extract out pet_and
[pet.git] / scan.cc
blobe9cdbaa70d506febc7ac47880ec0036bbc8e4ab0
1 /*
2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012-2014 Ecole Normale Superieure. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials provided
15 * with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as
31 * representing official policies, either expressed or implied, of
32 * Leiden University.
33 */
35 #include <string.h>
36 #include <set>
37 #include <map>
38 #include <iostream>
39 #include <llvm/Support/raw_ostream.h>
40 #include <clang/AST/ASTContext.h>
41 #include <clang/AST/ASTDiagnostic.h>
42 #include <clang/AST/Expr.h>
43 #include <clang/AST/RecursiveASTVisitor.h>
45 #include <isl/id.h>
46 #include <isl/space.h>
47 #include <isl/aff.h>
48 #include <isl/set.h>
50 #include "aff.h"
51 #include "clang.h"
52 #include "expr.h"
53 #include "nest.h"
54 #include "options.h"
55 #include "scan.h"
56 #include "scop.h"
57 #include "scop_plus.h"
58 #include "skip.h"
60 #include "config.h"
62 using namespace std;
63 using namespace clang;
65 static enum pet_op_type UnaryOperatorKind2pet_op_type(UnaryOperatorKind kind)
67 switch (kind) {
68 case UO_Minus:
69 return pet_op_minus;
70 case UO_Not:
71 return pet_op_not;
72 case UO_LNot:
73 return pet_op_lnot;
74 case UO_PostInc:
75 return pet_op_post_inc;
76 case UO_PostDec:
77 return pet_op_post_dec;
78 case UO_PreInc:
79 return pet_op_pre_inc;
80 case UO_PreDec:
81 return pet_op_pre_dec;
82 default:
83 return pet_op_last;
87 static enum pet_op_type BinaryOperatorKind2pet_op_type(BinaryOperatorKind kind)
89 switch (kind) {
90 case BO_AddAssign:
91 return pet_op_add_assign;
92 case BO_SubAssign:
93 return pet_op_sub_assign;
94 case BO_MulAssign:
95 return pet_op_mul_assign;
96 case BO_DivAssign:
97 return pet_op_div_assign;
98 case BO_Assign:
99 return pet_op_assign;
100 case BO_Add:
101 return pet_op_add;
102 case BO_Sub:
103 return pet_op_sub;
104 case BO_Mul:
105 return pet_op_mul;
106 case BO_Div:
107 return pet_op_div;
108 case BO_Rem:
109 return pet_op_mod;
110 case BO_Shl:
111 return pet_op_shl;
112 case BO_Shr:
113 return pet_op_shr;
114 case BO_EQ:
115 return pet_op_eq;
116 case BO_NE:
117 return pet_op_ne;
118 case BO_LE:
119 return pet_op_le;
120 case BO_GE:
121 return pet_op_ge;
122 case BO_LT:
123 return pet_op_lt;
124 case BO_GT:
125 return pet_op_gt;
126 case BO_And:
127 return pet_op_and;
128 case BO_Xor:
129 return pet_op_xor;
130 case BO_Or:
131 return pet_op_or;
132 case BO_LAnd:
133 return pet_op_land;
134 case BO_LOr:
135 return pet_op_lor;
136 default:
137 return pet_op_last;
141 #if defined(DECLREFEXPR_CREATE_REQUIRES_BOOL)
142 static DeclRefExpr *create_DeclRefExpr(VarDecl *var)
144 return DeclRefExpr::Create(var->getASTContext(), var->getQualifierLoc(),
145 SourceLocation(), var, false, var->getInnerLocStart(),
146 var->getType(), VK_LValue);
148 #elif defined(DECLREFEXPR_CREATE_REQUIRES_SOURCELOCATION)
149 static DeclRefExpr *create_DeclRefExpr(VarDecl *var)
151 return DeclRefExpr::Create(var->getASTContext(), var->getQualifierLoc(),
152 SourceLocation(), var, var->getInnerLocStart(), var->getType(),
153 VK_LValue);
155 #else
156 static DeclRefExpr *create_DeclRefExpr(VarDecl *var)
158 return DeclRefExpr::Create(var->getASTContext(), var->getQualifierLoc(),
159 var, var->getInnerLocStart(), var->getType(), VK_LValue);
161 #endif
163 /* Check if the element type corresponding to the given array type
164 * has a const qualifier.
166 static bool const_base(QualType qt)
168 const Type *type = qt.getTypePtr();
170 if (type->isPointerType())
171 return const_base(type->getPointeeType());
172 if (type->isArrayType()) {
173 const ArrayType *atype;
174 type = type->getCanonicalTypeInternal().getTypePtr();
175 atype = cast<ArrayType>(type);
176 return const_base(atype->getElementType());
179 return qt.isConstQualified();
182 /* Mark "decl" as having an unknown value in "assigned_value".
184 * If no (known or unknown) value was assigned to "decl" before,
185 * then it may have been treated as a parameter before and may
186 * therefore appear in a value assigned to another variable.
187 * If so, this assignment needs to be turned into an unknown value too.
189 static void clear_assignment(map<ValueDecl *, isl_pw_aff *> &assigned_value,
190 ValueDecl *decl)
192 map<ValueDecl *, isl_pw_aff *>::iterator it;
194 it = assigned_value.find(decl);
196 assigned_value[decl] = NULL;
198 if (it != assigned_value.end())
199 return;
201 for (it = assigned_value.begin(); it != assigned_value.end(); ++it) {
202 isl_pw_aff *pa = it->second;
203 int nparam = isl_pw_aff_dim(pa, isl_dim_param);
205 for (int i = 0; i < nparam; ++i) {
206 isl_id *id;
208 if (!isl_pw_aff_has_dim_id(pa, isl_dim_param, i))
209 continue;
210 id = isl_pw_aff_get_dim_id(pa, isl_dim_param, i);
211 if (isl_id_get_user(id) == decl)
212 it->second = NULL;
213 isl_id_free(id);
218 /* Look for any assignments to scalar variables in part of the parse
219 * tree and set assigned_value to NULL for each of them.
220 * Also reset assigned_value if the address of a scalar variable
221 * is being taken. As an exception, if the address is passed to a function
222 * that is declared to receive a const pointer, then assigned_value is
223 * not reset.
225 * This ensures that we won't use any previously stored value
226 * in the current subtree and its parents.
228 struct clear_assignments : RecursiveASTVisitor<clear_assignments> {
229 map<ValueDecl *, isl_pw_aff *> &assigned_value;
230 set<UnaryOperator *> skip;
232 clear_assignments(map<ValueDecl *, isl_pw_aff *> &assigned_value) :
233 assigned_value(assigned_value) {}
235 /* Check for "address of" operators whose value is passed
236 * to a const pointer argument and add them to "skip", so that
237 * we can skip them in VisitUnaryOperator.
239 bool VisitCallExpr(CallExpr *expr) {
240 FunctionDecl *fd;
241 fd = expr->getDirectCallee();
242 if (!fd)
243 return true;
244 for (int i = 0; i < expr->getNumArgs(); ++i) {
245 Expr *arg = expr->getArg(i);
246 UnaryOperator *op;
247 if (arg->getStmtClass() == Stmt::ImplicitCastExprClass) {
248 ImplicitCastExpr *ice;
249 ice = cast<ImplicitCastExpr>(arg);
250 arg = ice->getSubExpr();
252 if (arg->getStmtClass() != Stmt::UnaryOperatorClass)
253 continue;
254 op = cast<UnaryOperator>(arg);
255 if (op->getOpcode() != UO_AddrOf)
256 continue;
257 if (const_base(fd->getParamDecl(i)->getType()))
258 skip.insert(op);
260 return true;
263 bool VisitUnaryOperator(UnaryOperator *expr) {
264 Expr *arg;
265 DeclRefExpr *ref;
266 ValueDecl *decl;
268 switch (expr->getOpcode()) {
269 case UO_AddrOf:
270 case UO_PostInc:
271 case UO_PostDec:
272 case UO_PreInc:
273 case UO_PreDec:
274 break;
275 default:
276 return true;
278 if (skip.find(expr) != skip.end())
279 return true;
281 arg = expr->getSubExpr();
282 if (arg->getStmtClass() != Stmt::DeclRefExprClass)
283 return true;
284 ref = cast<DeclRefExpr>(arg);
285 decl = ref->getDecl();
286 clear_assignment(assigned_value, decl);
287 return true;
290 bool VisitBinaryOperator(BinaryOperator *expr) {
291 Expr *lhs;
292 DeclRefExpr *ref;
293 ValueDecl *decl;
295 if (!expr->isAssignmentOp())
296 return true;
297 lhs = expr->getLHS();
298 if (lhs->getStmtClass() != Stmt::DeclRefExprClass)
299 return true;
300 ref = cast<DeclRefExpr>(lhs);
301 decl = ref->getDecl();
302 clear_assignment(assigned_value, decl);
303 return true;
307 /* Keep a copy of the currently assigned values.
309 * Any variable that is assigned a value inside the current scope
310 * is removed again when we leave the scope (either because it wasn't
311 * stored in the cache or because it has a different value in the cache).
313 struct assigned_value_cache {
314 map<ValueDecl *, isl_pw_aff *> &assigned_value;
315 map<ValueDecl *, isl_pw_aff *> cache;
317 assigned_value_cache(map<ValueDecl *, isl_pw_aff *> &assigned_value) :
318 assigned_value(assigned_value), cache(assigned_value) {}
319 ~assigned_value_cache() {
320 map<ValueDecl *, isl_pw_aff *>::iterator it = cache.begin();
321 for (it = assigned_value.begin(); it != assigned_value.end();
322 ++it) {
323 if (!it->second ||
324 (cache.find(it->first) != cache.end() &&
325 cache[it->first] != it->second))
326 cache[it->first] = NULL;
328 assigned_value = cache;
332 /* Insert an expression into the collection of expressions,
333 * provided it is not already in there.
334 * The isl_pw_affs are freed in the destructor.
336 void PetScan::insert_expression(__isl_take isl_pw_aff *expr)
338 std::set<isl_pw_aff *>::iterator it;
340 if (expressions.find(expr) == expressions.end())
341 expressions.insert(expr);
342 else
343 isl_pw_aff_free(expr);
346 PetScan::~PetScan()
348 std::set<isl_pw_aff *>::iterator it;
350 for (it = expressions.begin(); it != expressions.end(); ++it)
351 isl_pw_aff_free(*it);
353 isl_union_map_free(value_bounds);
356 /* Report a diagnostic, unless autodetect is set.
358 void PetScan::report(Stmt *stmt, unsigned id)
360 if (options->autodetect)
361 return;
363 SourceLocation loc = stmt->getLocStart();
364 DiagnosticsEngine &diag = PP.getDiagnostics();
365 DiagnosticBuilder B = diag.Report(loc, id) << stmt->getSourceRange();
368 /* Called if we found something we (currently) cannot handle.
369 * We'll provide more informative warnings later.
371 * We only actually complain if autodetect is false.
373 void PetScan::unsupported(Stmt *stmt)
375 DiagnosticsEngine &diag = PP.getDiagnostics();
376 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
377 "unsupported");
378 report(stmt, id);
381 /* Report a missing prototype, unless autodetect is set.
383 void PetScan::report_prototype_required(Stmt *stmt)
385 DiagnosticsEngine &diag = PP.getDiagnostics();
386 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
387 "prototype required");
388 report(stmt, id);
391 /* Report a missing increment, unless autodetect is set.
393 void PetScan::report_missing_increment(Stmt *stmt)
395 DiagnosticsEngine &diag = PP.getDiagnostics();
396 unsigned id = diag.getCustomDiagID(DiagnosticsEngine::Warning,
397 "missing increment");
398 report(stmt, id);
401 /* Extract an integer from "expr".
403 __isl_give isl_val *PetScan::extract_int(isl_ctx *ctx, IntegerLiteral *expr)
405 const Type *type = expr->getType().getTypePtr();
406 int is_signed = type->hasSignedIntegerRepresentation();
407 llvm::APInt val = expr->getValue();
408 int is_negative = is_signed && val.isNegative();
409 isl_val *v;
411 if (is_negative)
412 val = -val;
414 v = extract_unsigned(ctx, val);
416 if (is_negative)
417 v = isl_val_neg(v);
418 return v;
421 /* Extract an integer from "val", which is assumed to be non-negative.
423 __isl_give isl_val *PetScan::extract_unsigned(isl_ctx *ctx,
424 const llvm::APInt &val)
426 unsigned n;
427 const uint64_t *data;
429 data = val.getRawData();
430 n = val.getNumWords();
431 return isl_val_int_from_chunks(ctx, n, sizeof(uint64_t), data);
434 /* Extract an integer from "expr".
435 * Return NULL if "expr" does not (obviously) represent an integer.
437 __isl_give isl_val *PetScan::extract_int(clang::ParenExpr *expr)
439 return extract_int(expr->getSubExpr());
442 /* Extract an integer from "expr".
443 * Return NULL if "expr" does not (obviously) represent an integer.
445 __isl_give isl_val *PetScan::extract_int(clang::Expr *expr)
447 if (expr->getStmtClass() == Stmt::IntegerLiteralClass)
448 return extract_int(ctx, cast<IntegerLiteral>(expr));
449 if (expr->getStmtClass() == Stmt::ParenExprClass)
450 return extract_int(cast<ParenExpr>(expr));
452 unsupported(expr);
453 return NULL;
456 /* Extract an affine expression from the IntegerLiteral "expr".
458 __isl_give isl_pw_aff *PetScan::extract_affine(IntegerLiteral *expr)
460 isl_space *dim = isl_space_params_alloc(ctx, 0);
461 isl_local_space *ls = isl_local_space_from_space(isl_space_copy(dim));
462 isl_aff *aff = isl_aff_zero_on_domain(ls);
463 isl_set *dom = isl_set_universe(dim);
464 isl_val *v;
466 v = extract_int(expr);
467 aff = isl_aff_add_constant_val(aff, v);
469 return isl_pw_aff_alloc(dom, aff);
472 /* Extract an affine expression from the APInt "val", which is assumed
473 * to be non-negative.
475 __isl_give isl_pw_aff *PetScan::extract_affine(const llvm::APInt &val)
477 isl_space *dim = isl_space_params_alloc(ctx, 0);
478 isl_local_space *ls = isl_local_space_from_space(isl_space_copy(dim));
479 isl_aff *aff = isl_aff_zero_on_domain(ls);
480 isl_set *dom = isl_set_universe(dim);
481 isl_val *v;
483 v = extract_unsigned(ctx, val);
484 aff = isl_aff_add_constant_val(aff, v);
486 return isl_pw_aff_alloc(dom, aff);
489 __isl_give isl_pw_aff *PetScan::extract_affine(ImplicitCastExpr *expr)
491 return extract_affine(expr->getSubExpr());
494 /* Return the number of bits needed to represent the type "qt",
495 * if it is an integer type. Otherwise return 0.
496 * If qt is signed then return the opposite of the number of bits.
498 static int get_type_size(QualType qt, ASTContext &ast_context)
500 int size;
502 if (!qt->isIntegerType())
503 return 0;
505 size = ast_context.getIntWidth(qt);
506 if (!qt->isUnsignedIntegerType())
507 size = -size;
509 return size;
512 /* Return the number of bits needed to represent the type of "decl",
513 * if it is an integer type. Otherwise return 0.
514 * If qt is signed then return the opposite of the number of bits.
516 static int get_type_size(ValueDecl *decl)
518 return get_type_size(decl->getType(), decl->getASTContext());
521 /* Bound parameter "pos" of "set" to the possible values of "decl".
523 static __isl_give isl_set *set_parameter_bounds(__isl_take isl_set *set,
524 unsigned pos, ValueDecl *decl)
526 int type_size;
527 isl_ctx *ctx;
528 isl_val *bound;
530 ctx = isl_set_get_ctx(set);
531 type_size = get_type_size(decl);
532 if (type_size == 0)
533 isl_die(ctx, isl_error_invalid, "not an integer type",
534 return isl_set_free(set));
535 if (type_size > 0) {
536 set = isl_set_lower_bound_si(set, isl_dim_param, pos, 0);
537 bound = isl_val_int_from_ui(ctx, type_size);
538 bound = isl_val_2exp(bound);
539 bound = isl_val_sub_ui(bound, 1);
540 set = isl_set_upper_bound_val(set, isl_dim_param, pos, bound);
541 } else {
542 bound = isl_val_int_from_ui(ctx, -type_size - 1);
543 bound = isl_val_2exp(bound);
544 bound = isl_val_sub_ui(bound, 1);
545 set = isl_set_upper_bound_val(set, isl_dim_param, pos,
546 isl_val_copy(bound));
547 bound = isl_val_neg(bound);
548 bound = isl_val_sub_ui(bound, 1);
549 set = isl_set_lower_bound_val(set, isl_dim_param, pos, bound);
552 return set;
555 /* Extract an affine expression from the DeclRefExpr "expr".
557 * If the variable has been assigned a value, then we check whether
558 * we know what (affine) value was assigned.
559 * If so, we return this value. Otherwise we convert "expr"
560 * to an extra parameter (provided nesting_enabled is set).
562 * Otherwise, we simply return an expression that is equal
563 * to a parameter corresponding to the referenced variable.
565 __isl_give isl_pw_aff *PetScan::extract_affine(DeclRefExpr *expr)
567 ValueDecl *decl = expr->getDecl();
568 const Type *type = decl->getType().getTypePtr();
569 isl_id *id;
570 isl_space *dim;
571 isl_aff *aff;
572 isl_set *dom;
574 if (!type->isIntegerType()) {
575 unsupported(expr);
576 return NULL;
579 if (assigned_value.find(decl) != assigned_value.end()) {
580 if (assigned_value[decl])
581 return isl_pw_aff_copy(assigned_value[decl]);
582 else
583 return nested_access(expr);
586 id = isl_id_alloc(ctx, decl->getName().str().c_str(), decl);
587 dim = isl_space_params_alloc(ctx, 1);
589 dim = isl_space_set_dim_id(dim, isl_dim_param, 0, id);
591 dom = isl_set_universe(isl_space_copy(dim));
592 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
593 aff = isl_aff_add_coefficient_si(aff, isl_dim_param, 0, 1);
595 return isl_pw_aff_alloc(dom, aff);
598 /* Extract an affine expression from an integer division operation.
599 * In particular, if "expr" is lhs/rhs, then return
601 * lhs >= 0 ? floor(lhs/rhs) : ceil(lhs/rhs)
603 * The second argument (rhs) is required to be a (positive) integer constant.
605 __isl_give isl_pw_aff *PetScan::extract_affine_div(BinaryOperator *expr)
607 int is_cst;
608 isl_pw_aff *rhs, *lhs;
610 rhs = extract_affine(expr->getRHS());
611 is_cst = isl_pw_aff_is_cst(rhs);
612 if (is_cst < 0 || !is_cst) {
613 isl_pw_aff_free(rhs);
614 if (!is_cst)
615 unsupported(expr);
616 return NULL;
619 lhs = extract_affine(expr->getLHS());
621 return isl_pw_aff_tdiv_q(lhs, rhs);
624 /* Extract an affine expression from a modulo operation.
625 * In particular, if "expr" is lhs/rhs, then return
627 * lhs - rhs * (lhs >= 0 ? floor(lhs/rhs) : ceil(lhs/rhs))
629 * The second argument (rhs) is required to be a (positive) integer constant.
631 __isl_give isl_pw_aff *PetScan::extract_affine_mod(BinaryOperator *expr)
633 int is_cst;
634 isl_pw_aff *rhs, *lhs;
636 rhs = extract_affine(expr->getRHS());
637 is_cst = isl_pw_aff_is_cst(rhs);
638 if (is_cst < 0 || !is_cst) {
639 isl_pw_aff_free(rhs);
640 if (!is_cst)
641 unsupported(expr);
642 return NULL;
645 lhs = extract_affine(expr->getLHS());
647 return isl_pw_aff_tdiv_r(lhs, rhs);
650 /* Extract an affine expression from a multiplication operation.
651 * This is only allowed if at least one of the two arguments
652 * is a (piecewise) constant.
654 __isl_give isl_pw_aff *PetScan::extract_affine_mul(BinaryOperator *expr)
656 isl_pw_aff *lhs;
657 isl_pw_aff *rhs;
659 lhs = extract_affine(expr->getLHS());
660 rhs = extract_affine(expr->getRHS());
662 if (!isl_pw_aff_is_cst(lhs) && !isl_pw_aff_is_cst(rhs)) {
663 isl_pw_aff_free(lhs);
664 isl_pw_aff_free(rhs);
665 unsupported(expr);
666 return NULL;
669 return isl_pw_aff_mul(lhs, rhs);
672 /* Extract an affine expression from an addition or subtraction operation.
674 __isl_give isl_pw_aff *PetScan::extract_affine_add(BinaryOperator *expr)
676 isl_pw_aff *lhs;
677 isl_pw_aff *rhs;
679 lhs = extract_affine(expr->getLHS());
680 rhs = extract_affine(expr->getRHS());
682 switch (expr->getOpcode()) {
683 case BO_Add:
684 return isl_pw_aff_add(lhs, rhs);
685 case BO_Sub:
686 return isl_pw_aff_sub(lhs, rhs);
687 default:
688 isl_pw_aff_free(lhs);
689 isl_pw_aff_free(rhs);
690 return NULL;
695 /* Compute
697 * pwaff mod 2^width
699 static __isl_give isl_pw_aff *wrap(__isl_take isl_pw_aff *pwaff,
700 unsigned width)
702 isl_ctx *ctx;
703 isl_val *mod;
705 ctx = isl_pw_aff_get_ctx(pwaff);
706 mod = isl_val_int_from_ui(ctx, width);
707 mod = isl_val_2exp(mod);
709 pwaff = isl_pw_aff_mod_val(pwaff, mod);
711 return pwaff;
714 /* Limit the domain of "pwaff" to those elements where the function
715 * value satisfies
717 * 2^{width-1} <= pwaff < 2^{width-1}
719 static __isl_give isl_pw_aff *avoid_overflow(__isl_take isl_pw_aff *pwaff,
720 unsigned width)
722 isl_ctx *ctx;
723 isl_val *v;
724 isl_space *space = isl_pw_aff_get_domain_space(pwaff);
725 isl_local_space *ls = isl_local_space_from_space(space);
726 isl_aff *bound;
727 isl_set *dom;
728 isl_pw_aff *b;
730 ctx = isl_pw_aff_get_ctx(pwaff);
731 v = isl_val_int_from_ui(ctx, width - 1);
732 v = isl_val_2exp(v);
734 bound = isl_aff_zero_on_domain(ls);
735 bound = isl_aff_add_constant_val(bound, v);
736 b = isl_pw_aff_from_aff(bound);
738 dom = isl_pw_aff_lt_set(isl_pw_aff_copy(pwaff), isl_pw_aff_copy(b));
739 pwaff = isl_pw_aff_intersect_domain(pwaff, dom);
741 b = isl_pw_aff_neg(b);
742 dom = isl_pw_aff_ge_set(isl_pw_aff_copy(pwaff), b);
743 pwaff = isl_pw_aff_intersect_domain(pwaff, dom);
745 return pwaff;
748 /* Handle potential overflows on signed computations.
750 * If options->signed_overflow is set to PET_OVERFLOW_AVOID,
751 * the we adjust the domain of "pa" to avoid overflows.
753 __isl_give isl_pw_aff *PetScan::signed_overflow(__isl_take isl_pw_aff *pa,
754 unsigned width)
756 if (options->signed_overflow == PET_OVERFLOW_AVOID)
757 pa = avoid_overflow(pa, width);
759 return pa;
762 /* Return the piecewise affine expression "set ? 1 : 0" defined on "dom".
764 static __isl_give isl_pw_aff *indicator_function(__isl_take isl_set *set,
765 __isl_take isl_set *dom)
767 isl_pw_aff *pa;
768 pa = isl_set_indicator_function(set);
769 pa = isl_pw_aff_intersect_domain(pa, isl_set_coalesce(dom));
770 return pa;
773 /* Extract an affine expression from some binary operations.
774 * If the result of the expression is unsigned, then we wrap it
775 * based on the size of the type. Otherwise, we ensure that
776 * no overflow occurs.
778 __isl_give isl_pw_aff *PetScan::extract_affine(BinaryOperator *expr)
780 isl_pw_aff *res;
781 unsigned width;
783 switch (expr->getOpcode()) {
784 case BO_Add:
785 case BO_Sub:
786 res = extract_affine_add(expr);
787 break;
788 case BO_Div:
789 res = extract_affine_div(expr);
790 break;
791 case BO_Rem:
792 res = extract_affine_mod(expr);
793 break;
794 case BO_Mul:
795 res = extract_affine_mul(expr);
796 break;
797 case BO_LT:
798 case BO_LE:
799 case BO_GT:
800 case BO_GE:
801 case BO_EQ:
802 case BO_NE:
803 case BO_LAnd:
804 case BO_LOr:
805 return extract_condition(expr);
806 default:
807 unsupported(expr);
808 return NULL;
811 width = ast_context.getIntWidth(expr->getType());
812 if (expr->getType()->isUnsignedIntegerType())
813 res = wrap(res, width);
814 else
815 res = signed_overflow(res, width);
817 return res;
820 /* Extract an affine expression from a negation operation.
822 __isl_give isl_pw_aff *PetScan::extract_affine(UnaryOperator *expr)
824 if (expr->getOpcode() == UO_Minus)
825 return isl_pw_aff_neg(extract_affine(expr->getSubExpr()));
826 if (expr->getOpcode() == UO_LNot)
827 return extract_condition(expr);
829 unsupported(expr);
830 return NULL;
833 __isl_give isl_pw_aff *PetScan::extract_affine(ParenExpr *expr)
835 return extract_affine(expr->getSubExpr());
838 /* Extract an affine expression from some special function calls.
839 * In particular, we handle "min", "max", "ceild", "floord",
840 * "intMod", "intFloor" and "intCeil".
841 * In case of the latter five, the second argument needs to be
842 * a (positive) integer constant.
844 __isl_give isl_pw_aff *PetScan::extract_affine(CallExpr *expr)
846 FunctionDecl *fd;
847 string name;
848 isl_pw_aff *aff1, *aff2;
850 fd = expr->getDirectCallee();
851 if (!fd) {
852 unsupported(expr);
853 return NULL;
856 name = fd->getDeclName().getAsString();
857 if (!(expr->getNumArgs() == 2 && name == "min") &&
858 !(expr->getNumArgs() == 2 && name == "max") &&
859 !(expr->getNumArgs() == 2 && name == "intMod") &&
860 !(expr->getNumArgs() == 2 && name == "intFloor") &&
861 !(expr->getNumArgs() == 2 && name == "intCeil") &&
862 !(expr->getNumArgs() == 2 && name == "floord") &&
863 !(expr->getNumArgs() == 2 && name == "ceild")) {
864 unsupported(expr);
865 return NULL;
868 if (name == "min" || name == "max") {
869 aff1 = extract_affine(expr->getArg(0));
870 aff2 = extract_affine(expr->getArg(1));
872 if (name == "min")
873 aff1 = isl_pw_aff_min(aff1, aff2);
874 else
875 aff1 = isl_pw_aff_max(aff1, aff2);
876 } else if (name == "intMod") {
877 isl_val *v;
878 Expr *arg2 = expr->getArg(1);
880 if (arg2->getStmtClass() != Stmt::IntegerLiteralClass) {
881 unsupported(expr);
882 return NULL;
884 aff1 = extract_affine(expr->getArg(0));
885 v = extract_int(cast<IntegerLiteral>(arg2));
886 aff1 = isl_pw_aff_mod_val(aff1, v);
887 } else if (name == "floord" || name == "ceild" ||
888 name == "intFloor" || name == "intCeil") {
889 isl_val *v;
890 Expr *arg2 = expr->getArg(1);
892 if (arg2->getStmtClass() != Stmt::IntegerLiteralClass) {
893 unsupported(expr);
894 return NULL;
896 aff1 = extract_affine(expr->getArg(0));
897 v = extract_int(cast<IntegerLiteral>(arg2));
898 aff1 = isl_pw_aff_scale_down_val(aff1, v);
899 if (name == "floord" || name == "intFloor")
900 aff1 = isl_pw_aff_floor(aff1);
901 else
902 aff1 = isl_pw_aff_ceil(aff1);
903 } else {
904 unsupported(expr);
905 return NULL;
908 return aff1;
911 /* This method is called when we come across an access that is
912 * nested in what is supposed to be an affine expression.
913 * If nesting is allowed, we return a new parameter that corresponds
914 * to this nested access. Otherwise, we simply complain.
916 * Note that we currently don't allow nested accesses themselves
917 * to contain any nested accesses, so we check if we can extract
918 * the access without any nesting and complain if we can't.
920 * The new parameter is resolved in resolve_nested.
922 isl_pw_aff *PetScan::nested_access(Expr *expr)
924 isl_id *id;
925 isl_space *dim;
926 isl_aff *aff;
927 isl_set *dom;
928 isl_multi_pw_aff *index;
930 if (!nesting_enabled) {
931 unsupported(expr);
932 return NULL;
935 allow_nested = false;
936 index = extract_index(expr);
937 allow_nested = true;
938 if (!index) {
939 unsupported(expr);
940 return NULL;
942 isl_multi_pw_aff_free(index);
944 id = pet_nested_clang_expr(ctx, expr);
945 dim = isl_space_params_alloc(ctx, 1);
947 dim = isl_space_set_dim_id(dim, isl_dim_param, 0, id);
949 dom = isl_set_universe(isl_space_copy(dim));
950 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
951 aff = isl_aff_add_coefficient_si(aff, isl_dim_param, 0, 1);
953 return isl_pw_aff_alloc(dom, aff);
956 /* Affine expressions are not supposed to contain array accesses,
957 * but if nesting is allowed, we return a parameter corresponding
958 * to the array access.
960 __isl_give isl_pw_aff *PetScan::extract_affine(ArraySubscriptExpr *expr)
962 return nested_access(expr);
965 /* Affine expressions are not supposed to contain member accesses,
966 * but if nesting is allowed, we return a parameter corresponding
967 * to the member access.
969 __isl_give isl_pw_aff *PetScan::extract_affine(MemberExpr *expr)
971 return nested_access(expr);
974 /* Extract an affine expression from a conditional operation.
976 __isl_give isl_pw_aff *PetScan::extract_affine(ConditionalOperator *expr)
978 isl_pw_aff *cond, *lhs, *rhs;
980 cond = extract_condition(expr->getCond());
981 lhs = extract_affine(expr->getTrueExpr());
982 rhs = extract_affine(expr->getFalseExpr());
984 return isl_pw_aff_cond(cond, lhs, rhs);
987 /* Extract an affine expression, if possible, from "expr".
988 * Otherwise return NULL.
990 __isl_give isl_pw_aff *PetScan::extract_affine(Expr *expr)
992 switch (expr->getStmtClass()) {
993 case Stmt::ImplicitCastExprClass:
994 return extract_affine(cast<ImplicitCastExpr>(expr));
995 case Stmt::IntegerLiteralClass:
996 return extract_affine(cast<IntegerLiteral>(expr));
997 case Stmt::DeclRefExprClass:
998 return extract_affine(cast<DeclRefExpr>(expr));
999 case Stmt::BinaryOperatorClass:
1000 return extract_affine(cast<BinaryOperator>(expr));
1001 case Stmt::UnaryOperatorClass:
1002 return extract_affine(cast<UnaryOperator>(expr));
1003 case Stmt::ParenExprClass:
1004 return extract_affine(cast<ParenExpr>(expr));
1005 case Stmt::CallExprClass:
1006 return extract_affine(cast<CallExpr>(expr));
1007 case Stmt::ArraySubscriptExprClass:
1008 return extract_affine(cast<ArraySubscriptExpr>(expr));
1009 case Stmt::MemberExprClass:
1010 return extract_affine(cast<MemberExpr>(expr));
1011 case Stmt::ConditionalOperatorClass:
1012 return extract_affine(cast<ConditionalOperator>(expr));
1013 default:
1014 unsupported(expr);
1016 return NULL;
1019 __isl_give isl_multi_pw_aff *PetScan::extract_index(ImplicitCastExpr *expr)
1021 return extract_index(expr->getSubExpr());
1024 /* Return the depth of an array of the given type.
1026 static int array_depth(const Type *type)
1028 if (type->isPointerType())
1029 return 1 + array_depth(type->getPointeeType().getTypePtr());
1030 if (type->isArrayType()) {
1031 const ArrayType *atype;
1032 type = type->getCanonicalTypeInternal().getTypePtr();
1033 atype = cast<ArrayType>(type);
1034 return 1 + array_depth(atype->getElementType().getTypePtr());
1036 return 0;
1039 /* Return the depth of the array accessed by the index expression "index".
1040 * If "index" is an affine expression, i.e., if it does not access
1041 * any array, then return 1.
1042 * If "index" represent a member access, i.e., if its range is a wrapped
1043 * relation, then return the sum of the depth of the array of structures
1044 * and that of the member inside the structure.
1046 static int extract_depth(__isl_keep isl_multi_pw_aff *index)
1048 isl_id *id;
1049 ValueDecl *decl;
1051 if (!index)
1052 return -1;
1054 if (isl_multi_pw_aff_range_is_wrapping(index)) {
1055 int domain_depth, range_depth;
1056 isl_multi_pw_aff *domain, *range;
1058 domain = isl_multi_pw_aff_copy(index);
1059 domain = isl_multi_pw_aff_range_factor_domain(domain);
1060 domain_depth = extract_depth(domain);
1061 isl_multi_pw_aff_free(domain);
1062 range = isl_multi_pw_aff_copy(index);
1063 range = isl_multi_pw_aff_range_factor_range(range);
1064 range_depth = extract_depth(range);
1065 isl_multi_pw_aff_free(range);
1067 return domain_depth + range_depth;
1070 if (!isl_multi_pw_aff_has_tuple_id(index, isl_dim_out))
1071 return 1;
1073 id = isl_multi_pw_aff_get_tuple_id(index, isl_dim_out);
1074 if (!id)
1075 return -1;
1076 decl = (ValueDecl *) isl_id_get_user(id);
1077 isl_id_free(id);
1079 return array_depth(decl->getType().getTypePtr());
1082 /* Extract an index expression from a reference to a variable.
1083 * If the variable has name "A", then the returned index expression
1084 * is of the form
1086 * { [] -> A[] }
1088 __isl_give isl_multi_pw_aff *PetScan::extract_index(DeclRefExpr *expr)
1090 return extract_index(expr->getDecl());
1093 /* Extract an index expression from a variable.
1094 * If the variable has name "A", then the returned index expression
1095 * is of the form
1097 * { [] -> A[] }
1099 __isl_give isl_multi_pw_aff *PetScan::extract_index(ValueDecl *decl)
1101 isl_id *id = isl_id_alloc(ctx, decl->getName().str().c_str(), decl);
1102 isl_space *space = isl_space_alloc(ctx, 0, 0, 0);
1104 space = isl_space_set_tuple_id(space, isl_dim_out, id);
1106 return isl_multi_pw_aff_zero(space);
1109 /* Extract an index expression from an integer contant.
1110 * If the value of the constant is "v", then the returned access relation
1111 * is
1113 * { [] -> [v] }
1115 __isl_give isl_multi_pw_aff *PetScan::extract_index(IntegerLiteral *expr)
1117 isl_multi_pw_aff *mpa;
1119 mpa = isl_multi_pw_aff_from_pw_aff(extract_affine(expr));
1120 mpa = isl_multi_pw_aff_from_range(mpa);
1121 return mpa;
1124 /* Try and extract an index expression from the given Expr.
1125 * Return NULL if it doesn't work out.
1127 __isl_give isl_multi_pw_aff *PetScan::extract_index(Expr *expr)
1129 switch (expr->getStmtClass()) {
1130 case Stmt::ImplicitCastExprClass:
1131 return extract_index(cast<ImplicitCastExpr>(expr));
1132 case Stmt::DeclRefExprClass:
1133 return extract_index(cast<DeclRefExpr>(expr));
1134 case Stmt::ArraySubscriptExprClass:
1135 return extract_index(cast<ArraySubscriptExpr>(expr));
1136 case Stmt::IntegerLiteralClass:
1137 return extract_index(cast<IntegerLiteral>(expr));
1138 case Stmt::MemberExprClass:
1139 return extract_index(cast<MemberExpr>(expr));
1140 default:
1141 unsupported(expr);
1143 return NULL;
1146 /* Given a partial index expression "base" and an extra index "index",
1147 * append the extra index to "base" and return the result.
1148 * Additionally, add the constraints that the extra index is non-negative.
1149 * If "index" represent a member access, i.e., if its range is a wrapped
1150 * relation, then we recursively extend the range of this nested relation.
1152 static __isl_give isl_multi_pw_aff *subscript(__isl_take isl_multi_pw_aff *base,
1153 __isl_take isl_pw_aff *index)
1155 isl_id *id;
1156 isl_set *domain;
1157 isl_multi_pw_aff *access;
1158 int member_access;
1160 member_access = isl_multi_pw_aff_range_is_wrapping(base);
1161 if (member_access < 0)
1162 goto error;
1163 if (member_access) {
1164 isl_multi_pw_aff *domain, *range;
1165 isl_id *id;
1167 id = isl_multi_pw_aff_get_tuple_id(base, isl_dim_out);
1168 domain = isl_multi_pw_aff_copy(base);
1169 domain = isl_multi_pw_aff_range_factor_domain(domain);
1170 range = isl_multi_pw_aff_range_factor_range(base);
1171 range = subscript(range, index);
1172 access = isl_multi_pw_aff_range_product(domain, range);
1173 access = isl_multi_pw_aff_set_tuple_id(access, isl_dim_out, id);
1174 return access;
1177 id = isl_multi_pw_aff_get_tuple_id(base, isl_dim_set);
1178 index = isl_pw_aff_from_range(index);
1179 domain = isl_pw_aff_nonneg_set(isl_pw_aff_copy(index));
1180 index = isl_pw_aff_intersect_domain(index, domain);
1181 access = isl_multi_pw_aff_from_pw_aff(index);
1182 access = isl_multi_pw_aff_flat_range_product(base, access);
1183 access = isl_multi_pw_aff_set_tuple_id(access, isl_dim_set, id);
1185 return access;
1186 error:
1187 isl_multi_pw_aff_free(base);
1188 isl_pw_aff_free(index);
1189 return NULL;
1192 /* Extract an index expression from the given array subscript expression.
1193 * If nesting is allowed in general, then we turn it on while
1194 * examining the index expression.
1196 * We first extract an index expression from the base.
1197 * This will result in an index expression with a range that corresponds
1198 * to the earlier indices.
1199 * We then extract the current index, restrict its domain
1200 * to those values that result in a non-negative index and
1201 * append the index to the base index expression.
1203 __isl_give isl_multi_pw_aff *PetScan::extract_index(ArraySubscriptExpr *expr)
1205 Expr *base = expr->getBase();
1206 Expr *idx = expr->getIdx();
1207 isl_pw_aff *index;
1208 isl_multi_pw_aff *base_access;
1209 isl_multi_pw_aff *access;
1210 bool save_nesting = nesting_enabled;
1212 nesting_enabled = allow_nested;
1214 base_access = extract_index(base);
1215 index = extract_affine(idx);
1217 nesting_enabled = save_nesting;
1219 access = subscript(base_access, index);
1221 return access;
1224 /* Construct a name for a member access by concatenating the name
1225 * of the array of structures and the member, separated by an underscore.
1227 * The caller is responsible for freeing the result.
1229 static char *member_access_name(isl_ctx *ctx, const char *base,
1230 const char *field)
1232 int len;
1233 char *name;
1235 len = strlen(base) + 1 + strlen(field);
1236 name = isl_alloc_array(ctx, char, len + 1);
1237 if (!name)
1238 return NULL;
1239 snprintf(name, len + 1, "%s_%s", base, field);
1241 return name;
1244 /* Given an index expression "base" for an element of an array of structures
1245 * and an expression "field" for the field member being accessed, construct
1246 * an index expression for an access to that member of the given structure.
1247 * In particular, take the range product of "base" and "field" and
1248 * attach a name to the result.
1250 static __isl_give isl_multi_pw_aff *member(__isl_take isl_multi_pw_aff *base,
1251 __isl_take isl_multi_pw_aff *field)
1253 isl_ctx *ctx;
1254 isl_multi_pw_aff *access;
1255 const char *base_name, *field_name;
1256 char *name;
1258 ctx = isl_multi_pw_aff_get_ctx(base);
1260 base_name = isl_multi_pw_aff_get_tuple_name(base, isl_dim_out);
1261 field_name = isl_multi_pw_aff_get_tuple_name(field, isl_dim_out);
1262 name = member_access_name(ctx, base_name, field_name);
1264 access = isl_multi_pw_aff_range_product(base, field);
1266 access = isl_multi_pw_aff_set_tuple_name(access, isl_dim_out, name);
1267 free(name);
1269 return access;
1272 /* Extract an index expression from a member expression.
1274 * If the base access (to the structure containing the member)
1275 * is of the form
1277 * [] -> A[..]
1279 * and the member is called "f", then the member access is of
1280 * the form
1282 * [] -> A_f[A[..] -> f[]]
1284 * If the member access is to an anonymous struct, then simply return
1286 * [] -> A[..]
1288 * If the member access in the source code is of the form
1290 * A->f
1292 * then it is treated as
1294 * A[0].f
1296 __isl_give isl_multi_pw_aff *PetScan::extract_index(MemberExpr *expr)
1298 Expr *base = expr->getBase();
1299 FieldDecl *field = cast<FieldDecl>(expr->getMemberDecl());
1300 isl_multi_pw_aff *base_access, *field_access;
1301 isl_id *id;
1302 isl_space *space;
1304 base_access = extract_index(base);
1306 if (expr->isArrow()) {
1307 isl_space *space = isl_space_params_alloc(ctx, 0);
1308 isl_local_space *ls = isl_local_space_from_space(space);
1309 isl_aff *aff = isl_aff_zero_on_domain(ls);
1310 isl_pw_aff *index = isl_pw_aff_from_aff(aff);
1311 base_access = subscript(base_access, index);
1314 if (field->isAnonymousStructOrUnion())
1315 return base_access;
1317 id = isl_id_alloc(ctx, field->getName().str().c_str(), field);
1318 space = isl_multi_pw_aff_get_domain_space(base_access);
1319 space = isl_space_from_domain(space);
1320 space = isl_space_set_tuple_id(space, isl_dim_out, id);
1321 field_access = isl_multi_pw_aff_zero(space);
1323 return member(base_access, field_access);
1326 /* Check if "expr" calls function "minmax" with two arguments and if so
1327 * make lhs and rhs refer to these two arguments.
1329 static bool is_minmax(Expr *expr, const char *minmax, Expr *&lhs, Expr *&rhs)
1331 CallExpr *call;
1332 FunctionDecl *fd;
1333 string name;
1335 if (expr->getStmtClass() != Stmt::CallExprClass)
1336 return false;
1338 call = cast<CallExpr>(expr);
1339 fd = call->getDirectCallee();
1340 if (!fd)
1341 return false;
1343 if (call->getNumArgs() != 2)
1344 return false;
1346 name = fd->getDeclName().getAsString();
1347 if (name != minmax)
1348 return false;
1350 lhs = call->getArg(0);
1351 rhs = call->getArg(1);
1353 return true;
1356 /* Check if "expr" is of the form min(lhs, rhs) and if so make
1357 * lhs and rhs refer to the two arguments.
1359 static bool is_min(Expr *expr, Expr *&lhs, Expr *&rhs)
1361 return is_minmax(expr, "min", lhs, rhs);
1364 /* Check if "expr" is of the form max(lhs, rhs) and if so make
1365 * lhs and rhs refer to the two arguments.
1367 static bool is_max(Expr *expr, Expr *&lhs, Expr *&rhs)
1369 return is_minmax(expr, "max", lhs, rhs);
1372 /* Return "lhs && rhs", with shortcut semantics.
1373 * That is, if lhs is false, then the result is defined even if rhs is not.
1374 * In practice, we compute lhs ? rhs : lhs.
1376 static __isl_give isl_pw_aff *pw_aff_and_then(__isl_take isl_pw_aff *lhs,
1377 __isl_take isl_pw_aff *rhs)
1379 return isl_pw_aff_cond(isl_pw_aff_copy(lhs), rhs, lhs);
1382 /* Return "lhs || rhs", with shortcut semantics.
1383 * That is, if lhs is true, then the result is defined even if rhs is not.
1384 * In practice, we compute lhs ? lhs : rhs.
1386 static __isl_give isl_pw_aff *pw_aff_or_else(__isl_take isl_pw_aff *lhs,
1387 __isl_take isl_pw_aff *rhs)
1389 return isl_pw_aff_cond(isl_pw_aff_copy(lhs), lhs, rhs);
1392 /* Extract an affine expressions representing the comparison "LHS op RHS"
1393 * "comp" is the original statement that "LHS op RHS" is derived from
1394 * and is used for diagnostics.
1396 * If the comparison is of the form
1398 * a <= min(b,c)
1400 * then the expression is constructed as the conjunction of
1401 * the comparisons
1403 * a <= b and a <= c
1405 * A similar optimization is performed for max(a,b) <= c.
1406 * We do this because that will lead to simpler representations
1407 * of the expression.
1408 * If isl is ever enhanced to explicitly deal with min and max expressions,
1409 * this optimization can be removed.
1411 __isl_give isl_pw_aff *PetScan::extract_comparison(BinaryOperatorKind op,
1412 Expr *LHS, Expr *RHS, Stmt *comp)
1414 isl_pw_aff *lhs;
1415 isl_pw_aff *rhs;
1416 isl_pw_aff *res;
1417 isl_set *cond;
1418 isl_set *dom;
1419 enum pet_op_type type;
1421 if (op == BO_GT)
1422 return extract_comparison(BO_LT, RHS, LHS, comp);
1423 if (op == BO_GE)
1424 return extract_comparison(BO_LE, RHS, LHS, comp);
1426 if (op == BO_LT || op == BO_LE) {
1427 Expr *expr1, *expr2;
1428 if (is_min(RHS, expr1, expr2)) {
1429 lhs = extract_comparison(op, LHS, expr1, comp);
1430 rhs = extract_comparison(op, LHS, expr2, comp);
1431 return pet_and(lhs, rhs);
1433 if (is_max(LHS, expr1, expr2)) {
1434 lhs = extract_comparison(op, expr1, RHS, comp);
1435 rhs = extract_comparison(op, expr2, RHS, comp);
1436 return pet_and(lhs, rhs);
1440 lhs = extract_affine(LHS);
1441 rhs = extract_affine(RHS);
1443 type = BinaryOperatorKind2pet_op_type(op);
1444 return pet_comparison(type, lhs, rhs);
1447 __isl_give isl_pw_aff *PetScan::extract_comparison(BinaryOperator *comp)
1449 return extract_comparison(comp->getOpcode(), comp->getLHS(),
1450 comp->getRHS(), comp);
1453 /* Extract an affine expression representing the negation (logical not)
1454 * of a subexpression.
1456 __isl_give isl_pw_aff *PetScan::extract_boolean(UnaryOperator *op)
1458 isl_set *set_cond, *dom;
1459 isl_pw_aff *cond, *res;
1461 cond = extract_condition(op->getSubExpr());
1463 dom = isl_pw_aff_domain(isl_pw_aff_copy(cond));
1465 set_cond = isl_pw_aff_zero_set(cond);
1467 res = indicator_function(set_cond, dom);
1469 return res;
1472 /* Extract an affine expression representing the disjunction (logical or)
1473 * or conjunction (logical and) of two subexpressions.
1475 __isl_give isl_pw_aff *PetScan::extract_boolean(BinaryOperator *comp)
1477 isl_pw_aff *lhs, *rhs;
1479 lhs = extract_condition(comp->getLHS());
1480 rhs = extract_condition(comp->getRHS());
1482 switch (comp->getOpcode()) {
1483 case BO_LAnd:
1484 return pw_aff_and_then(lhs, rhs);
1485 case BO_LOr:
1486 return pw_aff_or_else(lhs, rhs);
1487 default:
1488 isl_pw_aff_free(lhs);
1489 isl_pw_aff_free(rhs);
1492 unsupported(comp);
1493 return NULL;
1496 __isl_give isl_pw_aff *PetScan::extract_condition(UnaryOperator *expr)
1498 switch (expr->getOpcode()) {
1499 case UO_LNot:
1500 return extract_boolean(expr);
1501 default:
1502 unsupported(expr);
1503 return NULL;
1507 /* Extract the affine expression "expr != 0 ? 1 : 0".
1509 __isl_give isl_pw_aff *PetScan::extract_implicit_condition(Expr *expr)
1511 isl_pw_aff *res;
1512 isl_set *set, *dom;
1514 res = extract_affine(expr);
1516 dom = isl_pw_aff_domain(isl_pw_aff_copy(res));
1517 set = isl_pw_aff_non_zero_set(res);
1519 res = indicator_function(set, dom);
1521 return res;
1524 /* Extract an affine expression from a boolean expression.
1525 * In particular, return the expression "expr ? 1 : 0".
1527 * If the expression doesn't look like a condition, we assume it
1528 * is an affine expression and return the condition "expr != 0 ? 1 : 0".
1530 __isl_give isl_pw_aff *PetScan::extract_condition(Expr *expr)
1532 BinaryOperator *comp;
1534 if (!expr) {
1535 isl_set *u = isl_set_universe(isl_space_params_alloc(ctx, 0));
1536 return indicator_function(u, isl_set_copy(u));
1539 if (expr->getStmtClass() == Stmt::ParenExprClass)
1540 return extract_condition(cast<ParenExpr>(expr)->getSubExpr());
1542 if (expr->getStmtClass() == Stmt::UnaryOperatorClass)
1543 return extract_condition(cast<UnaryOperator>(expr));
1545 if (expr->getStmtClass() != Stmt::BinaryOperatorClass)
1546 return extract_implicit_condition(expr);
1548 comp = cast<BinaryOperator>(expr);
1549 switch (comp->getOpcode()) {
1550 case BO_LT:
1551 case BO_LE:
1552 case BO_GT:
1553 case BO_GE:
1554 case BO_EQ:
1555 case BO_NE:
1556 return extract_comparison(comp);
1557 case BO_LAnd:
1558 case BO_LOr:
1559 return extract_boolean(comp);
1560 default:
1561 return extract_implicit_condition(expr);
1565 /* Construct a pet_expr representing a unary operator expression.
1567 __isl_give pet_expr *PetScan::extract_expr(UnaryOperator *expr)
1569 pet_expr *arg;
1570 enum pet_op_type op;
1572 op = UnaryOperatorKind2pet_op_type(expr->getOpcode());
1573 if (op == pet_op_last) {
1574 unsupported(expr);
1575 return NULL;
1578 arg = extract_expr(expr->getSubExpr());
1580 if (expr->isIncrementDecrementOp() &&
1581 pet_expr_get_type(arg) == pet_expr_access) {
1582 arg = mark_write(arg);
1583 arg = pet_expr_access_set_read(arg, 1);
1586 return pet_expr_new_unary(op, arg);
1589 /* Mark the given access pet_expr as a write.
1590 * If a scalar is being accessed, then mark its value
1591 * as unknown in assigned_value.
1593 __isl_give pet_expr *PetScan::mark_write(__isl_take pet_expr *access)
1595 isl_id *id;
1596 ValueDecl *decl;
1598 access = pet_expr_access_set_write(access, 1);
1599 access = pet_expr_access_set_read(access, 0);
1601 if (!access || !pet_expr_is_scalar_access(access))
1602 return access;
1604 id = pet_expr_access_get_id(access);
1605 decl = (ValueDecl *) isl_id_get_user(id);
1606 clear_assignment(assigned_value, decl);
1607 isl_id_free(id);
1609 return access;
1612 /* Assign "rhs" to "lhs".
1614 * In particular, if "lhs" is a scalar variable, then mark
1615 * the variable as having been assigned. If, furthermore, "rhs"
1616 * is an affine expression, then keep track of this value in assigned_value
1617 * so that we can plug it in when we later come across the same variable.
1619 void PetScan::assign(__isl_keep pet_expr *lhs, Expr *rhs)
1621 isl_id *id;
1622 ValueDecl *decl;
1623 isl_pw_aff *pa;
1625 if (!lhs)
1626 return;
1627 if (!pet_expr_is_scalar_access(lhs))
1628 return;
1630 id = pet_expr_access_get_id(lhs);
1631 decl = (ValueDecl *) isl_id_get_user(id);
1632 isl_id_free(id);
1634 pa = try_extract_affine(rhs);
1635 clear_assignment(assigned_value, decl);
1636 if (!pa)
1637 return;
1638 assigned_value[decl] = pa;
1639 insert_expression(pa);
1642 /* Construct a pet_expr representing a binary operator expression.
1644 * If the top level operator is an assignment and the LHS is an access,
1645 * then we mark that access as a write. If the operator is a compound
1646 * assignment, the access is marked as both a read and a write.
1648 * If "expr" assigns something to a scalar variable, then we mark
1649 * the variable as having been assigned. If, furthermore, the expression
1650 * is affine, then keep track of this value in assigned_value
1651 * so that we can plug it in when we later come across the same variable.
1653 __isl_give pet_expr *PetScan::extract_expr(BinaryOperator *expr)
1655 int type_size;
1656 pet_expr *lhs, *rhs;
1657 enum pet_op_type op;
1659 op = BinaryOperatorKind2pet_op_type(expr->getOpcode());
1660 if (op == pet_op_last) {
1661 unsupported(expr);
1662 return NULL;
1665 lhs = extract_expr(expr->getLHS());
1666 rhs = extract_expr(expr->getRHS());
1668 if (expr->isAssignmentOp() &&
1669 pet_expr_get_type(lhs) == pet_expr_access) {
1670 lhs = mark_write(lhs);
1671 if (expr->isCompoundAssignmentOp())
1672 lhs = pet_expr_access_set_read(lhs, 1);
1675 if (expr->getOpcode() == BO_Assign)
1676 assign(lhs, expr->getRHS());
1678 type_size = get_type_size(expr->getType(), ast_context);
1679 return pet_expr_new_binary(type_size, op, lhs, rhs);
1682 /* Construct a pet_scop with a single statement killing the entire
1683 * array "array".
1685 struct pet_scop *PetScan::kill(Stmt *stmt, struct pet_array *array)
1687 isl_id *id;
1688 isl_space *space;
1689 isl_multi_pw_aff *index;
1690 isl_map *access;
1691 pet_expr *expr;
1693 if (!array)
1694 return NULL;
1695 access = isl_map_from_range(isl_set_copy(array->extent));
1696 id = isl_set_get_tuple_id(array->extent);
1697 space = isl_space_alloc(ctx, 0, 0, 0);
1698 space = isl_space_set_tuple_id(space, isl_dim_out, id);
1699 index = isl_multi_pw_aff_zero(space);
1700 expr = pet_expr_kill_from_access_and_index(access, index);
1701 return extract(stmt, expr);
1704 /* Construct a pet_scop for a (single) variable declaration.
1706 * The scop contains the variable being declared (as an array)
1707 * and a statement killing the array.
1709 * If the variable is initialized in the AST, then the scop
1710 * also contains an assignment to the variable.
1712 struct pet_scop *PetScan::extract(DeclStmt *stmt)
1714 int type_size;
1715 Decl *decl;
1716 VarDecl *vd;
1717 pet_expr *lhs, *rhs, *pe;
1718 struct pet_scop *scop_decl, *scop;
1719 struct pet_array *array;
1721 if (!stmt->isSingleDecl()) {
1722 unsupported(stmt);
1723 return NULL;
1726 decl = stmt->getSingleDecl();
1727 vd = cast<VarDecl>(decl);
1729 array = extract_array(ctx, vd, NULL);
1730 if (array)
1731 array->declared = 1;
1732 scop_decl = kill(stmt, array);
1733 scop_decl = pet_scop_add_array(scop_decl, array);
1735 if (!vd->getInit())
1736 return scop_decl;
1738 lhs = extract_access_expr(vd);
1739 rhs = extract_expr(vd->getInit());
1741 lhs = mark_write(lhs);
1742 assign(lhs, vd->getInit());
1744 type_size = get_type_size(vd->getType(), ast_context);
1745 pe = pet_expr_new_binary(type_size, pet_op_assign, lhs, rhs);
1746 scop = extract(stmt, pe);
1748 scop_decl = pet_scop_prefix(scop_decl, 0);
1749 scop = pet_scop_prefix(scop, 1);
1751 scop = pet_scop_add_seq(ctx, scop_decl, scop);
1753 return scop;
1756 /* Construct a pet_expr representing a conditional operation.
1758 * We first try to extract the condition as an affine expression.
1759 * If that fails, we construct a pet_expr tree representing the condition.
1761 __isl_give pet_expr *PetScan::extract_expr(ConditionalOperator *expr)
1763 pet_expr *cond, *lhs, *rhs;
1764 isl_pw_aff *pa;
1766 pa = try_extract_affine(expr->getCond());
1767 if (pa) {
1768 isl_multi_pw_aff *test = isl_multi_pw_aff_from_pw_aff(pa);
1769 test = isl_multi_pw_aff_from_range(test);
1770 cond = pet_expr_from_index(test);
1771 } else
1772 cond = extract_expr(expr->getCond());
1773 lhs = extract_expr(expr->getTrueExpr());
1774 rhs = extract_expr(expr->getFalseExpr());
1776 return pet_expr_new_ternary(cond, lhs, rhs);
1779 __isl_give pet_expr *PetScan::extract_expr(ImplicitCastExpr *expr)
1781 return extract_expr(expr->getSubExpr());
1784 /* Construct a pet_expr representing a floating point value.
1786 * If the floating point literal does not appear in a macro,
1787 * then we use the original representation in the source code
1788 * as the string representation. Otherwise, we use the pretty
1789 * printer to produce a string representation.
1791 __isl_give pet_expr *PetScan::extract_expr(FloatingLiteral *expr)
1793 double d;
1794 string s;
1795 const LangOptions &LO = PP.getLangOpts();
1796 SourceLocation loc = expr->getLocation();
1798 if (!loc.isMacroID()) {
1799 SourceManager &SM = PP.getSourceManager();
1800 unsigned len = Lexer::MeasureTokenLength(loc, SM, LO);
1801 s = string(SM.getCharacterData(loc), len);
1802 } else {
1803 llvm::raw_string_ostream S(s);
1804 expr->printPretty(S, 0, PrintingPolicy(LO));
1805 S.str();
1807 d = expr->getValueAsApproximateDouble();
1808 return pet_expr_new_double(ctx, d, s.c_str());
1811 /* Convert the index expression "index" into an access pet_expr of type "qt".
1813 __isl_give pet_expr *PetScan::extract_access_expr(QualType qt,
1814 __isl_take isl_multi_pw_aff *index)
1816 pet_expr *pe;
1817 int depth;
1818 int type_size;
1820 depth = extract_depth(index);
1821 type_size = get_type_size(qt, ast_context);
1823 pe = pet_expr_from_index_and_depth(type_size, index, depth);
1825 return pe;
1828 /* Extract an index expression from "expr" and then convert it into
1829 * an access pet_expr.
1831 __isl_give pet_expr *PetScan::extract_access_expr(Expr *expr)
1833 return extract_access_expr(expr->getType(), extract_index(expr));
1836 /* Extract an index expression from "decl" and then convert it into
1837 * an access pet_expr.
1839 __isl_give pet_expr *PetScan::extract_access_expr(ValueDecl *decl)
1841 return extract_access_expr(decl->getType(), extract_index(decl));
1844 __isl_give pet_expr *PetScan::extract_expr(ParenExpr *expr)
1846 return extract_expr(expr->getSubExpr());
1849 /* Extract an assume statement from the argument "expr"
1850 * of a __pencil_assume statement.
1852 __isl_give pet_expr *PetScan::extract_assume(Expr *expr)
1854 isl_pw_aff *cond;
1855 pet_expr *res;
1857 cond = try_extract_affine_condition(expr);
1858 if (!cond) {
1859 res = extract_expr(expr);
1860 } else {
1861 isl_multi_pw_aff *index;
1862 index = isl_multi_pw_aff_from_pw_aff(cond);
1863 index = isl_multi_pw_aff_from_range(index);
1864 res = pet_expr_from_index(index);
1866 return pet_expr_new_unary(pet_op_assume, res);
1869 /* Construct a pet_expr corresponding to the function call argument "expr".
1870 * The argument appears in position "pos" of a call to function "fd".
1872 * If we are passing along a pointer to an array element
1873 * or an entire row or even higher dimensional slice of an array,
1874 * then the function being called may write into the array.
1876 * We assume here that if the function is declared to take a pointer
1877 * to a const type, then the function will perform a read
1878 * and that otherwise, it will perform a write.
1880 __isl_give pet_expr *PetScan::extract_argument(FunctionDecl *fd, int pos,
1881 Expr *expr)
1883 pet_expr *res;
1884 int is_addr = 0, is_partial = 0;
1885 Stmt::StmtClass sc;
1887 if (expr->getStmtClass() == Stmt::ImplicitCastExprClass) {
1888 ImplicitCastExpr *ice = cast<ImplicitCastExpr>(expr);
1889 expr = ice->getSubExpr();
1891 if (expr->getStmtClass() == Stmt::UnaryOperatorClass) {
1892 UnaryOperator *op = cast<UnaryOperator>(expr);
1893 if (op->getOpcode() == UO_AddrOf) {
1894 is_addr = 1;
1895 expr = op->getSubExpr();
1898 res = extract_expr(expr);
1899 if (!res)
1900 return NULL;
1901 sc = expr->getStmtClass();
1902 if ((sc == Stmt::ArraySubscriptExprClass ||
1903 sc == Stmt::MemberExprClass) &&
1904 array_depth(expr->getType().getTypePtr()) > 0)
1905 is_partial = 1;
1906 if ((is_addr || is_partial) &&
1907 pet_expr_get_type(res) == pet_expr_access) {
1908 ParmVarDecl *parm;
1909 if (!fd->hasPrototype()) {
1910 report_prototype_required(expr);
1911 return pet_expr_free(res);
1913 parm = fd->getParamDecl(pos);
1914 if (!const_base(parm->getType()))
1915 res = mark_write(res);
1918 if (is_addr)
1919 res = pet_expr_new_unary(pet_op_address_of, res);
1920 return res;
1923 /* Construct a pet_expr representing a function call.
1925 * In the special case of a "call" to __pencil_assume,
1926 * construct an assume expression instead.
1928 __isl_give pet_expr *PetScan::extract_expr(CallExpr *expr)
1930 pet_expr *res = NULL;
1931 FunctionDecl *fd;
1932 string name;
1933 unsigned n_arg;
1935 fd = expr->getDirectCallee();
1936 if (!fd) {
1937 unsupported(expr);
1938 return NULL;
1941 name = fd->getDeclName().getAsString();
1942 n_arg = expr->getNumArgs();
1944 if (n_arg == 1 && name == "__pencil_assume")
1945 return extract_assume(expr->getArg(0));
1947 res = pet_expr_new_call(ctx, name.c_str(), n_arg);
1948 if (!res)
1949 return NULL;
1951 for (int i = 0; i < n_arg; ++i) {
1952 Expr *arg = expr->getArg(i);
1953 res = pet_expr_set_arg(res, i,
1954 PetScan::extract_argument(fd, i, arg));
1957 return res;
1960 /* Construct a pet_expr representing a (C style) cast.
1962 __isl_give pet_expr *PetScan::extract_expr(CStyleCastExpr *expr)
1964 pet_expr *arg;
1965 QualType type;
1967 arg = extract_expr(expr->getSubExpr());
1968 if (!arg)
1969 return NULL;
1971 type = expr->getTypeAsWritten();
1972 return pet_expr_new_cast(type.getAsString().c_str(), arg);
1975 /* Construct a pet_expr representing an integer.
1977 __isl_give pet_expr *PetScan::extract_expr(IntegerLiteral *expr)
1979 return pet_expr_new_int(extract_int(expr));
1982 /* Try and construct a pet_expr representing "expr".
1984 __isl_give pet_expr *PetScan::extract_expr(Expr *expr)
1986 switch (expr->getStmtClass()) {
1987 case Stmt::UnaryOperatorClass:
1988 return extract_expr(cast<UnaryOperator>(expr));
1989 case Stmt::CompoundAssignOperatorClass:
1990 case Stmt::BinaryOperatorClass:
1991 return extract_expr(cast<BinaryOperator>(expr));
1992 case Stmt::ImplicitCastExprClass:
1993 return extract_expr(cast<ImplicitCastExpr>(expr));
1994 case Stmt::ArraySubscriptExprClass:
1995 case Stmt::DeclRefExprClass:
1996 case Stmt::MemberExprClass:
1997 return extract_access_expr(expr);
1998 case Stmt::IntegerLiteralClass:
1999 return extract_expr(cast<IntegerLiteral>(expr));
2000 case Stmt::FloatingLiteralClass:
2001 return extract_expr(cast<FloatingLiteral>(expr));
2002 case Stmt::ParenExprClass:
2003 return extract_expr(cast<ParenExpr>(expr));
2004 case Stmt::ConditionalOperatorClass:
2005 return extract_expr(cast<ConditionalOperator>(expr));
2006 case Stmt::CallExprClass:
2007 return extract_expr(cast<CallExpr>(expr));
2008 case Stmt::CStyleCastExprClass:
2009 return extract_expr(cast<CStyleCastExpr>(expr));
2010 default:
2011 unsupported(expr);
2013 return NULL;
2016 /* Check if the given initialization statement is an assignment.
2017 * If so, return that assignment. Otherwise return NULL.
2019 BinaryOperator *PetScan::initialization_assignment(Stmt *init)
2021 BinaryOperator *ass;
2023 if (init->getStmtClass() != Stmt::BinaryOperatorClass)
2024 return NULL;
2026 ass = cast<BinaryOperator>(init);
2027 if (ass->getOpcode() != BO_Assign)
2028 return NULL;
2030 return ass;
2033 /* Check if the given initialization statement is a declaration
2034 * of a single variable.
2035 * If so, return that declaration. Otherwise return NULL.
2037 Decl *PetScan::initialization_declaration(Stmt *init)
2039 DeclStmt *decl;
2041 if (init->getStmtClass() != Stmt::DeclStmtClass)
2042 return NULL;
2044 decl = cast<DeclStmt>(init);
2046 if (!decl->isSingleDecl())
2047 return NULL;
2049 return decl->getSingleDecl();
2052 /* Given the assignment operator in the initialization of a for loop,
2053 * extract the induction variable, i.e., the (integer)variable being
2054 * assigned.
2056 ValueDecl *PetScan::extract_induction_variable(BinaryOperator *init)
2058 Expr *lhs;
2059 DeclRefExpr *ref;
2060 ValueDecl *decl;
2061 const Type *type;
2063 lhs = init->getLHS();
2064 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
2065 unsupported(init);
2066 return NULL;
2069 ref = cast<DeclRefExpr>(lhs);
2070 decl = ref->getDecl();
2071 type = decl->getType().getTypePtr();
2073 if (!type->isIntegerType()) {
2074 unsupported(lhs);
2075 return NULL;
2078 return decl;
2081 /* Given the initialization statement of a for loop and the single
2082 * declaration in this initialization statement,
2083 * extract the induction variable, i.e., the (integer) variable being
2084 * declared.
2086 VarDecl *PetScan::extract_induction_variable(Stmt *init, Decl *decl)
2088 VarDecl *vd;
2090 vd = cast<VarDecl>(decl);
2092 const QualType type = vd->getType();
2093 if (!type->isIntegerType()) {
2094 unsupported(init);
2095 return NULL;
2098 if (!vd->getInit()) {
2099 unsupported(init);
2100 return NULL;
2103 return vd;
2106 /* Check that op is of the form iv++ or iv--.
2107 * Return an affine expression "1" or "-1" accordingly.
2109 __isl_give isl_pw_aff *PetScan::extract_unary_increment(
2110 clang::UnaryOperator *op, clang::ValueDecl *iv)
2112 Expr *sub;
2113 DeclRefExpr *ref;
2114 isl_space *space;
2115 isl_aff *aff;
2117 if (!op->isIncrementDecrementOp()) {
2118 unsupported(op);
2119 return NULL;
2122 sub = op->getSubExpr();
2123 if (sub->getStmtClass() != Stmt::DeclRefExprClass) {
2124 unsupported(op);
2125 return NULL;
2128 ref = cast<DeclRefExpr>(sub);
2129 if (ref->getDecl() != iv) {
2130 unsupported(op);
2131 return NULL;
2134 space = isl_space_params_alloc(ctx, 0);
2135 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
2137 if (op->isIncrementOp())
2138 aff = isl_aff_add_constant_si(aff, 1);
2139 else
2140 aff = isl_aff_add_constant_si(aff, -1);
2142 return isl_pw_aff_from_aff(aff);
2145 /* If the isl_pw_aff on which isl_pw_aff_foreach_piece is called
2146 * has a single constant expression, then put this constant in *user.
2147 * The caller is assumed to have checked that this function will
2148 * be called exactly once.
2150 static int extract_cst(__isl_take isl_set *set, __isl_take isl_aff *aff,
2151 void *user)
2153 isl_val **inc = (isl_val **)user;
2154 int res = 0;
2156 if (isl_aff_is_cst(aff))
2157 *inc = isl_aff_get_constant_val(aff);
2158 else
2159 res = -1;
2161 isl_set_free(set);
2162 isl_aff_free(aff);
2164 return res;
2167 /* Check if op is of the form
2169 * iv = iv + inc
2171 * and return inc as an affine expression.
2173 * We extract an affine expression from the RHS, subtract iv and return
2174 * the result.
2176 __isl_give isl_pw_aff *PetScan::extract_binary_increment(BinaryOperator *op,
2177 clang::ValueDecl *iv)
2179 Expr *lhs;
2180 DeclRefExpr *ref;
2181 isl_id *id;
2182 isl_space *dim;
2183 isl_aff *aff;
2184 isl_pw_aff *val;
2186 if (op->getOpcode() != BO_Assign) {
2187 unsupported(op);
2188 return NULL;
2191 lhs = op->getLHS();
2192 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
2193 unsupported(op);
2194 return NULL;
2197 ref = cast<DeclRefExpr>(lhs);
2198 if (ref->getDecl() != iv) {
2199 unsupported(op);
2200 return NULL;
2203 val = extract_affine(op->getRHS());
2205 id = isl_id_alloc(ctx, iv->getName().str().c_str(), iv);
2207 dim = isl_space_params_alloc(ctx, 1);
2208 dim = isl_space_set_dim_id(dim, isl_dim_param, 0, id);
2209 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
2210 aff = isl_aff_add_coefficient_si(aff, isl_dim_param, 0, 1);
2212 val = isl_pw_aff_sub(val, isl_pw_aff_from_aff(aff));
2214 return val;
2217 /* Check that op is of the form iv += cst or iv -= cst
2218 * and return an affine expression corresponding oto cst or -cst accordingly.
2220 __isl_give isl_pw_aff *PetScan::extract_compound_increment(
2221 CompoundAssignOperator *op, clang::ValueDecl *iv)
2223 Expr *lhs;
2224 DeclRefExpr *ref;
2225 bool neg = false;
2226 isl_pw_aff *val;
2227 BinaryOperatorKind opcode;
2229 opcode = op->getOpcode();
2230 if (opcode != BO_AddAssign && opcode != BO_SubAssign) {
2231 unsupported(op);
2232 return NULL;
2234 if (opcode == BO_SubAssign)
2235 neg = true;
2237 lhs = op->getLHS();
2238 if (lhs->getStmtClass() != Stmt::DeclRefExprClass) {
2239 unsupported(op);
2240 return NULL;
2243 ref = cast<DeclRefExpr>(lhs);
2244 if (ref->getDecl() != iv) {
2245 unsupported(op);
2246 return NULL;
2249 val = extract_affine(op->getRHS());
2250 if (neg)
2251 val = isl_pw_aff_neg(val);
2253 return val;
2256 /* Check that the increment of the given for loop increments
2257 * (or decrements) the induction variable "iv" and return
2258 * the increment as an affine expression if successful.
2260 __isl_give isl_pw_aff *PetScan::extract_increment(clang::ForStmt *stmt,
2261 ValueDecl *iv)
2263 Stmt *inc = stmt->getInc();
2265 if (!inc) {
2266 report_missing_increment(stmt);
2267 return NULL;
2270 if (inc->getStmtClass() == Stmt::UnaryOperatorClass)
2271 return extract_unary_increment(cast<UnaryOperator>(inc), iv);
2272 if (inc->getStmtClass() == Stmt::CompoundAssignOperatorClass)
2273 return extract_compound_increment(
2274 cast<CompoundAssignOperator>(inc), iv);
2275 if (inc->getStmtClass() == Stmt::BinaryOperatorClass)
2276 return extract_binary_increment(cast<BinaryOperator>(inc), iv);
2278 unsupported(inc);
2279 return NULL;
2282 /* Embed the given iteration domain in an extra outer loop
2283 * with induction variable "var".
2284 * If this variable appeared as a parameter in the constraints,
2285 * it is replaced by the new outermost dimension.
2287 static __isl_give isl_set *embed(__isl_take isl_set *set,
2288 __isl_take isl_id *var)
2290 int pos;
2292 set = isl_set_insert_dims(set, isl_dim_set, 0, 1);
2293 pos = isl_set_find_dim_by_id(set, isl_dim_param, var);
2294 if (pos >= 0) {
2295 set = isl_set_equate(set, isl_dim_param, pos, isl_dim_set, 0);
2296 set = isl_set_project_out(set, isl_dim_param, pos, 1);
2299 isl_id_free(var);
2300 return set;
2303 /* Return those elements in the space of "cond" that come after
2304 * (based on "sign") an element in "cond".
2306 static __isl_give isl_set *after(__isl_take isl_set *cond, int sign)
2308 isl_map *previous_to_this;
2310 if (sign > 0)
2311 previous_to_this = isl_map_lex_lt(isl_set_get_space(cond));
2312 else
2313 previous_to_this = isl_map_lex_gt(isl_set_get_space(cond));
2315 cond = isl_set_apply(cond, previous_to_this);
2317 return cond;
2320 /* Create the infinite iteration domain
2322 * { [id] : id >= 0 }
2324 * If "scop" has an affine skip of type pet_skip_later,
2325 * then remove those iterations i that have an earlier iteration
2326 * where the skip condition is satisfied, meaning that iteration i
2327 * is not executed.
2328 * Since we are dealing with a loop without loop iterator,
2329 * the skip condition cannot refer to the current loop iterator and
2330 * so effectively, the returned set is of the form
2332 * { [0]; [id] : id >= 1 and not skip }
2334 static __isl_give isl_set *infinite_domain(__isl_take isl_id *id,
2335 struct pet_scop *scop)
2337 isl_ctx *ctx = isl_id_get_ctx(id);
2338 isl_set *domain;
2339 isl_set *skip;
2341 domain = isl_set_nat_universe(isl_space_set_alloc(ctx, 0, 1));
2342 domain = isl_set_set_dim_id(domain, isl_dim_set, 0, id);
2344 if (!pet_scop_has_affine_skip(scop, pet_skip_later))
2345 return domain;
2347 skip = pet_scop_get_affine_skip_domain(scop, pet_skip_later);
2348 skip = embed(skip, isl_id_copy(id));
2349 skip = isl_set_intersect(skip , isl_set_copy(domain));
2350 domain = isl_set_subtract(domain, after(skip, 1));
2352 return domain;
2355 /* Create an identity affine expression on the space containing "domain",
2356 * which is assumed to be one-dimensional.
2358 static __isl_give isl_aff *identity_aff(__isl_keep isl_set *domain)
2360 isl_local_space *ls;
2362 ls = isl_local_space_from_space(isl_set_get_space(domain));
2363 return isl_aff_var_on_domain(ls, isl_dim_set, 0);
2366 /* Create an affine expression that maps elements
2367 * of a single-dimensional array "id_test" to the previous element
2368 * (according to "inc"), provided this element belongs to "domain".
2369 * That is, create the affine expression
2371 * { id[x] -> id[x - inc] : x - inc in domain }
2373 static __isl_give isl_multi_pw_aff *map_to_previous(__isl_take isl_id *id_test,
2374 __isl_take isl_set *domain, __isl_take isl_val *inc)
2376 isl_space *space;
2377 isl_local_space *ls;
2378 isl_aff *aff;
2379 isl_multi_pw_aff *prev;
2381 space = isl_set_get_space(domain);
2382 ls = isl_local_space_from_space(space);
2383 aff = isl_aff_var_on_domain(ls, isl_dim_set, 0);
2384 aff = isl_aff_add_constant_val(aff, isl_val_neg(inc));
2385 prev = isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff));
2386 domain = isl_set_preimage_multi_pw_aff(domain,
2387 isl_multi_pw_aff_copy(prev));
2388 prev = isl_multi_pw_aff_intersect_domain(prev, domain);
2389 prev = isl_multi_pw_aff_set_tuple_id(prev, isl_dim_out, id_test);
2391 return prev;
2394 /* Add an implication to "scop" expressing that if an element of
2395 * virtual array "id_test" has value "satisfied" then all previous elements
2396 * of this array also have that value. The set of previous elements
2397 * is bounded by "domain". If "sign" is negative then the iterator
2398 * is decreasing and we express that all subsequent array elements
2399 * (but still defined previously) have the same value.
2401 static struct pet_scop *add_implication(struct pet_scop *scop,
2402 __isl_take isl_id *id_test, __isl_take isl_set *domain, int sign,
2403 int satisfied)
2405 isl_space *space;
2406 isl_map *map;
2408 domain = isl_set_set_tuple_id(domain, id_test);
2409 space = isl_set_get_space(domain);
2410 if (sign > 0)
2411 map = isl_map_lex_ge(space);
2412 else
2413 map = isl_map_lex_le(space);
2414 map = isl_map_intersect_range(map, domain);
2415 scop = pet_scop_add_implication(scop, map, satisfied);
2417 return scop;
2420 /* Add a filter to "scop" that imposes that it is only executed
2421 * when the variable identified by "id_test" has a zero value
2422 * for all previous iterations of "domain".
2424 * In particular, add a filter that imposes that the array
2425 * has a zero value at the previous iteration of domain and
2426 * add an implication that implies that it then has that
2427 * value for all previous iterations.
2429 static struct pet_scop *scop_add_break(struct pet_scop *scop,
2430 __isl_take isl_id *id_test, __isl_take isl_set *domain,
2431 __isl_take isl_val *inc)
2433 isl_multi_pw_aff *prev;
2434 int sign = isl_val_sgn(inc);
2436 prev = map_to_previous(isl_id_copy(id_test), isl_set_copy(domain), inc);
2437 scop = add_implication(scop, id_test, domain, sign, 0);
2438 scop = pet_scop_filter(scop, prev, 0);
2440 return scop;
2443 /* Construct a pet_scop for an infinite loop around the given body.
2445 * We extract a pet_scop for the body and then embed it in a loop with
2446 * iteration domain
2448 * { [t] : t >= 0 }
2450 * and schedule
2452 * { [t] -> [t] }
2454 * If the body contains any break, then it is taken into
2455 * account in infinite_domain (if the skip condition is affine)
2456 * or in scop_add_break (if the skip condition is not affine).
2458 * If we were only able to extract part of the body, then simply
2459 * return that part.
2461 struct pet_scop *PetScan::extract_infinite_loop(Stmt *body)
2463 isl_id *id, *id_test;
2464 isl_set *domain;
2465 isl_aff *ident;
2466 struct pet_scop *scop;
2467 bool has_var_break;
2469 scop = extract(body);
2470 if (!scop)
2471 return NULL;
2472 if (partial)
2473 return scop;
2475 id = isl_id_alloc(ctx, "t", NULL);
2476 domain = infinite_domain(isl_id_copy(id), scop);
2477 ident = identity_aff(domain);
2479 has_var_break = pet_scop_has_var_skip(scop, pet_skip_later);
2480 if (has_var_break)
2481 id_test = pet_scop_get_skip_id(scop, pet_skip_later);
2483 scop = pet_scop_embed(scop, isl_set_copy(domain),
2484 isl_aff_copy(ident), ident, id);
2485 if (has_var_break)
2486 scop = scop_add_break(scop, id_test, domain, isl_val_one(ctx));
2487 else
2488 isl_set_free(domain);
2490 return scop;
2493 /* Construct a pet_scop for an infinite loop, i.e., a loop of the form
2495 * for (;;)
2496 * body
2499 struct pet_scop *PetScan::extract_infinite_for(ForStmt *stmt)
2501 clear_assignments clear(assigned_value);
2502 clear.TraverseStmt(stmt->getBody());
2504 return extract_infinite_loop(stmt->getBody());
2507 /* Add an array with the given extent (range of "index") to the list
2508 * of arrays in "scop" and return the extended pet_scop.
2509 * The array is marked as attaining values 0 and 1 only and
2510 * as each element being assigned at most once.
2512 static struct pet_scop *scop_add_array(struct pet_scop *scop,
2513 __isl_keep isl_multi_pw_aff *index, clang::ASTContext &ast_ctx)
2515 int int_size = ast_ctx.getTypeInfo(ast_ctx.IntTy).first / 8;
2517 return pet_scop_add_boolean_array(scop, isl_multi_pw_aff_copy(index),
2518 int_size);
2521 /* Construct a pet_scop for a while loop of the form
2523 * while (pa)
2524 * body
2526 * In particular, construct a scop for an infinite loop around body and
2527 * intersect the domain with the affine expression.
2528 * Note that this intersection may result in an empty loop.
2530 struct pet_scop *PetScan::extract_affine_while(__isl_take isl_pw_aff *pa,
2531 Stmt *body)
2533 struct pet_scop *scop;
2534 isl_set *dom;
2535 isl_set *valid;
2537 valid = isl_pw_aff_domain(isl_pw_aff_copy(pa));
2538 dom = isl_pw_aff_non_zero_set(pa);
2539 scop = extract_infinite_loop(body);
2540 scop = pet_scop_restrict(scop, dom);
2541 scop = pet_scop_restrict_context(scop, valid);
2543 return scop;
2546 /* Construct a scop for a while, given the scops for the condition
2547 * and the body, the filter identifier and the iteration domain of
2548 * the while loop.
2550 * In particular, the scop for the condition is filtered to depend
2551 * on "id_test" evaluating to true for all previous iterations
2552 * of the loop, while the scop for the body is filtered to depend
2553 * on "id_test" evaluating to true for all iterations up to the
2554 * current iteration.
2555 * The actual filter only imposes that this virtual array has
2556 * value one on the previous or the current iteration.
2557 * The fact that this condition also applies to the previous
2558 * iterations is enforced by an implication.
2560 * These filtered scops are then combined into a single scop.
2562 * "sign" is positive if the iterator increases and negative
2563 * if it decreases.
2565 static struct pet_scop *scop_add_while(struct pet_scop *scop_cond,
2566 struct pet_scop *scop_body, __isl_take isl_id *id_test,
2567 __isl_take isl_set *domain, __isl_take isl_val *inc)
2569 isl_ctx *ctx = isl_set_get_ctx(domain);
2570 isl_space *space;
2571 isl_multi_pw_aff *test_index;
2572 isl_multi_pw_aff *prev;
2573 int sign = isl_val_sgn(inc);
2574 struct pet_scop *scop;
2576 prev = map_to_previous(isl_id_copy(id_test), isl_set_copy(domain), inc);
2577 scop_cond = pet_scop_filter(scop_cond, prev, 1);
2579 space = isl_space_map_from_set(isl_set_get_space(domain));
2580 test_index = isl_multi_pw_aff_identity(space);
2581 test_index = isl_multi_pw_aff_set_tuple_id(test_index, isl_dim_out,
2582 isl_id_copy(id_test));
2583 scop_body = pet_scop_filter(scop_body, test_index, 1);
2585 scop = pet_scop_add_seq(ctx, scop_cond, scop_body);
2586 scop = add_implication(scop, id_test, domain, sign, 1);
2588 return scop;
2591 /* Check if the while loop is of the form
2593 * while (affine expression)
2594 * body
2596 * If so, call extract_affine_while to construct a scop.
2598 * Otherwise, construct a generic while scop, with iteration domain
2599 * { [t] : t >= 0 }. The scop consists of two parts, one for
2600 * evaluating the condition and one for the body.
2601 * The schedule is adjusted to reflect that the condition is evaluated
2602 * before the body is executed and the body is filtered to depend
2603 * on the result of the condition evaluating to true on all iterations
2604 * up to the current iteration, while the evaluation of the condition itself
2605 * is filtered to depend on the result of the condition evaluating to true
2606 * on all previous iterations.
2607 * The context of the scop representing the body is dropped
2608 * because we don't know how many times the body will be executed,
2609 * if at all.
2611 * If the body contains any break, then it is taken into
2612 * account in infinite_domain (if the skip condition is affine)
2613 * or in scop_add_break (if the skip condition is not affine).
2615 * If we were only able to extract part of the body, then simply
2616 * return that part.
2618 struct pet_scop *PetScan::extract(WhileStmt *stmt)
2620 Expr *cond;
2621 int test_nr, stmt_nr;
2622 isl_id *id, *id_test, *id_break_test;
2623 isl_multi_pw_aff *test_index;
2624 isl_set *domain;
2625 isl_aff *ident;
2626 isl_pw_aff *pa;
2627 struct pet_scop *scop, *scop_body;
2628 bool has_var_break;
2630 cond = stmt->getCond();
2631 if (!cond) {
2632 unsupported(stmt);
2633 return NULL;
2636 clear_assignments clear(assigned_value);
2637 clear.TraverseStmt(stmt->getBody());
2639 pa = try_extract_affine_condition(cond);
2640 if (pa)
2641 return extract_affine_while(pa, stmt->getBody());
2643 if (!allow_nested) {
2644 unsupported(stmt);
2645 return NULL;
2648 test_nr = n_test++;
2649 stmt_nr = n_stmt++;
2650 scop_body = extract(stmt->getBody());
2651 if (partial)
2652 return scop_body;
2654 test_index = pet_create_test_index(ctx, test_nr);
2655 scop = extract_non_affine_condition(cond, stmt_nr,
2656 isl_multi_pw_aff_copy(test_index));
2657 scop = scop_add_array(scop, test_index, ast_context);
2658 id_test = isl_multi_pw_aff_get_tuple_id(test_index, isl_dim_out);
2659 isl_multi_pw_aff_free(test_index);
2661 id = isl_id_alloc(ctx, "t", NULL);
2662 domain = infinite_domain(isl_id_copy(id), scop_body);
2663 ident = identity_aff(domain);
2665 has_var_break = pet_scop_has_var_skip(scop_body, pet_skip_later);
2666 if (has_var_break)
2667 id_break_test = pet_scop_get_skip_id(scop_body, pet_skip_later);
2669 scop = pet_scop_prefix(scop, 0);
2670 scop = pet_scop_embed(scop, isl_set_copy(domain), isl_aff_copy(ident),
2671 isl_aff_copy(ident), isl_id_copy(id));
2672 scop_body = pet_scop_reset_context(scop_body);
2673 scop_body = pet_scop_prefix(scop_body, 1);
2674 scop_body = pet_scop_embed(scop_body, isl_set_copy(domain),
2675 isl_aff_copy(ident), ident, id);
2677 if (has_var_break) {
2678 scop = scop_add_break(scop, isl_id_copy(id_break_test),
2679 isl_set_copy(domain), isl_val_one(ctx));
2680 scop_body = scop_add_break(scop_body, id_break_test,
2681 isl_set_copy(domain), isl_val_one(ctx));
2683 scop = scop_add_while(scop, scop_body, id_test, domain,
2684 isl_val_one(ctx));
2686 return scop;
2689 /* Check whether "cond" expresses a simple loop bound
2690 * on the only set dimension.
2691 * In particular, if "up" is set then "cond" should contain only
2692 * upper bounds on the set dimension.
2693 * Otherwise, it should contain only lower bounds.
2695 static bool is_simple_bound(__isl_keep isl_set *cond, __isl_keep isl_val *inc)
2697 if (isl_val_is_pos(inc))
2698 return !isl_set_dim_has_any_lower_bound(cond, isl_dim_set, 0);
2699 else
2700 return !isl_set_dim_has_any_upper_bound(cond, isl_dim_set, 0);
2703 /* Extend a condition on a given iteration of a loop to one that
2704 * imposes the same condition on all previous iterations.
2705 * "domain" expresses the lower [upper] bound on the iterations
2706 * when inc is positive [negative].
2708 * In particular, we construct the condition (when inc is positive)
2710 * forall i' : (domain(i') and i' <= i) => cond(i')
2712 * which is equivalent to
2714 * not exists i' : domain(i') and i' <= i and not cond(i')
2716 * We construct this set by negating cond, applying a map
2718 * { [i'] -> [i] : domain(i') and i' <= i }
2720 * and then negating the result again.
2722 static __isl_give isl_set *valid_for_each_iteration(__isl_take isl_set *cond,
2723 __isl_take isl_set *domain, __isl_take isl_val *inc)
2725 isl_map *previous_to_this;
2727 if (isl_val_is_pos(inc))
2728 previous_to_this = isl_map_lex_le(isl_set_get_space(domain));
2729 else
2730 previous_to_this = isl_map_lex_ge(isl_set_get_space(domain));
2732 previous_to_this = isl_map_intersect_domain(previous_to_this, domain);
2734 cond = isl_set_complement(cond);
2735 cond = isl_set_apply(cond, previous_to_this);
2736 cond = isl_set_complement(cond);
2738 isl_val_free(inc);
2740 return cond;
2743 /* Construct a domain of the form
2745 * [id] -> { : exists a: id = init + a * inc and a >= 0 }
2747 static __isl_give isl_set *strided_domain(__isl_take isl_id *id,
2748 __isl_take isl_pw_aff *init, __isl_take isl_val *inc)
2750 isl_aff *aff;
2751 isl_space *dim;
2752 isl_set *set;
2754 init = isl_pw_aff_insert_dims(init, isl_dim_in, 0, 1);
2755 dim = isl_pw_aff_get_domain_space(init);
2756 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
2757 aff = isl_aff_add_coefficient_val(aff, isl_dim_in, 0, inc);
2758 init = isl_pw_aff_add(init, isl_pw_aff_from_aff(aff));
2760 dim = isl_space_set_alloc(isl_pw_aff_get_ctx(init), 1, 1);
2761 dim = isl_space_set_dim_id(dim, isl_dim_param, 0, id);
2762 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
2763 aff = isl_aff_add_coefficient_si(aff, isl_dim_param, 0, 1);
2765 set = isl_pw_aff_eq_set(isl_pw_aff_from_aff(aff), init);
2767 set = isl_set_lower_bound_si(set, isl_dim_set, 0, 0);
2769 return isl_set_params(set);
2772 /* Assuming "cond" represents a bound on a loop where the loop
2773 * iterator "iv" is incremented (or decremented) by one, check if wrapping
2774 * is possible.
2776 * Under the given assumptions, wrapping is only possible if "cond" allows
2777 * for the last value before wrapping, i.e., 2^width - 1 in case of an
2778 * increasing iterator and 0 in case of a decreasing iterator.
2780 static bool can_wrap(__isl_keep isl_set *cond, ValueDecl *iv,
2781 __isl_keep isl_val *inc)
2783 bool cw;
2784 isl_ctx *ctx;
2785 isl_val *limit;
2786 isl_set *test;
2788 test = isl_set_copy(cond);
2790 ctx = isl_set_get_ctx(test);
2791 if (isl_val_is_neg(inc))
2792 limit = isl_val_zero(ctx);
2793 else {
2794 limit = isl_val_int_from_ui(ctx, get_type_size(iv));
2795 limit = isl_val_2exp(limit);
2796 limit = isl_val_sub_ui(limit, 1);
2799 test = isl_set_fix_val(cond, isl_dim_set, 0, limit);
2800 cw = !isl_set_is_empty(test);
2801 isl_set_free(test);
2803 return cw;
2806 /* Given a one-dimensional space, construct the following affine expression
2807 * on this space
2809 * { [v] -> [v mod 2^width] }
2811 * where width is the number of bits used to represent the values
2812 * of the unsigned variable "iv".
2814 static __isl_give isl_aff *compute_wrapping(__isl_take isl_space *dim,
2815 ValueDecl *iv)
2817 isl_ctx *ctx;
2818 isl_val *mod;
2819 isl_aff *aff;
2821 ctx = isl_space_get_ctx(dim);
2822 mod = isl_val_int_from_ui(ctx, get_type_size(iv));
2823 mod = isl_val_2exp(mod);
2825 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
2826 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
2827 aff = isl_aff_mod_val(aff, mod);
2829 return aff;
2832 /* Project out the parameter "id" from "set".
2834 static __isl_give isl_set *set_project_out_by_id(__isl_take isl_set *set,
2835 __isl_keep isl_id *id)
2837 int pos;
2839 pos = isl_set_find_dim_by_id(set, isl_dim_param, id);
2840 if (pos >= 0)
2841 set = isl_set_project_out(set, isl_dim_param, pos, 1);
2843 return set;
2846 /* Compute the set of parameters for which "set1" is a subset of "set2".
2848 * set1 is a subset of set2 if
2850 * forall i in set1 : i in set2
2852 * or
2854 * not exists i in set1 and i not in set2
2856 * i.e.,
2858 * not exists i in set1 \ set2
2860 static __isl_give isl_set *enforce_subset(__isl_take isl_set *set1,
2861 __isl_take isl_set *set2)
2863 return isl_set_complement(isl_set_params(isl_set_subtract(set1, set2)));
2866 /* Compute the set of parameter values for which "cond" holds
2867 * on the next iteration for each element of "dom".
2869 * We first construct mapping { [i] -> [i + inc] }, apply that to "dom"
2870 * and then compute the set of parameters for which the result is a subset
2871 * of "cond".
2873 static __isl_give isl_set *valid_on_next(__isl_take isl_set *cond,
2874 __isl_take isl_set *dom, __isl_take isl_val *inc)
2876 isl_space *space;
2877 isl_aff *aff;
2878 isl_map *next;
2880 space = isl_set_get_space(dom);
2881 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
2882 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
2883 aff = isl_aff_add_constant_val(aff, inc);
2884 next = isl_map_from_basic_map(isl_basic_map_from_aff(aff));
2886 dom = isl_set_apply(dom, next);
2888 return enforce_subset(dom, cond);
2891 /* Construct a pet_scop for a for statement.
2892 * The for loop is required to be of the form
2894 * for (i = init; condition; ++i)
2896 * or
2898 * for (i = init; condition; --i)
2900 * The initialization of the for loop should either be an assignment
2901 * to an integer variable, or a declaration of such a variable with
2902 * initialization.
2904 * The condition is allowed to contain nested accesses, provided
2905 * they are not being written to inside the body of the loop.
2906 * Otherwise, or if the condition is otherwise non-affine, the for loop is
2907 * essentially treated as a while loop, with iteration domain
2908 * { [i] : i >= init }.
2910 * We extract a pet_scop for the body and then embed it in a loop with
2911 * iteration domain and schedule
2913 * { [i] : i >= init and condition' }
2914 * { [i] -> [i] }
2916 * or
2918 * { [i] : i <= init and condition' }
2919 * { [i] -> [-i] }
2921 * Where condition' is equal to condition if the latter is
2922 * a simple upper [lower] bound and a condition that is extended
2923 * to apply to all previous iterations otherwise.
2925 * If the condition is non-affine, then we drop the condition from the
2926 * iteration domain and instead create a separate statement
2927 * for evaluating the condition. The body is then filtered to depend
2928 * on the result of the condition evaluating to true on all iterations
2929 * up to the current iteration, while the evaluation the condition itself
2930 * is filtered to depend on the result of the condition evaluating to true
2931 * on all previous iterations.
2932 * The context of the scop representing the body is dropped
2933 * because we don't know how many times the body will be executed,
2934 * if at all.
2936 * If the stride of the loop is not 1, then "i >= init" is replaced by
2938 * (exists a: i = init + stride * a and a >= 0)
2940 * If the loop iterator i is unsigned, then wrapping may occur.
2941 * We therefore use a virtual iterator instead that does not wrap.
2942 * However, the condition in the code applies
2943 * to the wrapped value, so we need to change condition(i)
2944 * into condition([i % 2^width]). Similarly, we replace all accesses
2945 * to the original iterator by the wrapping of the virtual iterator.
2946 * Note that there may be no need to perform this final wrapping
2947 * if the loop condition (after wrapping) satisfies certain conditions.
2948 * However, the is_simple_bound condition is not enough since it doesn't
2949 * check if there even is an upper bound.
2951 * Wrapping on unsigned iterators can be avoided entirely if
2952 * loop condition is simple, the loop iterator is incremented
2953 * [decremented] by one and the last value before wrapping cannot
2954 * possibly satisfy the loop condition.
2956 * Before extracting a pet_scop from the body we remove all
2957 * assignments in assigned_value to variables that are assigned
2958 * somewhere in the body of the loop.
2960 * Valid parameters for a for loop are those for which the initial
2961 * value itself, the increment on each domain iteration and
2962 * the condition on both the initial value and
2963 * the result of incrementing the iterator for each iteration of the domain
2964 * can be evaluated.
2965 * If the loop condition is non-affine, then we only consider validity
2966 * of the initial value.
2968 * If the body contains any break, then we keep track of it in "skip"
2969 * (if the skip condition is affine) or it is handled in scop_add_break
2970 * (if the skip condition is not affine).
2971 * Note that the affine break condition needs to be considered with
2972 * respect to previous iterations in the virtual domain (if any).
2974 * If we were only able to extract part of the body, then simply
2975 * return that part.
2977 struct pet_scop *PetScan::extract_for(ForStmt *stmt)
2979 BinaryOperator *ass;
2980 Decl *decl;
2981 Stmt *init;
2982 Expr *lhs, *rhs;
2983 ValueDecl *iv;
2984 isl_local_space *ls;
2985 isl_set *domain;
2986 isl_aff *sched;
2987 isl_set *cond = NULL;
2988 isl_set *skip = NULL;
2989 isl_id *id, *id_test = NULL, *id_break_test;
2990 struct pet_scop *scop, *scop_cond = NULL;
2991 assigned_value_cache cache(assigned_value);
2992 isl_val *inc;
2993 bool was_assigned;
2994 bool is_one;
2995 bool is_unsigned;
2996 bool is_simple;
2997 bool is_virtual;
2998 bool has_affine_break;
2999 bool has_var_break;
3000 isl_aff *wrap = NULL;
3001 isl_pw_aff *pa, *pa_inc, *init_val;
3002 isl_set *valid_init;
3003 isl_set *valid_cond;
3004 isl_set *valid_cond_init;
3005 isl_set *valid_cond_next;
3006 isl_set *valid_inc;
3007 int stmt_id;
3009 if (!stmt->getInit() && !stmt->getCond() && !stmt->getInc())
3010 return extract_infinite_for(stmt);
3012 init = stmt->getInit();
3013 if (!init) {
3014 unsupported(stmt);
3015 return NULL;
3017 if ((ass = initialization_assignment(init)) != NULL) {
3018 iv = extract_induction_variable(ass);
3019 if (!iv)
3020 return NULL;
3021 lhs = ass->getLHS();
3022 rhs = ass->getRHS();
3023 } else if ((decl = initialization_declaration(init)) != NULL) {
3024 VarDecl *var = extract_induction_variable(init, decl);
3025 if (!var)
3026 return NULL;
3027 iv = var;
3028 rhs = var->getInit();
3029 lhs = create_DeclRefExpr(var);
3030 } else {
3031 unsupported(stmt->getInit());
3032 return NULL;
3035 assigned_value.erase(iv);
3036 clear_assignments clear(assigned_value);
3037 clear.TraverseStmt(stmt->getBody());
3039 was_assigned = assigned_value.find(iv) != assigned_value.end();
3040 clear_assignment(assigned_value, iv);
3041 init_val = extract_affine(rhs);
3042 if (!was_assigned)
3043 assigned_value.erase(iv);
3044 if (!init_val)
3045 return NULL;
3047 pa_inc = extract_increment(stmt, iv);
3048 if (!pa_inc) {
3049 isl_pw_aff_free(init_val);
3050 return NULL;
3053 inc = NULL;
3054 if (isl_pw_aff_n_piece(pa_inc) != 1 ||
3055 isl_pw_aff_foreach_piece(pa_inc, &extract_cst, &inc) < 0) {
3056 isl_pw_aff_free(init_val);
3057 isl_pw_aff_free(pa_inc);
3058 unsupported(stmt->getInc());
3059 isl_val_free(inc);
3060 return NULL;
3063 pa = try_extract_nested_condition(stmt->getCond());
3064 if (allow_nested && (!pa || pet_nested_any_in_pw_aff(pa)))
3065 stmt_id = n_stmt++;
3067 scop = extract(stmt->getBody());
3068 if (partial) {
3069 isl_pw_aff_free(init_val);
3070 isl_pw_aff_free(pa_inc);
3071 isl_pw_aff_free(pa);
3072 isl_val_free(inc);
3073 return scop;
3076 valid_inc = isl_pw_aff_domain(pa_inc);
3078 is_unsigned = iv->getType()->isUnsignedIntegerType();
3080 id = isl_id_alloc(ctx, iv->getName().str().c_str(), iv);
3082 has_affine_break = scop &&
3083 pet_scop_has_affine_skip(scop, pet_skip_later);
3084 if (has_affine_break)
3085 skip = pet_scop_get_affine_skip_domain(scop, pet_skip_later);
3086 has_var_break = scop && pet_scop_has_var_skip(scop, pet_skip_later);
3087 if (has_var_break)
3088 id_break_test = pet_scop_get_skip_id(scop, pet_skip_later);
3090 if (pa && !is_nested_allowed(pa, scop)) {
3091 isl_pw_aff_free(pa);
3092 pa = NULL;
3095 if (!allow_nested && !pa)
3096 pa = try_extract_affine_condition(stmt->getCond());
3097 valid_cond = isl_pw_aff_domain(isl_pw_aff_copy(pa));
3098 cond = isl_pw_aff_non_zero_set(pa);
3099 if (allow_nested && !cond) {
3100 isl_multi_pw_aff *test_index;
3101 int save_n_stmt = n_stmt;
3102 test_index = pet_create_test_index(ctx, n_test++);
3103 n_stmt = stmt_id;
3104 scop_cond = extract_non_affine_condition(stmt->getCond(),
3105 n_stmt++, isl_multi_pw_aff_copy(test_index));
3106 n_stmt = save_n_stmt;
3107 scop_cond = scop_add_array(scop_cond, test_index, ast_context);
3108 id_test = isl_multi_pw_aff_get_tuple_id(test_index,
3109 isl_dim_out);
3110 isl_multi_pw_aff_free(test_index);
3111 scop_cond = pet_scop_prefix(scop_cond, 0);
3112 scop = pet_scop_reset_context(scop);
3113 scop = pet_scop_prefix(scop, 1);
3114 cond = isl_set_universe(isl_space_set_alloc(ctx, 0, 0));
3117 cond = embed(cond, isl_id_copy(id));
3118 skip = embed(skip, isl_id_copy(id));
3119 valid_cond = isl_set_coalesce(valid_cond);
3120 valid_cond = embed(valid_cond, isl_id_copy(id));
3121 valid_inc = embed(valid_inc, isl_id_copy(id));
3122 is_one = isl_val_is_one(inc) || isl_val_is_negone(inc);
3123 is_virtual = is_unsigned && (!is_one || can_wrap(cond, iv, inc));
3125 valid_cond_init = enforce_subset(
3126 isl_set_from_pw_aff(isl_pw_aff_copy(init_val)),
3127 isl_set_copy(valid_cond));
3128 if (is_one && !is_virtual) {
3129 isl_pw_aff_free(init_val);
3130 pa = extract_comparison(isl_val_is_pos(inc) ? BO_GE : BO_LE,
3131 lhs, rhs, init);
3132 valid_init = isl_pw_aff_domain(isl_pw_aff_copy(pa));
3133 valid_init = set_project_out_by_id(valid_init, id);
3134 domain = isl_pw_aff_non_zero_set(pa);
3135 } else {
3136 valid_init = isl_pw_aff_domain(isl_pw_aff_copy(init_val));
3137 domain = strided_domain(isl_id_copy(id), init_val,
3138 isl_val_copy(inc));
3141 domain = embed(domain, isl_id_copy(id));
3142 if (is_virtual) {
3143 isl_map *rev_wrap;
3144 wrap = compute_wrapping(isl_set_get_space(cond), iv);
3145 rev_wrap = isl_map_from_aff(isl_aff_copy(wrap));
3146 rev_wrap = isl_map_reverse(rev_wrap);
3147 cond = isl_set_apply(cond, isl_map_copy(rev_wrap));
3148 skip = isl_set_apply(skip, isl_map_copy(rev_wrap));
3149 valid_cond = isl_set_apply(valid_cond, isl_map_copy(rev_wrap));
3150 valid_inc = isl_set_apply(valid_inc, rev_wrap);
3152 is_simple = is_simple_bound(cond, inc);
3153 if (!is_simple) {
3154 cond = isl_set_gist(cond, isl_set_copy(domain));
3155 is_simple = is_simple_bound(cond, inc);
3157 if (!is_simple)
3158 cond = valid_for_each_iteration(cond,
3159 isl_set_copy(domain), isl_val_copy(inc));
3160 domain = isl_set_intersect(domain, cond);
3161 if (has_affine_break) {
3162 skip = isl_set_intersect(skip , isl_set_copy(domain));
3163 skip = after(skip, isl_val_sgn(inc));
3164 domain = isl_set_subtract(domain, skip);
3166 domain = isl_set_set_dim_id(domain, isl_dim_set, 0, isl_id_copy(id));
3167 ls = isl_local_space_from_space(isl_set_get_space(domain));
3168 sched = isl_aff_var_on_domain(ls, isl_dim_set, 0);
3169 if (isl_val_is_neg(inc))
3170 sched = isl_aff_neg(sched);
3172 valid_cond_next = valid_on_next(valid_cond, isl_set_copy(domain),
3173 isl_val_copy(inc));
3174 valid_inc = enforce_subset(isl_set_copy(domain), valid_inc);
3176 if (!is_virtual)
3177 wrap = identity_aff(domain);
3179 scop_cond = pet_scop_embed(scop_cond, isl_set_copy(domain),
3180 isl_aff_copy(sched), isl_aff_copy(wrap), isl_id_copy(id));
3181 scop = pet_scop_embed(scop, isl_set_copy(domain), sched, wrap, id);
3182 scop = resolve_nested(scop);
3183 if (has_var_break)
3184 scop = scop_add_break(scop, id_break_test, isl_set_copy(domain),
3185 isl_val_copy(inc));
3186 if (id_test) {
3187 scop = scop_add_while(scop_cond, scop, id_test, domain,
3188 isl_val_copy(inc));
3189 isl_set_free(valid_inc);
3190 } else {
3191 scop = pet_scop_restrict_context(scop, valid_inc);
3192 scop = pet_scop_restrict_context(scop, valid_cond_next);
3193 scop = pet_scop_restrict_context(scop, valid_cond_init);
3194 isl_set_free(domain);
3196 clear_assignment(assigned_value, iv);
3198 isl_val_free(inc);
3200 scop = pet_scop_restrict_context(scop, valid_init);
3202 return scop;
3205 /* Try and construct a pet_scop corresponding to a compound statement.
3207 * "skip_declarations" is set if we should skip initial declarations
3208 * in the children of the compound statements. This then implies
3209 * that this sequence of children should not be treated as a block
3210 * since the initial statements may be skipped.
3212 struct pet_scop *PetScan::extract(CompoundStmt *stmt, bool skip_declarations)
3214 return extract(stmt->children(), !skip_declarations, skip_declarations);
3217 /* For each nested access parameter in "space",
3218 * construct a corresponding pet_expr, place it in args and
3219 * record its position in "param2pos".
3220 * "n_arg" is the number of elements that are already in args.
3221 * The position recorded in "param2pos" takes this number into account.
3222 * If the pet_expr corresponding to a parameter is identical to
3223 * the pet_expr corresponding to an earlier parameter, then these two
3224 * parameters are made to refer to the same element in args.
3226 * Return the final number of elements in args or -1 if an error has occurred.
3228 int PetScan::extract_nested(__isl_keep isl_space *space,
3229 int n_arg, pet_expr **args, std::map<int,int> &param2pos)
3231 int nparam;
3233 nparam = isl_space_dim(space, isl_dim_param);
3234 for (int i = 0; i < nparam; ++i) {
3235 int j;
3236 isl_id *id = isl_space_get_dim_id(space, isl_dim_param, i);
3237 Expr *nested;
3239 if (!pet_nested_in_id(id)) {
3240 isl_id_free(id);
3241 continue;
3244 nested = (Expr *) isl_id_get_user(id);
3245 args[n_arg] = extract_expr(nested);
3246 isl_id_free(id);
3247 if (!args[n_arg])
3248 return -1;
3250 for (j = 0; j < n_arg; ++j)
3251 if (pet_expr_is_equal(args[j], args[n_arg]))
3252 break;
3254 if (j < n_arg) {
3255 pet_expr_free(args[n_arg]);
3256 args[n_arg] = NULL;
3257 param2pos[i] = j;
3258 } else
3259 param2pos[i] = n_arg++;
3262 return n_arg;
3265 /* For each nested access parameter in the access relations in "expr",
3266 * construct a corresponding pet_expr, place it in the arguments of "expr"
3267 * and record its position in "param2pos".
3268 * n is the number of nested access parameters.
3270 __isl_give pet_expr *PetScan::extract_nested(__isl_take pet_expr *expr, int n,
3271 std::map<int,int> &param2pos)
3273 isl_space *space;
3274 int i;
3275 pet_expr **args;
3277 args = isl_calloc_array(ctx, pet_expr *, n);
3278 if (!args)
3279 return pet_expr_free(expr);
3281 space = pet_expr_access_get_parameter_space(expr);
3282 n = extract_nested(space, 0, args, param2pos);
3283 isl_space_free(space);
3285 if (n < 0)
3286 expr = pet_expr_free(expr);
3287 else
3288 expr = pet_expr_set_n_arg(expr, n);
3290 for (i = 0; i < n; ++i)
3291 expr = pet_expr_set_arg(expr, i, args[i]);
3292 free(args);
3294 return expr;
3297 /* Look for parameters in any access relation in "expr" that
3298 * refer to nested accesses. In particular, these are
3299 * parameters with no name.
3301 * If there are any such parameters, then the domain of the index
3302 * expression and the access relation, which is still [] at this point,
3303 * is replaced by [[] -> [t_1,...,t_n]], with n the number of these parameters
3304 * (after identifying identical nested accesses).
3306 * This transformation is performed in several steps.
3307 * We first extract the arguments in extract_nested.
3308 * param2pos maps the original parameter position to the position
3309 * of the argument.
3310 * Then we move these parameters to input dimensions.
3311 * t2pos maps the positions of these temporary input dimensions
3312 * to the positions of the corresponding arguments.
3313 * Finally, we express these temporary dimensions in terms of the domain
3314 * [[] -> [t_1,...,t_n]] and precompose index expression and access
3315 * relations with this function.
3317 __isl_give pet_expr *PetScan::resolve_nested(__isl_take pet_expr *expr)
3319 int n;
3320 int nparam;
3321 isl_space *space;
3322 isl_local_space *ls;
3323 isl_aff *aff;
3324 isl_multi_aff *ma;
3325 std::map<int,int> param2pos;
3326 std::map<int,int> t2pos;
3328 if (!expr)
3329 return expr;
3331 n = pet_expr_get_n_arg(expr);
3332 for (int i = 0; i < n; ++i) {
3333 pet_expr *arg;
3334 arg = pet_expr_get_arg(expr, i);
3335 arg = resolve_nested(arg);
3336 expr = pet_expr_set_arg(expr, i, arg);
3339 if (pet_expr_get_type(expr) != pet_expr_access)
3340 return expr;
3342 space = pet_expr_access_get_parameter_space(expr);
3343 n = pet_nested_n_in_space(space);
3344 isl_space_free(space);
3345 if (n == 0)
3346 return expr;
3348 expr = extract_nested(expr, n, param2pos);
3349 if (!expr)
3350 return NULL;
3352 expr = pet_expr_access_align_params(expr);
3353 if (!expr)
3354 return NULL;
3356 n = 0;
3357 space = pet_expr_access_get_parameter_space(expr);
3358 nparam = isl_space_dim(space, isl_dim_param);
3359 for (int i = nparam - 1; i >= 0; --i) {
3360 isl_id *id = isl_space_get_dim_id(space, isl_dim_param, i);
3361 if (!pet_nested_in_id(id)) {
3362 isl_id_free(id);
3363 continue;
3366 expr = pet_expr_access_move_dims(expr,
3367 isl_dim_in, n, isl_dim_param, i, 1);
3368 t2pos[n] = param2pos[i];
3369 n++;
3371 isl_id_free(id);
3373 isl_space_free(space);
3375 space = pet_expr_access_get_parameter_space(expr);
3376 space = isl_space_set_from_params(space);
3377 space = isl_space_add_dims(space, isl_dim_set,
3378 pet_expr_get_n_arg(expr));
3379 space = isl_space_wrap(isl_space_from_range(space));
3380 ls = isl_local_space_from_space(isl_space_copy(space));
3381 space = isl_space_from_domain(space);
3382 space = isl_space_add_dims(space, isl_dim_out, n);
3383 ma = isl_multi_aff_zero(space);
3385 for (int i = 0; i < n; ++i) {
3386 aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
3387 isl_dim_set, t2pos[i]);
3388 ma = isl_multi_aff_set_aff(ma, i, aff);
3390 isl_local_space_free(ls);
3392 expr = pet_expr_access_pullback_multi_aff(expr, ma);
3394 return expr;
3397 /* Return the file offset of the expansion location of "Loc".
3399 static unsigned getExpansionOffset(SourceManager &SM, SourceLocation Loc)
3401 return SM.getFileOffset(SM.getExpansionLoc(Loc));
3404 #ifdef HAVE_FINDLOCATIONAFTERTOKEN
3406 /* Return a SourceLocation for the location after the first semicolon
3407 * after "loc". If Lexer::findLocationAfterToken is available, we simply
3408 * call it and also skip trailing spaces and newline.
3410 static SourceLocation location_after_semi(SourceLocation loc, SourceManager &SM,
3411 const LangOptions &LO)
3413 return Lexer::findLocationAfterToken(loc, tok::semi, SM, LO, true);
3416 #else
3418 /* Return a SourceLocation for the location after the first semicolon
3419 * after "loc". If Lexer::findLocationAfterToken is not available,
3420 * we look in the underlying character data for the first semicolon.
3422 static SourceLocation location_after_semi(SourceLocation loc, SourceManager &SM,
3423 const LangOptions &LO)
3425 const char *semi;
3426 const char *s = SM.getCharacterData(loc);
3428 semi = strchr(s, ';');
3429 if (!semi)
3430 return SourceLocation();
3431 return loc.getFileLocWithOffset(semi + 1 - s);
3434 #endif
3436 /* If the token at "loc" is the first token on the line, then return
3437 * a location referring to the start of the line.
3438 * Otherwise, return "loc".
3440 * This function is used to extend a scop to the start of the line
3441 * if the first token of the scop is also the first token on the line.
3443 * We look for the first token on the line. If its location is equal to "loc",
3444 * then the latter is the location of the first token on the line.
3446 static SourceLocation move_to_start_of_line_if_first_token(SourceLocation loc,
3447 SourceManager &SM, const LangOptions &LO)
3449 std::pair<FileID, unsigned> file_offset_pair;
3450 llvm::StringRef file;
3451 const char *pos;
3452 Token tok;
3453 SourceLocation token_loc, line_loc;
3454 int col;
3456 loc = SM.getExpansionLoc(loc);
3457 col = SM.getExpansionColumnNumber(loc);
3458 line_loc = loc.getLocWithOffset(1 - col);
3459 file_offset_pair = SM.getDecomposedLoc(line_loc);
3460 file = SM.getBufferData(file_offset_pair.first, NULL);
3461 pos = file.data() + file_offset_pair.second;
3463 Lexer lexer(SM.getLocForStartOfFile(file_offset_pair.first), LO,
3464 file.begin(), pos, file.end());
3465 lexer.LexFromRawLexer(tok);
3466 token_loc = tok.getLocation();
3468 if (token_loc == loc)
3469 return line_loc;
3470 else
3471 return loc;
3474 /* Update start and end of "scop" to include the region covered by "range".
3475 * If "skip_semi" is set, then we assume "range" is followed by
3476 * a semicolon and also include this semicolon.
3478 struct pet_scop *PetScan::update_scop_start_end(struct pet_scop *scop,
3479 SourceRange range, bool skip_semi)
3481 SourceLocation loc = range.getBegin();
3482 SourceManager &SM = PP.getSourceManager();
3483 const LangOptions &LO = PP.getLangOpts();
3484 unsigned start, end;
3486 loc = move_to_start_of_line_if_first_token(loc, SM, LO);
3487 start = getExpansionOffset(SM, loc);
3488 loc = range.getEnd();
3489 if (skip_semi)
3490 loc = location_after_semi(loc, SM, LO);
3491 else
3492 loc = PP.getLocForEndOfToken(loc);
3493 end = getExpansionOffset(SM, loc);
3495 scop = pet_scop_update_start_end(scop, start, end);
3496 return scop;
3499 /* Convert a top-level pet_expr to a pet_scop with one statement.
3500 * This mainly involves resolving nested expression parameters
3501 * and setting the name of the iteration space.
3502 * The name is given by "label" if it is non-NULL. Otherwise,
3503 * it is of the form S_<n_stmt>.
3504 * start and end of the pet_scop are derived from those of "stmt".
3505 * If "stmt" is an expression statement, then its range does not
3506 * include the semicolon, while it should be included in the pet_scop.
3508 struct pet_scop *PetScan::extract(Stmt *stmt, __isl_take pet_expr *expr,
3509 __isl_take isl_id *label)
3511 struct pet_stmt *ps;
3512 struct pet_scop *scop;
3513 SourceLocation loc = stmt->getLocStart();
3514 int line = PP.getSourceManager().getExpansionLineNumber(loc);
3515 bool skip_semi;
3517 expr = resolve_nested(expr);
3518 ps = pet_stmt_from_pet_expr(line, label, n_stmt++, expr);
3519 scop = pet_scop_from_pet_stmt(ctx, ps);
3521 skip_semi = isa<Expr>(stmt);
3522 scop = update_scop_start_end(scop, stmt->getSourceRange(), skip_semi);
3523 return scop;
3526 /* Check if we can extract an affine expression from "expr".
3527 * Return the expressions as an isl_pw_aff if we can and NULL otherwise.
3528 * We turn on autodetection so that we won't generate any warnings
3529 * and turn off nesting, so that we won't accept any non-affine constructs.
3531 __isl_give isl_pw_aff *PetScan::try_extract_affine(Expr *expr)
3533 isl_pw_aff *pwaff;
3534 int save_autodetect = options->autodetect;
3535 bool save_nesting = nesting_enabled;
3537 options->autodetect = 1;
3538 nesting_enabled = false;
3540 pwaff = extract_affine(expr);
3542 options->autodetect = save_autodetect;
3543 nesting_enabled = save_nesting;
3545 return pwaff;
3548 /* Check if we can extract an affine constraint from "expr".
3549 * Return the constraint as an isl_set if we can and NULL otherwise.
3550 * We turn on autodetection so that we won't generate any warnings
3551 * and turn off nesting, so that we won't accept any non-affine constructs.
3553 __isl_give isl_pw_aff *PetScan::try_extract_affine_condition(Expr *expr)
3555 isl_pw_aff *cond;
3556 int save_autodetect = options->autodetect;
3557 bool save_nesting = nesting_enabled;
3559 options->autodetect = 1;
3560 nesting_enabled = false;
3562 cond = extract_condition(expr);
3564 options->autodetect = save_autodetect;
3565 nesting_enabled = save_nesting;
3567 return cond;
3570 /* Check whether "expr" is an affine constraint.
3572 bool PetScan::is_affine_condition(Expr *expr)
3574 isl_pw_aff *cond;
3576 cond = try_extract_affine_condition(expr);
3577 isl_pw_aff_free(cond);
3579 return cond != NULL;
3582 /* Check if we can extract a condition from "expr".
3583 * Return the condition as an isl_pw_aff if we can and NULL otherwise.
3584 * If allow_nested is set, then the condition may involve parameters
3585 * corresponding to nested accesses.
3586 * We turn on autodetection so that we won't generate any warnings.
3588 __isl_give isl_pw_aff *PetScan::try_extract_nested_condition(Expr *expr)
3590 isl_pw_aff *cond;
3591 int save_autodetect = options->autodetect;
3592 bool save_nesting = nesting_enabled;
3594 options->autodetect = 1;
3595 nesting_enabled = allow_nested;
3596 cond = extract_condition(expr);
3598 options->autodetect = save_autodetect;
3599 nesting_enabled = save_nesting;
3601 return cond;
3604 /* If the top-level expression of "stmt" is an assignment, then
3605 * return that assignment as a BinaryOperator.
3606 * Otherwise return NULL.
3608 static BinaryOperator *top_assignment_or_null(Stmt *stmt)
3610 BinaryOperator *ass;
3612 if (!stmt)
3613 return NULL;
3614 if (stmt->getStmtClass() != Stmt::BinaryOperatorClass)
3615 return NULL;
3617 ass = cast<BinaryOperator>(stmt);
3618 if(ass->getOpcode() != BO_Assign)
3619 return NULL;
3621 return ass;
3624 /* Check if the given if statement is a conditional assignement
3625 * with a non-affine condition. If so, construct a pet_scop
3626 * corresponding to this conditional assignment. Otherwise return NULL.
3628 * In particular we check if "stmt" is of the form
3630 * if (condition)
3631 * a = f(...);
3632 * else
3633 * a = g(...);
3635 * where a is some array or scalar access.
3636 * The constructed pet_scop then corresponds to the expression
3638 * a = condition ? f(...) : g(...)
3640 * All access relations in f(...) are intersected with condition
3641 * while all access relation in g(...) are intersected with the complement.
3643 struct pet_scop *PetScan::extract_conditional_assignment(IfStmt *stmt)
3645 BinaryOperator *ass_then, *ass_else;
3646 isl_multi_pw_aff *write_then, *write_else;
3647 isl_set *cond, *comp;
3648 isl_multi_pw_aff *index;
3649 isl_pw_aff *pa;
3650 int equal;
3651 int type_size;
3652 pet_expr *pe_cond, *pe_then, *pe_else, *pe, *pe_write;
3653 bool save_nesting = nesting_enabled;
3655 if (!options->detect_conditional_assignment)
3656 return NULL;
3658 ass_then = top_assignment_or_null(stmt->getThen());
3659 ass_else = top_assignment_or_null(stmt->getElse());
3661 if (!ass_then || !ass_else)
3662 return NULL;
3664 if (is_affine_condition(stmt->getCond()))
3665 return NULL;
3667 write_then = extract_index(ass_then->getLHS());
3668 write_else = extract_index(ass_else->getLHS());
3670 equal = isl_multi_pw_aff_plain_is_equal(write_then, write_else);
3671 isl_multi_pw_aff_free(write_else);
3672 if (equal < 0 || !equal) {
3673 isl_multi_pw_aff_free(write_then);
3674 return NULL;
3677 nesting_enabled = allow_nested;
3678 pa = extract_condition(stmt->getCond());
3679 nesting_enabled = save_nesting;
3680 cond = isl_pw_aff_non_zero_set(isl_pw_aff_copy(pa));
3681 comp = isl_pw_aff_zero_set(isl_pw_aff_copy(pa));
3682 index = isl_multi_pw_aff_from_range(isl_multi_pw_aff_from_pw_aff(pa));
3684 pe_cond = pet_expr_from_index(index);
3686 pe_then = extract_expr(ass_then->getRHS());
3687 pe_then = pet_expr_restrict(pe_then, cond);
3688 pe_else = extract_expr(ass_else->getRHS());
3689 pe_else = pet_expr_restrict(pe_else, comp);
3691 pe = pet_expr_new_ternary(pe_cond, pe_then, pe_else);
3692 type_size = get_type_size(ass_then->getType(), ast_context);
3693 pe_write = pet_expr_from_index_and_depth(type_size, write_then,
3694 extract_depth(write_then));
3695 pe_write = pet_expr_access_set_write(pe_write, 1);
3696 pe_write = pet_expr_access_set_read(pe_write, 0);
3697 pe = pet_expr_new_binary(type_size, pet_op_assign, pe_write, pe);
3698 return extract(stmt, pe);
3701 /* Create a pet_scop with a single statement with name S_<stmt_nr>,
3702 * evaluating "cond" and writing the result to a virtual scalar,
3703 * as expressed by "index".
3705 struct pet_scop *PetScan::extract_non_affine_condition(Expr *cond, int stmt_nr,
3706 __isl_take isl_multi_pw_aff *index)
3708 pet_expr *expr, *write;
3709 struct pet_stmt *ps;
3710 SourceLocation loc = cond->getLocStart();
3711 int line = PP.getSourceManager().getExpansionLineNumber(loc);
3713 write = pet_expr_from_index(index);
3714 write = pet_expr_access_set_write(write, 1);
3715 write = pet_expr_access_set_read(write, 0);
3716 expr = extract_expr(cond);
3717 expr = resolve_nested(expr);
3718 expr = pet_expr_new_binary(1, pet_op_assign, write, expr);
3719 ps = pet_stmt_from_pet_expr(line, NULL, stmt_nr, expr);
3720 return pet_scop_from_pet_stmt(ctx, ps);
3723 extern "C" {
3724 static __isl_give pet_expr *embed_access(__isl_take pet_expr *expr,
3725 void *user);
3728 /* Precompose the access relation and the index expression associated
3729 * to "expr" with the function pointed to by "user",
3730 * thereby embedding the access relation in the domain of this function.
3731 * The initial domain of the access relation and the index expression
3732 * is the zero-dimensional domain.
3734 static __isl_give pet_expr *embed_access(__isl_take pet_expr *expr, void *user)
3736 isl_multi_aff *ma = (isl_multi_aff *) user;
3738 return pet_expr_access_pullback_multi_aff(expr, isl_multi_aff_copy(ma));
3741 /* Precompose all access relations in "expr" with "ma", thereby
3742 * embedding them in the domain of "ma".
3744 static __isl_give pet_expr *embed(__isl_take pet_expr *expr,
3745 __isl_keep isl_multi_aff *ma)
3747 return pet_expr_map_access(expr, &embed_access, ma);
3750 /* For each nested access parameter in the domain of "stmt",
3751 * construct a corresponding pet_expr, place it before the original
3752 * elements in stmt->args and record its position in "param2pos".
3753 * n is the number of nested access parameters.
3755 struct pet_stmt *PetScan::extract_nested(struct pet_stmt *stmt, int n,
3756 std::map<int,int> &param2pos)
3758 int i;
3759 isl_space *space;
3760 int n_arg;
3761 pet_expr **args;
3763 n_arg = stmt->n_arg;
3764 args = isl_calloc_array(ctx, pet_expr *, n + n_arg);
3765 if (!args)
3766 goto error;
3768 space = isl_set_get_space(stmt->domain);
3769 n_arg = extract_nested(space, 0, args, param2pos);
3770 isl_space_free(space);
3772 if (n_arg < 0)
3773 goto error;
3775 for (i = 0; i < stmt->n_arg; ++i)
3776 args[n_arg + i] = stmt->args[i];
3777 free(stmt->args);
3778 stmt->args = args;
3779 stmt->n_arg += n_arg;
3781 return stmt;
3782 error:
3783 if (args) {
3784 for (i = 0; i < n; ++i)
3785 pet_expr_free(args[i]);
3786 free(args);
3788 pet_stmt_free(stmt);
3789 return NULL;
3792 /* Check whether any of the arguments i of "stmt" starting at position "n"
3793 * is equal to one of the first "n" arguments j.
3794 * If so, combine the constraints on arguments i and j and remove
3795 * argument i.
3797 static struct pet_stmt *remove_duplicate_arguments(struct pet_stmt *stmt, int n)
3799 int i, j;
3800 isl_map *map;
3802 if (!stmt)
3803 return NULL;
3804 if (n == 0)
3805 return stmt;
3806 if (n == stmt->n_arg)
3807 return stmt;
3809 map = isl_set_unwrap(stmt->domain);
3811 for (i = stmt->n_arg - 1; i >= n; --i) {
3812 for (j = 0; j < n; ++j)
3813 if (pet_expr_is_equal(stmt->args[i], stmt->args[j]))
3814 break;
3815 if (j >= n)
3816 continue;
3818 map = isl_map_equate(map, isl_dim_out, i, isl_dim_out, j);
3819 map = isl_map_project_out(map, isl_dim_out, i, 1);
3821 pet_expr_free(stmt->args[i]);
3822 for (j = i; j + 1 < stmt->n_arg; ++j)
3823 stmt->args[j] = stmt->args[j + 1];
3824 stmt->n_arg--;
3827 stmt->domain = isl_map_wrap(map);
3828 if (!stmt->domain)
3829 goto error;
3830 return stmt;
3831 error:
3832 pet_stmt_free(stmt);
3833 return NULL;
3836 /* Look for parameters in the iteration domain of "stmt" that
3837 * refer to nested accesses. In particular, these are
3838 * parameters with no name.
3840 * If there are any such parameters, then as many extra variables
3841 * (after identifying identical nested accesses) are inserted in the
3842 * range of the map wrapped inside the domain, before the original variables.
3843 * If the original domain is not a wrapped map, then a new wrapped
3844 * map is created with zero output dimensions.
3845 * The parameters are then equated to the corresponding output dimensions
3846 * and subsequently projected out, from the iteration domain,
3847 * the schedule and the access relations.
3848 * For each of the output dimensions, a corresponding argument
3849 * expression is inserted. Initially they are created with
3850 * a zero-dimensional domain, so they have to be embedded
3851 * in the current iteration domain.
3852 * param2pos maps the position of the parameter to the position
3853 * of the corresponding output dimension in the wrapped map.
3855 struct pet_stmt *PetScan::resolve_nested(struct pet_stmt *stmt)
3857 int n;
3858 int nparam;
3859 unsigned n_arg;
3860 isl_map *map;
3861 isl_space *space;
3862 isl_multi_aff *ma;
3863 std::map<int,int> param2pos;
3865 if (!stmt)
3866 return NULL;
3868 n = pet_nested_n_in_set(stmt->domain);
3869 if (n == 0)
3870 return stmt;
3872 n_arg = stmt->n_arg;
3873 stmt = extract_nested(stmt, n, param2pos);
3874 if (!stmt)
3875 return NULL;
3877 n = stmt->n_arg - n_arg;
3878 nparam = isl_set_dim(stmt->domain, isl_dim_param);
3879 if (isl_set_is_wrapping(stmt->domain))
3880 map = isl_set_unwrap(stmt->domain);
3881 else
3882 map = isl_map_from_domain(stmt->domain);
3883 map = isl_map_insert_dims(map, isl_dim_out, 0, n);
3885 for (int i = nparam - 1; i >= 0; --i) {
3886 isl_id *id;
3888 if (!pet_nested_in_map(map, i))
3889 continue;
3891 id = pet_expr_access_get_id(stmt->args[param2pos[i]]);
3892 map = isl_map_set_dim_id(map, isl_dim_out, param2pos[i], id);
3893 map = isl_map_equate(map, isl_dim_param, i, isl_dim_out,
3894 param2pos[i]);
3895 map = isl_map_project_out(map, isl_dim_param, i, 1);
3898 stmt->domain = isl_map_wrap(map);
3900 space = isl_space_unwrap(isl_set_get_space(stmt->domain));
3901 space = isl_space_from_domain(isl_space_domain(space));
3902 ma = isl_multi_aff_zero(space);
3903 for (int pos = 0; pos < n; ++pos)
3904 stmt->args[pos] = embed(stmt->args[pos], ma);
3905 isl_multi_aff_free(ma);
3907 stmt = pet_stmt_remove_nested_parameters(stmt);
3908 stmt = remove_duplicate_arguments(stmt, n);
3910 return stmt;
3913 /* For each statement in "scop", move the parameters that correspond
3914 * to nested access into the ranges of the domains and create
3915 * corresponding argument expressions.
3917 struct pet_scop *PetScan::resolve_nested(struct pet_scop *scop)
3919 if (!scop)
3920 return NULL;
3922 for (int i = 0; i < scop->n_stmt; ++i) {
3923 scop->stmts[i] = resolve_nested(scop->stmts[i]);
3924 if (!scop->stmts[i])
3925 goto error;
3928 return scop;
3929 error:
3930 pet_scop_free(scop);
3931 return NULL;
3934 /* Given an access expression "expr", is the variable accessed by
3935 * "expr" assigned anywhere inside "scop"?
3937 static bool is_assigned(__isl_keep pet_expr *expr, pet_scop *scop)
3939 bool assigned = false;
3940 isl_id *id;
3942 id = pet_expr_access_get_id(expr);
3943 assigned = pet_scop_writes(scop, id);
3944 isl_id_free(id);
3946 return assigned;
3949 /* Are all nested access parameters in "pa" allowed given "scop".
3950 * In particular, is none of them written by anywhere inside "scop".
3952 * If "scop" has any skip conditions, then no nested access parameters
3953 * are allowed. In particular, if there is any nested access in a guard
3954 * for a piece of code containing a "continue", then we want to introduce
3955 * a separate statement for evaluating this guard so that we can express
3956 * that the result is false for all previous iterations.
3958 bool PetScan::is_nested_allowed(__isl_keep isl_pw_aff *pa, pet_scop *scop)
3960 int nparam;
3962 if (!scop)
3963 return true;
3965 if (!pet_nested_any_in_pw_aff(pa))
3966 return true;
3968 if (pet_scop_has_skip(scop, pet_skip_now))
3969 return false;
3971 nparam = isl_pw_aff_dim(pa, isl_dim_param);
3972 for (int i = 0; i < nparam; ++i) {
3973 Expr *nested;
3974 isl_id *id = isl_pw_aff_get_dim_id(pa, isl_dim_param, i);
3975 pet_expr *expr;
3976 bool allowed;
3978 if (!pet_nested_in_id(id)) {
3979 isl_id_free(id);
3980 continue;
3983 nested = (Expr *) isl_id_get_user(id);
3984 expr = extract_expr(nested);
3985 allowed = pet_expr_get_type(expr) == pet_expr_access &&
3986 !is_assigned(expr, scop);
3988 pet_expr_free(expr);
3989 isl_id_free(id);
3991 if (!allowed)
3992 return false;
3995 return true;
3998 /* Construct a pet_scop for a non-affine if statement.
4000 * We create a separate statement that writes the result
4001 * of the non-affine condition to a virtual scalar.
4002 * A constraint requiring the value of this virtual scalar to be one
4003 * is added to the iteration domains of the then branch.
4004 * Similarly, a constraint requiring the value of this virtual scalar
4005 * to be zero is added to the iteration domains of the else branch, if any.
4006 * We adjust the schedules to ensure that the virtual scalar is written
4007 * before it is read.
4009 * If there are any breaks or continues in the then and/or else
4010 * branches, then we may have to compute a new skip condition.
4011 * This is handled using a pet_skip_info object.
4012 * On initialization, the object checks if skip conditions need
4013 * to be computed. If so, it does so in pet_skip_info_if_extract_index and
4014 * adds them in pet_skip_info_if_add.
4016 struct pet_scop *PetScan::extract_non_affine_if(Expr *cond,
4017 struct pet_scop *scop_then, struct pet_scop *scop_else,
4018 bool have_else, int stmt_id)
4020 struct pet_scop *scop;
4021 isl_multi_pw_aff *test_index;
4022 int int_size;
4023 int save_n_stmt = n_stmt;
4025 test_index = pet_create_test_index(ctx, n_test++);
4026 n_stmt = stmt_id;
4027 scop = extract_non_affine_condition(cond, n_stmt++,
4028 isl_multi_pw_aff_copy(test_index));
4029 n_stmt = save_n_stmt;
4030 scop = scop_add_array(scop, test_index, ast_context);
4032 pet_skip_info skip;
4033 pet_skip_info_if_init(&skip, ctx, scop_then, scop_else, have_else, 0);
4034 int_size = ast_context.getTypeInfo(ast_context.IntTy).first / 8;
4035 pet_skip_info_if_extract_index(&skip, test_index, int_size,
4036 &n_stmt, &n_test);
4038 scop = pet_scop_prefix(scop, 0);
4039 scop_then = pet_scop_prefix(scop_then, 1);
4040 scop_then = pet_scop_filter(scop_then,
4041 isl_multi_pw_aff_copy(test_index), 1);
4042 if (have_else) {
4043 scop_else = pet_scop_prefix(scop_else, 1);
4044 scop_else = pet_scop_filter(scop_else, test_index, 0);
4045 scop_then = pet_scop_add_par(ctx, scop_then, scop_else);
4046 } else
4047 isl_multi_pw_aff_free(test_index);
4049 scop = pet_scop_add_seq(ctx, scop, scop_then);
4051 scop = pet_skip_info_if_add(&skip, scop, 2);
4053 return scop;
4056 /* Construct a pet_scop for an if statement.
4058 * If the condition fits the pattern of a conditional assignment,
4059 * then it is handled by extract_conditional_assignment.
4060 * Otherwise, we do the following.
4062 * If the condition is affine, then the condition is added
4063 * to the iteration domains of the then branch, while the
4064 * opposite of the condition in added to the iteration domains
4065 * of the else branch, if any.
4066 * We allow the condition to be dynamic, i.e., to refer to
4067 * scalars or array elements that may be written to outside
4068 * of the given if statement. These nested accesses are then represented
4069 * as output dimensions in the wrapping iteration domain.
4070 * If it is also written _inside_ the then or else branch, then
4071 * we treat the condition as non-affine.
4072 * As explained in extract_non_affine_if, this will introduce
4073 * an extra statement.
4074 * For aesthetic reasons, we want this statement to have a statement
4075 * number that is lower than those of the then and else branches.
4076 * In order to evaluate if we will need such a statement, however, we
4077 * first construct scops for the then and else branches.
4078 * We therefore reserve a statement number if we might have to
4079 * introduce such an extra statement.
4081 * If the condition is not affine, then the scop is created in
4082 * extract_non_affine_if.
4084 * If there are any breaks or continues in the then and/or else
4085 * branches, then we may have to compute a new skip condition.
4086 * This is handled using a pet_skip_info object.
4087 * On initialization, the object checks if skip conditions need
4088 * to be computed. If so, it does so in pet_skip_info_if_extract_cond and
4089 * adds them in pet_skip_info_if_add.
4091 struct pet_scop *PetScan::extract(IfStmt *stmt)
4093 struct pet_scop *scop_then, *scop_else = NULL, *scop;
4094 isl_pw_aff *cond;
4095 int stmt_id;
4096 int int_size;
4097 isl_set *set;
4098 isl_set *valid;
4100 clear_assignments clear(assigned_value);
4101 clear.TraverseStmt(stmt->getThen());
4102 if (stmt->getElse())
4103 clear.TraverseStmt(stmt->getElse());
4105 scop = extract_conditional_assignment(stmt);
4106 if (scop)
4107 return scop;
4109 cond = try_extract_nested_condition(stmt->getCond());
4110 if (allow_nested && (!cond || pet_nested_any_in_pw_aff(cond)))
4111 stmt_id = n_stmt++;
4114 assigned_value_cache cache(assigned_value);
4115 scop_then = extract(stmt->getThen());
4118 if (stmt->getElse()) {
4119 assigned_value_cache cache(assigned_value);
4120 scop_else = extract(stmt->getElse());
4121 if (options->autodetect) {
4122 if (scop_then && !scop_else) {
4123 partial = true;
4124 isl_pw_aff_free(cond);
4125 return scop_then;
4127 if (!scop_then && scop_else) {
4128 partial = true;
4129 isl_pw_aff_free(cond);
4130 return scop_else;
4135 if (cond &&
4136 (!is_nested_allowed(cond, scop_then) ||
4137 (stmt->getElse() && !is_nested_allowed(cond, scop_else)))) {
4138 isl_pw_aff_free(cond);
4139 cond = NULL;
4141 if (allow_nested && !cond)
4142 return extract_non_affine_if(stmt->getCond(), scop_then,
4143 scop_else, stmt->getElse(), stmt_id);
4145 if (!cond)
4146 cond = extract_condition(stmt->getCond());
4148 pet_skip_info skip;
4149 pet_skip_info_if_init(&skip, ctx, scop_then, scop_else,
4150 stmt->getElse() != NULL, 1);
4151 pet_skip_info_if_extract_cond(&skip, cond, int_size, &n_stmt, &n_test);
4153 valid = isl_pw_aff_domain(isl_pw_aff_copy(cond));
4154 set = isl_pw_aff_non_zero_set(cond);
4155 scop = pet_scop_restrict(scop_then, isl_set_copy(set));
4157 if (stmt->getElse()) {
4158 set = isl_set_subtract(isl_set_copy(valid), set);
4159 scop_else = pet_scop_restrict(scop_else, set);
4160 scop = pet_scop_add_par(ctx, scop, scop_else);
4161 } else
4162 isl_set_free(set);
4163 scop = resolve_nested(scop);
4164 scop = pet_scop_restrict_context(scop, valid);
4166 if (pet_skip_info_has_skip(&skip))
4167 scop = pet_scop_prefix(scop, 0);
4168 scop = pet_skip_info_if_add(&skip, scop, 1);
4170 return scop;
4173 /* Try and construct a pet_scop for a label statement.
4174 * We currently only allow labels on expression statements.
4176 struct pet_scop *PetScan::extract(LabelStmt *stmt)
4178 isl_id *label;
4179 Stmt *sub;
4181 sub = stmt->getSubStmt();
4182 if (!isa<Expr>(sub)) {
4183 unsupported(stmt);
4184 return NULL;
4187 label = isl_id_alloc(ctx, stmt->getName(), NULL);
4189 return extract(sub, extract_expr(cast<Expr>(sub)), label);
4192 /* Return a one-dimensional multi piecewise affine expression that is equal
4193 * to the constant 1 and is defined over a zero-dimensional domain.
4195 static __isl_give isl_multi_pw_aff *one_mpa(isl_ctx *ctx)
4197 isl_space *space;
4198 isl_local_space *ls;
4199 isl_aff *aff;
4201 space = isl_space_set_alloc(ctx, 0, 0);
4202 ls = isl_local_space_from_space(space);
4203 aff = isl_aff_zero_on_domain(ls);
4204 aff = isl_aff_set_constant_si(aff, 1);
4206 return isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff));
4209 /* Construct a pet_scop for a continue statement.
4211 * We simply create an empty scop with a universal pet_skip_now
4212 * skip condition. This skip condition will then be taken into
4213 * account by the enclosing loop construct, possibly after
4214 * being incorporated into outer skip conditions.
4216 struct pet_scop *PetScan::extract(ContinueStmt *stmt)
4218 pet_scop *scop;
4220 scop = pet_scop_empty(ctx);
4221 if (!scop)
4222 return NULL;
4224 scop = pet_scop_set_skip(scop, pet_skip_now, one_mpa(ctx));
4226 return scop;
4229 /* Construct a pet_scop for a break statement.
4231 * We simply create an empty scop with both a universal pet_skip_now
4232 * skip condition and a universal pet_skip_later skip condition.
4233 * These skip conditions will then be taken into
4234 * account by the enclosing loop construct, possibly after
4235 * being incorporated into outer skip conditions.
4237 struct pet_scop *PetScan::extract(BreakStmt *stmt)
4239 pet_scop *scop;
4240 isl_multi_pw_aff *skip;
4242 scop = pet_scop_empty(ctx);
4243 if (!scop)
4244 return NULL;
4246 skip = one_mpa(ctx);
4247 scop = pet_scop_set_skip(scop, pet_skip_now,
4248 isl_multi_pw_aff_copy(skip));
4249 scop = pet_scop_set_skip(scop, pet_skip_later, skip);
4251 return scop;
4254 /* Try and construct a pet_scop corresponding to "stmt".
4256 * If "stmt" is a compound statement, then "skip_declarations"
4257 * indicates whether we should skip initial declarations in the
4258 * compound statement.
4260 * If the constructed pet_scop is not a (possibly) partial representation
4261 * of "stmt", we update start and end of the pet_scop to those of "stmt".
4262 * In particular, if skip_declarations is set, then we may have skipped
4263 * declarations inside "stmt" and so the pet_scop may not represent
4264 * the entire "stmt".
4265 * Note that this function may be called with "stmt" referring to the entire
4266 * body of the function, including the outer braces. In such cases,
4267 * skip_declarations will be set and the braces will not be taken into
4268 * account in scop->start and scop->end.
4270 struct pet_scop *PetScan::extract(Stmt *stmt, bool skip_declarations)
4272 struct pet_scop *scop;
4274 if (isa<Expr>(stmt))
4275 return extract(stmt, extract_expr(cast<Expr>(stmt)));
4277 switch (stmt->getStmtClass()) {
4278 case Stmt::WhileStmtClass:
4279 scop = extract(cast<WhileStmt>(stmt));
4280 break;
4281 case Stmt::ForStmtClass:
4282 scop = extract_for(cast<ForStmt>(stmt));
4283 break;
4284 case Stmt::IfStmtClass:
4285 scop = extract(cast<IfStmt>(stmt));
4286 break;
4287 case Stmt::CompoundStmtClass:
4288 scop = extract(cast<CompoundStmt>(stmt), skip_declarations);
4289 break;
4290 case Stmt::LabelStmtClass:
4291 scop = extract(cast<LabelStmt>(stmt));
4292 break;
4293 case Stmt::ContinueStmtClass:
4294 scop = extract(cast<ContinueStmt>(stmt));
4295 break;
4296 case Stmt::BreakStmtClass:
4297 scop = extract(cast<BreakStmt>(stmt));
4298 break;
4299 case Stmt::DeclStmtClass:
4300 scop = extract(cast<DeclStmt>(stmt));
4301 break;
4302 default:
4303 unsupported(stmt);
4304 return NULL;
4307 if (partial || skip_declarations)
4308 return scop;
4310 scop = update_scop_start_end(scop, stmt->getSourceRange(), false);
4312 return scop;
4315 /* Extract a clone of the kill statement in "scop".
4316 * "scop" is expected to have been created from a DeclStmt
4317 * and should have the kill as its first statement.
4319 struct pet_stmt *PetScan::extract_kill(struct pet_scop *scop)
4321 pet_expr *kill;
4322 struct pet_stmt *stmt;
4323 isl_multi_pw_aff *index;
4324 isl_map *access;
4325 pet_expr *arg;
4327 if (!scop)
4328 return NULL;
4329 if (scop->n_stmt < 1)
4330 isl_die(ctx, isl_error_internal,
4331 "expecting at least one statement", return NULL);
4332 stmt = scop->stmts[0];
4333 if (!pet_stmt_is_kill(stmt))
4334 isl_die(ctx, isl_error_internal,
4335 "expecting kill statement", return NULL);
4337 arg = pet_expr_get_arg(stmt->body, 0);
4338 index = pet_expr_access_get_index(arg);
4339 access = pet_expr_access_get_access(arg);
4340 pet_expr_free(arg);
4341 index = isl_multi_pw_aff_reset_tuple_id(index, isl_dim_in);
4342 access = isl_map_reset_tuple_id(access, isl_dim_in);
4343 kill = pet_expr_kill_from_access_and_index(access, index);
4344 return pet_stmt_from_pet_expr(stmt->line, NULL, n_stmt++, kill);
4347 /* Mark all arrays in "scop" as being exposed.
4349 static struct pet_scop *mark_exposed(struct pet_scop *scop)
4351 if (!scop)
4352 return NULL;
4353 for (int i = 0; i < scop->n_array; ++i)
4354 scop->arrays[i]->exposed = 1;
4355 return scop;
4358 /* Try and construct a pet_scop corresponding to (part of)
4359 * a sequence of statements.
4361 * "block" is set if the sequence respresents the children of
4362 * a compound statement.
4363 * "skip_declarations" is set if we should skip initial declarations
4364 * in the sequence of statements.
4366 * If there are any breaks or continues in the individual statements,
4367 * then we may have to compute a new skip condition.
4368 * This is handled using a pet_skip_info object.
4369 * On initialization, the object checks if skip conditions need
4370 * to be computed. If so, it does so in pet_skip_info_seq_extract and
4371 * adds them in pet_skip_info_seq_add.
4373 * If "block" is set, then we need to insert kill statements at
4374 * the end of the block for any array that has been declared by
4375 * one of the statements in the sequence. Each of these declarations
4376 * results in the construction of a kill statement at the place
4377 * of the declaration, so we simply collect duplicates of
4378 * those kill statements and append these duplicates to the constructed scop.
4380 * If "block" is not set, then any array declared by one of the statements
4381 * in the sequence is marked as being exposed.
4383 * If autodetect is set, then we allow the extraction of only a subrange
4384 * of the sequence of statements. However, if there is at least one statement
4385 * for which we could not construct a scop and the final range contains
4386 * either no statements or at least one kill, then we discard the entire
4387 * range.
4389 struct pet_scop *PetScan::extract(StmtRange stmt_range, bool block,
4390 bool skip_declarations)
4392 pet_scop *scop;
4393 StmtIterator i;
4394 int int_size;
4395 int j;
4396 bool partial_range = false;
4397 set<struct pet_stmt *> kills;
4398 set<struct pet_stmt *>::iterator it;
4400 int_size = ast_context.getTypeInfo(ast_context.IntTy).first / 8;
4402 scop = pet_scop_empty(ctx);
4403 for (i = stmt_range.first, j = 0; i != stmt_range.second; ++i, ++j) {
4404 Stmt *child = *i;
4405 struct pet_scop *scop_i;
4407 if (scop->n_stmt == 0 && skip_declarations &&
4408 child->getStmtClass() == Stmt::DeclStmtClass)
4409 continue;
4411 scop_i = extract(child);
4412 if (scop->n_stmt != 0 && partial) {
4413 pet_scop_free(scop_i);
4414 break;
4416 pet_skip_info skip;
4417 pet_skip_info_seq_init(&skip, ctx, scop, scop_i);
4418 pet_skip_info_seq_extract(&skip, int_size, &n_stmt, &n_test);
4419 if (pet_skip_info_has_skip(&skip))
4420 scop_i = pet_scop_prefix(scop_i, 0);
4421 if (scop_i && child->getStmtClass() == Stmt::DeclStmtClass) {
4422 if (block)
4423 kills.insert(extract_kill(scop_i));
4424 else
4425 scop_i = mark_exposed(scop_i);
4427 scop_i = pet_scop_prefix(scop_i, j);
4428 if (options->autodetect) {
4429 if (scop_i)
4430 scop = pet_scop_add_seq(ctx, scop, scop_i);
4431 else
4432 partial_range = true;
4433 if (scop->n_stmt != 0 && !scop_i)
4434 partial = true;
4435 } else {
4436 scop = pet_scop_add_seq(ctx, scop, scop_i);
4439 scop = pet_skip_info_seq_add(&skip, scop, j);
4441 if (partial || !scop)
4442 break;
4445 for (it = kills.begin(); it != kills.end(); ++it) {
4446 pet_scop *scop_j;
4447 scop_j = pet_scop_from_pet_stmt(ctx, *it);
4448 scop_j = pet_scop_prefix(scop_j, j);
4449 scop = pet_scop_add_seq(ctx, scop, scop_j);
4452 if (scop && partial_range) {
4453 if (scop->n_stmt == 0 || kills.size() != 0) {
4454 pet_scop_free(scop);
4455 return NULL;
4457 partial = true;
4460 return scop;
4463 /* Check if the scop marked by the user is exactly this Stmt
4464 * or part of this Stmt.
4465 * If so, return a pet_scop corresponding to the marked region.
4466 * Otherwise, return NULL.
4468 struct pet_scop *PetScan::scan(Stmt *stmt)
4470 SourceManager &SM = PP.getSourceManager();
4471 unsigned start_off, end_off;
4473 start_off = getExpansionOffset(SM, stmt->getLocStart());
4474 end_off = getExpansionOffset(SM, stmt->getLocEnd());
4476 if (start_off > loc.end)
4477 return NULL;
4478 if (end_off < loc.start)
4479 return NULL;
4480 if (start_off >= loc.start && end_off <= loc.end) {
4481 return extract(stmt);
4484 StmtIterator start;
4485 for (start = stmt->child_begin(); start != stmt->child_end(); ++start) {
4486 Stmt *child = *start;
4487 if (!child)
4488 continue;
4489 start_off = getExpansionOffset(SM, child->getLocStart());
4490 end_off = getExpansionOffset(SM, child->getLocEnd());
4491 if (start_off < loc.start && end_off >= loc.end)
4492 return scan(child);
4493 if (start_off >= loc.start)
4494 break;
4497 StmtIterator end;
4498 for (end = start; end != stmt->child_end(); ++end) {
4499 Stmt *child = *end;
4500 start_off = SM.getFileOffset(child->getLocStart());
4501 if (start_off >= loc.end)
4502 break;
4505 return extract(StmtRange(start, end), false, false);
4508 /* Set the size of index "pos" of "array" to "size".
4509 * In particular, add a constraint of the form
4511 * i_pos < size
4513 * to array->extent and a constraint of the form
4515 * size >= 0
4517 * to array->context.
4519 static struct pet_array *update_size(struct pet_array *array, int pos,
4520 __isl_take isl_pw_aff *size)
4522 isl_set *valid;
4523 isl_set *univ;
4524 isl_set *bound;
4525 isl_space *dim;
4526 isl_aff *aff;
4527 isl_pw_aff *index;
4528 isl_id *id;
4530 valid = isl_pw_aff_nonneg_set(isl_pw_aff_copy(size));
4531 array->context = isl_set_intersect(array->context, valid);
4533 dim = isl_set_get_space(array->extent);
4534 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
4535 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, pos, 1);
4536 univ = isl_set_universe(isl_aff_get_domain_space(aff));
4537 index = isl_pw_aff_alloc(univ, aff);
4539 size = isl_pw_aff_add_dims(size, isl_dim_in,
4540 isl_set_dim(array->extent, isl_dim_set));
4541 id = isl_set_get_tuple_id(array->extent);
4542 size = isl_pw_aff_set_tuple_id(size, isl_dim_in, id);
4543 bound = isl_pw_aff_lt_set(index, size);
4545 array->extent = isl_set_intersect(array->extent, bound);
4547 if (!array->context || !array->extent)
4548 goto error;
4550 return array;
4551 error:
4552 pet_array_free(array);
4553 return NULL;
4556 /* Figure out the size of the array at position "pos" and all
4557 * subsequent positions from "type" and update "array" accordingly.
4559 struct pet_array *PetScan::set_upper_bounds(struct pet_array *array,
4560 const Type *type, int pos)
4562 const ArrayType *atype;
4563 isl_pw_aff *size;
4565 if (!array)
4566 return NULL;
4568 if (type->isPointerType()) {
4569 type = type->getPointeeType().getTypePtr();
4570 return set_upper_bounds(array, type, pos + 1);
4572 if (!type->isArrayType())
4573 return array;
4575 type = type->getCanonicalTypeInternal().getTypePtr();
4576 atype = cast<ArrayType>(type);
4578 if (type->isConstantArrayType()) {
4579 const ConstantArrayType *ca = cast<ConstantArrayType>(atype);
4580 size = extract_affine(ca->getSize());
4581 array = update_size(array, pos, size);
4582 } else if (type->isVariableArrayType()) {
4583 const VariableArrayType *vla = cast<VariableArrayType>(atype);
4584 size = extract_affine(vla->getSizeExpr());
4585 array = update_size(array, pos, size);
4588 type = atype->getElementType().getTypePtr();
4590 return set_upper_bounds(array, type, pos + 1);
4593 /* Is "T" the type of a variable length array with static size?
4595 static bool is_vla_with_static_size(QualType T)
4597 const VariableArrayType *vlatype;
4599 if (!T->isVariableArrayType())
4600 return false;
4601 vlatype = cast<VariableArrayType>(T);
4602 return vlatype->getSizeModifier() == VariableArrayType::Static;
4605 /* Return the type of "decl" as an array.
4607 * In particular, if "decl" is a parameter declaration that
4608 * is a variable length array with a static size, then
4609 * return the original type (i.e., the variable length array).
4610 * Otherwise, return the type of decl.
4612 static QualType get_array_type(ValueDecl *decl)
4614 ParmVarDecl *parm;
4615 QualType T;
4617 parm = dyn_cast<ParmVarDecl>(decl);
4618 if (!parm)
4619 return decl->getType();
4621 T = parm->getOriginalType();
4622 if (!is_vla_with_static_size(T))
4623 return decl->getType();
4624 return T;
4627 /* Does "decl" have definition that we can keep track of in a pet_type?
4629 static bool has_printable_definition(RecordDecl *decl)
4631 if (!decl->getDeclName())
4632 return false;
4633 return decl->getLexicalDeclContext() == decl->getDeclContext();
4636 /* Construct and return a pet_array corresponding to the variable "decl".
4637 * In particular, initialize array->extent to
4639 * { name[i_1,...,i_d] : i_1,...,i_d >= 0 }
4641 * and then call set_upper_bounds to set the upper bounds on the indices
4642 * based on the type of the variable.
4644 * If the base type is that of a record with a top-level definition and
4645 * if "types" is not null, then the RecordDecl corresponding to the type
4646 * is added to "types".
4648 * If the base type is that of a record with no top-level definition,
4649 * then we replace it by "<subfield>".
4651 struct pet_array *PetScan::extract_array(isl_ctx *ctx, ValueDecl *decl,
4652 lex_recorddecl_set *types)
4654 struct pet_array *array;
4655 QualType qt = get_array_type(decl);
4656 const Type *type = qt.getTypePtr();
4657 int depth = array_depth(type);
4658 QualType base = pet_clang_base_type(qt);
4659 string name;
4660 isl_id *id;
4661 isl_space *dim;
4663 array = isl_calloc_type(ctx, struct pet_array);
4664 if (!array)
4665 return NULL;
4667 id = isl_id_alloc(ctx, decl->getName().str().c_str(), decl);
4668 dim = isl_space_set_alloc(ctx, 0, depth);
4669 dim = isl_space_set_tuple_id(dim, isl_dim_set, id);
4671 array->extent = isl_set_nat_universe(dim);
4673 dim = isl_space_params_alloc(ctx, 0);
4674 array->context = isl_set_universe(dim);
4676 array = set_upper_bounds(array, type, 0);
4677 if (!array)
4678 return NULL;
4680 name = base.getAsString();
4682 if (types && base->isRecordType()) {
4683 RecordDecl *decl = pet_clang_record_decl(base);
4684 if (has_printable_definition(decl))
4685 types->insert(decl);
4686 else
4687 name = "<subfield>";
4690 array->element_type = strdup(name.c_str());
4691 array->element_is_record = base->isRecordType();
4692 array->element_size = decl->getASTContext().getTypeInfo(base).first / 8;
4694 return array;
4697 /* Construct and return a pet_array corresponding to the sequence
4698 * of declarations "decls".
4699 * If the sequence contains a single declaration, then it corresponds
4700 * to a simple array access. Otherwise, it corresponds to a member access,
4701 * with the declaration for the substructure following that of the containing
4702 * structure in the sequence of declarations.
4703 * We start with the outermost substructure and then combine it with
4704 * information from the inner structures.
4706 * Additionally, keep track of all required types in "types".
4708 struct pet_array *PetScan::extract_array(isl_ctx *ctx,
4709 vector<ValueDecl *> decls, lex_recorddecl_set *types)
4711 struct pet_array *array;
4712 vector<ValueDecl *>::iterator it;
4714 it = decls.begin();
4716 array = extract_array(ctx, *it, types);
4718 for (++it; it != decls.end(); ++it) {
4719 struct pet_array *parent;
4720 const char *base_name, *field_name;
4721 char *product_name;
4723 parent = array;
4724 array = extract_array(ctx, *it, types);
4725 if (!array)
4726 return pet_array_free(parent);
4728 base_name = isl_set_get_tuple_name(parent->extent);
4729 field_name = isl_set_get_tuple_name(array->extent);
4730 product_name = member_access_name(ctx, base_name, field_name);
4732 array->extent = isl_set_product(isl_set_copy(parent->extent),
4733 array->extent);
4734 if (product_name)
4735 array->extent = isl_set_set_tuple_name(array->extent,
4736 product_name);
4737 array->context = isl_set_intersect(array->context,
4738 isl_set_copy(parent->context));
4740 pet_array_free(parent);
4741 free(product_name);
4743 if (!array->extent || !array->context || !product_name)
4744 return pet_array_free(array);
4747 return array;
4750 /* Add a pet_type corresponding to "decl" to "scop, provided
4751 * it is a member of "types" and it has not been added before
4752 * (i.e., it is not a member of "types_done".
4754 * Since we want the user to be able to print the types
4755 * in the order in which they appear in the scop, we need to
4756 * make sure that types of fields in a structure appear before
4757 * that structure. We therefore call ourselves recursively
4758 * on the types of all record subfields.
4760 static struct pet_scop *add_type(isl_ctx *ctx, struct pet_scop *scop,
4761 RecordDecl *decl, Preprocessor &PP, lex_recorddecl_set &types,
4762 lex_recorddecl_set &types_done)
4764 string s;
4765 llvm::raw_string_ostream S(s);
4766 RecordDecl::field_iterator it;
4768 if (types.find(decl) == types.end())
4769 return scop;
4770 if (types_done.find(decl) != types_done.end())
4771 return scop;
4773 for (it = decl->field_begin(); it != decl->field_end(); ++it) {
4774 RecordDecl *record;
4775 QualType type = it->getType();
4777 if (!type->isRecordType())
4778 continue;
4779 record = pet_clang_record_decl(type);
4780 scop = add_type(ctx, scop, record, PP, types, types_done);
4783 if (strlen(decl->getName().str().c_str()) == 0)
4784 return scop;
4786 decl->print(S, PrintingPolicy(PP.getLangOpts()));
4787 S.str();
4789 scop->types[scop->n_type] = pet_type_alloc(ctx,
4790 decl->getName().str().c_str(), s.c_str());
4791 if (!scop->types[scop->n_type])
4792 return pet_scop_free(scop);
4794 types_done.insert(decl);
4796 scop->n_type++;
4798 return scop;
4801 /* Construct a list of pet_arrays, one for each array (or scalar)
4802 * accessed inside "scop", add this list to "scop" and return the result.
4804 * The context of "scop" is updated with the intersection of
4805 * the contexts of all arrays, i.e., constraints on the parameters
4806 * that ensure that the arrays have a valid (non-negative) size.
4808 * If the any of the extracted arrays refers to a member access,
4809 * then also add the required types to "scop".
4811 struct pet_scop *PetScan::scan_arrays(struct pet_scop *scop)
4813 int i;
4814 array_desc_set arrays;
4815 array_desc_set::iterator it;
4816 lex_recorddecl_set types;
4817 lex_recorddecl_set types_done;
4818 lex_recorddecl_set::iterator types_it;
4819 int n_array;
4820 struct pet_array **scop_arrays;
4822 if (!scop)
4823 return NULL;
4825 pet_scop_collect_arrays(scop, arrays);
4826 if (arrays.size() == 0)
4827 return scop;
4829 n_array = scop->n_array;
4831 scop_arrays = isl_realloc_array(ctx, scop->arrays, struct pet_array *,
4832 n_array + arrays.size());
4833 if (!scop_arrays)
4834 goto error;
4835 scop->arrays = scop_arrays;
4837 for (it = arrays.begin(), i = 0; it != arrays.end(); ++it, ++i) {
4838 struct pet_array *array;
4839 array = extract_array(ctx, *it, &types);
4840 scop->arrays[n_array + i] = array;
4841 if (!scop->arrays[n_array + i])
4842 goto error;
4843 scop->n_array++;
4844 scop->context = isl_set_intersect(scop->context,
4845 isl_set_copy(array->context));
4846 if (!scop->context)
4847 goto error;
4850 if (types.size() == 0)
4851 return scop;
4853 scop->types = isl_alloc_array(ctx, struct pet_type *, types.size());
4854 if (!scop->types)
4855 goto error;
4857 for (types_it = types.begin(); types_it != types.end(); ++types_it)
4858 scop = add_type(ctx, scop, *types_it, PP, types, types_done);
4860 return scop;
4861 error:
4862 pet_scop_free(scop);
4863 return NULL;
4866 /* Bound all parameters in scop->context to the possible values
4867 * of the corresponding C variable.
4869 static struct pet_scop *add_parameter_bounds(struct pet_scop *scop)
4871 int n;
4873 if (!scop)
4874 return NULL;
4876 n = isl_set_dim(scop->context, isl_dim_param);
4877 for (int i = 0; i < n; ++i) {
4878 isl_id *id;
4879 ValueDecl *decl;
4881 id = isl_set_get_dim_id(scop->context, isl_dim_param, i);
4882 if (pet_nested_in_id(id)) {
4883 isl_id_free(id);
4884 isl_die(isl_set_get_ctx(scop->context),
4885 isl_error_internal,
4886 "unresolved nested parameter", goto error);
4888 decl = (ValueDecl *) isl_id_get_user(id);
4889 isl_id_free(id);
4891 scop->context = set_parameter_bounds(scop->context, i, decl);
4893 if (!scop->context)
4894 goto error;
4897 return scop;
4898 error:
4899 pet_scop_free(scop);
4900 return NULL;
4903 /* Construct a pet_scop from the given function.
4905 * If the scop was delimited by scop and endscop pragmas, then we override
4906 * the file offsets by those derived from the pragmas.
4908 struct pet_scop *PetScan::scan(FunctionDecl *fd)
4910 pet_scop *scop;
4911 Stmt *stmt;
4913 stmt = fd->getBody();
4915 if (options->autodetect)
4916 scop = extract(stmt, true);
4917 else {
4918 scop = scan(stmt);
4919 scop = pet_scop_update_start_end(scop, loc.start, loc.end);
4921 scop = pet_scop_detect_parameter_accesses(scop);
4922 scop = scan_arrays(scop);
4923 scop = add_parameter_bounds(scop);
4924 scop = pet_scop_gist(scop, value_bounds);
4926 return scop;