__isl_take pet_expr *cond,
257 __isl_take pet_tree *body)
259 isl_ctx *ctx;
260 pet_tree *tree;
262 if (!cond || !body)
263 goto error;
264 ctx = pet_tree_get_ctx(body);
265 tree = pet_tree_alloc(ctx, pet_tree_while);
266 if (!tree)
267 goto error;
269 tree->u.l.cond = cond;
270 tree->u.l.body = body;
271 tree->loc = pet_tree_get_loc(body);
272 if (!tree->loc)
273 return pet_tree_free(tree);
275 return tree;
276 error:
277 pet_expr_free(cond);
278 pet_tree_free(body);
279 return NULL;
282 /* Return a new pet_tree representing an infinite loop
283 * with loop body "body".
285 * The location of the loop is initialized to that of the body.
287 __isl_give pet_tree *pet_tree_new_infinite_loop(__isl_take pet_tree *body)
289 isl_ctx *ctx;
290 pet_tree *tree;
292 if (!body)
293 return NULL;
294 ctx = pet_tree_get_ctx(body);
295 tree = pet_tree_alloc(ctx, pet_tree_infinite_loop);
296 if (!tree)
297 return pet_tree_free(body);
299 tree->u.l.body = body;
300 tree->loc = pet_tree_get_loc(body);
301 if (!tree->loc)
302 return pet_tree_free(tree);
304 return tree;
307 /* Return a new pet_tree representing an if statement
308 * with condition "cond" and then branch "then_body".
310 * The location of the if statement is initialized to that of the body.
312 __isl_give pet_tree *pet_tree_new_if(__isl_take pet_expr *cond,
313 __isl_take pet_tree *then_body)
315 isl_ctx *ctx;
316 pet_tree *tree;
318 if (!cond || !then_body)
319 goto error;
320 ctx = pet_tree_get_ctx(then_body);
321 tree = pet_tree_alloc(ctx, pet_tree_if);
322 if (!tree)
323 goto error;
325 tree->u.i.cond = cond;
326 tree->u.i.then_body = then_body;
327 tree->loc = pet_tree_get_loc(then_body);
328 if (!tree->loc)
329 return pet_tree_free(tree);
331 return tree;
332 error:
333 pet_expr_free(cond);
334 pet_tree_free(then_body);
335 return NULL;
338 /* Return a new pet_tree representing an if statement
339 * with condition "cond", then branch "then_body" and else branch "else_body".
341 * The location of the if statement is initialized to cover
342 * those of the bodies.
344 __isl_give pet_tree *pet_tree_new_if_else(__isl_take pet_expr *cond,
345 __isl_take pet_tree *then_body, __isl_take pet_tree *else_body)
347 isl_ctx *ctx;
348 pet_tree *tree;
350 if (!cond || !then_body || !else_body)
351 goto error;
352 ctx = pet_tree_get_ctx(then_body);
353 tree = pet_tree_alloc(ctx, pet_tree_if_else);
354 if (!tree)
355 goto error;
357 tree->u.i.cond = cond;
358 tree->u.i.then_body = then_body;
359 tree->u.i.else_body = else_body;
360 tree->loc = pet_tree_get_loc(then_body);
361 tree->loc = pet_loc_update_start_end_from_loc(tree->loc,
362 else_body->loc);
363 if (!tree->loc)
364 return pet_tree_free(tree);
366 return tree;
367 error:
368 pet_expr_free(cond);
369 pet_tree_free(then_body);
370 pet_tree_free(else_body);
371 return NULL;
374 /* Return an independent duplicate of "tree".
376 static __isl_give pet_tree *pet_tree_dup(__isl_keep pet_tree *tree)
378 int i;
379 pet_tree *dup;
381 if (!tree)
382 return NULL;
384 switch (tree->type) {
385 case pet_tree_error:
386 return NULL;
387 case pet_tree_block:
388 dup = pet_tree_new_block(tree->ctx, tree->u.b.block,
389 tree->u.b.n);
390 for (i = 0; i < tree->u.b.n; ++i)
391 dup = pet_tree_block_add_child(dup,
392 pet_tree_copy(tree->u.b.child[i]));
393 break;
394 case pet_tree_break:
395 dup = pet_tree_new_break(tree->ctx);
396 break;
397 case pet_tree_continue:
398 dup = pet_tree_new_continue(tree->ctx);
399 break;
400 case pet_tree_decl:
401 dup = pet_tree_new_decl(pet_expr_copy(tree->u.d.var));
402 break;
403 case pet_tree_decl_init:
404 dup = pet_tree_new_decl_init(pet_expr_copy(tree->u.d.var),
405 pet_expr_copy(tree->u.d.init));
406 break;
407 case pet_tree_expr:
408 dup = pet_tree_new_expr(pet_expr_copy(tree->u.e.expr));
409 break;
410 case pet_tree_for:
411 dup = pet_tree_new_for(tree->u.l.independent,
412 tree->u.l.declared,
413 pet_expr_copy(tree->u.l.iv), pet_expr_copy(tree->u.l.init),
414 pet_expr_copy(tree->u.l.cond), pet_expr_copy(tree->u.l.inc),
415 pet_tree_copy(tree->u.l.body));
416 break;
417 case pet_tree_while:
418 dup = pet_tree_new_while(pet_expr_copy(tree->u.l.cond),
419 pet_tree_copy(tree->u.l.body));
420 break;
421 case pet_tree_infinite_loop:
422 dup = pet_tree_new_infinite_loop(pet_tree_copy(tree->u.l.body));
423 break;
424 case pet_tree_if:
425 dup = pet_tree_new_if(pet_expr_copy(tree->u.i.cond),
426 pet_tree_copy(tree->u.i.then_body));
427 break;
428 case pet_tree_if_else:
429 dup = pet_tree_new_if_else(pet_expr_copy(tree->u.i.cond),
430 pet_tree_copy(tree->u.i.then_body),
431 pet_tree_copy(tree->u.i.else_body));
432 break;
435 if (!dup)
436 return NULL;
437 pet_loc_free(dup->loc);
438 dup->loc = pet_loc_copy(tree->loc);
439 if (!dup->loc)
440 return pet_tree_free(dup);
441 if (tree->label) {
442 dup->label = isl_id_copy(tree->label);
443 if (!dup->label)
444 return pet_tree_free(dup);
447 return dup;
450 /* Return a pet_tree that is equal to "tree" and that has only one reference.
452 __isl_give pet_tree *pet_tree_cow(__isl_take pet_tree *tree)
454 if (!tree)
455 return NULL;
457 if (tree->ref == 1)
458 return tree;
459 tree->ref--;
460 return pet_tree_dup(tree);
463 /* Return an extra reference to "tree".
465 __isl_give pet_tree *pet_tree_copy(__isl_keep pet_tree *tree)
467 if (!tree)
468 return NULL;
470 tree->ref++;
471 return tree;
474 /* Free a reference to "tree".
476 __isl_null pet_tree *pet_tree_free(__isl_take pet_tree *tree)
478 int i;
480 if (!tree)
481 return NULL;
482 if (--tree->ref > 0)
483 return NULL;
485 pet_loc_free(tree->loc);
486 isl_id_free(tree->label);
488 switch (tree->type) {
489 case pet_tree_error:
490 break;
491 case pet_tree_block:
492 for (i = 0; i < tree->u.b.n; ++i)
493 pet_tree_free(tree->u.b.child[i]);
494 free(tree->u.b.child);
495 break;
496 case pet_tree_break:
497 case pet_tree_continue:
498 break;
499 case pet_tree_decl_init:
500 pet_expr_free(tree->u.d.init);
501 case pet_tree_decl:
502 pet_expr_free(tree->u.d.var);
503 break;
504 case pet_tree_expr:
505 pet_expr_free(tree->u.e.expr);
506 break;
507 case pet_tree_for:
508 pet_expr_free(tree->u.l.iv);
509 pet_expr_free(tree->u.l.init);
510 pet_expr_free(tree->u.l.inc);
511 case pet_tree_while:
512 pet_expr_free(tree->u.l.cond);
513 case pet_tree_infinite_loop:
514 pet_tree_free(tree->u.l.body);
515 break;
516 case pet_tree_if_else:
517 pet_tree_free(tree->u.i.else_body);
518 case pet_tree_if:
519 pet_expr_free(tree->u.i.cond);
520 pet_tree_free(tree->u.i.then_body);
521 break;
524 isl_ctx_deref(tree->ctx);
525 free(tree);
526 return NULL;
529 /* Return the isl_ctx in which "tree" was created.
531 isl_ctx *pet_tree_get_ctx(__isl_keep pet_tree *tree)
533 return tree ? tree->ctx : NULL;
536 /* Return the location of "tree".
538 __isl_give pet_loc *pet_tree_get_loc(__isl_keep pet_tree *tree)
540 return tree ? pet_loc_copy(tree->loc) : NULL;
543 /* Return the type of "tree".
545 enum pet_tree_type pet_tree_get_type(__isl_keep pet_tree *tree)
547 if (!tree)
548 return pet_tree_error;
550 return tree->type;
553 /* Replace the location of "tree" by "loc".
555 __isl_give pet_tree *pet_tree_set_loc(__isl_take pet_tree *tree,
556 __isl_take pet_loc *loc)
558 tree = pet_tree_cow(tree);
559 if (!tree || !loc)
560 goto error;
562 pet_loc_free(tree->loc);
563 tree->loc = loc;
565 return tree;
566 error:
567 pet_loc_free(loc);
568 pet_tree_free(tree);
569 return NULL;
572 /* Replace the label of "tree" by "label".
574 __isl_give pet_tree *pet_tree_set_label(__isl_take pet_tree *tree,
575 __isl_take isl_id *label)
577 tree = pet_tree_cow(tree);
578 if (!tree || !label)
579 goto error;
581 isl_id_free(tree->label);
582 tree->label = label;
584 return tree;
585 error:
586 isl_id_free(label);
587 return pet_tree_free(tree);
590 /* Given an expression tree "tree", return the associated expression.
592 __isl_give pet_expr *pet_tree_expr_get_expr(__isl_keep pet_tree *tree)
594 if (!tree)
595 return NULL;
596 if (pet_tree_get_type(tree) != pet_tree_expr)
597 isl_die(pet_tree_get_ctx(tree), isl_error_invalid,
598 "not an expression tree", return NULL);
600 return pet_expr_copy(tree->u.e.expr);
603 /* Given a block tree "tree", return the number of children in the sequence.
605 int pet_tree_block_n_child(__isl_keep pet_tree *tree)
607 if (!tree)
608 return -1;
609 if (pet_tree_get_type(tree) != pet_tree_block)
610 isl_die(pet_tree_get_ctx(tree), isl_error_invalid,
611 "not a block tree", return -1);
613 return tree->u.b.n;
616 /* Add "child" to the sequence of trees represented by "block".
618 * Update the location of "block" to include that of "child".
620 __isl_give pet_tree *pet_tree_block_add_child(__isl_take pet_tree *block,
621 __isl_take pet_tree *child)
623 block = pet_tree_cow(block);
624 if (!block || !child)
625 goto error;
626 if (block->type != pet_tree_block)
627 isl_die(pet_tree_get_ctx(block), isl_error_invalid,
628 "not a block tree", goto error);
629 if (block->u.b.n >= block->u.b.max)
630 isl_die(pet_tree_get_ctx(block), isl_error_invalid,
631 "out of space in block", goto error);
633 block->loc = pet_loc_update_start_end_from_loc(block->loc, child->loc);
634 block->u.b.child[block->u.b.n++] = child;
636 if (!block->loc)
637 return pet_tree_free(block);
639 return block;
640 error:
641 pet_tree_free(block);
642 pet_tree_free(child);
643 return NULL;
646 /* Given a block tree "tree", return the child at position "pos".
648 __isl_give pet_tree *pet_tree_block_get_child(__isl_keep pet_tree *tree,
649 int pos)
651 if (!tree)
652 return NULL;
653 if (pet_tree_get_type(tree) != pet_tree_block)
654 isl_die(pet_tree_get_ctx(tree), isl_error_invalid,
655 "not a block tree", return NULL);
656 if (pos < 0 || pos >= tree->u.b.n)
657 isl_die(pet_tree_get_ctx(tree), isl_error_invalid,
658 "position out of bounds", return NULL);
660 return pet_tree_copy(tree->u.b.child[pos]);
663 /* Does "tree" represent a declaration (with or without initialization)?
665 int pet_tree_is_decl(__isl_keep pet_tree *tree)
667 if (!tree)
668 return -1;
670 switch (pet_tree_get_type(tree)) {
671 case pet_tree_decl:
672 case pet_tree_decl_init:
673 return 1;
674 default:
675 return 0;
679 /* Given a declaration tree "tree", return the variable that is being
680 * declared.
682 __isl_give pet_expr *pet_tree_decl_get_var(__isl_keep pet_tree *tree)
684 if (!tree)
685 return NULL;
686 if (!pet_tree_is_decl(tree))
687 isl_die(pet_tree_get_ctx(tree), isl_error_invalid,
688 "not a decl tree", return NULL);
690 return pet_expr_copy(tree->u.d.var);
693 /* Given a declaration tree with initialization "tree",
694 * return the initial value of the declared variable.
696 __isl_give pet_expr *pet_tree_decl_get_init(__isl_keep pet_tree *tree)
698 if (!tree)
699 return NULL;
700 if (pet_tree_get_type(tree) != pet_tree_decl_init)
701 isl_die(pet_tree_get_ctx(tree), isl_error_invalid,
702 "not a decl_init tree", return NULL);
704 return pet_expr_copy(tree->u.d.init);
707 /* Given an if tree "tree", return the if condition.
709 __isl_give pet_expr *pet_tree_if_get_cond(__isl_keep pet_tree *tree)
711 enum pet_tree_type type;
713 if (!tree)
714 return NULL;
715 type = pet_tree_get_type(tree);
716 if (type != pet_tree_if && type != pet_tree_if_else)
717 isl_die(pet_tree_get_ctx(tree), isl_error_invalid,
718 "not an if tree", return NULL);
720 return pet_expr_copy(tree->u.i.cond);
723 /* Given an if tree "tree", return the body of the then branch.
725 __isl_give pet_tree *pet_tree_if_get_then(__isl_keep pet_tree *tree)
727 enum pet_tree_type type;
729 if (!tree)
730 return NULL;
731 type = pet_tree_get_type(tree);
732 if (type != pet_tree_if && type != pet_tree_if_else)
733 isl_die(pet_tree_get_ctx(tree), isl_error_invalid,
734 "not an if tree", return NULL);
736 return pet_tree_copy(tree->u.i.then_body);
739 /* Given an if tree with an else branch "tree",
740 * return the body of that else branch.
742 __isl_give pet_tree *pet_tree_if_get_else(__isl_keep pet_tree *tree)
744 if (!tree)
745 return NULL;
746 if (pet_tree_get_type(tree) != pet_tree_if_else)
747 isl_die(pet_tree_get_ctx(tree), isl_error_invalid,
748 "not an if tree with an else branch", return NULL);
750 return pet_tree_copy(tree->u.i.else_body);
753 /* Does "tree" represent some type of loop?
755 int pet_tree_is_loop(__isl_keep pet_tree *tree)
757 if (!tree)
758 return -1;
760 switch (pet_tree_get_type(tree)) {
761 case pet_tree_for:
762 case pet_tree_infinite_loop:
763 case pet_tree_while:
764 return 1;
765 default:
766 return 0;
770 /* Given a for loop "tree", return the induction variable.
772 __isl_give pet_expr *pet_tree_loop_get_var(__isl_keep pet_tree *tree)
774 if (!tree)
775 return NULL;
776 if (pet_tree_get_type(tree) != pet_tree_for)
777 isl_die(pet_tree_get_ctx(tree), isl_error_invalid,
778 "not a for tree", return NULL);
780 return pet_expr_copy(tree->u.l.iv);
783 /* Given a for loop "tree", return the initial value of the induction variable.
785 __isl_give pet_expr *pet_tree_loop_get_init(__isl_keep pet_tree *tree)
787 if (!tree)
788 return NULL;
789 if (pet_tree_get_type(tree) != pet_tree_for)
790 isl_die(pet_tree_get_ctx(tree), isl_error_invalid,
791 "not a for tree", return NULL);
793 return pet_expr_copy(tree->u.l.init);
796 /* Given a loop "tree", return the loop condition.
798 * For an infinite loop, the loop condition always holds,
799 * so we simply return "1".
801 __isl_give pet_expr *pet_tree_loop_get_cond(__isl_keep pet_tree *tree)
803 enum pet_tree_type type;
805 if (!tree)
806 return NULL;
807 type = pet_tree_get_type(tree);
808 if (type == pet_tree_infinite_loop)
809 return pet_expr_new_int(isl_val_one(pet_tree_get_ctx(tree)));
810 if (type != pet_tree_for && type != pet_tree_while)
811 isl_die(pet_tree_get_ctx(tree), isl_error_invalid,
812 "not a for or while tree", return NULL);
814 return pet_expr_copy(tree->u.l.cond);
817 /* Given a for loop "tree", return the increment of the induction variable.
819 __isl_give pet_expr *pet_tree_loop_get_inc(__isl_keep pet_tree *tree)
821 if (!tree)
822 return NULL;
823 if (pet_tree_get_type(tree) != pet_tree_for)
824 isl_die(pet_tree_get_ctx(tree), isl_error_invalid,
825 "not a for tree", return NULL);
827 return pet_expr_copy(tree->u.l.inc);
830 /* Given a loop tree "tree", return the body.
832 __isl_give pet_tree *pet_tree_loop_get_body(__isl_keep pet_tree *tree)
834 if (!tree)
835 return NULL;
837 if (!pet_tree_is_loop(tree))
838 isl_die(pet_tree_get_ctx(tree), isl_error_invalid,
839 "not a loop tree", return NULL);
841 return pet_tree_copy(tree->u.l.body);
844 /* Call "fn" on each node of "tree", including "tree" itself.
846 * Return 0 on success and -1 on error, where "fn" returning a negative
847 * value is treated as an error.
849 int pet_tree_foreach_sub_tree(__isl_keep pet_tree *tree,
850 int (*fn)(__isl_keep pet_tree *tree, void *user), void *user)
852 int i;
854 if (!tree)
855 return -1;
857 if (fn(tree, user) < 0)
858 return -1;
860 switch (tree->type) {
861 case pet_tree_error:
862 return -1;
863 case pet_tree_block:
864 for (i = 0; i < tree->u.b.n; ++i)
865 if (pet_tree_foreach_sub_tree(tree->u.b.child[i],
866 fn, user) < 0)
867 return -1;
868 break;
869 case pet_tree_break:
870 case pet_tree_continue:
871 case pet_tree_decl:
872 case pet_tree_decl_init:
873 case pet_tree_expr:
874 break;
875 case pet_tree_if:
876 if (pet_tree_foreach_sub_tree(tree->u.i.then_body,
877 fn, user) < 0)
878 return -1;
879 break;
880 case pet_tree_if_else:
881 if (pet_tree_foreach_sub_tree(tree->u.i.then_body,
882 fn, user) < 0)
883 return -1;
884 if (pet_tree_foreach_sub_tree(tree->u.i.else_body,
885 fn, user) < 0)
886 return -1;
887 break;
888 case pet_tree_while:
889 case pet_tree_for:
890 case pet_tree_infinite_loop:
891 if (pet_tree_foreach_sub_tree(tree->u.l.body, fn, user) < 0)
892 return -1;
893 break;
896 return 0;
899 /* Intermediate data structure for foreach_expr.
901 * "fn" is the function that needs to be called on each expression.
902 * "user" is the user argument to be passed to "fn".
904 struct pet_tree_foreach_expr_data {
905 int (*fn)(__isl_keep pet_expr *expr, void *user);
906 void *user;
909 /* Call data->fn on each expression in the "tree" object.
910 * This function is used as a callback to pet_tree_foreach_sub_tree
911 * to implement pet_tree_foreach_expr.
913 * Return 0 on success and -1 on error, where data->fn returning a negative
914 * value is treated as an error.
916 static int foreach_expr(__isl_keep pet_tree *tree, void *user)
918 struct pet_tree_foreach_expr_data *data = user;
920 if (!tree)
921 return -1;
923 switch (tree->type) {
924 case pet_tree_error:
925 return -1;
926 case pet_tree_block:
927 case pet_tree_break:
928 case pet_tree_continue:
929 case pet_tree_infinite_loop:
930 break;
931 case pet_tree_decl:
932 if (data->fn(tree->u.d.var, data->user) < 0)
933 return -1;
934 break;
935 case pet_tree_decl_init:
936 if (data->fn(tree->u.d.var, data->user) < 0)
937 return -1;
938 if (data->fn(tree->u.d.init, data->user) < 0)
939 return -1;
940 break;
941 case pet_tree_expr:
942 if (data->fn(tree->u.e.expr, data->user) < 0)
943 return -1;
944 break;
945 case pet_tree_if:
946 if (data->fn(tree->u.i.cond, data->user) < 0)
947 return -1;
948 break;
949 case pet_tree_if_else:
950 if (data->fn(tree->u.i.cond, data->user) < 0)
951 return -1;
952 break;
953 case pet_tree_while:
954 if (data->fn(tree->u.l.cond, data->user) < 0)
955 return -1;
956 break;
957 case pet_tree_for:
958 if (data->fn(tree->u.l.iv, data->user) < 0)
959 return -1;
960 if (data->fn(tree->u.l.init, data->user) < 0)
961 return -1;
962 if (data->fn(tree->u.l.cond, data->user) < 0)
963 return -1;
964 if (data->fn(tree->u.l.inc, data->user) < 0)
965 return -1;
966 break;
969 return 0;
972 /* Call "fn" on each top-level expression in the nodes of "tree"
974 * Return 0 on success and -1 on error, where "fn" returning a negative
975 * value is treated as an error.
977 * We run over all nodes in "tree" and call "fn"
978 * on each expression in those nodes.
980 int pet_tree_foreach_expr(__isl_keep pet_tree *tree,
981 int (*fn)(__isl_keep pet_expr *expr, void *user), void *user)
983 struct pet_tree_foreach_expr_data data = { fn, user };
985 return pet_tree_foreach_sub_tree(tree, &foreach_expr, &data);
988 /* Intermediate data structure for foreach_access_expr.
990 * "fn" is the function that needs to be called on each access subexpression.
991 * "user" is the user argument to be passed to "fn".
993 struct pet_tree_foreach_access_expr_data {
994 int (*fn)(__isl_keep pet_expr *expr, void *user);
995 void *user;
998 /* Call data->fn on each access subexpression of "expr".
999 * This function is used as a callback to pet_tree_foreach_expr
1000 * to implement pet_tree_foreach_access_expr.
1002 * Return 0 on success and -1 on error, where data->fn returning a negative
1003 * value is treated as an error.
1005 static int foreach_access_expr(__isl_keep pet_expr *expr, void *user)
1007 struct pet_tree_foreach_access_expr_data *data = user;
1009 return pet_expr_foreach_access_expr(expr, data->fn, data->user);
1012 /* Call "fn" on each access subexpression in the nodes of "tree"
1014 * Return 0 on success and -1 on error, where "fn" returning a negative
1015 * value is treated as an error.
1017 * We run over all expressions in the nodes of "tree" and call "fn"
1018 * on each access subexpression of those expressions.
1020 int pet_tree_foreach_access_expr(__isl_keep pet_tree *tree,
1021 int (*fn)(__isl_keep pet_expr *expr, void *user), void *user)
1023 struct pet_tree_foreach_access_expr_data data = { fn, user };
1025 return pet_tree_foreach_expr(tree, &foreach_access_expr, &data);
1028 /* Modify all top-level expressions in the nodes of "tree"
1029 * by calling "fn" on them.
1031 __isl_give pet_tree *pet_tree_map_expr(__isl_take pet_tree *tree,
1032 __isl_give pet_expr *(*fn)(__isl_take pet_expr *expr, void *user),
1033 void *user)
1035 int i;
1037 tree = pet_tree_cow(tree);
1038 if (!tree)
1039 return NULL;
1041 switch (tree->type) {
1042 case pet_tree_error:
1043 return pet_tree_free(tree);
1044 case pet_tree_block:
1045 for (i = 0; i < tree->u.b.n; ++i) {
1046 tree->u.b.child[i] =
1047 pet_tree_map_expr(tree->u.b.child[i], fn, user);
1048 if (!tree->u.b.child[i])
1049 return pet_tree_free(tree);
1051 break;
1052 case pet_tree_break:
1053 case pet_tree_continue:
1054 break;
1055 case pet_tree_decl:
1056 tree->u.d.var = fn(tree->u.d.var, user);
1057 if (!tree->u.d.var)
1058 return pet_tree_free(tree);
1059 break;
1060 case pet_tree_decl_init:
1061 tree->u.d.var = fn(tree->u.d.var, user);
1062 tree->u.d.init = fn(tree->u.d.init, user);
1063 if (!tree->u.d.var || !tree->u.d.init)
1064 return pet_tree_free(tree);
1065 break;
1066 case pet_tree_expr:
1067 tree->u.e.expr = fn(tree->u.e.expr, user);
1068 if (!tree->u.e.expr)
1069 return pet_tree_free(tree);
1070 break;
1071 case pet_tree_if:
1072 tree->u.i.cond = fn(tree->u.i.cond, user);
1073 tree->u.i.then_body =
1074 pet_tree_map_expr(tree->u.i.then_body, fn, user);
1075 if (!tree->u.i.cond || !tree->u.i.then_body)
1076 return pet_tree_free(tree);
1077 break;
1078 case pet_tree_if_else:
1079 tree->u.i.cond = fn(tree->u.i.cond, user);
1080 tree->u.i.then_body =
1081 pet_tree_map_expr(tree->u.i.then_body, fn, user);
1082 tree->u.i.else_body =
1083 pet_tree_map_expr(tree->u.i.else_body, fn, user);
1084 if (!tree->u.i.cond ||
1085 !tree->u.i.then_body || !tree->u.i.else_body)
1086 return pet_tree_free(tree);
1087 break;
1088 case pet_tree_while:
1089 tree->u.l.cond = fn(tree->u.l.cond, user);
1090 tree->u.l.body = pet_tree_map_expr(tree->u.l.body, fn, user);
1091 if (!tree->u.l.cond || !tree->u.l.body)
1092 return pet_tree_free(tree);
1093 break;
1094 case pet_tree_for:
1095 tree->u.l.iv = fn(tree->u.l.iv, user);
1096 tree->u.l.init = fn(tree->u.l.init, user);
1097 tree->u.l.cond = fn(tree->u.l.cond, user);
1098 tree->u.l.inc = fn(tree->u.l.inc, user);
1099 tree->u.l.body = pet_tree_map_expr(tree->u.l.body, fn, user);
1100 if (!tree->u.l.iv || !tree->u.l.init || !tree->u.l.cond ||
1101 !tree->u.l.inc || !tree->u.l.body)
1102 return pet_tree_free(tree);
1103 break;
1104 case pet_tree_infinite_loop:
1105 tree->u.l.body = pet_tree_map_expr(tree->u.l.body, fn, user);
1106 if (!tree->u.l.body)
1107 return pet_tree_free(tree);
1108 break;
1111 return tree;
1114 /* Intermediate data structure for map_expr.
1116 * "map" is a function that modifies subexpressions of a given type.
1117 * "fn" is the function that needs to be called on each of those subexpressions.
1118 * "user" is the user argument to be passed to "fn".
1120 struct pet_tree_map_expr_data {
1121 __isl_give pet_expr *(*map)(__isl_take pet_expr *expr,
1122 __isl_give pet_expr *(*fn)(__isl_take pet_expr *expr,
1123 void *user), void *user);
1124 __isl_give pet_expr *(*fn)(__isl_take pet_expr *expr, void *user);
1125 void *user;
1128 /* This function is called on each top-level expressions in the nodes
1129 * of a tree. Call data->map to modify subexpressions of the top-level
1130 * expression by calling data->fn on them.
1132 * This is a wrapper around data->map for use as a callback
1133 * to pet_tree_map_expr.
1135 static __isl_give pet_expr *map_expr(__isl_take pet_expr *expr,
1136 void *user)
1138 struct pet_tree_map_expr_data *data = user;
1140 return data->map(expr, data->fn, data->user);
1143 /* Modify all access subexpressions in the nodes of "tree"
1144 * by calling "fn" on them.
1146 * We run over all expressions in the nodes of "tree" and call "fn"
1147 * on each access subexpression of those expressions.
1149 __isl_give pet_tree *pet_tree_map_access_expr(__isl_take pet_tree *tree,
1150 __isl_give pet_expr *(*fn)(__isl_take pet_expr *expr, void *user),
1151 void *user)
1153 struct pet_tree_map_expr_data data = { &pet_expr_map_access, fn, user };
1155 return pet_tree_map_expr(tree, &map_expr, &data);
1158 /* Modify all call subexpressions in the nodes of "tree"
1159 * by calling "fn" on them.
1161 * We run over all expressions in the nodes of "tree" and call "fn"
1162 * on each call subexpression of those expressions.
1164 __isl_give pet_tree *pet_tree_map_call_expr(__isl_take pet_tree *tree,
1165 __isl_give pet_expr *(*fn)(__isl_take pet_expr *expr, void *user),
1166 void *user)
1168 struct pet_tree_map_expr_data data = { &pet_expr_map_call, fn, user };
1170 return pet_tree_map_expr(tree, &map_expr, &data);
1173 /* Wrapper around pet_expr_align_params
1174 * for use as a pet_tree_map_expr callback.
1176 static __isl_give pet_expr *align_params(__isl_take pet_expr *expr,
1177 void *user)
1179 isl_space *space = user;
1181 return pet_expr_align_params(expr, isl_space_copy(space));
1184 /* Add all parameters in "space" to all access relations and index expressions
1185 * in "tree".
1187 __isl_give pet_tree *pet_tree_align_params(__isl_take pet_tree *tree,
1188 __isl_take isl_space *space)
1190 tree = pet_tree_map_expr(tree, &align_params, space);
1191 isl_space_free(space);
1192 return tree;
1195 /* Wrapper around pet_expr_add_ref_ids
1196 * for use as a pet_tree_map_expr callback.
1198 static __isl_give pet_expr *add_ref_ids(__isl_take pet_expr *expr, void *user)
1200 int *n_ref = user;
1202 return pet_expr_add_ref_ids(expr, n_ref);
1205 /* Add reference identifiers to all access expressions in "tree".
1206 * "n_ref" points to an integer that contains the sequence number
1207 * of the next reference.
1209 __isl_give pet_tree *pet_tree_add_ref_ids(__isl_take pet_tree *tree,
1210 int *n_ref)
1212 return pet_tree_map_expr(tree, &add_ref_ids, n_ref);
1215 /* Wrapper around pet_expr_anonymize
1216 * for use as a pet_tree_map_expr callback.
1218 static __isl_give pet_expr *anonymize(__isl_take pet_expr *expr, void *user)
1220 return pet_expr_anonymize(expr);
1223 /* Reset the user pointer on all parameter and tuple ids in "tree".
1225 __isl_give pet_tree *pet_tree_anonymize(__isl_take pet_tree *tree)
1227 return pet_tree_map_expr(tree, &anonymize, NULL);
1230 /* Arguments to be passed to pet_expr_gist from the gist wrapper.
1232 struct pet_tree_gist_data {
1233 isl_set *domain;
1234 isl_union_map *value_bounds;
1237 /* Wrapper around pet_expr_gist for use as a pet_tree_map_expr callback.
1239 static __isl_give pet_expr *gist(__isl_take pet_expr *expr, void *user)
1241 struct pet_tree_gist_data *data = user;
1243 return pet_expr_gist(expr, data->domain, data->value_bounds);
1246 /* Compute the gist of all access relations and index expressions inside
1247 * "tree" based on the constraints on the parameters specified by "context"
1248 * and the constraints on the values of nested accesses specified
1249 * by "value_bounds".
1251 __isl_give pet_tree *pet_tree_gist(__isl_take pet_tree *tree,
1252 __isl_keep isl_set *context, __isl_keep isl_union_map *value_bounds)
1254 struct pet_tree_gist_data data = { context, value_bounds };
1256 return pet_tree_map_expr(tree, &gist, &data);
1259 /* Return 1 if the two pet_tree objects are equivalent.
1261 * We ignore the locations of the trees.
1263 int pet_tree_is_equal(__isl_keep pet_tree *tree1, __isl_keep pet_tree *tree2)
1265 int i;
1266 int equal;
1268 if (!tree1 || !tree2)
1269 return 0;
1271 if (tree1 == tree2)
1272 return 1;
1274 if (tree1->type != tree2->type)
1275 return 0;
1276 if (tree1->label != tree2->label)
1277 return 0;
1279 switch (tree1->type) {
1280 case pet_tree_error:
1281 return -1;
1282 case pet_tree_block:
1283 if (tree1->u.b.block != tree2->u.b.block)
1284 return 0;
1285 if (tree1->u.b.n != tree2->u.b.n)
1286 return 0;
1287 for (i = 0; i < tree1->u.b.n; ++i) {
1288 equal = pet_tree_is_equal(tree1->u.b.child[i],
1289 tree2->u.b.child[i]);
1290 if (equal < 0 || !equal)
1291 return equal;
1293 break;
1294 case pet_tree_break:
1295 case pet_tree_continue:
1296 break;
1297 case pet_tree_decl:
1298 return pet_expr_is_equal(tree1->u.d.var, tree2->u.d.var);
1299 case pet_tree_decl_init:
1300 equal = pet_expr_is_equal(tree1->u.d.var, tree2->u.d.var);
1301 if (equal < 0 || !equal)
1302 return equal;
1303 return pet_expr_is_equal(tree1->u.d.init, tree2->u.d.init);
1304 case pet_tree_expr:
1305 return pet_expr_is_equal(tree1->u.e.expr, tree2->u.e.expr);
1306 case pet_tree_for:
1307 if (tree1->u.l.declared != tree2->u.l.declared)
1308 return 0;
1309 equal = pet_expr_is_equal(tree1->u.l.iv, tree2->u.l.iv);
1310 if (equal < 0 || !equal)
1311 return equal;
1312 equal = pet_expr_is_equal(tree1->u.l.init, tree2->u.l.init);
1313 if (equal < 0 || !equal)
1314 return equal;
1315 equal = pet_expr_is_equal(tree1->u.l.cond, tree2->u.l.cond);
1316 if (equal < 0 || !equal)
1317 return equal;
1318 equal = pet_expr_is_equal(tree1->u.l.inc, tree2->u.l.inc);
1319 if (equal < 0 || !equal)
1320 return equal;
1321 return pet_tree_is_equal(tree1->u.l.body, tree2->u.l.body);
1322 case pet_tree_while:
1323 equal = pet_expr_is_equal(tree1->u.l.cond, tree2->u.l.cond);
1324 if (equal < 0 || !equal)
1325 return equal;
1326 return pet_tree_is_equal(tree1->u.l.body, tree2->u.l.body);
1327 case pet_tree_infinite_loop:
1328 return pet_tree_is_equal(tree1->u.l.body, tree2->u.l.body);
1329 case pet_tree_if:
1330 equal = pet_expr_is_equal(tree1->u.i.cond, tree2->u.i.cond);
1331 if (equal < 0 || !equal)
1332 return equal;
1333 return pet_tree_is_equal(tree1->u.i.then_body,
1334 tree2->u.i.then_body);
1335 case pet_tree_if_else:
1336 equal = pet_expr_is_equal(tree1->u.i.cond, tree2->u.i.cond);
1337 if (equal < 0 || !equal)
1338 return equal;
1339 equal = pet_tree_is_equal(tree1->u.i.then_body,
1340 tree2->u.i.then_body);
1341 if (equal < 0 || !equal)
1342 return equal;
1343 return pet_tree_is_equal(tree1->u.i.else_body,
1344 tree2->u.i.else_body);
1347 return 1;
1350 /* Is "tree" an expression tree that performs the operation "type"?
1352 static int pet_tree_is_op_of_type(__isl_keep pet_tree *tree,
1353 enum pet_op_type type)
1355 if (!tree)
1356 return 0;
1357 if (tree->type != pet_tree_expr)
1358 return 0;
1359 if (pet_expr_get_type(tree->u.e.expr) != pet_expr_op)
1360 return 0;
1361 return pet_expr_op_get_type(tree->u.e.expr) == type;
1364 /* Is "tree" an expression tree that performs a kill operation?
1366 int pet_tree_is_kill(__isl_keep pet_tree *tree)
1368 return pet_tree_is_op_of_type(tree, pet_op_kill);
1371 /* Is "tree" an expression tree that performs an assignment operation?
1373 int pet_tree_is_assign(__isl_keep pet_tree *tree)
1375 return pet_tree_is_op_of_type(tree, pet_op_assign);
1378 /* Is "tree" an expression tree that performs an assume operation?
1380 int pet_tree_is_assume(__isl_keep pet_tree *tree)
1382 return pet_tree_is_op_of_type(tree, pet_op_assume);
1385 /* Is "tree" an expression tree that performs an assume operation
1386 * such that the assumed expression is affine?
1388 int pet_tree_is_affine_assume(__isl_keep pet_tree *tree)
1390 if (!pet_tree_is_assume(tree))
1391 return 0;
1392 return pet_expr_is_affine(tree->u.e.expr->args[0]);
1395 /* Given a tree that represent an assume operation expression
1396 * with an access as argument (possibly an affine expression),
1397 * return the index expression of that access.
1399 __isl_give isl_multi_pw_aff *pet_tree_assume_get_index(
1400 __isl_keep pet_tree *tree)
1402 if (!tree)
1403 return NULL;
1404 if (!pet_tree_is_assume(tree))
1405 isl_die(pet_tree_get_ctx(tree), isl_error_invalid,
1406 "not an assume tree", return NULL);
1407 return pet_expr_access_get_index(tree->u.e.expr->args[0]);
1410 /* Internal data structure for pet_tree_writes.
1411 * "id" is the identifier that we are looking for.
1412 * "writes" is set if we have found the identifier being written to.
1414 struct pet_tree_writes_data {
1415 isl_id *id;
1416 int writes;
1419 /* Check if expr writes to data->id.
1420 * If so, set data->writes and abort the search.
1422 static int check_write(__isl_keep pet_expr *expr, void *user)
1424 struct pet_tree_writes_data *data = user;
1426 data->writes = pet_expr_writes(expr, data->id);
1427 if (data->writes < 0 || data->writes)
1428 return -1;
1430 return 0;
1433 /* Is there any write access in "tree" that accesses "id"?
1435 int pet_tree_writes(__isl_keep pet_tree *tree, __isl_keep isl_id *id)
1437 struct pet_tree_writes_data data;
1439 data.id = id;
1440 data.writes = 0;
1441 if (pet_tree_foreach_expr(tree, &check_write, &data) < 0 &&
1442 !data.writes)
1443 return -1;
1445 return data.writes;
1448 /* Wrapper around pet_expr_update_domain
1449 * for use as a pet_tree_map_expr callback.
1451 static __isl_give pet_expr *update_domain(__isl_take pet_expr *expr, void *user)
1453 isl_multi_pw_aff *update = user;
1455 return pet_expr_update_domain(expr, isl_multi_pw_aff_copy(update));
1458 /* Modify all access relations in "tree" by precomposing them with
1459 * the given iteration space transformation.
1461 __isl_give pet_tree *pet_tree_update_domain(__isl_take pet_tree *tree,
1462 __isl_take isl_multi_pw_aff *update)
1464 tree = pet_tree_map_expr(tree, &update_domain, update);
1465 isl_multi_pw_aff_free(update);
1466 return tree;
1469 /* Does "tree" contain a continue or break node (not contained in any loop
1470 * subtree of "tree")?
1472 int pet_tree_has_continue_or_break(__isl_keep pet_tree *tree)
1474 int i;
1475 int found;
1477 if (!tree)
1478 return -1;
1480 switch (tree->type) {
1481 case pet_tree_error:
1482 return -1;
1483 case pet_tree_continue:
1484 case pet_tree_break:
1485 return 1;
1486 case pet_tree_decl:
1487 case pet_tree_decl_init:
1488 case pet_tree_expr:
1489 case pet_tree_for:
1490 case pet_tree_while:
1491 case pet_tree_infinite_loop:
1492 return 0;
1493 case pet_tree_block:
1494 for (i = 0; i < tree->u.b.n; ++i) {
1495 found =
1496 pet_tree_has_continue_or_break(tree->u.b.child[i]);
1497 if (found < 0 || found)
1498 return found;
1500 return 0;
1501 case pet_tree_if:
1502 return pet_tree_has_continue_or_break(tree->u.i.then_body);
1503 case pet_tree_if_else:
1504 found = pet_tree_has_continue_or_break(tree->u.i.then_body);
1505 if (found < 0 || found)
1506 return found;
1507 return pet_tree_has_continue_or_break(tree->u.i.else_body);
1511 static void print_indent(int indent)
1513 fprintf(stderr, "%*s", indent, "");
1516 void pet_tree_dump_with_indent(__isl_keep pet_tree *tree, int indent)
1518 int i;
1520 if (!tree)
1521 return;
1523 print_indent(indent);
1524 fprintf(stderr, "%s\n", pet_tree_type_str(tree->type));
1525 print_indent(indent);
1526 fprintf(stderr, "line: %d\n", pet_loc_get_line(tree->loc));
1527 print_indent(indent);
1528 fprintf(stderr, "start: %d\n", pet_loc_get_start(tree->loc));
1529 print_indent(indent);
1530 fprintf(stderr, "end: %d\n", pet_loc_get_end(tree->loc));
1531 if (tree->label) {
1532 print_indent(indent);
1533 fprintf(stderr, "label: ");
1534 isl_id_dump(tree->label);
1536 switch (tree->type) {
1537 case pet_tree_block:
1538 print_indent(indent);
1539 fprintf(stderr, "block: %d\n", tree->u.b.block);
1540 for (i = 0; i < tree->u.b.n; ++i)
1541 pet_tree_dump_with_indent(tree->u.b.child[i],
1542 indent + 2);
1543 break;
1544 case pet_tree_expr:
1545 pet_expr_dump_with_indent(tree->u.e.expr, indent);
1546 break;
1547 case pet_tree_break:
1548 case pet_tree_continue:
1549 break;
1550 case pet_tree_decl:
1551 case pet_tree_decl_init:
1552 print_indent(indent);
1553 fprintf(stderr, "var:\n");
1554 pet_expr_dump_with_indent(tree->u.d.var, indent + 2);
1555 if (tree->type != pet_tree_decl_init)
1556 break;
1557 print_indent(indent);
1558 fprintf(stderr, "init:\n");
1559 pet_expr_dump_with_indent(tree->u.d.init, indent + 2);
1560 break;
1561 case pet_tree_if:
1562 case pet_tree_if_else:
1563 print_indent(indent);
1564 fprintf(stderr, "condition:\n");
1565 pet_expr_dump_with_indent(tree->u.i.cond, indent + 2);
1566 print_indent(indent);
1567 fprintf(stderr, "then:\n");
1568 pet_tree_dump_with_indent(tree->u.i.then_body, indent + 2);
1569 if (tree->type != pet_tree_if_else)
1570 break;
1571 print_indent(indent);
1572 fprintf(stderr, "else:\n");
1573 pet_tree_dump_with_indent(tree->u.i.else_body, indent + 2);
1574 break;
1575 case pet_tree_for:
1576 print_indent(indent);
1577 fprintf(stderr, "declared: %d\n", tree->u.l.declared);
1578 print_indent(indent);
1579 fprintf(stderr, "var:\n");
1580 pet_expr_dump_with_indent(tree->u.l.iv, indent + 2);
1581 print_indent(indent);
1582 fprintf(stderr, "init:\n");
1583 pet_expr_dump_with_indent(tree->u.l.init, indent + 2);
1584 print_indent(indent);
1585 fprintf(stderr, "inc:\n");
1586 pet_expr_dump_with_indent(tree->u.l.inc, indent + 2);
1587 case pet_tree_while:
1588 print_indent(indent);
1589 fprintf(stderr, "condition:\n");
1590 pet_expr_dump_with_indent(tree->u.l.cond, indent + 2);
1591 case pet_tree_infinite_loop:
1592 print_indent(indent);
1593 fprintf(stderr, "body:\n");
1594 pet_tree_dump_with_indent(tree->u.l.body, indent + 2);
1595 break;
1596 case pet_tree_error:
1597 print_indent(indent);
1598 fprintf(stderr, "ERROR\n");
1599 break;
1603 void pet_tree_dump(__isl_keep pet_tree *tree)
1605 pet_tree_dump_with_indent(tree, 0);