extract n_nested_parameter
[pet.git] / scan.cc
blob0dac6a9ea7f29ef08c7161a7dbe7c45df828c355
1 /*
2 * Copyright 2011 Leiden University. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above
12 * copyright notice, this list of conditions and the following
13 * disclaimer in the documentation and/or other materials provided
14 * with the distribution.
16 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
20 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
21 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
23 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 * The views and conclusions contained in the software and documentation
29 * are those of the authors and should not be interpreted as
30 * representing official policies, either expressed or implied, of
31 * Leiden University.
32 */
34 #include <set>
35 #include <map>
36 #include <iostream>
37 #include <clang/AST/ASTDiagnostic.h>
38 #include <clang/AST/Expr.h>
39 #include <clang/AST/RecursiveASTVisitor.h>
41 #include <isl/id.h>
42 #include <isl/space.h>
43 #include <isl/aff.h>
44 #include <isl/set.h>
46 #include "scan.h"
47 #include "scop.h"
48 #include "scop_plus.h"
50 #include "config.h"
52 using namespace std;
53 using namespace clang;
56 /* Check if the element type corresponding to the given array type
57 * has a const qualifier.
59 static bool const_base(QualType qt)
61 const Type *type = qt.getTypePtr();
63 if (type->isPointerType())
64 return const_base(type->getPointeeType());
65 if (type->isArrayType()) {
66 const ArrayType *atype;
67 type = type->getCanonicalTypeInternal().getTypePtr();
68 atype = cast<ArrayType>(type);
69 return const_base(atype->getElementType());
72 return qt.isConstQualified();
75 /* Look for any assignments to scalar variables in part of the parse
76 * tree and set assigned_value to NULL for each of them.
77 * Also reset assigned_value if the address of a scalar variable
78 * is being taken. As an exception, if the address is passed to a function
79 * that is declared to receive a const pointer, then assigned_value is
80 * not reset.
82 * This ensures that we won't use any previously stored value
83 * in the current subtree and its parents.
85 struct clear_assignments : RecursiveASTVisitor<clear_assignments> {
86 map<ValueDecl *, Expr *> &assigned_value;
87 set<UnaryOperator *> skip;
89 clear_assignments(map<ValueDecl *, Expr *> &assigned_value) :
90 assigned_value(assigned_value) {}
92 /* Check for "address of" operators whose value is passed
93 * to a const pointer argument and add them to "skip", so that
94 * we can skip them in VisitUnaryOperator.
96 bool VisitCallExpr(CallExpr *expr) {
97 FunctionDecl *fd;
98 fd = expr->getDirectCallee();
99 if (!fd)
100 return true;
101 for (int i = 0; i < expr->getNumArgs(); ++i) {
102 Expr *arg = expr->getArg(i);
103 UnaryOperator *op;
104 if (arg->getStmtClass() == Stmt::ImplicitCastExprClass) {
105 ImplicitCastExpr *ice;
106 ice = cast<ImplicitCastExpr>(arg);
107 arg = ice->getSubExpr();
109 if (arg->getStmtClass() != Stmt::UnaryOperatorClass)
110 continue;
111 op = cast<UnaryOperator>(arg);
112 if (op->getOpcode() != UO_AddrOf)
113 continue;
114 if (const_base(fd->getParamDecl(i)->getType()))
115 skip.insert(op);
117 return true;
120 bool VisitUnaryOperator(UnaryOperator *expr) {
121 Expr *arg;
122 DeclRefExpr *ref;
123 ValueDecl *decl;
125 if (expr->getOpcode() != UO_AddrOf)
126 return true;
127 if (skip.find(expr) != skip.end())
128 return true;
130 arg = expr->getSubExpr();
131 if (arg->getStmtClass() != Stmt::DeclRefExprClass)
132 return true;
133 ref = cast<DeclRefExpr>(arg);
134 decl = ref->getDecl();
135 assigned_value[decl] = NULL;
136 return true;
139 bool VisitBinaryOperator(BinaryOperator *expr) {
140 Expr *lhs;
141 DeclRefExpr *ref;
142 ValueDecl *decl;
144 if (!expr->isAssignmentOp())
145 return true;
146 lhs = expr->getLHS();
147 if (lhs->getStmtClass() != Stmt::DeclRefExprClass)
148 return true;
149 ref = cast<DeclRefExpr>(lhs);
150 decl = ref->getDecl();
151 assigned_value[decl] = NULL;
152 return true;
156 /* Keep a copy of the currently assigned values.
158 * Any variable that is assigned a value inside the current scope
159 * is removed again when we leave the scope (either because it wasn't
160 * stored in the cache or because it has a different value in the cache).
162 struct assigned_value_cache {
163 map<ValueDecl *, Expr *> &assigned_value;
164 map<ValueDecl *, Expr *> cache;
166 assigned_value_cache(map<ValueDecl *, Expr *> &assigned_value) :
167 assigned_value(assigned_value), cache(assigned_value) {}
168 ~assigned_value_cache() {
169 map<ValueDecl *, Expr *>::iterator it = cache.begin();
170 for (it = assigned_value.begin(); it != assigned_value.end();
171 ++it) {
172 if (!it->second ||
173 (cache.find(it->first) != cache.end() &&
174 cache[it->first] != it->second))
175 cache[it->first] = NULL;
177 assigned_value = cache;
181 /* Called if we found something we (currently) cannot handle.
182 * We'll provide more informative warnings later.
184 * We only actually complain if autodetect is false.
186 void PetScan::unsupported(Stmt *stmt)
188 if (autodetect)
189 return;
191 SourceLocation loc = stmt->getLocStart();
192 DiagnosticsEngine &diag = PP.getDiagnostics();
193 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
194 "unsupported");
195 DiagnosticBuilder B = diag.Report(loc, id) << stmt->getSourceRange();
198 /* Extract an integer from "expr" and store it in "v".
200 int PetScan::extract_int(IntegerLiteral *expr, isl_int *v)
202 const Type *type = expr->getType().getTypePtr();
203 int is_signed = type->hasSignedIntegerRepresentation();
205 if (is_signed) {
206 int64_t i = expr->getValue().getSExtValue();
207 isl_int_set_si(*v, i);
208 } else {
209 uint64_t i = expr->getValue().getZExtValue();
210 isl_int_set_ui(*v, i);
213 return 0;
216 /* Extract an affine expression from the IntegerLiteral "expr".
218 __isl_give isl_pw_aff *PetScan::extract_affine(IntegerLiteral *expr)
220 isl_space *dim = isl_space_params_alloc(ctx, 0);
221 isl_local_space *ls = isl_local_space_from_space(isl_space_copy(dim));
222 isl_aff *aff = isl_aff_zero_on_domain(ls);
223 isl_set *dom = isl_set_universe(dim);
224 isl_int v;
226 isl_int_init(v);
227 extract_int(expr, &v);
228 aff = isl_aff_add_constant(aff, v);
229 isl_int_clear(v);
231 return isl_pw_aff_alloc(dom, aff);
234 /* Extract an affine expression from the APInt "val".
236 __isl_give isl_pw_aff *PetScan::extract_affine(const llvm::APInt &val)
238 isl_space *dim = isl_space_params_alloc(ctx, 0);
239 isl_local_space *ls = isl_local_space_from_space(isl_space_copy(dim));
240 isl_aff *aff = isl_aff_zero_on_domain(ls);
241 isl_set *dom = isl_set_universe(dim);
242 isl_int v;
244 isl_int_init(v);
245 isl_int_set_ui(v, val.getZExtValue());
246 aff = isl_aff_add_constant(aff, v);
247 isl_int_clear(v);
249 return isl_pw_aff_alloc(dom, aff);
252 __isl_give isl_pw_aff *PetScan::extract_affine(ImplicitCastExpr *expr)
254 return extract_affine(expr->getSubExpr());
257 /* Extract an affine expression from the DeclRefExpr "expr".
259 * If the variable has been assigned a value, then we check whether
260 * we know what expression was assigned and whether this expression
261 * is affine. If so, we convert the expression to an isl_pw_aff
262 * and to an extra parameter otherwise (provided nesting_enabled is set).
264 * Otherwise, we simply return an expression that is equal
265 * to a parameter corresponding to the referenced variable.
267 __isl_give isl_pw_aff *PetScan::extract_affine(DeclRefExpr *expr)
269 ValueDecl *decl = expr->getDecl();
270 const Type *type = decl->getType().getTypePtr();
271 isl_id *id;
272 isl_space *dim;
273 isl_aff *aff;
274 isl_set *dom;
276 if (!type->isIntegerType()) {
277 unsupported(expr);
278 return NULL;
281 if (assigned_value.find(decl) != assigned_value.end()) {
282 if (assigned_value[decl] && is_affine(assigned_value[decl]))
283 return extract_affine(assigned_value[decl]);
284 else
285 return nested_access(expr);
288 id = isl_id_alloc(ctx, decl->getName().str().c_str(), decl);
289 dim = isl_space_params_alloc(ctx, 1);
291 dim = isl_space_set_dim_id(dim, isl_dim_param, 0, id);
293 dom = isl_set_universe(isl_space_copy(dim));
294 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
295 aff = isl_aff_add_coefficient_si(aff, isl_dim_param, 0, 1);
297 return isl_pw_aff_alloc(dom, aff);
300 /* Extract an affine expression from an integer division operation.
301 * In particular, if "expr" is lhs/rhs, then return
303 * lhs >= 0 ? floor(lhs/rhs) : ceil(lhs/rhs)
305 * The second argument (rhs) is required to be a (positive) integer constant.
307 __isl_give isl_pw_aff *PetScan::extract_affine_div(BinaryOperator *expr)
309 Expr *rhs_expr;
310 isl_pw_aff *lhs, *lhs_f, *lhs_c;
311 isl_pw_aff *res;
312 isl_int v;
313 isl_set *cond;
315 rhs_expr = expr->getRHS();
316 if (rhs_expr->getStmtClass() != Stmt::IntegerLiteralClass) {
317 unsupported(expr);
318 return NULL;
321 lhs = extract_affine(expr->getLHS());
322 cond = isl_pw_aff_nonneg_set(isl_pw_aff_copy(lhs));
324 isl_int_init(v);
325 extract_int(cast<IntegerLiteral>(rhs_expr), &v);
326 lhs = isl_pw_aff_scale_down(lhs, v);
327 isl_int_clear(v);
329 lhs_f = isl_pw_aff_floor(isl_pw_aff_copy(lhs));
330 lhs_c = isl_pw_aff_ceil(lhs);
331 res = isl_pw_aff_cond(cond, lhs_f, lhs_c);
333 return res;
336 /* Extract an affine expression from a modulo operation.
337 * In particular, if "expr" is lhs/rhs, then return
339 * lhs - rhs * (lhs >= 0 ? floor(lhs/rhs) : ceil(lhs/rhs))
341 * The second argument (rhs) is required to be a (positive) integer constant.
343 __isl_give isl_pw_aff *PetScan::extract_affine_mod(BinaryOperator *expr)
345 Expr *rhs_expr;
346 isl_pw_aff *lhs, *lhs_f, *lhs_c;
347 isl_pw_aff *res;
348 isl_int v;
349 isl_set *cond;
351 rhs_expr = expr->getRHS();
352 if (rhs_expr->getStmtClass() != Stmt::IntegerLiteralClass) {
353 unsupported(expr);
354 return NULL;
357 lhs = extract_affine(expr->getLHS());
358 cond = isl_pw_aff_nonneg_set(isl_pw_aff_copy(lhs));
360 isl_int_init(v);
361 extract_int(cast<IntegerLiteral>(rhs_expr), &v);
362 res = isl_pw_aff_scale_down(isl_pw_aff_copy(lhs), v);
364 lhs_f = isl_pw_aff_floor(isl_pw_aff_copy(res));
365 lhs_c = isl_pw_aff_ceil(res);
366 res = isl_pw_aff_cond(cond, lhs_f, lhs_c);
368 res = isl_pw_aff_scale(res, v);
369 isl_int_clear(v);
371 res = isl_pw_aff_sub(lhs, res);
373 return res;
376 /* Extract an affine expression from a multiplication operation.
377 * This is only allowed if at least one of the two arguments
378 * is a (piecewise) constant.
380 __isl_give isl_pw_aff *PetScan::extract_affine_mul(BinaryOperator *expr)
382 isl_pw_aff *lhs;
383 isl_pw_aff *rhs;
385 lhs = extract_affine(expr->getLHS());
386 rhs = extract_affine(expr->getRHS());
388 if (!isl_pw_aff_is_cst(lhs) && !isl_pw_aff_is_cst(rhs)) {
389 isl_pw_aff_free(lhs);
390 isl_pw_aff_free(rhs);
391 unsupported(expr);
392 return NULL;
395 return isl_pw_aff_mul(lhs, rhs);
398 /* Extract an affine expression from an addition or subtraction operation.
400 __isl_give isl_pw_aff *PetScan::extract_affine_add(BinaryOperator *expr)
402 isl_pw_aff *lhs;
403 isl_pw_aff *rhs;
405 lhs = extract_affine(expr->getLHS());
406 rhs = extract_affine(expr->getRHS());
408 switch (expr->getOpcode()) {
409 case BO_Add:
410 return isl_pw_aff_add(lhs, rhs);
411 case BO_Sub:
412 return isl_pw_aff_sub(lhs, rhs);
413 default:
414 isl_pw_aff_free(lhs);
415 isl_pw_aff_free(rhs);
416 return NULL;
421 /* Compute
423 * pwaff mod 2^width
425 static __isl_give isl_pw_aff *wrap(__isl_take isl_pw_aff *pwaff,
426 unsigned width)
428 isl_int mod;
430 isl_int_init(mod);
431 isl_int_set_si(mod, 1);
432 isl_int_mul_2exp(mod, mod, width);
434 pwaff = isl_pw_aff_mod(pwaff, mod);
436 isl_int_clear(mod);
438 return pwaff;
441 /* Extract an affine expression from some binary operations.
442 * If the result of the expression is unsigned, then we wrap it
443 * based on the size of the type.
445 __isl_give isl_pw_aff *PetScan::extract_affine(BinaryOperator *expr)
447 isl_pw_aff *res;
449 switch (expr->getOpcode()) {
450 case BO_Add:
451 case BO_Sub:
452 res = extract_affine_add(expr);
453 break;
454 case BO_Div:
455 res = extract_affine_div(expr);
456 break;
457 case BO_Rem:
458 res = extract_affine_mod(expr);
459 break;
460 case BO_Mul:
461 res = extract_affine_mul(expr);
462 break;
463 default:
464 unsupported(expr);
465 return NULL;
468 if (expr->getType()->isUnsignedIntegerType())
469 res = wrap(res, ast_context.getIntWidth(expr->getType()));
471 return res;
474 /* Extract an affine expression from a negation operation.
476 __isl_give isl_pw_aff *PetScan::extract_affine(UnaryOperator *expr)
478 if (expr->getOpcode() == UO_Minus)
479 return isl_pw_aff_neg(extract_affine(expr->getSubExpr()));
481 unsupported(expr);
482 return NULL;
485 __isl_give isl_pw_aff *PetScan::extract_affine(ParenExpr *expr)
487 return extract_affine(expr->getSubExpr());
490 /* Extract an affine expression from some special function calls.
491 * In particular, we handle "min", "max", "ceild" and "floord".
492 * In case of the latter two, the second argument needs to be
493 * a (positive) integer constant.
495 __isl_give isl_pw_aff *PetScan::extract_affine(CallExpr *expr)
497 FunctionDecl *fd;
498 string name;
499 isl_pw_aff *aff1, *aff2;
501 fd = expr->getDirectCallee();
502 if (!fd) {
503 unsupported(expr);
504 return NULL;
507 name = fd->getDeclName().getAsString();
508 if (!(expr->getNumArgs() == 2 && name == "min") &&
509 !(expr->getNumArgs() == 2 && name == "max") &&
510 !(expr->getNumArgs() == 2 && name == "floord") &&
511 !(expr->getNumArgs() == 2 && name == "ceild")) {
512 unsupported(expr);
513 return NULL;
516 if (name == "min" || name == "max") {
517 aff1 = extract_affine(expr->getArg(0));
518 aff2 = extract_affine(expr->getArg(1));
520 if (name == "min")
521 aff1 = isl_pw_aff_min(aff1, aff2);
522 else
523 aff1 = isl_pw_aff_max(aff1, aff2);
524 } else if (name == "floord" || name == "ceild") {
525 isl_int v;
526 Expr *arg2 = expr->getArg(1);
528 if (arg2->getStmtClass() != Stmt::IntegerLiteralClass) {
529 unsupported(expr);
530 return NULL;
532 aff1 = extract_affine(expr->getArg(0));
533 isl_int_init(v);
534 extract_int(cast<IntegerLiteral>(arg2), &v);
535 aff1 = isl_pw_aff_scale_down(aff1, v);
536 isl_int_clear(v);
537 if (name == "floord")
538 aff1 = isl_pw_aff_floor(aff1);
539 else
540 aff1 = isl_pw_aff_ceil(aff1);
541 } else {
542 unsupported(expr);
543 return NULL;
546 return aff1;
550 /* This method is called when we come across an access that is
551 * nested in what is supposed to be an affine expression.
552 * If nesting is allowed, we return a new parameter that corresponds
553 * to this nested access. Otherwise, we simply complain.
555 * The new parameter is resolved in resolve_nested.
557 isl_pw_aff *PetScan::nested_access(Expr *expr)
559 isl_id *id;
560 isl_space *dim;
561 isl_aff *aff;
562 isl_set *dom;
564 if (!nesting_enabled) {
565 unsupported(expr);
566 return NULL;
569 id = isl_id_alloc(ctx, NULL, expr);
570 dim = isl_space_params_alloc(ctx, 1);
572 dim = isl_space_set_dim_id(dim, isl_dim_param, 0, id);
574 dom = isl_set_universe(isl_space_copy(dim));
575 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
576 aff = isl_aff_add_coefficient_si(aff, isl_dim_param, 0, 1);
578 return isl_pw_aff_alloc(dom, aff);
581 /* Affine expressions are not supposed to contain array accesses,
582 * but if nesting is allowed, we return a parameter corresponding
583 * to the array access.
585 __isl_give isl_pw_aff *PetScan::extract_affine(ArraySubscriptExpr *expr)
587 return nested_access(expr);
590 /* Extract an affine expression from a conditional operation.
592 __isl_give isl_pw_aff *PetScan::extract_affine(ConditionalOperator *expr)
594 isl_set *cond;
595 isl_pw_aff *lhs, *rhs;
597 cond = extract_condition(expr->getCond());
598 lhs = extract_affine(expr->getTrueExpr());
599 rhs = extract_affine(expr->getFalseExpr());
601 return isl_pw_aff_cond(cond, lhs, rhs);
604 /* Extract an affine expression, if possible, from "expr".
605 * Otherwise return NULL.
607 __isl_give isl_pw_aff *PetScan::extract_affine(Expr *expr)
609 switch (expr->getStmtClass()) {
610 case Stmt::ImplicitCastExprClass:
611 return extract_affine(cast<ImplicitCastExpr>(expr));
612 case Stmt::IntegerLiteralClass:
613 return extract_affine(cast<IntegerLiteral>(expr));
614 case Stmt::DeclRefExprClass:
615 return extract_affine(cast<DeclRefExpr>(expr));
616 case Stmt::BinaryOperatorClass:
617 return extract_affine(cast<BinaryOperator>(expr));
618 case Stmt::UnaryOperatorClass:
619 return extract_affine(cast<UnaryOperator>(expr));
620 case Stmt::ParenExprClass:
621 return extract_affine(cast<ParenExpr>(expr));
622 case Stmt::CallExprClass:
623 return extract_affine(cast<CallExpr>(expr));
624 case Stmt::ArraySubscriptExprClass:
625 return extract_affine(cast<ArraySubscriptExpr>(expr));
626 case Stmt::ConditionalOperatorClass:
627 return extract_affine(cast<ConditionalOperator>(expr));
628 default:
629 unsupported(expr);
631 return NULL;
634 __isl_give isl_map *PetScan::extract_access(ImplicitCastExpr *expr)
636 return extract_access(expr->getSubExpr());
639 /* Return the depth of an array of the given type.
641 static int array_depth(const Type *type)
643 if (type->isPointerType())
644 return 1 + array_depth(type->getPointeeType().getTypePtr());
645 if (type->isArrayType()) {
646 const ArrayType *atype;
647 type = type->getCanonicalTypeInternal().getTypePtr();
648 atype = cast<ArrayType>(type);
649 return 1 + array_depth(atype->getElementType().getTypePtr());
651 return 0;
654 /* Return the element type of the given array type.
656 static QualType base_type(QualType qt)
658 const Type *type = qt.getTypePtr();
660 if (type->isPointerType())
661 return base_type(type->getPointeeType());
662 if (type->isArrayType()) {
663 const ArrayType *atype;
664 type = type->getCanonicalTypeInternal().getTypePtr();
665 atype = cast<ArrayType>(type);
666 return base_type(atype->getElementType());
668 return qt;
671 /* Extract an access relation from a reference to a variable.
672 * If the variable has name "A" and its type corresponds to an
673 * array of depth d, then the returned access relation is of the
674 * form
676 * { [] -> A[i_1,...,i_d] }
678 __isl_give isl_map *PetScan::extract_access(DeclRefExpr *expr)
680 ValueDecl *decl = expr->getDecl();
681 int depth = array_depth(decl->getType().getTypePtr());
682 isl_id *id = isl_id_alloc(ctx, decl->getName().str().c_str(), decl);
683 isl_space *dim = isl_space_alloc(ctx, 0, 0, depth);
684 isl_map *access_rel;
686 dim = isl_space_set_tuple_id(dim, isl_dim_out, id);
688 access_rel = isl_map_universe(dim);
690 return access_rel;
693 /* Extract an access relation from an integer contant.
694 * If the value of the constant is "v", then the returned access relation
695 * is
697 * { [] -> [v] }
699 __isl_give isl_map *PetScan::extract_access(IntegerLiteral *expr)
701 return isl_map_from_range(isl_set_from_pw_aff(extract_affine(expr)));
704 /* Try and extract an access relation from the given Expr.
705 * Return NULL if it doesn't work out.
707 __isl_give isl_map *PetScan::extract_access(Expr *expr)
709 switch (expr->getStmtClass()) {
710 case Stmt::ImplicitCastExprClass:
711 return extract_access(cast<ImplicitCastExpr>(expr));
712 case Stmt::DeclRefExprClass:
713 return extract_access(cast<DeclRefExpr>(expr));
714 case Stmt::ArraySubscriptExprClass:
715 return extract_access(cast<ArraySubscriptExpr>(expr));
716 default:
717 unsupported(expr);
719 return NULL;
722 /* Assign the affine expression "index" to the output dimension "pos" of "map"
723 * and return the result.
725 __isl_give isl_map *set_index(__isl_take isl_map *map, int pos,
726 __isl_take isl_pw_aff *index)
728 isl_map *index_map;
729 int len = isl_map_dim(map, isl_dim_out);
730 isl_id *id;
732 index_map = isl_map_from_range(isl_set_from_pw_aff(index));
733 index_map = isl_map_insert_dims(index_map, isl_dim_out, 0, pos);
734 index_map = isl_map_add_dims(index_map, isl_dim_out, len - pos - 1);
735 id = isl_map_get_tuple_id(map, isl_dim_out);
736 index_map = isl_map_set_tuple_id(index_map, isl_dim_out, id);
738 map = isl_map_intersect(map, index_map);
740 return map;
743 /* Extract an access relation from the given array subscript expression.
744 * If nesting is allowed in general, then we turn it on while
745 * examining the index expression.
747 * We first extract an access relation from the base.
748 * This will result in an access relation with a range that corresponds
749 * to the array being accessed and with earlier indices filled in already.
750 * We then extract the current index and fill that in as well.
751 * The position of the current index is based on the type of base.
752 * If base is the actual array variable, then the depth of this type
753 * will be the same as the depth of the array and we will fill in
754 * the first array index.
755 * Otherwise, the depth of the base type will be smaller and we will fill
756 * in a later index.
758 __isl_give isl_map *PetScan::extract_access(ArraySubscriptExpr *expr)
760 Expr *base = expr->getBase();
761 Expr *idx = expr->getIdx();
762 isl_pw_aff *index;
763 isl_map *base_access;
764 isl_map *access;
765 int depth = array_depth(base->getType().getTypePtr());
766 int pos;
767 bool save_nesting = nesting_enabled;
769 nesting_enabled = allow_nested;
771 base_access = extract_access(base);
772 index = extract_affine(idx);
774 nesting_enabled = save_nesting;
776 pos = isl_map_dim(base_access, isl_dim_out) - depth;
777 access = set_index(base_access, pos, index);
779 return access;
782 /* Check if "expr" calls function "minmax" with two arguments and if so
783 * make lhs and rhs refer to these two arguments.
785 static bool is_minmax(Expr *expr, const char *minmax, Expr *&lhs, Expr *&rhs)
787 CallExpr *call;
788 FunctionDecl *fd;
789 string name;
791 if (expr->getStmtClass() != Stmt::CallExprClass)
792 return false;
794 call = cast<CallExpr>(expr);
795 fd = call->getDirectCallee();
796 if (!fd)
797 return false;
799 if (call->getNumArgs() != 2)
800 return false;
802 name = fd->getDeclName().getAsString();
803 if (name != minmax)
804 return false;
806 lhs = call->getArg(0);
807 rhs = call->getArg(1);
809 return true;
812 /* Check if "expr" is of the form min(lhs, rhs) and if so make
813 * lhs and rhs refer to the two arguments.
815 static bool is_min(Expr *expr, Expr *&lhs, Expr *&rhs)
817 return is_minmax(expr, "min", lhs, rhs);
820 /* Check if "expr" is of the form max(lhs, rhs) and if so make
821 * lhs and rhs refer to the two arguments.
823 static bool is_max(Expr *expr, Expr *&lhs, Expr *&rhs)
825 return is_minmax(expr, "max", lhs, rhs);
828 /* Extract a set of values satisfying the comparison "LHS op RHS"
829 * "comp" is the original statement that "LHS op RHS" is derived from
830 * and is used for diagnostics.
832 * If the comparison is of the form
834 * a <= min(b,c)
836 * then the set is constructed as the intersection of the set corresponding
837 * to the comparisons
839 * a <= b and a <= c
841 * A similar optimization is performed for max(a,b) <= c.
842 * We do this because that will lead to simpler representations of the set.
843 * If isl is ever enhanced to explicitly deal with min and max expressions,
844 * this optimization can be removed.
846 __isl_give isl_set *PetScan::extract_comparison(BinaryOperatorKind op,
847 Expr *LHS, Expr *RHS, Stmt *comp)
849 isl_pw_aff *lhs;
850 isl_pw_aff *rhs;
851 isl_set *cond;
853 if (op == BO_GT)
854 return extract_comparison(BO_LT, RHS, LHS, comp);
855 if (op == BO_GE)
856 return extract_comparison(BO_LE, RHS, LHS, comp);
858 if (op == BO_LT || op == BO_LE) {
859 Expr *expr1, *expr2;
860 isl_set *set1, *set2;
861 if (is_min(RHS, expr1, expr2)) {
862 set1 = extract_comparison(op, LHS, expr1, comp);
863 set2 = extract_comparison(op, LHS, expr2, comp);
864 return isl_set_intersect(set1, set2);
866 if (is_max(LHS, expr1, expr2)) {
867 set1 = extract_comparison(op, expr1, RHS, comp);
868 set2 = extract_comparison(op, expr2, RHS, comp);
869 return isl_set_intersect(set1, set2);
873 lhs = extract_affine(LHS);
874 rhs = extract_affine(RHS);
876 switch (op) {
877 case BO_LT:
878 cond = isl_pw_aff_lt_set(lhs, rhs);
879 break;
880 case BO_LE:
881 cond = isl_pw_aff_le_set(lhs, rhs);
882 break;
883 case BO_EQ:
884 cond = isl_pw_aff_eq_set(lhs, rhs);
885 break;
886 case BO_NE:
887 cond = isl_pw_aff_ne_set(lhs, rhs);
888 break;
889 default:
890 isl_pw_aff_free(lhs);
891 isl_pw_aff_free(rhs);
892 unsupported(comp);
893 return NULL;
896 cond = isl_set_coalesce(cond);
898 return cond;
901 __isl_give isl_set *PetScan::extract_comparison(BinaryOperator *comp)
903 return extract_comparison(comp->getOpcode(), comp->getLHS(),
904 comp->getRHS(), comp);
907 /* Extract a set of values satisfying the negation (logical not)
908 * of a subexpression.
910 __isl_give isl_set *PetScan::extract_boolean(UnaryOperator *op)
912 isl_set *cond;
914 cond = extract_condition(op->getSubExpr());
916 return isl_set_complement(cond);
919 /* Extract a set of values satisfying the union (logical or)
920 * or intersection (logical and) of two subexpressions.
922 __isl_give isl_set *PetScan::extract_boolean(BinaryOperator *comp)
924 isl_set *lhs;
925 isl_set *rhs;
926 isl_set *cond;
928 lhs = extract_condition(comp->getLHS());
929 rhs = extract_condition(comp->getRHS());
931 switch (comp->getOpcode()) {
932 case BO_LAnd:
933 cond = isl_set_intersect(lhs, rhs);
934 break;
935 case BO_LOr:
936 cond = isl_set_union(lhs, rhs);
937 break;
938 default:
939 isl_set_free(lhs);
940 isl_set_free(rhs);
941 unsupported(comp);
942 return NULL;
945 return cond;
948 __isl_give isl_set *PetScan::extract_condition(UnaryOperator *expr)
950 switch (expr->getOpcode()) {
951 case UO_LNot:
952 return extract_boolean(expr);
953 default:
954 unsupported(expr);
955 return NULL;
959 /* Extract a set of values satisfying the condition "expr != 0".
961 __isl_give isl_set *PetScan::extract_implicit_condition(Expr *expr)
963 return isl_pw_aff_non_zero_set(extract_affine(expr));
966 /* Extract a set of values satisfying the condition expressed by "expr".
968 * If the expression doesn't look like a condition, we assume it
969 * is an affine expression and return the condition "expr != 0".
971 __isl_give isl_set *PetScan::extract_condition(Expr *expr)
973 BinaryOperator *comp;
975 if (!expr)
976 return isl_set_universe(isl_space_params_alloc(ctx, 0));
978 if (expr->getStmtClass() == Stmt::ParenExprClass)
979 return extract_condition(cast<ParenExpr>(expr)->getSubExpr());
981 if (expr->getStmtClass() == Stmt::UnaryOperatorClass)
982 return extract_condition(cast<UnaryOperator>(expr));
984 if (expr->getStmtClass() != Stmt::BinaryOperatorClass)
985 return extract_implicit_condition(expr);
987 comp = cast<BinaryOperator>(expr);
988 switch (comp->getOpcode()) {
989 case BO_LT:
990 case BO_LE:
991 case BO_GT:
992 case BO_GE:
993 case BO_EQ:
994 case BO_NE:
995 return extract_comparison(comp);
996 case BO_LAnd:
997 case BO_LOr:
998 return extract_boolean(comp);
999 default:
1000 return extract_implicit_condition(expr);
1004 static enum pet_op_type UnaryOperatorKind2pet_op_type(UnaryOperatorKind kind)
1006 switch (kind) {
1007 case UO_Minus:
1008 return pet_op_minus;
1009 default:
1010 return pet_op_last;
1014 static enum pet_op_type BinaryOperatorKind2pet_op_type(BinaryOperatorKind kind)
1016 switch (kind) {
1017 case BO_AddAssign:
1018 return pet_op_add_assign;
1019 case BO_SubAssign:
1020 return pet_op_sub_assign;
1021 case BO_MulAssign:
1022 return pet_op_mul_assign;
1023 case BO_DivAssign:
1024 return pet_op_div_assign;
1025 case BO_Assign:
1026 return pet_op_assign;
1027 case BO_Add:
1028 return pet_op_add;
1029 case BO_Sub:
1030 return pet_op_sub;
1031 case BO_Mul:
1032 return pet_op_mul;
1033 case BO_Div:
1034 return pet_op_div;
1035 case BO_EQ:
1036 return pet_op_eq;
1037 case BO_LE:
1038 return pet_op_le;
1039 case BO_LT:
1040 return pet_op_lt;
1041 case BO_GT:
1042 return pet_op_gt;
1043 default:
1044 return pet_op_last;
1048 /* Construct a pet_expr representing a unary operator expression.
1050 struct pet_expr *PetScan::extract_expr(UnaryOperator *expr)
1052 struct pet_expr *arg;
1053 enum pet_op_type op;
1055 op = UnaryOperatorKind2pet_op_type(expr->getOpcode());
1056 if (op == pet_op_last) {
1057 unsupported(expr);
1058 return NULL;
1061 arg = extract_expr(expr->getSubExpr());
1063 return pet_expr_new_unary(ctx, op, arg);
1066 /* Mark the given access pet_expr as a write.
1067 * If a scalar is being accessed, then mark its value
1068 * as unknown in assigned_value.
1070 void PetScan::mark_write(struct pet_expr *access)
1072 isl_id *id;
1073 ValueDecl *decl;
1075 access->acc.write = 1;
1076 access->acc.read = 0;
1078 if (isl_map_dim(access->acc.access, isl_dim_out) != 0)
1079 return;
1081 id = isl_map_get_tuple_id(access->acc.access, isl_dim_out);
1082 decl = (ValueDecl *) isl_id_get_user(id);
1083 assigned_value[decl] = NULL;
1084 isl_id_free(id);
1087 /* Construct a pet_expr representing a binary operator expression.
1089 * If the top level operator is an assignment and the LHS is an access,
1090 * then we mark that access as a write. If the operator is a compound
1091 * assignment, the access is marked as both a read and a write.
1093 * If "expr" assigns something to a scalar variable, then we keep track
1094 * of the assigned expression in assigned_value so that we can plug
1095 * it in when we later come across the same variable.
1097 struct pet_expr *PetScan::extract_expr(BinaryOperator *expr)
1099 struct pet_expr *lhs, *rhs;
1100 enum pet_op_type op;
1102 op = BinaryOperatorKind2pet_op_type(expr->getOpcode());
1103 if (op == pet_op_last) {
1104 unsupported(expr);
1105 return NULL;
1108 lhs = extract_expr(expr->getLHS());
1109 rhs = extract_expr(expr->getRHS());
1111 if (expr->isAssignmentOp() && lhs && lhs->type == pet_expr_access) {
1112 mark_write(lhs);
1113 if (expr->isCompoundAssignmentOp())
1114 lhs->acc.read = 1;
1117 if (expr->getOpcode() == BO_Assign &&
1118 lhs && lhs->type == pet_expr_access &&
1119 isl_map_dim(lhs->acc.access, isl_dim_out) == 0) {
1120 isl_id *id = isl_map_get_tuple_id(lhs->acc.access, isl_dim_out);
1121 ValueDecl *decl = (ValueDecl *) isl_id_get_user(id);
1122 assigned_value[decl] = expr->getRHS();
1123 isl_id_free(id);
1126 return pet_expr_new_binary(ctx, op, lhs, rhs);
1129 /* Construct a pet_expr representing a conditional operation.
1131 struct pet_expr *PetScan::extract_expr(ConditionalOperator *expr)
1133 struct pet_expr *cond, *lhs, *rhs;
1135 cond = extract_expr(expr->getCond());
1136 lhs = extract_expr(expr->getTrueExpr());
1137 rhs = extract_expr(expr->getFalseExpr());
1139 return pet_expr_new_ternary(ctx, cond, lhs, rhs);
1142 struct pet_expr *PetScan::extract_expr(ImplicitCastExpr *expr)
1144 return extract_expr(expr->getSubExpr());
1147 /* Construct a pet_expr representing a floating point value.
1149 struct pet_expr *PetScan::extract_expr(FloatingLiteral *expr)
1151 return pet_expr_new_double(ctx, expr->getValueAsApproximateDouble());
1154 /* Extract an access relation from "expr" and then convert it into
1155 * a pet_expr.
1157 struct pet_expr *PetScan::extract_access_expr(Expr *expr)
1159 isl_map *access;
1160 struct pet_expr *pe;
1162 switch (expr->getStmtClass()) {
1163 case Stmt::ArraySubscriptExprClass:
1164 access = extract_access(cast<ArraySubscriptExpr>(expr));
1165 break;
1166 case Stmt::DeclRefExprClass:
1167 access = extract_access(cast<DeclRefExpr>(expr));
1168 break;
1169 case Stmt::IntegerLiteralClass:
1170 access = extract_access(cast<IntegerLiteral>(expr));
1171 break;
1172 default:
1173 unsupported(expr);
1174 return NULL;
1177 pe = pet_expr_from_access(access);
1179 return pe;
1182 struct pet_expr *PetScan::extract_expr(ParenExpr *expr)
1184 return extract_expr(expr->getSubExpr());
1187 /* Construct a pet_expr representing a function call.
1189 * If we are passing along a pointer to an array element
1190 * or an entire row or even higher dimensional slice of an array,
1191 * then the function being called may write into the array.
1193 * We assume here that if the function is declared to take a pointer
1194 * to a const type, then the function will perform a read
1195 * and that otherwise, it will perform a write.
1197 struct pet_expr *PetScan::extract_expr(CallExpr *expr)
1199 struct pet_expr *res = NULL;
1200 FunctionDecl *fd;
1201 string name;
1203 fd = expr->getDirectCallee();
1204 if (!fd) {
1205 unsupported(expr);
1206 return NULL;
1209 name = fd->getDeclName().getAsString();
1210 res = pet_expr_new_call(ctx, name.c_str(), expr->getNumArgs());
1211 if (!res)
1212 return NULL;
1214 for (int i = 0; i < expr->getNumArgs(); ++i) {
1215 Expr *arg = expr->getArg(i);
1216 int is_addr = 0;
1218 if (arg->getStmtClass() == Stmt::ImplicitCastExprClass) {
1219 ImplicitCastExpr *ice = cast<ImplicitCastExpr>(arg);
1220 arg = ice->getSubExpr();
1222 if (arg->getStmtClass() == Stmt::UnaryOperatorClass) {
1223 UnaryOperator *op = cast<UnaryOperator>(arg);
1224 if (op->getOpcode() == UO_AddrOf) {
1225 is_addr = 1;
1226 arg = op->getSubExpr();
1229 res->args[i] = PetScan::extract_expr(arg);
1230 if (!res->args[i])
1231 goto error;
1232 if (arg->getStmtClass() == Stmt::ArraySubscriptExprClass &&
1233 array_depth(arg->getType().getTypePtr()) > 0)
1234 is_addr = 1;
1235 if (is_addr && res->args[i]->type == pet_expr_access) {
1236 ParmVarDecl *parm = fd->getParamDecl(i);
1237 if (!const_base(parm->getType()))
1238 mark_write(res->args[i]);
1242 return res;
1243 error:
1244 pet_expr_free(res);
1245 return NULL;
1248 /* Try and onstruct a pet_expr representing "expr".
1250 struct pet_expr *PetScan::extract_expr(Expr *expr)
1252 switch (expr->getStmtClass()) {
1253 case Stmt::UnaryOperatorClass:
1254 return extract_expr(cast<UnaryOperator>(expr));
1255 case Stmt::CompoundAssignOperatorClass:
1256 case Stmt::BinaryOperatorClass:
1257 return extract_expr(cast<BinaryOperator>(expr));
1258 case Stmt::ImplicitCastExprClass:
1259 return extract_expr(cast<ImplicitCastExpr>(expr));
1260 case Stmt::ArraySubscriptExprClass:
1261 case Stmt::DeclRefExprClass:
1262 case Stmt::IntegerLiteralClass:
1263 return extract_access_expr(expr);
1264 case Stmt::FloatingLiteralClass:
1265 return extract_expr(cast<FloatingLiteral>(expr));
1266 case Stmt::ParenExprClass:
1267 return extract_expr(cast<ParenExpr>(expr));
1268 case Stmt::ConditionalOperatorClass:
1269 return extract_expr(cast<ConditionalOperator>(expr));
1270 case Stmt::CallExprClass:
1271 return extract_expr(cast<CallExpr>(expr));
1272 default:
1273 unsupported(expr);
1275 return NULL;
1278 /* Check if the given initialization statement is an assignment.
1279 * If so, return that assignment. Otherwise return NULL.
1281 BinaryOperator *PetScan::initialization_assignment(Stmt *init)
1283 BinaryOperator *ass;
1285 if (init->getStmtClass() != Stmt::BinaryOperatorClass)
1286 return NULL;
1288 ass = cast<BinaryOperator>(init);
1289 if (ass->getOpcode() != BO_Assign)
1290 return NULL;
1292 return ass;
1295 /* Check if the given initialization statement is a declaration
1296 * of a single variable.
1297 * If so, return that declaration. Otherwise return NULL.
1299 Decl *PetScan::initialization_declaration(Stmt *init)
1301 DeclStmt *decl;
1303 if (init->getStmtClass() != Stmt::DeclStmtClass)
1304 return NULL;
1306 decl = cast<DeclStmt>(init);
1308 if (!decl->isSingleDecl())
1309 return NULL;
1311 return decl->getSingleDecl();
1314 /* Given the assignment operator in the initialization of a for loop,
1315 * extract the induction variable, i.e., the (integer)variable being
1316 * assigned.
1318 ValueDecl *PetScan::extract_induction_variable(BinaryOperator *init)
1320 Expr *lhs;
1321 DeclRefExpr *ref;
1322 ValueDecl *decl;
1323 const Type *type;
1325 lhs = init->getLHS();
1326 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
1327 unsupported(init);
1328 return NULL;
1331 ref = cast<DeclRefExpr>(lhs);
1332 decl = ref->getDecl();
1333 type = decl->getType().getTypePtr();
1335 if (!type->isIntegerType()) {
1336 unsupported(lhs);
1337 return NULL;
1340 return decl;
1343 /* Given the initialization statement of a for loop and the single
1344 * declaration in this initialization statement,
1345 * extract the induction variable, i.e., the (integer) variable being
1346 * declared.
1348 VarDecl *PetScan::extract_induction_variable(Stmt *init, Decl *decl)
1350 VarDecl *vd;
1352 vd = cast<VarDecl>(decl);
1354 const QualType type = vd->getType();
1355 if (!type->isIntegerType()) {
1356 unsupported(init);
1357 return NULL;
1360 if (!vd->getInit()) {
1361 unsupported(init);
1362 return NULL;
1365 return vd;
1368 /* Check that op is of the form iv++ or iv--.
1369 * "inc" is accordingly set to 1 or -1.
1371 bool PetScan::check_unary_increment(UnaryOperator *op, clang::ValueDecl *iv,
1372 isl_int &inc)
1374 Expr *sub;
1375 DeclRefExpr *ref;
1377 if (!op->isIncrementDecrementOp()) {
1378 unsupported(op);
1379 return false;
1382 if (op->isIncrementOp())
1383 isl_int_set_si(inc, 1);
1384 else
1385 isl_int_set_si(inc, -1);
1387 sub = op->getSubExpr();
1388 if (sub->getStmtClass() != Stmt::DeclRefExprClass) {
1389 unsupported(op);
1390 return false;
1393 ref = cast<DeclRefExpr>(sub);
1394 if (ref->getDecl() != iv) {
1395 unsupported(op);
1396 return false;
1399 return true;
1402 /* If the isl_pw_aff on which isl_pw_aff_foreach_piece is called
1403 * has a single constant expression on a universe domain, then
1404 * put this constant in *user.
1406 static int extract_cst(__isl_take isl_set *set, __isl_take isl_aff *aff,
1407 void *user)
1409 isl_int *inc = (isl_int *)user;
1410 int res = 0;
1412 if (!isl_set_plain_is_universe(set) || !isl_aff_is_cst(aff))
1413 res = -1;
1414 else
1415 isl_aff_get_constant(aff, inc);
1417 isl_set_free(set);
1418 isl_aff_free(aff);
1420 return res;
1423 /* Check if op is of the form
1425 * iv = iv + inc
1427 * with inc a constant and set "inc" accordingly.
1429 * We extract an affine expression from the RHS and the subtract iv.
1430 * The result should be a constant.
1432 bool PetScan::check_binary_increment(BinaryOperator *op, clang::ValueDecl *iv,
1433 isl_int &inc)
1435 Expr *lhs;
1436 DeclRefExpr *ref;
1437 isl_id *id;
1438 isl_space *dim;
1439 isl_aff *aff;
1440 isl_pw_aff *val;
1442 if (op->getOpcode() != BO_Assign) {
1443 unsupported(op);
1444 return false;
1447 lhs = op->getLHS();
1448 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
1449 unsupported(op);
1450 return false;
1453 ref = cast<DeclRefExpr>(lhs);
1454 if (ref->getDecl() != iv) {
1455 unsupported(op);
1456 return false;
1459 val = extract_affine(op->getRHS());
1461 id = isl_id_alloc(ctx, iv->getName().str().c_str(), iv);
1463 dim = isl_space_params_alloc(ctx, 1);
1464 dim = isl_space_set_dim_id(dim, isl_dim_param, 0, id);
1465 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
1466 aff = isl_aff_add_coefficient_si(aff, isl_dim_param, 0, 1);
1468 val = isl_pw_aff_sub(val, isl_pw_aff_from_aff(aff));
1470 if (isl_pw_aff_foreach_piece(val, &extract_cst, &inc) < 0) {
1471 isl_pw_aff_free(val);
1472 unsupported(op);
1473 return false;
1476 isl_pw_aff_free(val);
1478 return true;
1481 /* Check that op is of the form iv += cst or iv -= cst.
1482 * "inc" is set to cst or -cst accordingly.
1484 bool PetScan::check_compound_increment(CompoundAssignOperator *op,
1485 clang::ValueDecl *iv, isl_int &inc)
1487 Expr *lhs, *rhs;
1488 DeclRefExpr *ref;
1489 bool neg = false;
1491 BinaryOperatorKind opcode;
1493 opcode = op->getOpcode();
1494 if (opcode != BO_AddAssign && opcode != BO_SubAssign) {
1495 unsupported(op);
1496 return false;
1498 if (opcode == BO_SubAssign)
1499 neg = true;
1501 lhs = op->getLHS();
1502 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
1503 unsupported(op);
1504 return false;
1507 ref = cast<DeclRefExpr>(lhs);
1508 if (ref->getDecl() != iv) {
1509 unsupported(op);
1510 return false;
1513 rhs = op->getRHS();
1515 if (rhs->getStmtClass() == Stmt::UnaryOperatorClass) {
1516 UnaryOperator *op = cast<UnaryOperator>(rhs);
1517 if (op->getOpcode() != UO_Minus) {
1518 unsupported(op);
1519 return false;
1522 neg = !neg;
1524 rhs = op->getSubExpr();
1527 if (rhs->getStmtClass() != Stmt::IntegerLiteralClass) {
1528 unsupported(op);
1529 return false;
1532 extract_int(cast<IntegerLiteral>(rhs), &inc);
1533 if (neg)
1534 isl_int_neg(inc, inc);
1536 return true;
1539 /* Check that the increment of the given for loop increments
1540 * (or decrements) the induction variable "iv".
1541 * "up" is set to true if the induction variable is incremented.
1543 bool PetScan::check_increment(ForStmt *stmt, ValueDecl *iv, isl_int &v)
1545 Stmt *inc = stmt->getInc();
1547 if (!inc) {
1548 unsupported(stmt);
1549 return false;
1552 if (inc->getStmtClass() == Stmt::UnaryOperatorClass)
1553 return check_unary_increment(cast<UnaryOperator>(inc), iv, v);
1554 if (inc->getStmtClass() == Stmt::CompoundAssignOperatorClass)
1555 return check_compound_increment(
1556 cast<CompoundAssignOperator>(inc), iv, v);
1557 if (inc->getStmtClass() == Stmt::BinaryOperatorClass)
1558 return check_binary_increment(cast<BinaryOperator>(inc), iv, v);
1560 unsupported(inc);
1561 return false;
1564 /* Embed the given iteration domain in an extra outer loop
1565 * with induction variable "var".
1566 * If this variable appeared as a parameter in the constraints,
1567 * it is replaced by the new outermost dimension.
1569 static __isl_give isl_set *embed(__isl_take isl_set *set,
1570 __isl_take isl_id *var)
1572 int pos;
1574 set = isl_set_insert_dims(set, isl_dim_set, 0, 1);
1575 pos = isl_set_find_dim_by_id(set, isl_dim_param, var);
1576 if (pos >= 0) {
1577 set = isl_set_equate(set, isl_dim_param, pos, isl_dim_set, 0);
1578 set = isl_set_project_out(set, isl_dim_param, pos, 1);
1581 isl_id_free(var);
1582 return set;
1585 /* Construct a pet_scop for an infinite loop around the given body.
1587 * We extract a pet_scop for the body and then embed it in a loop with
1588 * iteration domain
1590 * { [t] : t >= 0 }
1592 * and schedule
1594 * { [t] -> [t] }
1596 struct pet_scop *PetScan::extract_infinite_loop(Stmt *body)
1598 isl_id *id;
1599 isl_space *dim;
1600 isl_set *domain;
1601 isl_map *sched;
1602 struct pet_scop *scop;
1604 scop = extract(body);
1605 if (!scop)
1606 return NULL;
1608 id = isl_id_alloc(ctx, "t", NULL);
1609 domain = isl_set_nat_universe(isl_space_set_alloc(ctx, 0, 1));
1610 domain = isl_set_set_dim_id(domain, isl_dim_set, 0, isl_id_copy(id));
1611 dim = isl_space_from_domain(isl_set_get_space(domain));
1612 dim = isl_space_add_dims(dim, isl_dim_out, 1);
1613 sched = isl_map_universe(dim);
1614 sched = isl_map_equate(sched, isl_dim_in, 0, isl_dim_out, 0);
1615 scop = pet_scop_embed(scop, domain, sched, id);
1617 return scop;
1620 /* Construct a pet_scop for an infinite loop, i.e., a loop of the form
1622 * for (;;)
1623 * body
1626 struct pet_scop *PetScan::extract_infinite_for(ForStmt *stmt)
1628 return extract_infinite_loop(stmt->getBody());
1631 /* Check if the while loop is of the form
1633 * while (1)
1634 * body
1636 * If so, construct a scop for an infinite loop around body.
1637 * Otherwise, fail.
1639 struct pet_scop *PetScan::extract(WhileStmt *stmt)
1641 Expr *cond;
1642 isl_set *set;
1643 int is_universe;
1645 cond = stmt->getCond();
1646 if (!cond) {
1647 unsupported(stmt);
1648 return NULL;
1651 set = extract_condition(cond);
1652 is_universe = isl_set_plain_is_universe(set);
1653 isl_set_free(set);
1655 if (!is_universe) {
1656 unsupported(stmt);
1657 return NULL;
1660 return extract_infinite_loop(stmt->getBody());
1663 /* Check whether "cond" expresses a simple loop bound
1664 * on the only set dimension.
1665 * In particular, if "up" is set then "cond" should contain only
1666 * upper bounds on the set dimension.
1667 * Otherwise, it should contain only lower bounds.
1669 static bool is_simple_bound(__isl_keep isl_set *cond, isl_int inc)
1671 if (isl_int_is_pos(inc))
1672 return !isl_set_dim_has_lower_bound(cond, isl_dim_set, 0);
1673 else
1674 return !isl_set_dim_has_upper_bound(cond, isl_dim_set, 0);
1677 /* Extend a condition on a given iteration of a loop to one that
1678 * imposes the same condition on all previous iterations.
1679 * "domain" expresses the lower [upper] bound on the iterations
1680 * when up is set [not set].
1682 * In particular, we construct the condition (when up is set)
1684 * forall i' : (domain(i') and i' <= i) => cond(i')
1686 * which is equivalent to
1688 * not exists i' : domain(i') and i' <= i and not cond(i')
1690 * We construct this set by negating cond, applying a map
1692 * { [i'] -> [i] : domain(i') and i' <= i }
1694 * and then negating the result again.
1696 static __isl_give isl_set *valid_for_each_iteration(__isl_take isl_set *cond,
1697 __isl_take isl_set *domain, isl_int inc)
1699 isl_map *previous_to_this;
1701 if (isl_int_is_pos(inc))
1702 previous_to_this = isl_map_lex_le(isl_set_get_space(domain));
1703 else
1704 previous_to_this = isl_map_lex_ge(isl_set_get_space(domain));
1706 previous_to_this = isl_map_intersect_domain(previous_to_this, domain);
1708 cond = isl_set_complement(cond);
1709 cond = isl_set_apply(cond, previous_to_this);
1710 cond = isl_set_complement(cond);
1712 return cond;
1715 /* Construct a domain of the form
1717 * [id] -> { [] : exists a: id = init + a * inc and a >= 0 }
1719 static __isl_give isl_set *strided_domain(__isl_take isl_id *id,
1720 __isl_take isl_pw_aff *init, isl_int inc)
1722 isl_aff *aff;
1723 isl_space *dim;
1724 isl_set *set;
1726 init = isl_pw_aff_insert_dims(init, isl_dim_in, 0, 1);
1727 dim = isl_pw_aff_get_domain_space(init);
1728 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
1729 aff = isl_aff_add_coefficient(aff, isl_dim_in, 0, inc);
1730 init = isl_pw_aff_add(init, isl_pw_aff_from_aff(aff));
1732 dim = isl_space_set_alloc(isl_pw_aff_get_ctx(init), 1, 1);
1733 dim = isl_space_set_dim_id(dim, isl_dim_param, 0, id);
1734 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
1735 aff = isl_aff_add_coefficient_si(aff, isl_dim_param, 0, 1);
1737 set = isl_pw_aff_eq_set(isl_pw_aff_from_aff(aff), init);
1739 set = isl_set_lower_bound_si(set, isl_dim_set, 0, 0);
1741 return isl_set_project_out(set, isl_dim_set, 0, 1);
1744 static unsigned get_type_size(ValueDecl *decl)
1746 return decl->getASTContext().getIntWidth(decl->getType());
1749 /* Assuming "cond" represents a simple bound on a loop where the loop
1750 * iterator "iv" is incremented (or decremented) by one, check if wrapping
1751 * is possible.
1753 * Under the given assumptions, wrapping is only possible if "cond" allows
1754 * for the last value before wrapping, i.e., 2^width - 1 in case of an
1755 * increasing iterator and 0 in case of a decreasing iterator.
1757 static bool can_wrap(__isl_keep isl_set *cond, ValueDecl *iv, isl_int inc)
1759 bool cw;
1760 isl_int limit;
1761 isl_set *test;
1763 test = isl_set_copy(cond);
1765 isl_int_init(limit);
1766 if (isl_int_is_neg(inc))
1767 isl_int_set_si(limit, 0);
1768 else {
1769 isl_int_set_si(limit, 1);
1770 isl_int_mul_2exp(limit, limit, get_type_size(iv));
1771 isl_int_sub_ui(limit, limit, 1);
1774 test = isl_set_fix(cond, isl_dim_set, 0, limit);
1775 cw = !isl_set_is_empty(test);
1776 isl_set_free(test);
1778 isl_int_clear(limit);
1780 return cw;
1783 /* Given a one-dimensional space, construct the following mapping on this
1784 * space
1786 * { [v] -> [v mod 2^width] }
1788 * where width is the number of bits used to represent the values
1789 * of the unsigned variable "iv".
1791 static __isl_give isl_map *compute_wrapping(__isl_take isl_space *dim,
1792 ValueDecl *iv)
1794 isl_int mod;
1795 isl_aff *aff;
1796 isl_map *map;
1798 isl_int_init(mod);
1799 isl_int_set_si(mod, 1);
1800 isl_int_mul_2exp(mod, mod, get_type_size(iv));
1802 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
1803 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
1804 aff = isl_aff_mod(aff, mod);
1806 isl_int_clear(mod);
1808 return isl_map_from_basic_map(isl_basic_map_from_aff(aff));
1809 map = isl_map_reverse(map);
1812 /* Construct a pet_scop for a for statement.
1813 * The for loop is required to be of the form
1815 * for (i = init; condition; ++i)
1817 * or
1819 * for (i = init; condition; --i)
1821 * The initialization of the for loop should either be an assignment
1822 * to an integer variable, or a declaration of such a variable with
1823 * initialization.
1825 * We extract a pet_scop for the body and then embed it in a loop with
1826 * iteration domain and schedule
1828 * { [i] : i >= init and condition' }
1829 * { [i] -> [i] }
1831 * or
1833 * { [i] : i <= init and condition' }
1834 * { [i] -> [-i] }
1836 * Where condition' is equal to condition if the latter is
1837 * a simple upper [lower] bound and a condition that is extended
1838 * to apply to all previous iterations otherwise.
1840 * If the stride of the loop is not 1, then "i >= init" is replaced by
1842 * (exists a: i = init + stride * a and a >= 0)
1844 * If the loop iterator i is unsigned, then wrapping may occur.
1845 * During the computation, we work with a virtual iterator that
1846 * does not wrap. However, the condition in the code applies
1847 * to the wrapped value, so we need to change condition(i)
1848 * into condition([i % 2^width]).
1849 * After computing the virtual domain and schedule, we apply
1850 * the function { [v] -> [v % 2^width] } to the domain and the domain
1851 * of the schedule. In order not to lose any information, we also
1852 * need to intersect the domain of the schedule with the virtual domain
1853 * first, since some iterations in the wrapped domain may be scheduled
1854 * several times, typically an infinite number of times.
1855 * Note that there is no need to perform this final wrapping
1856 * if the loop condition (after wrapping) is simple.
1858 * Wrapping on unsigned iterators can be avoided entirely if
1859 * loop condition is simple, the loop iterator is incremented
1860 * [decremented] by one and the last value before wrapping cannot
1861 * possibly satisfy the loop condition.
1863 * Before extracting a pet_scop from the body we remove all
1864 * assignments in assigned_value to variables that are assigned
1865 * somewhere in the body of the loop.
1867 struct pet_scop *PetScan::extract_for(ForStmt *stmt)
1869 BinaryOperator *ass;
1870 Decl *decl;
1871 Stmt *init;
1872 Expr *lhs, *rhs;
1873 ValueDecl *iv;
1874 isl_space *dim;
1875 isl_set *domain;
1876 isl_map *sched;
1877 isl_set *cond;
1878 isl_id *id;
1879 struct pet_scop *scop;
1880 assigned_value_cache cache(assigned_value);
1881 isl_int inc;
1882 bool is_one;
1883 bool is_unsigned;
1884 bool is_simple;
1885 isl_map *wrap = NULL;
1887 if (!stmt->getInit() && !stmt->getCond() && !stmt->getInc())
1888 return extract_infinite_for(stmt);
1890 init = stmt->getInit();
1891 if (!init) {
1892 unsupported(stmt);
1893 return NULL;
1895 if ((ass = initialization_assignment(init)) != NULL) {
1896 iv = extract_induction_variable(ass);
1897 if (!iv)
1898 return NULL;
1899 lhs = ass->getLHS();
1900 rhs = ass->getRHS();
1901 } else if ((decl = initialization_declaration(init)) != NULL) {
1902 VarDecl *var = extract_induction_variable(init, decl);
1903 if (!var)
1904 return NULL;
1905 iv = var;
1906 rhs = var->getInit();
1907 lhs = DeclRefExpr::Create(iv->getASTContext(),
1908 var->getQualifierLoc(), iv, var->getInnerLocStart(),
1909 var->getType(), VK_LValue);
1910 } else {
1911 unsupported(stmt->getInit());
1912 return NULL;
1915 isl_int_init(inc);
1916 if (!check_increment(stmt, iv, inc)) {
1917 isl_int_clear(inc);
1918 return NULL;
1921 is_unsigned = iv->getType()->isUnsignedIntegerType();
1923 assigned_value.erase(iv);
1924 clear_assignments clear(assigned_value);
1925 clear.TraverseStmt(stmt->getBody());
1927 id = isl_id_alloc(ctx, iv->getName().str().c_str(), iv);
1929 is_one = isl_int_is_one(inc) || isl_int_is_negone(inc);
1930 if (is_one)
1931 domain = extract_comparison(isl_int_is_pos(inc) ? BO_GE : BO_LE,
1932 lhs, rhs, init);
1933 else {
1934 isl_pw_aff *lb = extract_affine(rhs);
1935 domain = strided_domain(isl_id_copy(id), lb, inc);
1938 cond = extract_condition(stmt->getCond());
1939 cond = embed(cond, isl_id_copy(id));
1940 domain = embed(domain, isl_id_copy(id));
1941 is_simple = is_simple_bound(cond, inc);
1942 if (is_unsigned &&
1943 (!is_simple || !is_one || can_wrap(cond, iv, inc))) {
1944 wrap = compute_wrapping(isl_set_get_space(cond), iv);
1945 cond = isl_set_apply(cond, isl_map_reverse(isl_map_copy(wrap)));
1946 is_simple = is_simple && is_simple_bound(cond, inc);
1948 if (!is_simple)
1949 cond = valid_for_each_iteration(cond,
1950 isl_set_copy(domain), inc);
1951 domain = isl_set_intersect(domain, cond);
1952 domain = isl_set_set_dim_id(domain, isl_dim_set, 0, isl_id_copy(id));
1953 dim = isl_space_from_domain(isl_set_get_space(domain));
1954 dim = isl_space_add_dims(dim, isl_dim_out, 1);
1955 sched = isl_map_universe(dim);
1956 if (isl_int_is_pos(inc))
1957 sched = isl_map_equate(sched, isl_dim_in, 0, isl_dim_out, 0);
1958 else
1959 sched = isl_map_oppose(sched, isl_dim_in, 0, isl_dim_out, 0);
1961 if (is_unsigned && !is_simple) {
1962 wrap = isl_map_set_dim_id(wrap,
1963 isl_dim_out, 0, isl_id_copy(id));
1964 sched = isl_map_intersect_domain(sched, isl_set_copy(domain));
1965 domain = isl_set_apply(domain, isl_map_copy(wrap));
1966 sched = isl_map_apply_domain(sched, wrap);
1967 } else
1968 isl_map_free(wrap);
1970 scop = extract(stmt->getBody());
1971 scop = pet_scop_embed(scop, domain, sched, id);
1972 assigned_value[iv] = NULL;
1974 isl_int_clear(inc);
1975 return scop;
1978 struct pet_scop *PetScan::extract(CompoundStmt *stmt)
1980 return extract(stmt->children());
1983 /* Does "id" refer to a nested access?
1985 static bool is_nested_parameter(__isl_keep isl_id *id)
1987 return id && isl_id_get_user(id) && !isl_id_get_name(id);
1990 /* Does parameter "pos" of "space" refer to a nested access?
1992 static bool is_nested_parameter(__isl_keep isl_space *space, int pos)
1994 bool nested;
1995 isl_id *id;
1997 id = isl_space_get_dim_id(space, isl_dim_param, pos);
1998 nested = is_nested_parameter(id);
1999 isl_id_free(id);
2001 return nested;
2004 /* How many parameters of "space" refer to nested accesses, i.e., have no name?
2006 static int n_nested_parameter(__isl_keep isl_space *space)
2008 int n = 0;
2009 int nparam;
2011 nparam = isl_space_dim(space, isl_dim_param);
2012 for (int i = 0; i < nparam; ++i)
2013 if (is_nested_parameter(space, i))
2014 ++n;
2016 return n;
2019 /* How many parameters of "map" refer to nested accesses, i.e., have no name?
2021 static int n_nested_parameter(__isl_keep isl_map *map)
2023 isl_space *space;
2024 int n;
2026 space = isl_map_get_space(map);
2027 n = n_nested_parameter(space);
2028 isl_space_free(space);
2030 return n;
2033 /* For each nested access parameter in "space",
2034 * construct a corresponding pet_expr, place it in args and
2035 * record its position in "param2pos".
2036 * "n_arg" is the number of elements that are already in args.
2037 * The position recorded in "param2pos" takes this number into account.
2038 * If the pet_expr corresponding to a parameter is identical to
2039 * the pet_expr corresponding to an earlier parameter, then these two
2040 * parameters are made to refer to the same element in args.
2042 * Return the final number of elements in args or -1 if an error has occurred.
2044 int PetScan::extract_nested(__isl_keep isl_space *space,
2045 int n_arg, struct pet_expr **args, std::map<int,int> &param2pos)
2047 int nparam;
2049 nparam = isl_space_dim(space, isl_dim_param);
2050 for (int i = 0; i < nparam; ++i) {
2051 int j;
2052 isl_id *id = isl_space_get_dim_id(space, isl_dim_param, i);
2053 Expr *nested;
2055 if (!is_nested_parameter(id)) {
2056 isl_id_free(id);
2057 continue;
2060 nested = (Expr *) isl_id_get_user(id);
2061 args[n_arg] = extract_expr(nested);
2062 if (!args[n_arg])
2063 return -1;
2065 for (j = 0; j < n_arg; ++j)
2066 if (pet_expr_is_equal(args[j], args[n_arg]))
2067 break;
2069 if (j < n_arg) {
2070 pet_expr_free(args[n_arg]);
2071 args[n_arg] = NULL;
2072 param2pos[i] = j;
2073 } else
2074 param2pos[i] = n_arg++;
2076 isl_id_free(id);
2079 return n_arg;
2082 /* For each nested access parameter in the access relations in "expr",
2083 * construct a corresponding pet_expr, place it in expr->args and
2084 * record its position in "param2pos".
2085 * n is the number of nested access parameters.
2087 struct pet_expr *PetScan::extract_nested(struct pet_expr *expr, int n,
2088 std::map<int,int> &param2pos)
2090 isl_space *space;
2092 expr->args = isl_calloc_array(ctx, struct pet_expr *, n);
2093 expr->n_arg = n;
2094 if (!expr->args)
2095 goto error;
2097 space = isl_map_get_space(expr->acc.access);
2098 n = extract_nested(space, 0, expr->args, param2pos);
2099 isl_space_free(space);
2101 if (n < 0)
2102 goto error;
2104 expr->n_arg = n;
2105 return expr;
2106 error:
2107 pet_expr_free(expr);
2108 return NULL;
2111 /* Look for parameters in any access relation in "expr" that
2112 * refer to nested accesses. In particular, these are
2113 * parameters with no name.
2115 * If there are any such parameters, then the domain of the access
2116 * relation, which is still [] at this point, is replaced by
2117 * [[] -> [t_1,...,t_n]], with n the number of these parameters
2118 * (after identifying identical nested accesses).
2119 * The parameters are then equated to the corresponding t dimensions
2120 * and subsequently projected out.
2121 * param2pos maps the position of the parameter to the position
2122 * of the corresponding t dimension.
2124 struct pet_expr *PetScan::resolve_nested(struct pet_expr *expr)
2126 int n;
2127 int nparam;
2128 int n_in;
2129 isl_space *dim;
2130 isl_map *map;
2131 std::map<int,int> param2pos;
2133 if (!expr)
2134 return expr;
2136 for (int i = 0; i < expr->n_arg; ++i) {
2137 expr->args[i] = resolve_nested(expr->args[i]);
2138 if (!expr->args[i]) {
2139 pet_expr_free(expr);
2140 return NULL;
2144 if (expr->type != pet_expr_access)
2145 return expr;
2147 n = n_nested_parameter(expr->acc.access);
2148 if (n == 0)
2149 return expr;
2151 expr = extract_nested(expr, n, param2pos);
2152 if (!expr)
2153 return NULL;
2155 n = expr->n_arg;
2156 nparam = isl_map_dim(expr->acc.access, isl_dim_param);
2157 n_in = isl_map_dim(expr->acc.access, isl_dim_in);
2158 dim = isl_map_get_space(expr->acc.access);
2159 dim = isl_space_domain(dim);
2160 dim = isl_space_from_domain(dim);
2161 dim = isl_space_add_dims(dim, isl_dim_out, n);
2162 map = isl_map_universe(dim);
2163 map = isl_map_domain_map(map);
2164 map = isl_map_reverse(map);
2165 expr->acc.access = isl_map_apply_domain(expr->acc.access, map);
2167 for (int i = nparam - 1; i >= 0; --i) {
2168 isl_id *id = isl_map_get_dim_id(expr->acc.access,
2169 isl_dim_param, i);
2170 if (!is_nested_parameter(id)) {
2171 isl_id_free(id);
2172 continue;
2175 expr->acc.access = isl_map_equate(expr->acc.access,
2176 isl_dim_param, i, isl_dim_in,
2177 n_in + param2pos[i]);
2178 expr->acc.access = isl_map_project_out(expr->acc.access,
2179 isl_dim_param, i, 1);
2181 isl_id_free(id);
2184 return expr;
2185 error:
2186 pet_expr_free(expr);
2187 return NULL;
2190 /* Convert a top-level pet_expr to a pet_scop with one statement.
2191 * This mainly involves resolving nested expression parameters
2192 * and setting the name of the iteration space.
2193 * The name is given by "label" if it is non-NULL. Otherwise,
2194 * it is of the form S_<n_stmt>.
2196 struct pet_scop *PetScan::extract(Stmt *stmt, struct pet_expr *expr,
2197 __isl_take isl_id *label)
2199 struct pet_stmt *ps;
2200 SourceLocation loc = stmt->getLocStart();
2201 int line = PP.getSourceManager().getExpansionLineNumber(loc);
2203 expr = resolve_nested(expr);
2204 ps = pet_stmt_from_pet_expr(ctx, line, label, n_stmt++, expr);
2205 return pet_scop_from_pet_stmt(ctx, ps);
2208 /* Check whether "expr" is an affine expression.
2209 * We turn on autodetection so that we won't generate any warnings
2210 * and turn off nesting, so that we won't accept any non-affine constructs.
2212 bool PetScan::is_affine(Expr *expr)
2214 isl_pw_aff *pwaff;
2215 int save_autodetect = autodetect;
2216 bool save_nesting = nesting_enabled;
2218 autodetect = 1;
2219 nesting_enabled = false;
2221 pwaff = extract_affine(expr);
2222 isl_pw_aff_free(pwaff);
2224 autodetect = save_autodetect;
2225 nesting_enabled = save_nesting;
2227 return pwaff != NULL;
2230 /* Check whether "expr" is an affine constraint.
2231 * We turn on autodetection so that we won't generate any warnings
2232 * and turn off nesting, so that we won't accept any non-affine constructs.
2234 bool PetScan::is_affine_condition(Expr *expr)
2236 isl_set *set;
2237 int save_autodetect = autodetect;
2238 bool save_nesting = nesting_enabled;
2240 autodetect = 1;
2241 nesting_enabled = false;
2243 set = extract_condition(expr);
2244 isl_set_free(set);
2246 autodetect = save_autodetect;
2247 nesting_enabled = save_nesting;
2249 return set != NULL;
2252 /* If the top-level expression of "stmt" is an assignment, then
2253 * return that assignment as a BinaryOperator.
2254 * Otherwise return NULL.
2256 static BinaryOperator *top_assignment_or_null(Stmt *stmt)
2258 BinaryOperator *ass;
2260 if (!stmt)
2261 return NULL;
2262 if (stmt->getStmtClass() != Stmt::BinaryOperatorClass)
2263 return NULL;
2265 ass = cast<BinaryOperator>(stmt);
2266 if(ass->getOpcode() != BO_Assign)
2267 return NULL;
2269 return ass;
2272 /* Check if the given if statement is a conditional assignement
2273 * with a non-affine condition. If so, construct a pet_scop
2274 * corresponding to this conditional assignment. Otherwise return NULL.
2276 * In particular we check if "stmt" is of the form
2278 * if (condition)
2279 * a = f(...);
2280 * else
2281 * a = g(...);
2283 * where a is some array or scalar access.
2284 * The constructed pet_scop then corresponds to the expression
2286 * a = condition ? f(...) : g(...)
2288 * All access relations in f(...) are intersected with condition
2289 * while all access relation in g(...) are intersected with the complement.
2291 struct pet_scop *PetScan::extract_conditional_assignment(IfStmt *stmt)
2293 BinaryOperator *ass_then, *ass_else;
2294 isl_map *write_then, *write_else;
2295 isl_set *cond, *comp;
2296 isl_map *map, *map_true, *map_false;
2297 int equal;
2298 struct pet_expr *pe_cond, *pe_then, *pe_else, *pe, *pe_write;
2299 bool save_nesting = nesting_enabled;
2301 ass_then = top_assignment_or_null(stmt->getThen());
2302 ass_else = top_assignment_or_null(stmt->getElse());
2304 if (!ass_then || !ass_else)
2305 return NULL;
2307 if (is_affine_condition(stmt->getCond()))
2308 return NULL;
2310 write_then = extract_access(ass_then->getLHS());
2311 write_else = extract_access(ass_else->getLHS());
2313 equal = isl_map_is_equal(write_then, write_else);
2314 isl_map_free(write_else);
2315 if (equal < 0 || !equal) {
2316 isl_map_free(write_then);
2317 return NULL;
2320 nesting_enabled = allow_nested;
2321 cond = extract_condition(stmt->getCond());
2322 nesting_enabled = save_nesting;
2323 comp = isl_set_complement(isl_set_copy(cond));
2324 map_true = isl_map_from_domain(isl_set_from_params(isl_set_copy(cond)));
2325 map_true = isl_map_add_dims(map_true, isl_dim_out, 1);
2326 map_true = isl_map_fix_si(map_true, isl_dim_out, 0, 1);
2327 map_false = isl_map_from_domain(isl_set_from_params(isl_set_copy(comp)));
2328 map_false = isl_map_add_dims(map_false, isl_dim_out, 1);
2329 map_false = isl_map_fix_si(map_false, isl_dim_out, 0, 0);
2330 map = isl_map_union_disjoint(map_true, map_false);
2332 pe_cond = pet_expr_from_access(map);
2334 pe_then = extract_expr(ass_then->getRHS());
2335 pe_then = pet_expr_restrict(pe_then, cond);
2336 pe_else = extract_expr(ass_else->getRHS());
2337 pe_else = pet_expr_restrict(pe_else, comp);
2339 pe = pet_expr_new_ternary(ctx, pe_cond, pe_then, pe_else);
2340 pe_write = pet_expr_from_access(write_then);
2341 if (pe_write) {
2342 pe_write->acc.write = 1;
2343 pe_write->acc.read = 0;
2345 pe = pet_expr_new_binary(ctx, pet_op_assign, pe_write, pe);
2346 return extract(stmt, pe);
2349 /* Create an access to a virtual array representing the result
2350 * of a condition.
2351 * Unlike other accessed data, the id of the array is NULL as
2352 * there is no ValueDecl in the program corresponding to the virtual
2353 * array.
2354 * The array starts out as a scalar, but grows along with the
2355 * statement writing to the array in pet_scop_embed.
2357 static __isl_give isl_map *create_test_access(isl_ctx *ctx, int test_nr)
2359 isl_space *dim = isl_space_alloc(ctx, 0, 0, 0);
2360 isl_id *id;
2361 char name[50];
2363 snprintf(name, sizeof(name), "__pet_test_%d", test_nr);
2364 id = isl_id_alloc(ctx, name, NULL);
2365 dim = isl_space_set_tuple_id(dim, isl_dim_out, id);
2366 return isl_map_universe(dim);
2369 /* Create a pet_scop with a single statement evaluating "cond"
2370 * and writing the result to a virtual scalar, as expressed by
2371 * "access".
2373 struct pet_scop *PetScan::extract_non_affine_condition(Expr *cond,
2374 __isl_take isl_map *access)
2376 struct pet_expr *expr, *write;
2377 struct pet_stmt *ps;
2378 SourceLocation loc = cond->getLocStart();
2379 int line = PP.getSourceManager().getExpansionLineNumber(loc);
2381 write = pet_expr_from_access(access);
2382 if (write) {
2383 write->acc.write = 1;
2384 write->acc.read = 0;
2386 expr = extract_expr(cond);
2387 expr = pet_expr_new_binary(ctx, pet_op_assign, write, expr);
2388 ps = pet_stmt_from_pet_expr(ctx, line, NULL, n_stmt++, expr);
2389 return pet_scop_from_pet_stmt(ctx, ps);
2392 /* Add an array with the given extend ("access") to the list
2393 * of arrays in "scop" and return the extended pet_scop.
2394 * The array is marked as attaining values 0 and 1 only.
2396 static struct pet_scop *scop_add_array(struct pet_scop *scop,
2397 __isl_keep isl_map *access)
2399 isl_ctx *ctx = isl_map_get_ctx(access);
2400 isl_space *dim;
2401 struct pet_array **arrays;
2402 struct pet_array *array;
2404 if (!scop)
2405 return NULL;
2406 if (!ctx)
2407 goto error;
2409 arrays = isl_realloc_array(ctx, scop->arrays, struct pet_array *,
2410 scop->n_array + 1);
2411 if (!arrays)
2412 goto error;
2413 scop->arrays = arrays;
2415 array = isl_calloc_type(ctx, struct pet_array);
2416 if (!array)
2417 goto error;
2419 array->extent = isl_map_range(isl_map_copy(access));
2420 dim = isl_space_params_alloc(ctx, 0);
2421 array->context = isl_set_universe(dim);
2422 dim = isl_space_set_alloc(ctx, 0, 1);
2423 array->value_bounds = isl_set_universe(dim);
2424 array->value_bounds = isl_set_lower_bound_si(array->value_bounds,
2425 isl_dim_set, 0, 0);
2426 array->value_bounds = isl_set_upper_bound_si(array->value_bounds,
2427 isl_dim_set, 0, 1);
2428 array->element_type = strdup("int");
2430 scop->arrays[scop->n_array] = array;
2431 scop->n_array++;
2433 if (!array->extent || !array->context)
2434 goto error;
2436 return scop;
2437 error:
2438 pet_scop_free(scop);
2439 return NULL;
2442 /* Construct a pet_scop for an if statement.
2444 * If the condition fits the pattern of a conditional assignment,
2445 * then it is handled by extract_conditional_assignment.
2446 * Otherwise, we do the following.
2448 * If the condition is affine, then the condition is added
2449 * to the iteration domains of the then branch, while the
2450 * opposite of the condition in added to the iteration domains
2451 * of the else branch, if any.
2453 * If the condition is not-affine, then we create a separate
2454 * statement that write the result of the condition to a virtual scalar.
2455 * A constraint requiring the value of this virtual scalar to be one
2456 * is added to the iteration domains of the then branch.
2457 * Similarly, a constraint requiring the value of this virtual scalar
2458 * to be zero is added to the iteration domains of the else branch, if any.
2459 * We adjust the schedules to ensure that the virtual scalar is written
2460 * before it is read.
2462 struct pet_scop *PetScan::extract(IfStmt *stmt)
2464 struct pet_scop *scop_then, *scop_else, *scop;
2465 assigned_value_cache cache(assigned_value);
2466 isl_map *test_access = NULL;
2468 scop = extract_conditional_assignment(stmt);
2469 if (scop)
2470 return scop;
2472 if (allow_nested && !is_affine_condition(stmt->getCond())) {
2473 test_access = create_test_access(ctx, n_test++);
2474 scop = extract_non_affine_condition(stmt->getCond(),
2475 isl_map_copy(test_access));
2476 scop = scop_add_array(scop, test_access);
2477 if (!scop) {
2478 isl_map_free(test_access);
2479 return NULL;
2483 scop_then = extract(stmt->getThen());
2485 if (stmt->getElse()) {
2486 scop_else = extract(stmt->getElse());
2487 if (autodetect) {
2488 if (scop_then && !scop_else) {
2489 partial = true;
2490 pet_scop_free(scop);
2491 isl_map_free(test_access);
2492 return scop_then;
2494 if (!scop_then && scop_else) {
2495 partial = true;
2496 pet_scop_free(scop);
2497 isl_map_free(test_access);
2498 return scop_else;
2503 if (!scop) {
2504 isl_set *cond;
2505 cond = extract_condition(stmt->getCond());
2506 scop = pet_scop_restrict(scop_then, isl_set_copy(cond));
2508 if (stmt->getElse()) {
2509 cond = isl_set_complement(cond);
2510 scop_else = pet_scop_restrict(scop_else, cond);
2511 scop = pet_scop_add(ctx, scop, scop_else);
2512 } else
2513 isl_set_free(cond);
2514 } else {
2515 scop = pet_scop_prefix(scop, 0);
2516 scop_then = pet_scop_prefix(scop_then, 1);
2517 scop_then = pet_scop_filter(scop_then,
2518 isl_map_copy(test_access), 1);
2519 scop = pet_scop_add(ctx, scop, scop_then);
2520 if (stmt->getElse()) {
2521 scop_else = pet_scop_prefix(scop_else, 1);
2522 scop_else = pet_scop_filter(scop_else, test_access, 0);
2523 scop = pet_scop_add(ctx, scop, scop_else);
2524 } else
2525 isl_map_free(test_access);
2528 return scop;
2531 /* Try and construct a pet_scop for a label statement.
2532 * We currently only allow labels on expression statements.
2534 struct pet_scop *PetScan::extract(LabelStmt *stmt)
2536 isl_id *label;
2537 Stmt *sub;
2539 sub = stmt->getSubStmt();
2540 if (!isa<Expr>(sub)) {
2541 unsupported(stmt);
2542 return NULL;
2545 label = isl_id_alloc(ctx, stmt->getName(), NULL);
2547 return extract(sub, extract_expr(cast<Expr>(sub)), label);
2550 /* Try and construct a pet_scop corresponding to "stmt".
2552 struct pet_scop *PetScan::extract(Stmt *stmt)
2554 if (isa<Expr>(stmt))
2555 return extract(stmt, extract_expr(cast<Expr>(stmt)));
2557 switch (stmt->getStmtClass()) {
2558 case Stmt::WhileStmtClass:
2559 return extract(cast<WhileStmt>(stmt));
2560 case Stmt::ForStmtClass:
2561 return extract_for(cast<ForStmt>(stmt));
2562 case Stmt::IfStmtClass:
2563 return extract(cast<IfStmt>(stmt));
2564 case Stmt::CompoundStmtClass:
2565 return extract(cast<CompoundStmt>(stmt));
2566 case Stmt::LabelStmtClass:
2567 return extract(cast<LabelStmt>(stmt));
2568 default:
2569 unsupported(stmt);
2572 return NULL;
2575 /* Try and construct a pet_scop corresponding to (part of)
2576 * a sequence of statements.
2578 struct pet_scop *PetScan::extract(StmtRange stmt_range)
2580 pet_scop *scop;
2581 StmtIterator i;
2582 int j;
2583 bool partial_range = false;
2585 scop = pet_scop_empty(ctx);
2586 for (i = stmt_range.first, j = 0; i != stmt_range.second; ++i, ++j) {
2587 Stmt *child = *i;
2588 struct pet_scop *scop_i;
2589 scop_i = extract(child);
2590 if (scop && partial) {
2591 pet_scop_free(scop_i);
2592 break;
2594 scop_i = pet_scop_prefix(scop_i, j);
2595 if (autodetect) {
2596 if (scop_i)
2597 scop = pet_scop_add(ctx, scop, scop_i);
2598 else
2599 partial_range = true;
2600 if (scop->n_stmt != 0 && !scop_i)
2601 partial = true;
2602 } else {
2603 scop = pet_scop_add(ctx, scop, scop_i);
2605 if (partial)
2606 break;
2609 if (scop && partial_range)
2610 partial = true;
2612 return scop;
2615 /* Check if the scop marked by the user is exactly this Stmt
2616 * or part of this Stmt.
2617 * If so, return a pet_scop corresponding to the marked region.
2618 * Otherwise, return NULL.
2620 struct pet_scop *PetScan::scan(Stmt *stmt)
2622 SourceManager &SM = PP.getSourceManager();
2623 unsigned start_off, end_off;
2625 start_off = SM.getFileOffset(stmt->getLocStart());
2626 end_off = SM.getFileOffset(stmt->getLocEnd());
2628 if (start_off > loc.end)
2629 return NULL;
2630 if (end_off < loc.start)
2631 return NULL;
2632 if (start_off >= loc.start && end_off <= loc.end) {
2633 return extract(stmt);
2636 StmtIterator start;
2637 for (start = stmt->child_begin(); start != stmt->child_end(); ++start) {
2638 Stmt *child = *start;
2639 if (!child)
2640 continue;
2641 start_off = SM.getFileOffset(child->getLocStart());
2642 end_off = SM.getFileOffset(child->getLocEnd());
2643 if (start_off < loc.start && end_off > loc.end)
2644 return scan(child);
2645 if (start_off >= loc.start)
2646 break;
2649 StmtIterator end;
2650 for (end = start; end != stmt->child_end(); ++end) {
2651 Stmt *child = *end;
2652 start_off = SM.getFileOffset(child->getLocStart());
2653 if (start_off >= loc.end)
2654 break;
2657 return extract(StmtRange(start, end));
2660 /* Set the size of index "pos" of "array" to "size".
2661 * In particular, add a constraint of the form
2663 * i_pos < size
2665 * to array->extent and a constraint of the form
2667 * size >= 0
2669 * to array->context.
2671 static struct pet_array *update_size(struct pet_array *array, int pos,
2672 __isl_take isl_pw_aff *size)
2674 isl_set *valid;
2675 isl_set *univ;
2676 isl_set *bound;
2677 isl_space *dim;
2678 isl_aff *aff;
2679 isl_pw_aff *index;
2680 isl_id *id;
2682 valid = isl_pw_aff_nonneg_set(isl_pw_aff_copy(size));
2683 array->context = isl_set_intersect(array->context, valid);
2685 dim = isl_set_get_space(array->extent);
2686 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
2687 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, pos, 1);
2688 univ = isl_set_universe(isl_aff_get_domain_space(aff));
2689 index = isl_pw_aff_alloc(univ, aff);
2691 size = isl_pw_aff_add_dims(size, isl_dim_in,
2692 isl_set_dim(array->extent, isl_dim_set));
2693 id = isl_set_get_tuple_id(array->extent);
2694 size = isl_pw_aff_set_tuple_id(size, isl_dim_in, id);
2695 bound = isl_pw_aff_lt_set(index, size);
2697 array->extent = isl_set_intersect(array->extent, bound);
2699 if (!array->context || !array->extent)
2700 goto error;
2702 return array;
2703 error:
2704 pet_array_free(array);
2705 return NULL;
2708 /* Figure out the size of the array at position "pos" and all
2709 * subsequent positions from "type" and update "array" accordingly.
2711 struct pet_array *PetScan::set_upper_bounds(struct pet_array *array,
2712 const Type *type, int pos)
2714 const ArrayType *atype;
2715 isl_pw_aff *size;
2717 if (!array)
2718 return NULL;
2720 if (type->isPointerType()) {
2721 type = type->getPointeeType().getTypePtr();
2722 return set_upper_bounds(array, type, pos + 1);
2724 if (!type->isArrayType())
2725 return array;
2727 type = type->getCanonicalTypeInternal().getTypePtr();
2728 atype = cast<ArrayType>(type);
2730 if (type->isConstantArrayType()) {
2731 const ConstantArrayType *ca = cast<ConstantArrayType>(atype);
2732 size = extract_affine(ca->getSize());
2733 array = update_size(array, pos, size);
2734 } else if (type->isVariableArrayType()) {
2735 const VariableArrayType *vla = cast<VariableArrayType>(atype);
2736 size = extract_affine(vla->getSizeExpr());
2737 array = update_size(array, pos, size);
2740 type = atype->getElementType().getTypePtr();
2742 return set_upper_bounds(array, type, pos + 1);
2745 /* Construct and return a pet_array corresponding to the variable "decl".
2746 * In particular, initialize array->extent to
2748 * { name[i_1,...,i_d] : i_1,...,i_d >= 0 }
2750 * and then call set_upper_bounds to set the upper bounds on the indices
2751 * based on the type of the variable.
2753 struct pet_array *PetScan::extract_array(isl_ctx *ctx, ValueDecl *decl)
2755 struct pet_array *array;
2756 QualType qt = decl->getType();
2757 const Type *type = qt.getTypePtr();
2758 int depth = array_depth(type);
2759 QualType base = base_type(qt);
2760 string name;
2761 isl_id *id;
2762 isl_space *dim;
2764 array = isl_calloc_type(ctx, struct pet_array);
2765 if (!array)
2766 return NULL;
2768 id = isl_id_alloc(ctx, decl->getName().str().c_str(), decl);
2769 dim = isl_space_set_alloc(ctx, 0, depth);
2770 dim = isl_space_set_tuple_id(dim, isl_dim_set, id);
2772 array->extent = isl_set_nat_universe(dim);
2774 dim = isl_space_params_alloc(ctx, 0);
2775 array->context = isl_set_universe(dim);
2777 array = set_upper_bounds(array, type, 0);
2778 if (!array)
2779 return NULL;
2781 name = base.getAsString();
2782 array->element_type = strdup(name.c_str());
2784 return array;
2787 /* Construct a list of pet_arrays, one for each array (or scalar)
2788 * accessed inside "scop" add this list to "scop" and return the result.
2790 * The context of "scop" is updated with the intesection of
2791 * the contexts of all arrays, i.e., constraints on the parameters
2792 * that ensure that the arrays have a valid (non-negative) size.
2794 struct pet_scop *PetScan::scan_arrays(struct pet_scop *scop)
2796 int i;
2797 set<ValueDecl *> arrays;
2798 set<ValueDecl *>::iterator it;
2799 int n_array;
2800 struct pet_array **scop_arrays;
2802 if (!scop)
2803 return NULL;
2805 pet_scop_collect_arrays(scop, arrays);
2806 if (arrays.size() == 0)
2807 return scop;
2809 n_array = scop->n_array;
2811 scop_arrays = isl_realloc_array(ctx, scop->arrays, struct pet_array *,
2812 n_array + arrays.size());
2813 if (!scop_arrays)
2814 goto error;
2815 scop->arrays = scop_arrays;
2817 for (it = arrays.begin(), i = 0; it != arrays.end(); ++it, ++i) {
2818 struct pet_array *array;
2819 scop->arrays[n_array + i] = array = extract_array(ctx, *it);
2820 if (!scop->arrays[n_array + i])
2821 goto error;
2822 scop->n_array++;
2823 scop->context = isl_set_intersect(scop->context,
2824 isl_set_copy(array->context));
2825 if (!scop->context)
2826 goto error;
2829 return scop;
2830 error:
2831 pet_scop_free(scop);
2832 return NULL;
2835 /* Construct a pet_scop from the given function.
2837 struct pet_scop *PetScan::scan(FunctionDecl *fd)
2839 pet_scop *scop;
2840 Stmt *stmt;
2842 stmt = fd->getBody();
2844 if (autodetect)
2845 scop = extract(stmt);
2846 else
2847 scop = scan(stmt);
2848 scop = pet_scop_detect_parameter_accesses(scop);
2849 scop = scan_arrays(scop);
2851 return scop;