pet_stmt_from_pet_expr: minor clean-up
[pet.git] / expr.c
blob04551aec86e1c402b11a817cf1058bda22ab7b72
1 /*
2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012-2014 Ecole Normale Superieure. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials provided
15 * with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as
31 * representing official policies, either expressed or implied, of
32 * Leiden University.
35 #include <string.h>
37 #include "aff.h"
38 #include "array.h"
39 #include "expr.h"
40 #include "expr_arg.h"
41 #include "filter.h"
42 #include "nest.h"
43 #include "options.h"
44 #include "value_bounds.h"
46 #define ARRAY_SIZE(array) (sizeof(array)/sizeof(*array))
48 static char *type_str[] = {
49 [pet_expr_access] = "access",
50 [pet_expr_call] = "call",
51 [pet_expr_cast] = "cast",
52 [pet_expr_double] = "double",
53 [pet_expr_int] = "int",
54 [pet_expr_op] = "op",
57 static char *op_str[] = {
58 [pet_op_add_assign] = "+=",
59 [pet_op_sub_assign] = "-=",
60 [pet_op_mul_assign] = "*=",
61 [pet_op_div_assign] = "/=",
62 [pet_op_assign] = "=",
63 [pet_op_add] = "+",
64 [pet_op_sub] = "-",
65 [pet_op_mul] = "*",
66 [pet_op_div] = "/",
67 [pet_op_mod] = "%",
68 [pet_op_shl] = "<<",
69 [pet_op_shr] = ">>",
70 [pet_op_eq] = "==",
71 [pet_op_ne] = "!=",
72 [pet_op_le] = "<=",
73 [pet_op_ge] = ">=",
74 [pet_op_lt] = "<",
75 [pet_op_gt] = ">",
76 [pet_op_minus] = "-",
77 [pet_op_post_inc] = "++",
78 [pet_op_post_dec] = "--",
79 [pet_op_pre_inc] = "++",
80 [pet_op_pre_dec] = "--",
81 [pet_op_address_of] = "&",
82 [pet_op_and] = "&",
83 [pet_op_xor] = "^",
84 [pet_op_or] = "|",
85 [pet_op_not] = "~",
86 [pet_op_land] = "&&",
87 [pet_op_lor] = "||",
88 [pet_op_lnot] = "!",
89 [pet_op_cond] = "?:",
90 [pet_op_assume] = "assume",
91 [pet_op_kill] = "kill"
94 const char *pet_op_str(enum pet_op_type op)
96 return op_str[op];
99 int pet_op_is_inc_dec(enum pet_op_type op)
101 return op == pet_op_post_inc || op == pet_op_post_dec ||
102 op == pet_op_pre_inc || op == pet_op_pre_dec;
105 const char *pet_type_str(enum pet_expr_type type)
107 return type_str[type];
110 enum pet_op_type pet_str_op(const char *str)
112 int i;
114 for (i = 0; i < ARRAY_SIZE(op_str); ++i)
115 if (!strcmp(op_str[i], str))
116 return i;
118 return -1;
121 enum pet_expr_type pet_str_type(const char *str)
123 int i;
125 for (i = 0; i < ARRAY_SIZE(type_str); ++i)
126 if (!strcmp(type_str[i], str))
127 return i;
129 return -1;
132 /* Construct a pet_expr of the given type.
134 __isl_give pet_expr *pet_expr_alloc(isl_ctx *ctx, enum pet_expr_type type)
136 pet_expr *expr;
138 expr = isl_calloc_type(ctx, struct pet_expr);
139 if (!expr)
140 return NULL;
142 expr->ctx = ctx;
143 isl_ctx_ref(ctx);
144 expr->type = type;
145 expr->ref = 1;
147 return expr;
150 /* Construct an access pet_expr from an access relation and an index expression.
151 * By default, it is considered to be a read access.
153 __isl_give pet_expr *pet_expr_from_access_and_index( __isl_take isl_map *access,
154 __isl_take isl_multi_pw_aff *index)
156 isl_ctx *ctx = isl_map_get_ctx(access);
157 pet_expr *expr;
159 if (!index || !access)
160 goto error;
161 expr = pet_expr_alloc(ctx, pet_expr_access);
162 if (!expr)
163 goto error;
165 expr->acc.access = access;
166 expr->acc.index = index;
167 expr->acc.read = 1;
168 expr->acc.write = 0;
170 return expr;
171 error:
172 isl_map_free(access);
173 isl_multi_pw_aff_free(index);
174 return NULL;
177 /* Construct an access pet_expr from an index expression.
178 * By default, the access is considered to be a read access.
180 __isl_give pet_expr *pet_expr_from_index(__isl_take isl_multi_pw_aff *index)
182 isl_map *access;
184 access = isl_map_from_multi_pw_aff(isl_multi_pw_aff_copy(index));
185 return pet_expr_from_access_and_index(access, index);
188 /* Extend the range of "access" with "n" dimensions, retaining
189 * the tuple identifier on this range.
191 * If "access" represents a member access, then extend the range
192 * of the member.
194 static __isl_give isl_map *extend_range(__isl_take isl_map *access, int n)
196 isl_id *id;
198 id = isl_map_get_tuple_id(access, isl_dim_out);
200 if (!isl_map_range_is_wrapping(access)) {
201 access = isl_map_add_dims(access, isl_dim_out, n);
202 } else {
203 isl_map *domain;
205 domain = isl_map_copy(access);
206 domain = isl_map_range_factor_domain(domain);
207 access = isl_map_range_factor_range(access);
208 access = extend_range(access, n);
209 access = isl_map_range_product(domain, access);
212 access = isl_map_set_tuple_id(access, isl_dim_out, id);
214 return access;
217 /* Finalize the construction of an access expression by setting
218 * the depth of the accessed array.
220 * The index expression may have been updated by
221 * pet_expr_access_subscript and/or pet_expr_access_member
222 * without the access relation having been updated accordingly.
223 * We perform this update here, taking into account the depth
224 * of the accessed array.
226 * If the number of indices is smaller than the depth of the array,
227 * then we assume that all elements of the remaining dimensions
228 * are accessed.
230 __isl_give pet_expr *pet_expr_access_set_depth(__isl_take pet_expr *expr,
231 int depth)
233 isl_map *access;
234 int dim;
236 expr = pet_expr_cow(expr);
237 if (!expr)
238 return NULL;
240 access = isl_map_from_multi_pw_aff(pet_expr_access_get_index(expr));
241 if (!access)
242 return pet_expr_free(expr);
244 dim = isl_map_dim(access, isl_dim_out);
245 if (dim > depth)
246 isl_die(isl_map_get_ctx(access), isl_error_internal,
247 "number of indices greater than depth",
248 access = isl_map_free(access));
250 if (dim != depth)
251 access = extend_range(access, depth - dim);
253 return pet_expr_access_set_access(expr, access);
256 /* Construct a pet_expr that kills the elements specified by
257 * the index expression "index" and the access relation "access".
259 __isl_give pet_expr *pet_expr_kill_from_access_and_index(
260 __isl_take isl_map *access, __isl_take isl_multi_pw_aff *index)
262 pet_expr *expr;
264 if (!access || !index)
265 goto error;
267 expr = pet_expr_from_access_and_index(access, index);
268 expr = pet_expr_access_set_read(expr, 0);
269 return pet_expr_new_unary(pet_op_kill, expr);
270 error:
271 isl_map_free(access);
272 isl_multi_pw_aff_free(index);
273 return NULL;
276 /* Construct a unary pet_expr that performs "op" on "arg".
278 __isl_give pet_expr *pet_expr_new_unary(enum pet_op_type op,
279 __isl_take pet_expr *arg)
281 isl_ctx *ctx;
282 pet_expr *expr;
284 if (!arg)
285 return NULL;
286 ctx = pet_expr_get_ctx(arg);
287 expr = pet_expr_alloc(ctx, pet_expr_op);
288 expr = pet_expr_set_n_arg(expr, 1);
289 if (!expr)
290 goto error;
292 expr->op = op;
293 expr->args[pet_un_arg] = arg;
295 return expr;
296 error:
297 pet_expr_free(arg);
298 return NULL;
301 /* Construct a binary pet_expr that performs "op" on "lhs" and "rhs",
302 * where the result is represented using a type of "type_size" bits
303 * (may be zero if unknown or if the type is not an integer).
305 __isl_give pet_expr *pet_expr_new_binary(int type_size, enum pet_op_type op,
306 __isl_take pet_expr *lhs, __isl_take pet_expr *rhs)
308 isl_ctx *ctx;
309 pet_expr *expr;
311 if (!lhs || !rhs)
312 goto error;
313 ctx = pet_expr_get_ctx(lhs);
314 expr = pet_expr_alloc(ctx, pet_expr_op);
315 expr = pet_expr_set_n_arg(expr, 2);
316 if (!expr)
317 goto error;
319 expr->op = op;
320 expr->type_size = type_size;
321 expr->args[pet_bin_lhs] = lhs;
322 expr->args[pet_bin_rhs] = rhs;
324 return expr;
325 error:
326 pet_expr_free(lhs);
327 pet_expr_free(rhs);
328 return NULL;
331 /* Construct a ternary pet_expr that performs "cond" ? "lhs" : "rhs".
333 __isl_give pet_expr *pet_expr_new_ternary(__isl_take pet_expr *cond,
334 __isl_take pet_expr *lhs, __isl_take pet_expr *rhs)
336 isl_ctx *ctx;
337 pet_expr *expr;
339 if (!cond || !lhs || !rhs)
340 goto error;
341 ctx = pet_expr_get_ctx(cond);
342 expr = pet_expr_alloc(ctx, pet_expr_op);
343 expr = pet_expr_set_n_arg(expr, 3);
344 if (!expr)
345 goto error;
347 expr->op = pet_op_cond;
348 expr->args[pet_ter_cond] = cond;
349 expr->args[pet_ter_true] = lhs;
350 expr->args[pet_ter_false] = rhs;
352 return expr;
353 error:
354 pet_expr_free(cond);
355 pet_expr_free(lhs);
356 pet_expr_free(rhs);
357 return NULL;
360 /* Construct a call pet_expr that calls function "name" with "n_arg"
361 * arguments. The caller is responsible for filling in the arguments.
363 __isl_give pet_expr *pet_expr_new_call(isl_ctx *ctx, const char *name,
364 unsigned n_arg)
366 pet_expr *expr;
368 expr = pet_expr_alloc(ctx, pet_expr_call);
369 expr = pet_expr_set_n_arg(expr, n_arg);
370 if (!expr)
371 return NULL;
373 expr->name = strdup(name);
374 if (!expr->name)
375 return pet_expr_free(expr);
377 return expr;
380 /* Construct a pet_expr that represents the cast of "arg" to "type_name".
382 __isl_give pet_expr *pet_expr_new_cast(const char *type_name,
383 __isl_take pet_expr *arg)
385 isl_ctx *ctx;
386 pet_expr *expr;
388 if (!arg)
389 return NULL;
391 ctx = pet_expr_get_ctx(arg);
392 expr = pet_expr_alloc(ctx, pet_expr_cast);
393 expr = pet_expr_set_n_arg(expr, 1);
394 if (!expr)
395 goto error;
397 expr->type_name = strdup(type_name);
398 if (!expr->type_name)
399 goto error;
401 expr->args[0] = arg;
403 return expr;
404 error:
405 pet_expr_free(arg);
406 pet_expr_free(expr);
407 return NULL;
410 /* Construct a pet_expr that represents the double "d".
412 __isl_give pet_expr *pet_expr_new_double(isl_ctx *ctx,
413 double val, const char *s)
415 pet_expr *expr;
417 expr = pet_expr_alloc(ctx, pet_expr_double);
418 if (!expr)
419 return NULL;
421 expr->d.val = val;
422 expr->d.s = strdup(s);
423 if (!expr->d.s)
424 return pet_expr_free(expr);
426 return expr;
429 /* Construct a pet_expr that represents the integer value "v".
431 __isl_give pet_expr *pet_expr_new_int(__isl_take isl_val *v)
433 isl_ctx *ctx;
434 pet_expr *expr;
436 if (!v)
437 return NULL;
439 ctx = isl_val_get_ctx(v);
440 expr = pet_expr_alloc(ctx, pet_expr_int);
441 if (!expr)
442 goto error;
444 expr->i = v;
446 return expr;
447 error:
448 isl_val_free(v);
449 return NULL;
452 static __isl_give pet_expr *pet_expr_dup(__isl_keep pet_expr *expr)
454 int i;
455 pet_expr *dup;
457 if (!expr)
458 return NULL;
460 dup = pet_expr_alloc(expr->ctx, expr->type);
461 dup = pet_expr_set_type_size(dup, expr->type_size);
462 dup = pet_expr_set_n_arg(dup, expr->n_arg);
463 for (i = 0; i < expr->n_arg; ++i)
464 dup = pet_expr_set_arg(dup, i, pet_expr_copy(expr->args[i]));
466 switch (expr->type) {
467 case pet_expr_access:
468 if (expr->acc.ref_id)
469 dup = pet_expr_access_set_ref_id(dup,
470 isl_id_copy(expr->acc.ref_id));
471 dup = pet_expr_access_set_access(dup,
472 isl_map_copy(expr->acc.access));
473 dup = pet_expr_access_set_index(dup,
474 isl_multi_pw_aff_copy(expr->acc.index));
475 dup = pet_expr_access_set_read(dup, expr->acc.read);
476 dup = pet_expr_access_set_write(dup, expr->acc.write);
477 break;
478 case pet_expr_call:
479 dup = pet_expr_call_set_name(dup, expr->name);
480 break;
481 case pet_expr_cast:
482 dup = pet_expr_cast_set_type_name(dup, expr->type_name);
483 break;
484 case pet_expr_double:
485 dup = pet_expr_double_set(dup, expr->d.val, expr->d.s);
486 break;
487 case pet_expr_int:
488 dup = pet_expr_int_set_val(dup, isl_val_copy(expr->i));
489 break;
490 case pet_expr_op:
491 dup = pet_expr_op_set_type(dup, expr->op);
492 break;
493 case pet_expr_error:
494 dup = pet_expr_free(dup);
495 break;
498 return dup;
501 __isl_give pet_expr *pet_expr_cow(__isl_take pet_expr *expr)
503 if (!expr)
504 return NULL;
506 if (expr->ref == 1)
507 return expr;
508 expr->ref--;
509 return pet_expr_dup(expr);
512 __isl_null pet_expr *pet_expr_free(__isl_take pet_expr *expr)
514 int i;
516 if (!expr)
517 return NULL;
518 if (--expr->ref > 0)
519 return NULL;
521 for (i = 0; i < expr->n_arg; ++i)
522 pet_expr_free(expr->args[i]);
523 free(expr->args);
525 switch (expr->type) {
526 case pet_expr_access:
527 isl_id_free(expr->acc.ref_id);
528 isl_map_free(expr->acc.access);
529 isl_multi_pw_aff_free(expr->acc.index);
530 break;
531 case pet_expr_call:
532 free(expr->name);
533 break;
534 case pet_expr_cast:
535 free(expr->type_name);
536 break;
537 case pet_expr_double:
538 free(expr->d.s);
539 break;
540 case pet_expr_int:
541 isl_val_free(expr->i);
542 break;
543 case pet_expr_op:
544 case pet_expr_error:
545 break;
548 isl_ctx_deref(expr->ctx);
549 free(expr);
550 return NULL;
553 /* Return an additional reference to "expr".
555 __isl_give pet_expr *pet_expr_copy(__isl_keep pet_expr *expr)
557 if (!expr)
558 return NULL;
560 expr->ref++;
561 return expr;
564 /* Return the isl_ctx in which "expr" was created.
566 isl_ctx *pet_expr_get_ctx(__isl_keep pet_expr *expr)
568 return expr ? expr->ctx : NULL;
571 /* Return the type of "expr".
573 enum pet_expr_type pet_expr_get_type(__isl_keep pet_expr *expr)
575 if (!expr)
576 return pet_expr_error;
577 return expr->type;
580 /* Return the number of arguments of "expr".
582 int pet_expr_get_n_arg(__isl_keep pet_expr *expr)
584 if (!expr)
585 return -1;
587 return expr->n_arg;
590 /* Set the number of arguments of "expr" to "n".
592 * If "expr" originally had more arguments, then remove the extra arguments.
593 * If "expr" originally had fewer arguments, then create space for
594 * the extra arguments ans initialize them to NULL.
596 __isl_give pet_expr *pet_expr_set_n_arg(__isl_take pet_expr *expr, int n)
598 int i;
599 pet_expr **args;
601 if (!expr)
602 return NULL;
603 if (expr->n_arg == n)
604 return expr;
605 expr = pet_expr_cow(expr);
606 if (!expr)
607 return NULL;
609 if (n < expr->n_arg) {
610 for (i = n; i < expr->n_arg; ++i)
611 pet_expr_free(expr->args[i]);
612 expr->n_arg = n;
613 return expr;
616 args = isl_realloc_array(expr->ctx, expr->args, pet_expr *, n);
617 if (!args)
618 return pet_expr_free(expr);
619 expr->args = args;
620 for (i = expr->n_arg; i < n; ++i)
621 expr->args[i] = NULL;
622 expr->n_arg = n;
624 return expr;
627 /* Return the argument of "expr" at position "pos".
629 __isl_give pet_expr *pet_expr_get_arg(__isl_keep pet_expr *expr, int pos)
631 if (!expr)
632 return NULL;
633 if (pos < 0 || pos >= expr->n_arg)
634 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
635 "position out of bounds", return NULL);
637 return pet_expr_copy(expr->args[pos]);
640 /* Replace the argument of "expr" at position "pos" by "arg".
642 __isl_give pet_expr *pet_expr_set_arg(__isl_take pet_expr *expr, int pos,
643 __isl_take pet_expr *arg)
645 if (!expr || !arg)
646 goto error;
647 if (pos < 0 || pos >= expr->n_arg)
648 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
649 "position out of bounds", goto error);
650 if (expr->args[pos] == arg) {
651 pet_expr_free(arg);
652 return expr;
655 expr = pet_expr_cow(expr);
656 if (!expr)
657 goto error;
659 pet_expr_free(expr->args[pos]);
660 expr->args[pos] = arg;
662 return expr;
663 error:
664 pet_expr_free(expr);
665 pet_expr_free(arg);
666 return NULL;
669 /* Does "expr" perform a comparison operation?
671 int pet_expr_is_comparison(__isl_keep pet_expr *expr)
673 if (!expr)
674 return -1;
675 if (expr->type != pet_expr_op)
676 return 0;
677 switch (expr->op) {
678 case pet_op_eq:
679 case pet_op_ne:
680 case pet_op_le:
681 case pet_op_ge:
682 case pet_op_lt:
683 case pet_op_gt:
684 return 1;
685 default:
686 return 0;
690 /* Does "expr" perform a boolean operation?
692 int pet_expr_is_boolean(__isl_keep pet_expr *expr)
694 if (!expr)
695 return -1;
696 if (expr->type != pet_expr_op)
697 return 0;
698 switch (expr->op) {
699 case pet_op_land:
700 case pet_op_lor:
701 case pet_op_lnot:
702 return 1;
703 default:
704 return 0;
708 /* Is "expr" an assume statement?
710 int pet_expr_is_assume(__isl_keep pet_expr *expr)
712 if (!expr)
713 return -1;
714 if (expr->type != pet_expr_op)
715 return 0;
716 return expr->op == pet_op_assume;
719 /* Does "expr" perform a min operation?
721 int pet_expr_is_min(__isl_keep pet_expr *expr)
723 if (!expr)
724 return -1;
725 if (expr->type != pet_expr_call)
726 return 0;
727 if (expr->n_arg != 2)
728 return 0;
729 if (strcmp(expr->name, "min") != 0)
730 return 0;
731 return 1;
734 /* Does "expr" perform a max operation?
736 int pet_expr_is_max(__isl_keep pet_expr *expr)
738 if (!expr)
739 return -1;
740 if (expr->type != pet_expr_call)
741 return 0;
742 if (expr->n_arg != 2)
743 return 0;
744 if (strcmp(expr->name, "max") != 0)
745 return 0;
746 return 1;
749 /* Does "expr" represent an access to an unnamed space, i.e.,
750 * does it represent an affine expression?
752 int pet_expr_is_affine(__isl_keep pet_expr *expr)
754 int has_id;
756 if (!expr)
757 return -1;
758 if (expr->type != pet_expr_access)
759 return 0;
761 has_id = isl_map_has_tuple_id(expr->acc.access, isl_dim_out);
762 if (has_id < 0)
763 return -1;
765 return !has_id;
768 /* Does "expr" represent an access to a scalar, i.e., a zero-dimensional array,
769 * not part of any struct?
771 int pet_expr_is_scalar_access(__isl_keep pet_expr *expr)
773 if (!expr)
774 return -1;
775 if (expr->type != pet_expr_access)
776 return 0;
777 if (isl_map_range_is_wrapping(expr->acc.access))
778 return 0;
780 return isl_map_dim(expr->acc.access, isl_dim_out) == 0;
783 /* Return 1 if the two pet_exprs are equivalent.
785 int pet_expr_is_equal(__isl_keep pet_expr *expr1, __isl_keep pet_expr *expr2)
787 int i;
789 if (!expr1 || !expr2)
790 return 0;
792 if (expr1->type != expr2->type)
793 return 0;
794 if (expr1->n_arg != expr2->n_arg)
795 return 0;
796 for (i = 0; i < expr1->n_arg; ++i)
797 if (!pet_expr_is_equal(expr1->args[i], expr2->args[i]))
798 return 0;
799 switch (expr1->type) {
800 case pet_expr_error:
801 return -1;
802 case pet_expr_double:
803 if (strcmp(expr1->d.s, expr2->d.s))
804 return 0;
805 if (expr1->d.val != expr2->d.val)
806 return 0;
807 break;
808 case pet_expr_int:
809 if (!isl_val_eq(expr1->i, expr2->i))
810 return 0;
811 break;
812 case pet_expr_access:
813 if (expr1->acc.read != expr2->acc.read)
814 return 0;
815 if (expr1->acc.write != expr2->acc.write)
816 return 0;
817 if (expr1->acc.ref_id != expr2->acc.ref_id)
818 return 0;
819 if (!expr1->acc.access || !expr2->acc.access)
820 return 0;
821 if (!isl_map_is_equal(expr1->acc.access, expr2->acc.access))
822 return 0;
823 if (!expr1->acc.index || !expr2->acc.index)
824 return 0;
825 if (!isl_multi_pw_aff_plain_is_equal(expr1->acc.index,
826 expr2->acc.index))
827 return 0;
828 break;
829 case pet_expr_op:
830 if (expr1->op != expr2->op)
831 return 0;
832 break;
833 case pet_expr_call:
834 if (strcmp(expr1->name, expr2->name))
835 return 0;
836 break;
837 case pet_expr_cast:
838 if (strcmp(expr1->type_name, expr2->type_name))
839 return 0;
840 break;
843 return 1;
846 /* Does the access expression "expr" read the accessed elements?
848 int pet_expr_access_is_read(__isl_keep pet_expr *expr)
850 if (!expr)
851 return -1;
852 if (expr->type != pet_expr_access)
853 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
854 "not an access expression", return -1);
856 return expr->acc.read;
859 /* Does the access expression "expr" write to the accessed elements?
861 int pet_expr_access_is_write(__isl_keep pet_expr *expr)
863 if (!expr)
864 return -1;
865 if (expr->type != pet_expr_access)
866 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
867 "not an access expression", return -1);
869 return expr->acc.write;
872 /* Return the identifier of the array accessed by "expr".
874 * If "expr" represents a member access, then return the identifier
875 * of the outer structure array.
877 __isl_give isl_id *pet_expr_access_get_id(__isl_keep pet_expr *expr)
879 if (!expr)
880 return NULL;
881 if (expr->type != pet_expr_access)
882 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
883 "not an access expression", return NULL);
885 if (isl_map_range_is_wrapping(expr->acc.access)) {
886 isl_space *space;
887 isl_id *id;
889 space = isl_map_get_space(expr->acc.access);
890 space = isl_space_range(space);
891 while (space && isl_space_is_wrapping(space))
892 space = isl_space_domain(isl_space_unwrap(space));
893 id = isl_space_get_tuple_id(space, isl_dim_set);
894 isl_space_free(space);
896 return id;
899 return isl_map_get_tuple_id(expr->acc.access, isl_dim_out);
902 /* Return the parameter space of "expr".
904 __isl_give isl_space *pet_expr_access_get_parameter_space(
905 __isl_keep pet_expr *expr)
907 isl_space *space;
909 if (!expr)
910 return NULL;
911 if (expr->type != pet_expr_access)
912 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
913 "not an access expression", return NULL);
915 space = isl_multi_pw_aff_get_space(expr->acc.index);
916 space = isl_space_params(space);
918 return space;
921 /* Return the space of the data accessed by "expr".
923 __isl_give isl_space *pet_expr_access_get_data_space(__isl_keep pet_expr *expr)
925 isl_space *space;
927 if (!expr)
928 return NULL;
929 if (expr->type != pet_expr_access)
930 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
931 "not an access expression", return NULL);
933 space = isl_multi_pw_aff_get_space(expr->acc.index);
934 space = isl_space_range(space);
936 return space;
939 /* Modify all expressions of type pet_expr_access in "expr"
940 * by calling "fn" on them.
942 __isl_give pet_expr *pet_expr_map_access(__isl_take pet_expr *expr,
943 __isl_give pet_expr *(*fn)(__isl_take pet_expr *expr, void *user),
944 void *user)
946 int i, n;
948 n = pet_expr_get_n_arg(expr);
949 for (i = 0; i < n; ++i) {
950 pet_expr *arg = pet_expr_get_arg(expr, i);
951 arg = pet_expr_map_access(arg, fn, user);
952 expr = pet_expr_set_arg(expr, i, arg);
955 if (!expr)
956 return NULL;
958 if (expr->type == pet_expr_access)
959 expr = fn(expr, user);
961 return expr;
964 /* Call "fn" on each of the subexpressions of "expr" of type "type".
966 * Return -1 on error (where fn returning a negative value is treated as
967 * an error).
968 * Otherwise return 0.
970 int pet_expr_foreach_expr_of_type(__isl_keep pet_expr *expr,
971 enum pet_expr_type type,
972 int (*fn)(__isl_keep pet_expr *expr, void *user), void *user)
974 int i;
976 if (!expr)
977 return -1;
979 for (i = 0; i < expr->n_arg; ++i)
980 if (pet_expr_foreach_expr_of_type(expr->args[i],
981 type, fn, user) < 0)
982 return -1;
984 if (expr->type == type)
985 return fn(expr, user);
987 return 0;
990 /* Call "fn" on each of the subexpressions of "expr" of type pet_expr_access.
992 * Return -1 on error (where fn returning a negative value is treated as
993 * an error).
994 * Otherwise return 0.
996 int pet_expr_foreach_access_expr(__isl_keep pet_expr *expr,
997 int (*fn)(__isl_keep pet_expr *expr, void *user), void *user)
999 return pet_expr_foreach_expr_of_type(expr, pet_expr_access, fn, user);
1002 /* Call "fn" on each of the subexpressions of "expr" of type pet_expr_call.
1004 * Return -1 on error (where fn returning a negative value is treated as
1005 * an error).
1006 * Otherwise return 0.
1008 int pet_expr_foreach_call_expr(__isl_keep pet_expr *expr,
1009 int (*fn)(__isl_keep pet_expr *expr, void *user), void *user)
1011 return pet_expr_foreach_expr_of_type(expr, pet_expr_call, fn, user);
1014 /* Internal data structure for pet_expr_writes.
1015 * "id" is the identifier that we are looking for.
1016 * "found" is set if we have found the identifier being written to.
1018 struct pet_expr_writes_data {
1019 isl_id *id;
1020 int found;
1023 /* Given an access expression, check if it writes to data->id.
1024 * If so, set data->found and abort the search.
1026 static int writes(__isl_keep pet_expr *expr, void *user)
1028 struct pet_expr_writes_data *data = user;
1029 isl_id *write_id;
1031 if (!expr->acc.write)
1032 return 0;
1033 if (pet_expr_is_affine(expr))
1034 return 0;
1036 write_id = pet_expr_access_get_id(expr);
1037 isl_id_free(write_id);
1039 if (!write_id)
1040 return -1;
1042 if (write_id != data->id)
1043 return 0;
1045 data->found = 1;
1046 return -1;
1049 /* Does expression "expr" write to "id"?
1051 int pet_expr_writes(__isl_keep pet_expr *expr, __isl_keep isl_id *id)
1053 struct pet_expr_writes_data data;
1055 data.id = id;
1056 data.found = 0;
1057 if (pet_expr_foreach_access_expr(expr, &writes, &data) < 0 &&
1058 !data.found)
1059 return -1;
1061 return data.found;
1064 /* Move the "n" dimensions of "src_type" starting at "src_pos" of
1065 * index expression and access relation of "expr"
1066 * to dimensions of "dst_type" at "dst_pos".
1068 __isl_give pet_expr *pet_expr_access_move_dims(__isl_take pet_expr *expr,
1069 enum isl_dim_type dst_type, unsigned dst_pos,
1070 enum isl_dim_type src_type, unsigned src_pos, unsigned n)
1072 expr = pet_expr_cow(expr);
1073 if (!expr)
1074 return NULL;
1075 if (expr->type != pet_expr_access)
1076 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1077 "not an access pet_expr", return pet_expr_free(expr));
1079 expr->acc.access = isl_map_move_dims(expr->acc.access,
1080 dst_type, dst_pos, src_type, src_pos, n);
1081 expr->acc.index = isl_multi_pw_aff_move_dims(expr->acc.index,
1082 dst_type, dst_pos, src_type, src_pos, n);
1083 if (!expr->acc.access || !expr->acc.index)
1084 return pet_expr_free(expr);
1086 return expr;
1089 /* Replace the index expression and access relation of "expr"
1090 * by their preimages under the function represented by "ma".
1092 __isl_give pet_expr *pet_expr_access_pullback_multi_aff(
1093 __isl_take pet_expr *expr, __isl_take isl_multi_aff *ma)
1095 expr = pet_expr_cow(expr);
1096 if (!expr || !ma)
1097 goto error;
1098 if (expr->type != pet_expr_access)
1099 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1100 "not an access pet_expr", goto error);
1102 expr->acc.access = isl_map_preimage_domain_multi_aff(expr->acc.access,
1103 isl_multi_aff_copy(ma));
1104 expr->acc.index = isl_multi_pw_aff_pullback_multi_aff(expr->acc.index,
1105 ma);
1106 if (!expr->acc.access || !expr->acc.index)
1107 return pet_expr_free(expr);
1109 return expr;
1110 error:
1111 isl_multi_aff_free(ma);
1112 pet_expr_free(expr);
1113 return NULL;
1116 /* Replace the index expression and access relation of "expr"
1117 * by their preimages under the function represented by "mpa".
1119 __isl_give pet_expr *pet_expr_access_pullback_multi_pw_aff(
1120 __isl_take pet_expr *expr, __isl_take isl_multi_pw_aff *mpa)
1122 expr = pet_expr_cow(expr);
1123 if (!expr || !mpa)
1124 goto error;
1125 if (expr->type != pet_expr_access)
1126 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1127 "not an access pet_expr", goto error);
1129 expr->acc.access = isl_map_preimage_domain_multi_pw_aff(
1130 expr->acc.access, isl_multi_pw_aff_copy(mpa));
1131 expr->acc.index = isl_multi_pw_aff_pullback_multi_pw_aff(
1132 expr->acc.index, mpa);
1133 if (!expr->acc.access || !expr->acc.index)
1134 return pet_expr_free(expr);
1136 return expr;
1137 error:
1138 isl_multi_pw_aff_free(mpa);
1139 pet_expr_free(expr);
1140 return NULL;
1143 /* Return the access relation of access expression "expr".
1145 __isl_give isl_map *pet_expr_access_get_access(__isl_keep pet_expr *expr)
1147 if (!expr)
1148 return NULL;
1149 if (expr->type != pet_expr_access)
1150 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1151 "not an access expression", return NULL);
1153 return isl_map_copy(expr->acc.access);
1156 /* Return the index expression of access expression "expr".
1158 __isl_give isl_multi_pw_aff *pet_expr_access_get_index(
1159 __isl_keep pet_expr *expr)
1161 if (!expr)
1162 return NULL;
1163 if (expr->type != pet_expr_access)
1164 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1165 "not an access expression", return NULL);
1167 return isl_multi_pw_aff_copy(expr->acc.index);
1170 /* Align the parameters of expr->acc.index and expr->acc.access.
1172 __isl_give pet_expr *pet_expr_access_align_params(__isl_take pet_expr *expr)
1174 expr = pet_expr_cow(expr);
1175 if (!expr)
1176 return NULL;
1177 if (expr->type != pet_expr_access)
1178 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1179 "not an access expression", return pet_expr_free(expr));
1181 expr->acc.access = isl_map_align_params(expr->acc.access,
1182 isl_multi_pw_aff_get_space(expr->acc.index));
1183 expr->acc.index = isl_multi_pw_aff_align_params(expr->acc.index,
1184 isl_map_get_space(expr->acc.access));
1185 if (!expr->acc.access || !expr->acc.index)
1186 return pet_expr_free(expr);
1188 return expr;
1191 /* Add extra conditions on the parameters to all access relations in "expr".
1193 * The conditions are not added to the index expression. Instead, they
1194 * are used to try and simplify the index expression.
1196 __isl_give pet_expr *pet_expr_restrict(__isl_take pet_expr *expr,
1197 __isl_take isl_set *cond)
1199 int i;
1201 expr = pet_expr_cow(expr);
1202 if (!expr)
1203 goto error;
1205 for (i = 0; i < expr->n_arg; ++i) {
1206 expr->args[i] = pet_expr_restrict(expr->args[i],
1207 isl_set_copy(cond));
1208 if (!expr->args[i])
1209 goto error;
1212 if (expr->type == pet_expr_access) {
1213 expr->acc.access = isl_map_intersect_params(expr->acc.access,
1214 isl_set_copy(cond));
1215 expr->acc.index = isl_multi_pw_aff_gist_params(
1216 expr->acc.index, isl_set_copy(cond));
1217 if (!expr->acc.access || !expr->acc.index)
1218 goto error;
1221 isl_set_free(cond);
1222 return expr;
1223 error:
1224 isl_set_free(cond);
1225 return pet_expr_free(expr);
1228 /* Modify the access relation and index expression
1229 * of the given access expression
1230 * based on the given iteration space transformation.
1231 * In particular, precompose the access relation and index expression
1232 * with the update function.
1234 * If the access has any arguments then the domain of the access relation
1235 * is a wrapped mapping from the iteration space to the space of
1236 * argument values. We only need to change the domain of this wrapped
1237 * mapping, so we extend the input transformation with an identity mapping
1238 * on the space of argument values.
1240 __isl_give pet_expr *pet_expr_access_update_domain(__isl_take pet_expr *expr,
1241 __isl_keep isl_multi_pw_aff *update)
1243 isl_space *space;
1245 expr = pet_expr_cow(expr);
1246 if (!expr)
1247 return NULL;
1248 if (expr->type != pet_expr_access)
1249 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1250 "not an access expression", return pet_expr_free(expr));
1252 update = isl_multi_pw_aff_copy(update);
1254 space = isl_map_get_space(expr->acc.access);
1255 space = isl_space_domain(space);
1256 if (!isl_space_is_wrapping(space))
1257 isl_space_free(space);
1258 else {
1259 isl_multi_pw_aff *id;
1260 space = isl_space_unwrap(space);
1261 space = isl_space_range(space);
1262 space = isl_space_map_from_set(space);
1263 id = isl_multi_pw_aff_identity(space);
1264 update = isl_multi_pw_aff_product(update, id);
1267 expr->acc.access = isl_map_preimage_domain_multi_pw_aff(
1268 expr->acc.access,
1269 isl_multi_pw_aff_copy(update));
1270 expr->acc.index = isl_multi_pw_aff_pullback_multi_pw_aff(
1271 expr->acc.index, update);
1272 if (!expr->acc.access || !expr->acc.index)
1273 return pet_expr_free(expr);
1275 return expr;
1278 static __isl_give pet_expr *update_domain(__isl_take pet_expr *expr, void *user)
1280 isl_multi_pw_aff *update = user;
1282 return pet_expr_access_update_domain(expr, update);
1285 /* Modify all access relations in "expr" by precomposing them with
1286 * the given iteration space transformation.
1288 __isl_give pet_expr *pet_expr_update_domain(__isl_take pet_expr *expr,
1289 __isl_take isl_multi_pw_aff *update)
1291 expr = pet_expr_map_access(expr, &update_domain, update);
1292 isl_multi_pw_aff_free(update);
1293 return expr;
1296 /* Add all parameters in "space" to the access relation and index expression
1297 * of "expr".
1299 static __isl_give pet_expr *align_params(__isl_take pet_expr *expr, void *user)
1301 isl_space *space = user;
1303 expr = pet_expr_cow(expr);
1304 if (!expr)
1305 return NULL;
1306 if (expr->type != pet_expr_access)
1307 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1308 "not an access expression", return pet_expr_free(expr));
1310 expr->acc.access = isl_map_align_params(expr->acc.access,
1311 isl_space_copy(space));
1312 expr->acc.index = isl_multi_pw_aff_align_params(expr->acc.index,
1313 isl_space_copy(space));
1314 if (!expr->acc.access || !expr->acc.index)
1315 return pet_expr_free(expr);
1317 return expr;
1320 /* Add all parameters in "space" to all access relations and index expressions
1321 * in "expr".
1323 __isl_give pet_expr *pet_expr_align_params(__isl_take pet_expr *expr,
1324 __isl_take isl_space *space)
1326 expr = pet_expr_map_access(expr, &align_params, space);
1327 isl_space_free(space);
1328 return expr;
1331 /* Insert an argument expression corresponding to "test" in front
1332 * of the list of arguments described by *n_arg and *args.
1334 static __isl_give pet_expr *insert_access_arg(__isl_take pet_expr *expr,
1335 __isl_keep isl_multi_pw_aff *test)
1337 int i;
1338 isl_ctx *ctx = isl_multi_pw_aff_get_ctx(test);
1340 if (!test)
1341 return pet_expr_free(expr);
1342 expr = pet_expr_cow(expr);
1343 if (!expr)
1344 return NULL;
1346 if (!expr->args) {
1347 expr->args = isl_calloc_array(ctx, pet_expr *, 1);
1348 if (!expr->args)
1349 return pet_expr_free(expr);
1350 } else {
1351 pet_expr **ext;
1352 ext = isl_calloc_array(ctx, pet_expr *, 1 + expr->n_arg);
1353 if (!ext)
1354 return pet_expr_free(expr);
1355 for (i = 0; i < expr->n_arg; ++i)
1356 ext[1 + i] = expr->args[i];
1357 free(expr->args);
1358 expr->args = ext;
1360 expr->n_arg++;
1361 expr->args[0] = pet_expr_from_index(isl_multi_pw_aff_copy(test));
1362 if (!expr->args[0])
1363 return pet_expr_free(expr);
1365 return expr;
1368 /* Make the expression "expr" depend on the value of "test"
1369 * being equal to "satisfied".
1371 * If "test" is an affine expression, we simply add the conditions
1372 * on the expression having the value "satisfied" to all access relations
1373 * and index expressions.
1375 * Otherwise, we add a filter to "expr" (which is then assumed to be
1376 * an access expression) corresponding to "test" being equal to "satisfied".
1378 __isl_give pet_expr *pet_expr_filter(__isl_take pet_expr *expr,
1379 __isl_take isl_multi_pw_aff *test, int satisfied)
1381 isl_id *id;
1382 isl_ctx *ctx;
1383 isl_space *space;
1384 isl_pw_multi_aff *pma;
1386 expr = pet_expr_cow(expr);
1387 if (!expr || !test)
1388 goto error;
1390 if (!isl_multi_pw_aff_has_tuple_id(test, isl_dim_out)) {
1391 isl_pw_aff *pa;
1392 isl_set *cond;
1394 pa = isl_multi_pw_aff_get_pw_aff(test, 0);
1395 isl_multi_pw_aff_free(test);
1396 if (satisfied)
1397 cond = isl_pw_aff_non_zero_set(pa);
1398 else
1399 cond = isl_pw_aff_zero_set(pa);
1400 return pet_expr_restrict(expr, isl_set_params(cond));
1403 ctx = isl_multi_pw_aff_get_ctx(test);
1404 if (expr->type != pet_expr_access)
1405 isl_die(ctx, isl_error_invalid,
1406 "can only filter access expressions", goto error);
1408 space = isl_space_domain(isl_map_get_space(expr->acc.access));
1409 id = isl_multi_pw_aff_get_tuple_id(test, isl_dim_out);
1410 pma = pet_filter_insert_pma(space, id, satisfied);
1412 expr->acc.access = isl_map_preimage_domain_pw_multi_aff(
1413 expr->acc.access,
1414 isl_pw_multi_aff_copy(pma));
1415 expr->acc.index = isl_multi_pw_aff_pullback_pw_multi_aff(
1416 expr->acc.index, pma);
1417 if (!expr->acc.access || !expr->acc.index)
1418 goto error;
1420 expr = insert_access_arg(expr, test);
1422 isl_multi_pw_aff_free(test);
1423 return expr;
1424 error:
1425 isl_multi_pw_aff_free(test);
1426 return pet_expr_free(expr);
1429 /* Check if the given index expression accesses a (0D) array that corresponds
1430 * to one of the parameters in "space". If so, replace the array access
1431 * by an access to the set of integers with as index (and value)
1432 * that parameter.
1434 static __isl_give isl_multi_pw_aff *index_detect_parameter(
1435 __isl_take isl_multi_pw_aff *index, __isl_take isl_space *space)
1437 isl_local_space *ls;
1438 isl_id *array_id = NULL;
1439 isl_aff *aff;
1440 int pos = -1;
1442 if (isl_multi_pw_aff_has_tuple_id(index, isl_dim_out)) {
1443 array_id = isl_multi_pw_aff_get_tuple_id(index, isl_dim_out);
1444 pos = isl_space_find_dim_by_id(space, isl_dim_param, array_id);
1446 isl_space_free(space);
1448 if (pos < 0) {
1449 isl_id_free(array_id);
1450 return index;
1453 space = isl_multi_pw_aff_get_domain_space(index);
1454 isl_multi_pw_aff_free(index);
1456 pos = isl_space_find_dim_by_id(space, isl_dim_param, array_id);
1457 if (pos < 0) {
1458 space = isl_space_insert_dims(space, isl_dim_param, 0, 1);
1459 space = isl_space_set_dim_id(space, isl_dim_param, 0, array_id);
1460 pos = 0;
1461 } else
1462 isl_id_free(array_id);
1464 ls = isl_local_space_from_space(space);
1465 aff = isl_aff_var_on_domain(ls, isl_dim_param, pos);
1466 index = isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff));
1468 return index;
1471 /* Check if the given access relation accesses a (0D) array that corresponds
1472 * to one of the parameters in "space". If so, replace the array access
1473 * by an access to the set of integers with as index (and value)
1474 * that parameter.
1476 static __isl_give isl_map *access_detect_parameter(__isl_take isl_map *access,
1477 __isl_take isl_space *space)
1479 isl_id *array_id = NULL;
1480 int pos = -1;
1482 if (isl_map_has_tuple_id(access, isl_dim_out)) {
1483 array_id = isl_map_get_tuple_id(access, isl_dim_out);
1484 pos = isl_space_find_dim_by_id(space, isl_dim_param, array_id);
1486 isl_space_free(space);
1488 if (pos < 0) {
1489 isl_id_free(array_id);
1490 return access;
1493 pos = isl_map_find_dim_by_id(access, isl_dim_param, array_id);
1494 if (pos < 0) {
1495 access = isl_map_insert_dims(access, isl_dim_param, 0, 1);
1496 access = isl_map_set_dim_id(access, isl_dim_param, 0, array_id);
1497 pos = 0;
1498 } else
1499 isl_id_free(array_id);
1501 access = isl_map_insert_dims(access, isl_dim_out, 0, 1);
1502 access = isl_map_equate(access, isl_dim_param, pos, isl_dim_out, 0);
1504 return access;
1507 /* If "expr" accesses a (0D) array that corresponds to one of the parameters
1508 * in "space" then replace it by a value equal to the corresponding parameter.
1510 static __isl_give pet_expr *detect_parameter_accesses(__isl_take pet_expr *expr,
1511 void *user)
1513 isl_space *space = user;
1515 expr = pet_expr_cow(expr);
1516 if (!expr)
1517 return NULL;
1518 if (expr->type != pet_expr_access)
1519 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1520 "not an access expression", return pet_expr_free(expr));
1522 expr->acc.access = access_detect_parameter(expr->acc.access,
1523 isl_space_copy(space));
1524 expr->acc.index = index_detect_parameter(expr->acc.index,
1525 isl_space_copy(space));
1526 if (!expr->acc.access || !expr->acc.index)
1527 return pet_expr_free(expr);
1529 return expr;
1532 /* Replace all accesses to (0D) arrays that correspond to one of the parameters
1533 * in "space" by a value equal to the corresponding parameter.
1535 __isl_give pet_expr *pet_expr_detect_parameter_accesses(
1536 __isl_take pet_expr *expr, __isl_take isl_space *space)
1538 expr = pet_expr_map_access(expr, &detect_parameter_accesses, space);
1539 isl_space_free(space);
1540 return expr;
1543 /* Add a reference identifier to access expression "expr".
1544 * "user" points to an integer that contains the sequence number
1545 * of the next reference.
1547 static __isl_give pet_expr *access_add_ref_id(__isl_take pet_expr *expr,
1548 void *user)
1550 isl_ctx *ctx;
1551 char name[50];
1552 int *n_ref = user;
1554 expr = pet_expr_cow(expr);
1555 if (!expr)
1556 return expr;
1557 if (expr->type != pet_expr_access)
1558 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1559 "not an access expression", return pet_expr_free(expr));
1561 ctx = isl_map_get_ctx(expr->acc.access);
1562 snprintf(name, sizeof(name), "__pet_ref_%d", (*n_ref)++);
1563 expr->acc.ref_id = isl_id_alloc(ctx, name, NULL);
1564 if (!expr->acc.ref_id)
1565 return pet_expr_free(expr);
1567 return expr;
1570 __isl_give pet_expr *pet_expr_add_ref_ids(__isl_take pet_expr *expr, int *n_ref)
1572 return pet_expr_map_access(expr, &access_add_ref_id, n_ref);
1575 /* Reset the user pointer on all parameter and tuple ids in
1576 * the access relation and the index expressions
1577 * of the access expression "expr".
1579 static __isl_give pet_expr *access_anonymize(__isl_take pet_expr *expr,
1580 void *user)
1582 expr = pet_expr_cow(expr);
1583 if (!expr)
1584 return expr;
1585 if (expr->type != pet_expr_access)
1586 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1587 "not an access expression", return pet_expr_free(expr));
1589 expr->acc.access = isl_map_reset_user(expr->acc.access);
1590 expr->acc.index = isl_multi_pw_aff_reset_user(expr->acc.index);
1591 if (!expr->acc.access || !expr->acc.index)
1592 return pet_expr_free(expr);
1594 return expr;
1597 __isl_give pet_expr *pet_expr_anonymize(__isl_take pet_expr *expr)
1599 return pet_expr_map_access(expr, &access_anonymize, NULL);
1602 /* Data used in access_gist() callback.
1604 struct pet_access_gist_data {
1605 isl_set *domain;
1606 isl_union_map *value_bounds;
1609 /* Given an expression "expr" of type pet_expr_access, compute
1610 * the gist of the associated access relation and index expression
1611 * with respect to data->domain and the bounds on the values of the arguments
1612 * of the expression.
1614 * The arguments of "expr" have been gisted right before "expr" itself
1615 * is gisted. The gisted arguments may have become equal where before
1616 * they may not have been (obviously) equal. We therefore take
1617 * the opportunity to remove duplicate arguments here.
1619 static __isl_give pet_expr *access_gist(__isl_take pet_expr *expr, void *user)
1621 struct pet_access_gist_data *data = user;
1622 isl_set *domain;
1624 expr = pet_expr_remove_duplicate_args(expr);
1625 expr = pet_expr_cow(expr);
1626 if (!expr)
1627 return expr;
1628 if (expr->type != pet_expr_access)
1629 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1630 "not an access expression", return pet_expr_free(expr));
1632 domain = isl_set_copy(data->domain);
1633 if (expr->n_arg > 0)
1634 domain = pet_value_bounds_apply(domain, expr->n_arg, expr->args,
1635 data->value_bounds);
1637 expr->acc.access = isl_map_gist_domain(expr->acc.access,
1638 isl_set_copy(domain));
1639 expr->acc.index = isl_multi_pw_aff_gist(expr->acc.index, domain);
1640 if (!expr->acc.access || !expr->acc.index)
1641 return pet_expr_free(expr);
1643 return expr;
1646 __isl_give pet_expr *pet_expr_gist(__isl_take pet_expr *expr,
1647 __isl_keep isl_set *context, __isl_keep isl_union_map *value_bounds)
1649 struct pet_access_gist_data data = { context, value_bounds };
1651 return pet_expr_map_access(expr, &access_gist, &data);
1654 /* Mark "expr" as a read dependening on "read".
1656 __isl_give pet_expr *pet_expr_access_set_read(__isl_take pet_expr *expr,
1657 int read)
1659 if (!expr)
1660 return pet_expr_free(expr);
1661 if (expr->type != pet_expr_access)
1662 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1663 "not an access expression", return pet_expr_free(expr));
1664 if (expr->acc.read == read)
1665 return expr;
1666 expr = pet_expr_cow(expr);
1667 if (!expr)
1668 return NULL;
1669 expr->acc.read = read;
1671 return expr;
1674 /* Mark "expr" as a write dependening on "write".
1676 __isl_give pet_expr *pet_expr_access_set_write(__isl_take pet_expr *expr,
1677 int write)
1679 if (!expr)
1680 return pet_expr_free(expr);
1681 if (expr->type != pet_expr_access)
1682 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1683 "not an access expression", return pet_expr_free(expr));
1684 if (expr->acc.write == write)
1685 return expr;
1686 expr = pet_expr_cow(expr);
1687 if (!expr)
1688 return NULL;
1689 expr->acc.write = write;
1691 return expr;
1694 /* Replace the access relation of "expr" by "access".
1696 __isl_give pet_expr *pet_expr_access_set_access(__isl_take pet_expr *expr,
1697 __isl_take isl_map *access)
1699 expr = pet_expr_cow(expr);
1700 if (!expr || !access)
1701 goto error;
1702 if (expr->type != pet_expr_access)
1703 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1704 "not an access expression", goto error);
1705 isl_map_free(expr->acc.access);
1706 expr->acc.access = access;
1708 return expr;
1709 error:
1710 isl_map_free(access);
1711 pet_expr_free(expr);
1712 return NULL;
1715 /* Replace the index expression of "expr" by "index".
1717 __isl_give pet_expr *pet_expr_access_set_index(__isl_take pet_expr *expr,
1718 __isl_take isl_multi_pw_aff *index)
1720 expr = pet_expr_cow(expr);
1721 if (!expr || !index)
1722 goto error;
1723 if (expr->type != pet_expr_access)
1724 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1725 "not an access expression", goto error);
1726 isl_multi_pw_aff_free(expr->acc.index);
1727 expr->acc.index = index;
1729 return expr;
1730 error:
1731 isl_multi_pw_aff_free(index);
1732 pet_expr_free(expr);
1733 return NULL;
1736 /* Return the reference identifier of access expression "expr".
1738 __isl_give isl_id *pet_expr_access_get_ref_id(__isl_keep pet_expr *expr)
1740 if (!expr)
1741 return NULL;
1742 if (expr->type != pet_expr_access)
1743 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1744 "not an access expression", return NULL);
1746 return isl_id_copy(expr->acc.ref_id);
1749 /* Replace the reference identifier of access expression "expr" by "ref_id".
1751 __isl_give pet_expr *pet_expr_access_set_ref_id(__isl_take pet_expr *expr,
1752 __isl_take isl_id *ref_id)
1754 expr = pet_expr_cow(expr);
1755 if (!expr || !ref_id)
1756 goto error;
1757 if (expr->type != pet_expr_access)
1758 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1759 "not an access expression", goto error);
1760 isl_id_free(expr->acc.ref_id);
1761 expr->acc.ref_id = ref_id;
1763 return expr;
1764 error:
1765 isl_id_free(ref_id);
1766 pet_expr_free(expr);
1767 return NULL;
1770 /* Tag the access relation "access" with "id".
1771 * That is, insert the id as the range of a wrapped relation
1772 * in the domain of "access".
1774 * If "access" is of the form
1776 * D[i] -> A[a]
1778 * then the result is of the form
1780 * [D[i] -> id[]] -> A[a]
1782 __isl_give isl_map *pet_expr_tag_access(__isl_keep pet_expr *expr,
1783 __isl_take isl_map *access)
1785 isl_space *space;
1786 isl_map *add_tag;
1787 isl_id *id;
1789 if (expr->type != pet_expr_access)
1790 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1791 "not an access expression",
1792 return isl_map_free(access));
1794 id = isl_id_copy(expr->acc.ref_id);
1795 space = isl_space_range(isl_map_get_space(access));
1796 space = isl_space_from_range(space);
1797 space = isl_space_set_tuple_id(space, isl_dim_in, id);
1798 add_tag = isl_map_universe(space);
1799 access = isl_map_domain_product(access, add_tag);
1801 return access;
1804 /* Return the relation mapping pairs of domain iterations and argument
1805 * values to the corresponding accessed data elements.
1807 __isl_give isl_map *pet_expr_access_get_dependent_access(
1808 __isl_keep pet_expr *expr)
1810 if (!expr)
1811 return NULL;
1812 if (expr->type != pet_expr_access)
1813 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1814 "not an access expression", return NULL);
1816 return isl_map_copy(expr->acc.access);
1819 /* Return the relation mapping domain iterations to all possibly
1820 * accessed data elements.
1821 * In particular, take the access relation and project out the values
1822 * of the arguments, if any.
1824 __isl_give isl_map *pet_expr_access_get_may_access(__isl_keep pet_expr *expr)
1826 isl_map *access;
1827 isl_space *space;
1828 isl_map *map;
1830 if (!expr)
1831 return NULL;
1832 if (expr->type != pet_expr_access)
1833 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1834 "not an access expression", return NULL);
1836 access = pet_expr_access_get_dependent_access(expr);
1837 if (expr->n_arg == 0)
1838 return access;
1840 space = isl_space_domain(isl_map_get_space(access));
1841 map = isl_map_universe(isl_space_unwrap(space));
1842 map = isl_map_domain_map(map);
1843 access = isl_map_apply_domain(access, map);
1845 return access;
1848 /* Return a relation mapping domain iterations to definitely
1849 * accessed data elements, assuming the statement containing
1850 * the expression is executed.
1852 * If there are no arguments, then all elements are accessed.
1853 * Otherwise, we conservatively return an empty relation.
1855 __isl_give isl_map *pet_expr_access_get_must_access(__isl_keep pet_expr *expr)
1857 isl_space *space;
1859 if (!expr)
1860 return NULL;
1861 if (expr->type != pet_expr_access)
1862 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1863 "not an access expression", return NULL);
1865 if (expr->n_arg == 0)
1866 return pet_expr_access_get_dependent_access(expr);
1868 space = isl_map_get_space(expr->acc.access);
1869 space = isl_space_domain_factor_domain(space);
1871 return isl_map_empty(space);
1874 /* Return the relation mapping domain iterations to all possibly
1875 * accessed data elements, with its domain tagged with the reference
1876 * identifier.
1878 __isl_give isl_map *pet_expr_access_get_tagged_may_access(
1879 __isl_keep pet_expr *expr)
1881 isl_map *access;
1883 if (!expr)
1884 return NULL;
1886 access = pet_expr_access_get_may_access(expr);
1887 access = pet_expr_tag_access(expr, access);
1889 return access;
1892 /* Return the operation type of operation expression "expr".
1894 enum pet_op_type pet_expr_op_get_type(__isl_keep pet_expr *expr)
1896 if (!expr)
1897 return pet_op_last;
1898 if (expr->type != pet_expr_op)
1899 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1900 "not an operation expression", return pet_op_last);
1902 return expr->op;
1905 /* Replace the operation type of operation expression "expr" by "type".
1907 __isl_give pet_expr *pet_expr_op_set_type(__isl_take pet_expr *expr,
1908 enum pet_op_type type)
1910 if (!expr)
1911 return pet_expr_free(expr);
1912 if (expr->type != pet_expr_op)
1913 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1914 "not an operation expression",
1915 return pet_expr_free(expr));
1916 if (expr->op == type)
1917 return expr;
1918 expr = pet_expr_cow(expr);
1919 if (!expr)
1920 return NULL;
1921 expr->op = type;
1923 return expr;
1926 /* Return the name of the function called by "expr".
1928 __isl_keep const char *pet_expr_call_get_name(__isl_keep pet_expr *expr)
1930 if (!expr)
1931 return NULL;
1932 if (expr->type != pet_expr_call)
1933 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1934 "not a call expression", return NULL);
1935 return expr->name;
1938 /* Replace the name of the function called by "expr" by "name".
1940 __isl_give pet_expr *pet_expr_call_set_name(__isl_take pet_expr *expr,
1941 __isl_keep const char *name)
1943 expr = pet_expr_cow(expr);
1944 if (!expr || !name)
1945 return pet_expr_free(expr);
1946 if (expr->type != pet_expr_call)
1947 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1948 "not a call expression", return pet_expr_free(expr));
1949 free(expr->name);
1950 expr->name = strdup(name);
1951 if (!expr->name)
1952 return pet_expr_free(expr);
1953 return expr;
1956 /* Replace the type of the cast performed by "expr" by "name".
1958 __isl_give pet_expr *pet_expr_cast_set_type_name(__isl_take pet_expr *expr,
1959 __isl_keep const char *name)
1961 expr = pet_expr_cow(expr);
1962 if (!expr || !name)
1963 return pet_expr_free(expr);
1964 if (expr->type != pet_expr_cast)
1965 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1966 "not a cast expression", return pet_expr_free(expr));
1967 free(expr->type_name);
1968 expr->type_name = strdup(name);
1969 if (!expr->type_name)
1970 return pet_expr_free(expr);
1971 return expr;
1974 /* Return the value of the integer represented by "expr".
1976 __isl_give isl_val *pet_expr_int_get_val(__isl_keep pet_expr *expr)
1978 if (!expr)
1979 return NULL;
1980 if (expr->type != pet_expr_int)
1981 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1982 "not an int expression", return NULL);
1984 return isl_val_copy(expr->i);
1987 /* Replace the value of the integer represented by "expr" by "v".
1989 __isl_give pet_expr *pet_expr_int_set_val(__isl_take pet_expr *expr,
1990 __isl_take isl_val *v)
1992 expr = pet_expr_cow(expr);
1993 if (!expr || !v)
1994 goto error;
1995 if (expr->type != pet_expr_int)
1996 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
1997 "not an int expression", goto error);
1998 isl_val_free(expr->i);
1999 expr->i = v;
2001 return expr;
2002 error:
2003 isl_val_free(v);
2004 pet_expr_free(expr);
2005 return NULL;
2008 /* Replace the value and string representation of the double
2009 * represented by "expr" by "d" and "s".
2011 __isl_give pet_expr *pet_expr_double_set(__isl_take pet_expr *expr,
2012 double d, __isl_keep const char *s)
2014 expr = pet_expr_cow(expr);
2015 if (!expr || !s)
2016 return pet_expr_free(expr);
2017 if (expr->type != pet_expr_double)
2018 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2019 "not a double expression", return pet_expr_free(expr));
2020 expr->d.val = d;
2021 free(expr->d.s);
2022 expr->d.s = strdup(s);
2023 if (!expr->d.s)
2024 return pet_expr_free(expr);
2025 return expr;
2028 /* Return a string representation of the double expression "expr".
2030 __isl_give char *pet_expr_double_get_str(__isl_keep pet_expr *expr)
2032 if (!expr)
2033 return NULL;
2034 if (expr->type != pet_expr_double)
2035 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2036 "not a double expression", return NULL);
2037 return strdup(expr->d.s);
2040 /* Return a piecewise affine expression defined on the specified domain
2041 * that represents NaN.
2043 static __isl_give isl_pw_aff *non_affine(__isl_take isl_space *space)
2045 return isl_pw_aff_nan_on_domain(isl_local_space_from_space(space));
2048 /* This function is called when we come across an access that is
2049 * nested in what is supposed to be an affine expression.
2050 * "pc" is the context in which the affine expression is created.
2051 * If nesting is allowed in "pc", we return an affine expression that is
2052 * equal to a new parameter corresponding to this nested access.
2053 * Otherwise, we return NaN.
2055 * Note that we currently don't allow nested accesses themselves
2056 * to contain any nested accesses, so we check if "expr" itself
2057 * involves any nested accesses (either explicitly as arguments
2058 * or implicitly through parameters) and return NaN if it does.
2060 * The new parameter is resolved in resolve_nested.
2062 static __isl_give isl_pw_aff *nested_access(__isl_keep pet_expr *expr,
2063 __isl_keep pet_context *pc)
2065 isl_ctx *ctx;
2066 isl_id *id;
2067 isl_space *space;
2068 isl_local_space *ls;
2069 isl_aff *aff;
2070 int nested;
2072 if (!expr || !pc)
2073 return NULL;
2074 if (!pet_context_allow_nesting(pc))
2075 return non_affine(pet_context_get_space(pc));
2077 if (pet_expr_get_type(expr) != pet_expr_access)
2078 isl_die(pet_expr_get_ctx(expr), isl_error_internal,
2079 "not an access expression", return NULL);
2081 if (expr->n_arg > 0)
2082 return non_affine(pet_context_get_space(pc));
2084 space = pet_expr_access_get_parameter_space(expr);
2085 nested = pet_nested_any_in_space(space);
2086 isl_space_free(space);
2087 if (nested)
2088 return non_affine(pet_context_get_space(pc));
2090 ctx = pet_expr_get_ctx(expr);
2091 id = pet_nested_pet_expr(pet_expr_copy(expr));
2092 space = pet_context_get_space(pc);
2093 space = isl_space_insert_dims(space, isl_dim_param, 0, 1);
2095 space = isl_space_set_dim_id(space, isl_dim_param, 0, id);
2096 ls = isl_local_space_from_space(space);
2097 aff = isl_aff_var_on_domain(ls, isl_dim_param, 0);
2099 return isl_pw_aff_from_aff(aff);
2102 /* Extract an affine expression from the access pet_expr "expr".
2103 * "pc" is the context in which the affine expression is created.
2105 * If "expr" is actually an affine expression rather than
2106 * a real access, then we return that expression.
2107 * Otherwise, we require that "expr" is of an integral type.
2108 * If not, we return NaN.
2110 * If we are accessing a scalar (i.e., not an array and not a member)
2111 * and if that scalar can be treated as a parameter (because it is
2112 * not assigned a known or unknown value in the relevant part of the AST),
2113 * then we return an affine expression equal to that parameter.
2115 * If the variable has been assigned a known affine expression,
2116 * then we return that expression.
2118 * Otherwise, we return an expression that is equal to a parameter
2119 * representing "expr" (if "allow_nested" is set).
2121 static __isl_give isl_pw_aff *extract_affine_from_access(
2122 __isl_keep pet_expr *expr, __isl_keep pet_context *pc)
2124 int pos;
2125 isl_id *id;
2126 isl_space *space;
2127 isl_local_space *ls;
2128 isl_aff *aff;
2130 if (pet_expr_is_affine(expr)) {
2131 isl_pw_aff *pa;
2132 isl_multi_pw_aff *mpa;
2134 mpa = pet_expr_access_get_index(expr);
2135 pa = isl_multi_pw_aff_get_pw_aff(mpa, 0);
2136 isl_multi_pw_aff_free(mpa);
2137 return pa;
2140 if (pet_expr_get_type_size(expr) == 0)
2141 return non_affine(pet_context_get_space(pc));
2143 if (!pet_expr_is_scalar_access(expr))
2144 return nested_access(expr, pc);
2146 id = pet_expr_access_get_id(expr);
2147 if (pet_context_is_assigned(pc, id)) {
2148 isl_pw_aff *pa;
2150 pa = pet_context_get_value(pc, id);
2151 if (!pa)
2152 return NULL;
2153 if (!isl_pw_aff_involves_nan(pa))
2154 return pa;
2155 isl_pw_aff_free(pa);
2156 return nested_access(expr, pc);
2159 space = pet_context_get_space(pc);
2161 pos = isl_space_find_dim_by_id(space, isl_dim_param, id);
2162 if (pos >= 0) {
2163 isl_id_free(id);
2164 } else {
2165 pos = isl_space_dim(space, isl_dim_param);
2166 space = isl_space_add_dims(space, isl_dim_param, 1);
2167 space = isl_space_set_dim_id(space, isl_dim_param, pos, id);
2170 ls = isl_local_space_from_space(space);
2171 aff = isl_aff_var_on_domain(ls, isl_dim_param, pos);
2173 return isl_pw_aff_from_aff(aff);
2176 /* Construct an affine expression from the integer constant "expr".
2177 * "pc" is the context in which the affine expression is created.
2179 static __isl_give isl_pw_aff *extract_affine_from_int(__isl_keep pet_expr *expr,
2180 __isl_keep pet_context *pc)
2182 isl_local_space *ls;
2183 isl_aff *aff;
2185 if (!expr)
2186 return NULL;
2188 ls = isl_local_space_from_space(pet_context_get_space(pc));
2189 aff = isl_aff_val_on_domain(ls, pet_expr_int_get_val(expr));
2191 return isl_pw_aff_from_aff(aff);
2194 /* Extract an affine expression from an addition or subtraction operation.
2195 * Return NaN if we are unable to extract an affine expression.
2197 * "pc" is the context in which the affine expression is created.
2199 static __isl_give isl_pw_aff *extract_affine_add_sub(__isl_keep pet_expr *expr,
2200 __isl_keep pet_context *pc)
2202 isl_pw_aff *lhs;
2203 isl_pw_aff *rhs;
2205 if (!expr)
2206 return NULL;
2207 if (expr->n_arg != 2)
2208 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2209 "expecting two arguments", return NULL);
2211 lhs = pet_expr_extract_affine(expr->args[0], pc);
2212 rhs = pet_expr_extract_affine(expr->args[1], pc);
2214 switch (pet_expr_op_get_type(expr)) {
2215 case pet_op_add:
2216 return isl_pw_aff_add(lhs, rhs);
2217 case pet_op_sub:
2218 return isl_pw_aff_sub(lhs, rhs);
2219 default:
2220 isl_pw_aff_free(lhs);
2221 isl_pw_aff_free(rhs);
2222 isl_die(pet_expr_get_ctx(expr), isl_error_internal,
2223 "not an addition or subtraction operation",
2224 return NULL);
2229 /* Extract an affine expression from an integer division or a modulo operation.
2230 * Return NaN if we are unable to extract an affine expression.
2232 * "pc" is the context in which the affine expression is created.
2234 * In particular, if "expr" is lhs/rhs, then return
2236 * lhs >= 0 ? floor(lhs/rhs) : ceil(lhs/rhs)
2238 * If "expr" is lhs%rhs, then return
2240 * lhs - rhs * (lhs >= 0 ? floor(lhs/rhs) : ceil(lhs/rhs))
2242 * If the second argument (rhs) is not a (positive) integer constant,
2243 * then we fail to extract an affine expression.
2245 static __isl_give isl_pw_aff *extract_affine_div_mod(__isl_keep pet_expr *expr,
2246 __isl_keep pet_context *pc)
2248 int is_cst;
2249 isl_pw_aff *lhs;
2250 isl_pw_aff *rhs;
2252 if (!expr)
2253 return NULL;
2254 if (expr->n_arg != 2)
2255 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2256 "expecting two arguments", return NULL);
2258 rhs = pet_expr_extract_affine(expr->args[1], pc);
2260 is_cst = isl_pw_aff_is_cst(rhs);
2261 if (is_cst < 0 || !is_cst) {
2262 isl_pw_aff_free(rhs);
2263 return non_affine(pet_context_get_space(pc));
2266 lhs = pet_expr_extract_affine(expr->args[0], pc);
2268 switch (pet_expr_op_get_type(expr)) {
2269 case pet_op_div:
2270 return isl_pw_aff_tdiv_q(lhs, rhs);
2271 case pet_op_mod:
2272 return isl_pw_aff_tdiv_r(lhs, rhs);
2273 default:
2274 isl_pw_aff_free(lhs);
2275 isl_pw_aff_free(rhs);
2276 isl_die(pet_expr_get_ctx(expr), isl_error_internal,
2277 "not a div or mod operator", return NULL);
2282 /* Extract an affine expression from a multiplication operation.
2283 * Return NaN if we are unable to extract an affine expression.
2284 * In particular, if neither of the arguments is a (piecewise) constant
2285 * then we return NaN.
2287 * "pc" is the context in which the affine expression is created.
2289 static __isl_give isl_pw_aff *extract_affine_mul(__isl_keep pet_expr *expr,
2290 __isl_keep pet_context *pc)
2292 int lhs_cst, rhs_cst;
2293 isl_pw_aff *lhs;
2294 isl_pw_aff *rhs;
2296 if (!expr)
2297 return NULL;
2298 if (expr->n_arg != 2)
2299 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2300 "expecting two arguments", return NULL);
2302 lhs = pet_expr_extract_affine(expr->args[0], pc);
2303 rhs = pet_expr_extract_affine(expr->args[1], pc);
2305 lhs_cst = isl_pw_aff_is_cst(lhs);
2306 rhs_cst = isl_pw_aff_is_cst(rhs);
2307 if (lhs_cst < 0 || rhs_cst < 0 || (!lhs_cst && !rhs_cst)) {
2308 isl_pw_aff_free(lhs);
2309 isl_pw_aff_free(rhs);
2310 return non_affine(pet_context_get_space(pc));
2313 return isl_pw_aff_mul(lhs, rhs);
2316 /* Extract an affine expression from a negation operation.
2317 * Return NaN if we are unable to extract an affine expression.
2319 * "pc" is the context in which the affine expression is created.
2321 static __isl_give isl_pw_aff *extract_affine_neg(__isl_keep pet_expr *expr,
2322 __isl_keep pet_context *pc)
2324 isl_pw_aff *res;
2326 if (!expr)
2327 return NULL;
2328 if (expr->n_arg != 1)
2329 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2330 "expecting one argument", return NULL);
2332 res = pet_expr_extract_affine(expr->args[0], pc);
2333 return isl_pw_aff_neg(res);
2336 /* Extract an affine expression from a conditional operation.
2337 * Return NaN if we are unable to extract an affine expression.
2339 * "pc" is the context in which the affine expression is created.
2341 static __isl_give isl_pw_aff *extract_affine_cond(__isl_keep pet_expr *expr,
2342 __isl_keep pet_context *pc)
2344 isl_pw_aff *cond, *lhs, *rhs;
2346 if (!expr)
2347 return NULL;
2348 if (expr->n_arg != 3)
2349 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2350 "expecting three arguments", return NULL);
2352 cond = pet_expr_extract_affine_condition(expr->args[0], pc);
2353 lhs = pet_expr_extract_affine(expr->args[1], pc);
2354 rhs = pet_expr_extract_affine(expr->args[2], pc);
2356 return isl_pw_aff_cond(cond, lhs, rhs);
2359 /* Compute
2361 * pwaff mod 2^width
2363 static __isl_give isl_pw_aff *wrap(__isl_take isl_pw_aff *pwaff, unsigned width)
2365 isl_ctx *ctx;
2366 isl_val *mod;
2368 ctx = isl_pw_aff_get_ctx(pwaff);
2369 mod = isl_val_int_from_ui(ctx, width);
2370 mod = isl_val_2exp(mod);
2372 pwaff = isl_pw_aff_mod_val(pwaff, mod);
2374 return pwaff;
2377 /* Limit the domain of "pwaff" to those elements where the function
2378 * value satisfies
2380 * 2^{width-1} <= pwaff < 2^{width-1}
2382 static __isl_give isl_pw_aff *avoid_overflow(__isl_take isl_pw_aff *pwaff,
2383 unsigned width)
2385 isl_ctx *ctx;
2386 isl_val *v;
2387 isl_space *space = isl_pw_aff_get_domain_space(pwaff);
2388 isl_local_space *ls = isl_local_space_from_space(space);
2389 isl_aff *bound;
2390 isl_set *dom;
2391 isl_pw_aff *b;
2393 ctx = isl_pw_aff_get_ctx(pwaff);
2394 v = isl_val_int_from_ui(ctx, width - 1);
2395 v = isl_val_2exp(v);
2397 bound = isl_aff_zero_on_domain(ls);
2398 bound = isl_aff_add_constant_val(bound, v);
2399 b = isl_pw_aff_from_aff(bound);
2401 dom = isl_pw_aff_lt_set(isl_pw_aff_copy(pwaff), isl_pw_aff_copy(b));
2402 pwaff = isl_pw_aff_intersect_domain(pwaff, dom);
2404 b = isl_pw_aff_neg(b);
2405 dom = isl_pw_aff_ge_set(isl_pw_aff_copy(pwaff), b);
2406 pwaff = isl_pw_aff_intersect_domain(pwaff, dom);
2408 return pwaff;
2411 /* Handle potential overflows on signed computations.
2413 * If options->signed_overflow is set to PET_OVERFLOW_AVOID,
2414 * then we adjust the domain of "pa" to avoid overflows.
2416 static __isl_give isl_pw_aff *signed_overflow(__isl_take isl_pw_aff *pa,
2417 unsigned width)
2419 isl_ctx *ctx;
2420 struct pet_options *options;
2422 if (!pa)
2423 return NULL;
2425 ctx = isl_pw_aff_get_ctx(pa);
2426 options = isl_ctx_peek_pet_options(ctx);
2427 if (!options || options->signed_overflow == PET_OVERFLOW_AVOID)
2428 pa = avoid_overflow(pa, width);
2430 return pa;
2433 /* Extract an affine expression from some an operation.
2434 * Return NaN if we are unable to extract an affine expression.
2435 * If the result of a binary (non boolean) operation is unsigned,
2436 * then we wrap it based on the size of the type. If the result is signed,
2437 * then we ensure that no overflow occurs.
2439 * "pc" is the context in which the affine expression is created.
2441 static __isl_give isl_pw_aff *extract_affine_from_op(__isl_keep pet_expr *expr,
2442 __isl_keep pet_context *pc)
2444 isl_pw_aff *res;
2445 int type_size;
2447 switch (pet_expr_op_get_type(expr)) {
2448 case pet_op_add:
2449 case pet_op_sub:
2450 res = extract_affine_add_sub(expr, pc);
2451 break;
2452 case pet_op_div:
2453 case pet_op_mod:
2454 res = extract_affine_div_mod(expr, pc);
2455 break;
2456 case pet_op_mul:
2457 res = extract_affine_mul(expr, pc);
2458 break;
2459 case pet_op_minus:
2460 return extract_affine_neg(expr, pc);
2461 case pet_op_cond:
2462 return extract_affine_cond(expr, pc);
2463 case pet_op_eq:
2464 case pet_op_ne:
2465 case pet_op_le:
2466 case pet_op_ge:
2467 case pet_op_lt:
2468 case pet_op_gt:
2469 case pet_op_land:
2470 case pet_op_lor:
2471 case pet_op_lnot:
2472 return pet_expr_extract_affine_condition(expr, pc);
2473 default:
2474 return non_affine(pet_context_get_space(pc));
2477 if (!res)
2478 return NULL;
2479 if (isl_pw_aff_involves_nan(res)) {
2480 isl_space *space = isl_pw_aff_get_domain_space(res);
2481 isl_pw_aff_free(res);
2482 return non_affine(space);
2485 type_size = pet_expr_get_type_size(expr);
2486 if (type_size > 0)
2487 res = wrap(res, type_size);
2488 else
2489 res = signed_overflow(res, -type_size);
2491 return res;
2494 /* Extract an affine expression from some special function calls.
2495 * Return NaN if we are unable to extract an affine expression.
2496 * In particular, we handle "min", "max", "ceild", "floord",
2497 * "intMod", "intFloor" and "intCeil".
2498 * In case of the latter five, the second argument needs to be
2499 * a (positive) integer constant.
2501 * "pc" is the context in which the affine expression is created.
2503 static __isl_give isl_pw_aff *extract_affine_from_call(
2504 __isl_keep pet_expr *expr, __isl_keep pet_context *pc)
2506 isl_pw_aff *aff1, *aff2;
2507 int n;
2508 const char *name;
2510 n = pet_expr_get_n_arg(expr);
2511 name = pet_expr_call_get_name(expr);
2512 if (!(n == 2 && !strcmp(name, "min")) &&
2513 !(n == 2 && !strcmp(name, "max")) &&
2514 !(n == 2 && !strcmp(name, "intMod")) &&
2515 !(n == 2 && !strcmp(name, "intFloor")) &&
2516 !(n == 2 && !strcmp(name, "intCeil")) &&
2517 !(n == 2 && !strcmp(name, "floord")) &&
2518 !(n == 2 && !strcmp(name, "ceild")))
2519 return non_affine(pet_context_get_space(pc));
2521 if (!strcmp(name, "min") || !strcmp(name, "max")) {
2522 aff1 = pet_expr_extract_affine(expr->args[0], pc);
2523 aff2 = pet_expr_extract_affine(expr->args[1], pc);
2525 if (!strcmp(name, "min"))
2526 aff1 = isl_pw_aff_min(aff1, aff2);
2527 else
2528 aff1 = isl_pw_aff_max(aff1, aff2);
2529 } else if (!strcmp(name, "intMod")) {
2530 isl_val *v;
2532 if (pet_expr_get_type(expr->args[1]) != pet_expr_int)
2533 return non_affine(pet_context_get_space(pc));
2534 v = pet_expr_int_get_val(expr->args[1]);
2535 aff1 = pet_expr_extract_affine(expr->args[0], pc);
2536 aff1 = isl_pw_aff_mod_val(aff1, v);
2537 } else {
2538 isl_val *v;
2540 if (pet_expr_get_type(expr->args[1]) != pet_expr_int)
2541 return non_affine(pet_context_get_space(pc));
2542 v = pet_expr_int_get_val(expr->args[1]);
2543 aff1 = pet_expr_extract_affine(expr->args[0], pc);
2544 aff1 = isl_pw_aff_scale_down_val(aff1, v);
2545 if (!strcmp(name, "floord") || !strcmp(name, "intFloor"))
2546 aff1 = isl_pw_aff_floor(aff1);
2547 else
2548 aff1 = isl_pw_aff_ceil(aff1);
2551 return aff1;
2554 /* Extract an affine expression from "expr", if possible.
2555 * Otherwise return NaN.
2557 * "pc" is the context in which the affine expression is created.
2559 __isl_give isl_pw_aff *pet_expr_extract_affine(__isl_keep pet_expr *expr,
2560 __isl_keep pet_context *pc)
2562 if (!expr)
2563 return NULL;
2565 switch (pet_expr_get_type(expr)) {
2566 case pet_expr_access:
2567 return extract_affine_from_access(expr, pc);
2568 case pet_expr_int:
2569 return extract_affine_from_int(expr, pc);
2570 case pet_expr_op:
2571 return extract_affine_from_op(expr, pc);
2572 case pet_expr_call:
2573 return extract_affine_from_call(expr, pc);
2574 case pet_expr_cast:
2575 case pet_expr_double:
2576 case pet_expr_error:
2577 return non_affine(pet_context_get_space(pc));
2581 /* Extract an affine expressions representing the comparison "LHS op RHS"
2582 * Return NaN if we are unable to extract such an affine expression.
2584 * "pc" is the context in which the affine expression is created.
2586 * If the comparison is of the form
2588 * a <= min(b,c)
2590 * then the expression is constructed as the conjunction of
2591 * the comparisons
2593 * a <= b and a <= c
2595 * A similar optimization is performed for max(a,b) <= c.
2596 * We do this because that will lead to simpler representations
2597 * of the expression.
2598 * If isl is ever enhanced to explicitly deal with min and max expressions,
2599 * this optimization can be removed.
2601 __isl_give isl_pw_aff *pet_expr_extract_comparison(enum pet_op_type op,
2602 __isl_keep pet_expr *lhs, __isl_keep pet_expr *rhs,
2603 __isl_keep pet_context *pc)
2605 isl_pw_aff *lhs_pa, *rhs_pa;
2607 if (op == pet_op_gt)
2608 return pet_expr_extract_comparison(pet_op_lt, rhs, lhs, pc);
2609 if (op == pet_op_ge)
2610 return pet_expr_extract_comparison(pet_op_le, rhs, lhs, pc);
2612 if (op == pet_op_lt || op == pet_op_le) {
2613 if (pet_expr_is_min(rhs)) {
2614 lhs_pa = pet_expr_extract_comparison(op, lhs,
2615 rhs->args[0], pc);
2616 rhs_pa = pet_expr_extract_comparison(op, lhs,
2617 rhs->args[1], pc);
2618 return pet_and(lhs_pa, rhs_pa);
2620 if (pet_expr_is_max(lhs)) {
2621 lhs_pa = pet_expr_extract_comparison(op, lhs->args[0],
2622 rhs, pc);
2623 rhs_pa = pet_expr_extract_comparison(op, lhs->args[1],
2624 rhs, pc);
2625 return pet_and(lhs_pa, rhs_pa);
2629 lhs_pa = pet_expr_extract_affine(lhs, pc);
2630 rhs_pa = pet_expr_extract_affine(rhs, pc);
2632 return pet_comparison(op, lhs_pa, rhs_pa);
2635 /* Extract an affine expressions from the comparison "expr".
2636 * Return NaN if we are unable to extract such an affine expression.
2638 * "pc" is the context in which the affine expression is created.
2640 static __isl_give isl_pw_aff *extract_comparison(__isl_keep pet_expr *expr,
2641 __isl_keep pet_context *pc)
2643 enum pet_op_type type;
2645 if (!expr)
2646 return NULL;
2647 if (expr->n_arg != 2)
2648 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2649 "expecting two arguments", return NULL);
2651 type = pet_expr_op_get_type(expr);
2652 return pet_expr_extract_comparison(type, expr->args[0], expr->args[1],
2653 pc);
2656 /* Extract an affine expression representing the boolean operation
2657 * expressed by "expr".
2658 * Return NaN if we are unable to extract an affine expression.
2660 * "pc" is the context in which the affine expression is created.
2662 static __isl_give isl_pw_aff *extract_boolean(__isl_keep pet_expr *expr,
2663 __isl_keep pet_context *pc)
2665 isl_pw_aff *lhs, *rhs;
2666 int n;
2668 if (!expr)
2669 return NULL;
2671 n = pet_expr_get_n_arg(expr);
2672 lhs = pet_expr_extract_affine_condition(expr->args[0], pc);
2673 if (n == 1)
2674 return pet_not(lhs);
2676 rhs = pet_expr_extract_affine_condition(expr->args[1], pc);
2677 return pet_boolean(pet_expr_op_get_type(expr), lhs, rhs);
2680 /* Extract the affine expression "expr != 0 ? 1 : 0".
2681 * Return NaN if we are unable to extract an affine expression.
2683 * "pc" is the context in which the affine expression is created.
2685 static __isl_give isl_pw_aff *extract_implicit_condition(
2686 __isl_keep pet_expr *expr, __isl_keep pet_context *pc)
2688 isl_pw_aff *res;
2690 res = pet_expr_extract_affine(expr, pc);
2691 return pet_to_bool(res);
2694 /* Extract a boolean affine expression from "expr".
2695 * Return NaN if we are unable to extract an affine expression.
2697 * "pc" is the context in which the affine expression is created.
2699 * If "expr" is neither a comparison nor a boolean operation,
2700 * then we assume it is an affine expression and return the
2701 * boolean expression "expr != 0 ? 1 : 0".
2703 __isl_give isl_pw_aff *pet_expr_extract_affine_condition(
2704 __isl_keep pet_expr *expr, __isl_keep pet_context *pc)
2706 if (!expr)
2707 return NULL;
2709 if (pet_expr_is_comparison(expr))
2710 return extract_comparison(expr, pc);
2711 if (pet_expr_is_boolean(expr))
2712 return extract_boolean(expr, pc);
2714 return extract_implicit_condition(expr, pc);
2717 /* Check if "expr" is an assume expression and if its single argument
2718 * can be converted to an affine expression in the context of "pc".
2719 * If so, replace the argument by the affine expression.
2721 __isl_give pet_expr *pet_expr_resolve_assume(__isl_take pet_expr *expr,
2722 __isl_keep pet_context *pc)
2724 isl_pw_aff *cond;
2725 isl_multi_pw_aff *index;
2727 if (!expr)
2728 return NULL;
2729 if (!pet_expr_is_assume(expr))
2730 return expr;
2731 if (expr->n_arg != 1)
2732 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2733 "expecting one argument", return pet_expr_free(expr));
2735 cond = pet_expr_extract_affine_condition(expr->args[0], pc);
2736 if (!cond)
2737 return pet_expr_free(expr);
2738 if (isl_pw_aff_involves_nan(cond)) {
2739 isl_pw_aff_free(cond);
2740 return expr;
2743 index = isl_multi_pw_aff_from_pw_aff(cond);
2744 expr = pet_expr_set_arg(expr, 0, pet_expr_from_index(index));
2746 return expr;
2749 /* Return the number of bits needed to represent the type of "expr".
2750 * See the description of the type_size field of pet_expr.
2752 int pet_expr_get_type_size(__isl_keep pet_expr *expr)
2754 return expr ? expr->type_size : 0;
2757 /* Replace the number of bits needed to represent the type of "expr"
2758 * by "type_size".
2759 * See the description of the type_size field of pet_expr.
2761 __isl_give pet_expr *pet_expr_set_type_size(__isl_take pet_expr *expr,
2762 int type_size)
2764 expr = pet_expr_cow(expr);
2765 if (!expr)
2766 return NULL;
2768 expr->type_size = type_size;
2770 return expr;
2773 /* Extend an access expression "expr" with an additional index "index".
2774 * In particular, add "index" as an extra argument to "expr" and
2775 * adjust the index expression of "expr" to refer to this extra argument.
2776 * The caller is responsible for calling pet_expr_access_set_depth
2777 * to update the corresponding access relation.
2779 * Note that we only collect the individual index expressions as
2780 * arguments of "expr" here.
2781 * An attempt to integrate them into the index expression of "expr"
2782 * is performed in pet_expr_access_plug_in_args.
2784 __isl_give pet_expr *pet_expr_access_subscript(__isl_take pet_expr *expr,
2785 __isl_take pet_expr *index)
2787 int n;
2788 isl_space *space;
2789 isl_local_space *ls;
2790 isl_pw_aff *pa;
2792 expr = pet_expr_cow(expr);
2793 if (!expr || !index)
2794 goto error;
2795 if (expr->type != pet_expr_access)
2796 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2797 "not an access pet_expr", goto error);
2799 n = pet_expr_get_n_arg(expr);
2800 expr = pet_expr_insert_arg(expr, n, index);
2801 if (!expr)
2802 return NULL;
2804 space = isl_multi_pw_aff_get_domain_space(expr->acc.index);
2805 ls = isl_local_space_from_space(space);
2806 pa = isl_pw_aff_from_aff(isl_aff_var_on_domain(ls, isl_dim_set, n));
2807 expr->acc.index = pet_array_subscript(expr->acc.index, pa);
2808 if (!expr->acc.index)
2809 return pet_expr_free(expr);
2811 return expr;
2812 error:
2813 pet_expr_free(expr);
2814 pet_expr_free(index);
2815 return NULL;
2818 /* Extend an access expression "expr" with an additional member acces to "id".
2819 * In particular, extend the index expression of "expr" to include
2820 * the additional member access.
2821 * The caller is responsible for calling pet_expr_access_set_depth
2822 * to update the corresponding access relation.
2824 __isl_give pet_expr *pet_expr_access_member(__isl_take pet_expr *expr,
2825 __isl_take isl_id *id)
2827 isl_space *space;
2828 isl_multi_pw_aff *field_access;
2830 expr = pet_expr_cow(expr);
2831 if (!expr || !id)
2832 goto error;
2833 if (expr->type != pet_expr_access)
2834 isl_die(pet_expr_get_ctx(expr), isl_error_invalid,
2835 "not an access pet_expr", goto error);
2837 space = isl_multi_pw_aff_get_domain_space(expr->acc.index);
2838 space = isl_space_from_domain(space);
2839 space = isl_space_set_tuple_id(space, isl_dim_out, id);
2840 field_access = isl_multi_pw_aff_zero(space);
2841 expr->acc.index = pet_array_member(expr->acc.index, field_access);
2842 if (!expr->acc.index)
2843 return pet_expr_free(expr);
2845 return expr;
2846 error:
2847 pet_expr_free(expr);
2848 isl_id_free(id);
2849 return NULL;
2852 void pet_expr_dump_with_indent(__isl_keep pet_expr *expr, int indent)
2854 int i;
2856 if (!expr)
2857 return;
2859 fprintf(stderr, "%*s", indent, "");
2861 switch (expr->type) {
2862 case pet_expr_double:
2863 fprintf(stderr, "%s\n", expr->d.s);
2864 break;
2865 case pet_expr_int:
2866 isl_val_dump(expr->i);
2867 break;
2868 case pet_expr_access:
2869 if (expr->acc.ref_id) {
2870 isl_id_dump(expr->acc.ref_id);
2871 fprintf(stderr, "%*s", indent, "");
2873 isl_map_dump(expr->acc.access);
2874 fprintf(stderr, "%*s", indent, "");
2875 isl_multi_pw_aff_dump(expr->acc.index);
2876 fprintf(stderr, "%*sread: %d\n", indent + 2,
2877 "", expr->acc.read);
2878 fprintf(stderr, "%*swrite: %d\n", indent + 2,
2879 "", expr->acc.write);
2880 for (i = 0; i < expr->n_arg; ++i)
2881 pet_expr_dump_with_indent(expr->args[i], indent + 2);
2882 break;
2883 case pet_expr_op:
2884 fprintf(stderr, "%s\n", op_str[expr->op]);
2885 for (i = 0; i < expr->n_arg; ++i)
2886 pet_expr_dump_with_indent(expr->args[i], indent + 2);
2887 break;
2888 case pet_expr_call:
2889 fprintf(stderr, "%s/%d\n", expr->name, expr->n_arg);
2890 for (i = 0; i < expr->n_arg; ++i)
2891 pet_expr_dump_with_indent(expr->args[i], indent + 2);
2892 break;
2893 case pet_expr_cast:
2894 fprintf(stderr, "(%s)\n", expr->type_name);
2895 for (i = 0; i < expr->n_arg; ++i)
2896 pet_expr_dump_with_indent(expr->args[i], indent + 2);
2897 break;
2898 case pet_expr_error:
2899 fprintf(stderr, "ERROR\n");
2900 break;
2904 void pet_expr_dump(__isl_keep pet_expr *expr)
2906 pet_expr_dump_with_indent(expr, 0);