tree2scop.c: extract_kill: allow specification of statement domain
[pet.git] / tree2scop.c
blobb1f661f747adb1542e1525d84c0b4becee3e5a24
1 /*
2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012-2014 Ecole Normale Superieure. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials provided
15 * with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as
31 * representing official policies, either expressed or implied, of
32 * Leiden University.
35 #include <isl/id_to_pw_aff.h>
37 #include "aff.h"
38 #include "expr.h"
39 #include "expr_arg.h"
40 #include "nest.h"
41 #include "scop.h"
42 #include "skip.h"
43 #include "state.h"
44 #include "tree2scop.h"
46 /* Update "pc" by taking into account the writes in "stmt".
47 * That is, first mark all scalar variables that are written by "stmt"
48 * as having an unknown value. Afterwards,
49 * if "stmt" is a top-level (i.e., unconditional) assignment
50 * to a scalar variable, then update "pc" accordingly.
52 * In particular, if the lhs of the assignment is a scalar variable, then mark
53 * the variable as having been assigned. If, furthermore, the rhs
54 * is an affine expression, then keep track of this value in "pc"
55 * so that we can plug it in when we later come across the same variable.
57 * We skip assignments to virtual arrays (those with NULL user pointer).
59 static __isl_give pet_context *handle_writes(struct pet_stmt *stmt,
60 __isl_take pet_context *pc)
62 pet_expr *body = stmt->body;
63 pet_expr *arg;
64 isl_id *id;
65 isl_pw_aff *pa;
67 pc = pet_context_clear_writes_in_expr(pc, body);
68 if (!pc)
69 return NULL;
71 if (pet_expr_get_type(body) != pet_expr_op)
72 return pc;
73 if (pet_expr_op_get_type(body) != pet_op_assign)
74 return pc;
75 if (!isl_set_plain_is_universe(stmt->domain))
76 return pc;
77 arg = pet_expr_get_arg(body, 0);
78 if (!pet_expr_is_scalar_access(arg)) {
79 pet_expr_free(arg);
80 return pc;
83 id = pet_expr_access_get_id(arg);
84 pet_expr_free(arg);
86 if (!isl_id_get_user(id)) {
87 isl_id_free(id);
88 return pc;
91 arg = pet_expr_get_arg(body, 1);
92 pa = pet_expr_extract_affine(arg, pc);
93 pc = pet_context_mark_assigned(pc, isl_id_copy(id));
94 pet_expr_free(arg);
96 if (pa && isl_pw_aff_involves_nan(pa)) {
97 isl_id_free(id);
98 isl_pw_aff_free(pa);
99 return pc;
102 pc = pet_context_set_value(pc, id, pa);
104 return pc;
107 /* Update "pc" based on the write accesses (and, in particular,
108 * assignments) in "scop".
110 static __isl_give pet_context *scop_handle_writes(struct pet_scop *scop,
111 __isl_take pet_context *pc)
113 int i;
115 if (!scop)
116 return pet_context_free(pc);
117 for (i = 0; i < scop->n_stmt; ++i)
118 pc = handle_writes(scop->stmts[i], pc);
120 return pc;
123 /* Convert a top-level pet_expr to a pet_scop with one statement
124 * within the context "pc".
125 * This mainly involves resolving nested expression parameters
126 * and setting the name of the iteration space.
127 * The name is given by "label" if it is non-NULL. Otherwise,
128 * it is of the form S_<stmt_nr>.
129 * The location of the statement is set to "loc".
131 static struct pet_scop *scop_from_expr(__isl_take pet_expr *expr,
132 __isl_take isl_id *label, int stmt_nr, __isl_take pet_loc *loc,
133 __isl_keep pet_context *pc)
135 isl_set *domain;
136 struct pet_stmt *ps;
138 expr = pet_expr_plug_in_args(expr, pc);
139 expr = pet_expr_resolve_nested(expr);
140 expr = pet_expr_resolve_assume(expr, pc);
141 domain = pet_context_get_domain(pc);
142 ps = pet_stmt_from_pet_expr(domain, loc, label, stmt_nr, expr);
143 return pet_scop_from_pet_stmt(pet_context_get_space(pc), ps);
146 /* Construct a pet_scop with a single statement killing the entire
147 * array "array".
148 * The location of the statement is set to "loc".
150 static struct pet_scop *kill(__isl_take pet_loc *loc, struct pet_array *array,
151 __isl_keep pet_context *pc, struct pet_state *state)
153 isl_ctx *ctx;
154 isl_id *id;
155 isl_space *space;
156 isl_multi_pw_aff *index;
157 isl_map *access;
158 pet_expr *expr;
159 struct pet_scop *scop;
161 if (!array)
162 goto error;
163 ctx = isl_set_get_ctx(array->extent);
164 access = isl_map_from_range(isl_set_copy(array->extent));
165 id = isl_set_get_tuple_id(array->extent);
166 space = isl_space_alloc(ctx, 0, 0, 0);
167 space = isl_space_set_tuple_id(space, isl_dim_out, id);
168 index = isl_multi_pw_aff_zero(space);
169 expr = pet_expr_kill_from_access_and_index(access, index);
170 return scop_from_expr(expr, NULL, state->n_stmt++, loc, pc);
171 error:
172 pet_loc_free(loc);
173 return NULL;
176 /* Construct and return a pet_array corresponding to the variable
177 * accessed by "access" by calling the extract_array callback.
179 static struct pet_array *extract_array(__isl_keep pet_expr *access,
180 __isl_keep pet_context *pc, struct pet_state *state)
182 return state->extract_array(access, pc, state->user);
185 /* Construct a pet_scop for a (single) variable declaration
186 * within the context "pc".
188 * The scop contains the variable being declared (as an array)
189 * and a statement killing the array.
191 * If the declaration comes with an initialization, then the scop
192 * also contains an assignment to the variable.
194 static struct pet_scop *scop_from_decl(__isl_keep pet_tree *tree,
195 __isl_keep pet_context *pc, struct pet_state *state)
197 int type_size;
198 isl_ctx *ctx;
199 struct pet_array *array;
200 struct pet_scop *scop_decl, *scop;
201 pet_expr *lhs, *rhs, *pe;
203 array = extract_array(tree->u.d.var, pc, state);
204 if (array)
205 array->declared = 1;
206 scop_decl = kill(pet_tree_get_loc(tree), array, pc, state);
207 scop_decl = pet_scop_add_array(scop_decl, array);
209 if (tree->type != pet_tree_decl_init)
210 return scop_decl;
212 lhs = pet_expr_copy(tree->u.d.var);
213 rhs = pet_expr_copy(tree->u.d.init);
214 type_size = pet_expr_get_type_size(lhs);
215 pe = pet_expr_new_binary(type_size, pet_op_assign, lhs, rhs);
216 scop = scop_from_expr(pe, NULL, state->n_stmt++,
217 pet_tree_get_loc(tree), pc);
219 scop_decl = pet_scop_prefix(scop_decl, 0);
220 scop = pet_scop_prefix(scop, 1);
222 ctx = pet_tree_get_ctx(tree);
223 scop = pet_scop_add_seq(ctx, scop_decl, scop);
225 return scop;
228 /* Embed the given iteration domain in an extra outer loop
229 * with induction variable "var".
230 * If this variable appeared as a parameter in the constraints,
231 * it is replaced by the new outermost dimension.
233 static __isl_give isl_set *embed(__isl_take isl_set *set,
234 __isl_take isl_id *var)
236 int pos;
238 set = isl_set_insert_dims(set, isl_dim_set, 0, 1);
239 pos = isl_set_find_dim_by_id(set, isl_dim_param, var);
240 if (pos >= 0) {
241 set = isl_set_equate(set, isl_dim_param, pos, isl_dim_set, 0);
242 set = isl_set_project_out(set, isl_dim_param, pos, 1);
245 isl_id_free(var);
246 return set;
249 /* Return those elements in the space of "cond" that come after
250 * (based on "sign") an element in "cond".
252 static __isl_give isl_set *after(__isl_take isl_set *cond, int sign)
254 isl_map *previous_to_this;
256 if (sign > 0)
257 previous_to_this = isl_map_lex_lt(isl_set_get_space(cond));
258 else
259 previous_to_this = isl_map_lex_gt(isl_set_get_space(cond));
261 cond = isl_set_apply(cond, previous_to_this);
263 return cond;
266 /* Remove those iterations of "domain" that have an earlier iteration
267 * (based on "sign") where "skip" is satisfied.
268 * "domain" has an extra outer loop compared to "skip".
269 * The skip condition is first embedded in the same space as "domain".
270 * If "apply_skip_map" is set, then "skip_map" is first applied
271 * to the embedded skip condition before removing it from the domain.
273 static __isl_give isl_set *apply_affine_break(__isl_take isl_set *domain,
274 __isl_take isl_set *skip, int sign,
275 int apply_skip_map, __isl_keep isl_map *skip_map)
277 skip = embed(skip, isl_set_get_dim_id(domain, isl_dim_set, 0));
278 if (apply_skip_map)
279 skip = isl_set_apply(skip, isl_map_copy(skip_map));
280 skip = isl_set_intersect(skip , isl_set_copy(domain));
281 return isl_set_subtract(domain, after(skip, sign));
284 /* Create the infinite iteration domain
286 * { [id] : id >= 0 }
288 static __isl_give isl_set *infinite_domain(__isl_take isl_id *id)
290 isl_ctx *ctx = isl_id_get_ctx(id);
291 isl_set *domain;
293 domain = isl_set_nat_universe(isl_space_set_alloc(ctx, 0, 1));
294 domain = isl_set_set_dim_id(domain, isl_dim_set, 0, id);
296 return domain;
299 /* Create an identity affine expression on the space containing "domain",
300 * which is assumed to be one-dimensional.
302 static __isl_give isl_aff *identity_aff(__isl_keep isl_set *domain)
304 isl_local_space *ls;
306 ls = isl_local_space_from_space(isl_set_get_space(domain));
307 return isl_aff_var_on_domain(ls, isl_dim_set, 0);
310 /* Create an affine expression that maps elements
311 * of a single-dimensional array "id_test" to the previous element
312 * (according to "inc"), provided this element belongs to "domain".
313 * That is, create the affine expression
315 * { id[x] -> id[x - inc] : x - inc in domain }
317 static __isl_give isl_multi_pw_aff *map_to_previous(__isl_take isl_id *id_test,
318 __isl_take isl_set *domain, __isl_take isl_val *inc)
320 isl_space *space;
321 isl_local_space *ls;
322 isl_aff *aff;
323 isl_multi_pw_aff *prev;
325 space = isl_set_get_space(domain);
326 ls = isl_local_space_from_space(space);
327 aff = isl_aff_var_on_domain(ls, isl_dim_set, 0);
328 aff = isl_aff_add_constant_val(aff, isl_val_neg(inc));
329 prev = isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff));
330 domain = isl_set_preimage_multi_pw_aff(domain,
331 isl_multi_pw_aff_copy(prev));
332 prev = isl_multi_pw_aff_intersect_domain(prev, domain);
333 prev = isl_multi_pw_aff_set_tuple_id(prev, isl_dim_out, id_test);
335 return prev;
338 /* Add an implication to "scop" expressing that if an element of
339 * virtual array "id_test" has value "satisfied" then all previous elements
340 * of this array also have that value. The set of previous elements
341 * is bounded by "domain". If "sign" is negative then the iterator
342 * is decreasing and we express that all subsequent array elements
343 * (but still defined previously) have the same value.
345 static struct pet_scop *add_implication(struct pet_scop *scop,
346 __isl_take isl_id *id_test, __isl_take isl_set *domain, int sign,
347 int satisfied)
349 isl_space *space;
350 isl_map *map;
352 domain = isl_set_set_tuple_id(domain, id_test);
353 space = isl_set_get_space(domain);
354 if (sign > 0)
355 map = isl_map_lex_ge(space);
356 else
357 map = isl_map_lex_le(space);
358 map = isl_map_intersect_range(map, domain);
359 scop = pet_scop_add_implication(scop, map, satisfied);
361 return scop;
364 /* Add a filter to "scop" that imposes that it is only executed
365 * when the variable identified by "id_test" has a zero value
366 * for all previous iterations of "domain".
368 * In particular, add a filter that imposes that the array
369 * has a zero value at the previous iteration of domain and
370 * add an implication that implies that it then has that
371 * value for all previous iterations.
373 static struct pet_scop *scop_add_break(struct pet_scop *scop,
374 __isl_take isl_id *id_test, __isl_take isl_set *domain,
375 __isl_take isl_val *inc)
377 isl_multi_pw_aff *prev;
378 int sign = isl_val_sgn(inc);
380 prev = map_to_previous(isl_id_copy(id_test), isl_set_copy(domain), inc);
381 scop = add_implication(scop, id_test, domain, sign, 0);
382 scop = pet_scop_filter(scop, prev, 0);
384 return scop;
387 static struct pet_scop *scop_from_tree(__isl_keep pet_tree *tree,
388 __isl_keep pet_context *pc, struct pet_state *state);
390 /* Construct a pet_scop for an infinite loop around the given body
391 * within the context "pc".
393 * We extract a pet_scop for the body and then embed it in a loop with
394 * iteration domain
396 * { [t] : t >= 0 }
398 * and schedule
400 * { [t] -> [t] }
402 * If the body contains any break, then it is taken into
403 * account in apply_affine_break (if the skip condition is affine)
404 * or in scop_add_break (if the skip condition is not affine).
406 * Note that in case of an affine skip condition,
407 * since we are dealing with a loop without loop iterator,
408 * the skip condition cannot refer to the current loop iterator and
409 * so effectively, the iteration domain is of the form
411 * { [0]; [t] : t >= 1 and not skip }
413 static struct pet_scop *scop_from_infinite_loop(__isl_keep pet_tree *body,
414 __isl_keep pet_context *pc, struct pet_state *state)
416 isl_ctx *ctx;
417 isl_id *id, *id_test;
418 isl_set *domain;
419 isl_set *skip;
420 isl_aff *ident;
421 struct pet_scop *scop;
422 int has_affine_break;
423 int has_var_break;
425 ctx = pet_tree_get_ctx(body);
426 id = isl_id_alloc(ctx, "t", NULL);
427 domain = infinite_domain(isl_id_copy(id));
428 ident = identity_aff(domain);
430 scop = scop_from_tree(body, pc, state);
432 has_affine_break = pet_scop_has_affine_skip(scop, pet_skip_later);
433 if (has_affine_break)
434 skip = pet_scop_get_affine_skip_domain(scop, pet_skip_later);
435 has_var_break = pet_scop_has_var_skip(scop, pet_skip_later);
436 if (has_var_break)
437 id_test = pet_scop_get_skip_id(scop, pet_skip_later);
439 scop = pet_scop_embed(scop, isl_set_copy(domain),
440 isl_aff_copy(ident), ident, id);
441 if (has_affine_break) {
442 domain = apply_affine_break(domain, skip, 1, 0, NULL);
443 scop = pet_scop_intersect_domain_prefix(scop,
444 isl_set_copy(domain));
446 if (has_var_break)
447 scop = scop_add_break(scop, id_test, domain, isl_val_one(ctx));
448 else
449 isl_set_free(domain);
451 return scop;
454 /* Construct a pet_scop for an infinite loop, i.e., a loop of the form
456 * for (;;)
457 * body
459 * within the context "pc".
461 static struct pet_scop *scop_from_infinite_for(__isl_keep pet_tree *tree,
462 __isl_keep pet_context *pc, struct pet_state *state)
464 struct pet_scop *scop;
466 pc = pet_context_copy(pc);
467 pc = pet_context_clear_writes_in_tree(pc, tree->u.l.body);
469 scop = scop_from_infinite_loop(tree->u.l.body, pc, state);
471 pet_context_free(pc);
473 return scop;
476 /* Construct a pet_scop for a while loop of the form
478 * while (pa)
479 * body
481 * within the context "pc".
482 * In particular, construct a scop for an infinite loop around body and
483 * intersect the domain with the affine expression.
484 * Note that this intersection may result in an empty loop.
486 static struct pet_scop *scop_from_affine_while(__isl_keep pet_tree *tree,
487 __isl_take isl_pw_aff *pa, __isl_take pet_context *pc,
488 struct pet_state *state)
490 struct pet_scop *scop;
491 isl_set *dom;
492 isl_set *valid;
494 valid = isl_pw_aff_domain(isl_pw_aff_copy(pa));
495 dom = isl_pw_aff_non_zero_set(pa);
496 scop = scop_from_infinite_loop(tree->u.l.body, pc, state);
497 scop = pet_scop_restrict(scop, isl_set_params(dom));
498 scop = pet_scop_restrict_context(scop, isl_set_params(valid));
500 pet_context_free(pc);
501 return scop;
504 /* Construct a scop for a while, given the scops for the condition
505 * and the body, the filter identifier and the iteration domain of
506 * the while loop.
508 * In particular, the scop for the condition is filtered to depend
509 * on "id_test" evaluating to true for all previous iterations
510 * of the loop, while the scop for the body is filtered to depend
511 * on "id_test" evaluating to true for all iterations up to the
512 * current iteration.
513 * The actual filter only imposes that this virtual array has
514 * value one on the previous or the current iteration.
515 * The fact that this condition also applies to the previous
516 * iterations is enforced by an implication.
518 * These filtered scops are then combined into a single scop.
520 * "sign" is positive if the iterator increases and negative
521 * if it decreases.
523 static struct pet_scop *scop_add_while(struct pet_scop *scop_cond,
524 struct pet_scop *scop_body, __isl_take isl_id *id_test,
525 __isl_take isl_set *domain, __isl_take isl_val *inc)
527 isl_ctx *ctx = isl_set_get_ctx(domain);
528 isl_space *space;
529 isl_multi_pw_aff *test_index;
530 isl_multi_pw_aff *prev;
531 int sign = isl_val_sgn(inc);
532 struct pet_scop *scop;
534 prev = map_to_previous(isl_id_copy(id_test), isl_set_copy(domain), inc);
535 scop_cond = pet_scop_filter(scop_cond, prev, 1);
537 space = isl_space_map_from_set(isl_set_get_space(domain));
538 test_index = isl_multi_pw_aff_identity(space);
539 test_index = isl_multi_pw_aff_set_tuple_id(test_index, isl_dim_out,
540 isl_id_copy(id_test));
541 scop_body = pet_scop_filter(scop_body, test_index, 1);
543 scop = pet_scop_add_seq(ctx, scop_cond, scop_body);
544 scop = add_implication(scop, id_test, domain, sign, 1);
546 return scop;
549 /* Create a pet_scop with a single statement with name S_<stmt_nr>,
550 * evaluating "cond" and writing the result to a virtual scalar,
551 * as expressed by "index".
552 * Do so within the context "pc".
553 * The location of the statement is set to "loc".
555 static struct pet_scop *scop_from_non_affine_condition(
556 __isl_take pet_expr *cond, int stmt_nr,
557 __isl_take isl_multi_pw_aff *index,
558 __isl_take pet_loc *loc, __isl_keep pet_context *pc)
560 pet_expr *expr, *write;
562 write = pet_expr_from_index(index);
563 write = pet_expr_access_set_write(write, 1);
564 write = pet_expr_access_set_read(write, 0);
565 expr = pet_expr_new_binary(1, pet_op_assign, write, cond);
567 return scop_from_expr(expr, NULL, stmt_nr, loc, pc);
570 /* Construct a generic while scop, with iteration domain
571 * { [t] : t >= 0 } around the scop for "tree_body" within the context "pc".
572 * The scop consists of two parts,
573 * one for evaluating the condition "cond" and one for the body.
574 * If "expr_inc" is not NULL, then a scop for evaluating this expression
575 * is added at the end of the body,
576 * after replacing any skip conditions resulting from continue statements
577 * by the skip conditions resulting from break statements (if any).
579 * The schedule is adjusted to reflect that the condition is evaluated
580 * before the body is executed and the body is filtered to depend
581 * on the result of the condition evaluating to true on all iterations
582 * up to the current iteration, while the evaluation of the condition itself
583 * is filtered to depend on the result of the condition evaluating to true
584 * on all previous iterations.
585 * The context of the scop representing the body is dropped
586 * because we don't know how many times the body will be executed,
587 * if at all.
589 * If the body contains any break, then it is taken into
590 * account in apply_affine_break (if the skip condition is affine)
591 * or in scop_add_break (if the skip condition is not affine).
593 * Note that in case of an affine skip condition,
594 * since we are dealing with a loop without loop iterator,
595 * the skip condition cannot refer to the current loop iterator and
596 * so effectively, the iteration domain is of the form
598 * { [0]; [t] : t >= 1 and not skip }
600 static struct pet_scop *scop_from_non_affine_while(__isl_take pet_expr *cond,
601 __isl_take pet_loc *loc, __isl_keep pet_tree *tree_body,
602 __isl_take pet_expr *expr_inc, __isl_take pet_context *pc,
603 struct pet_state *state)
605 isl_ctx *ctx;
606 isl_id *id, *id_test, *id_break_test;
607 isl_space *space;
608 isl_multi_pw_aff *test_index;
609 isl_set *domain;
610 isl_set *skip;
611 isl_aff *ident;
612 struct pet_scop *scop, *scop_body;
613 int has_affine_break;
614 int has_var_break;
616 ctx = state->ctx;
617 space = pet_context_get_space(pc);
618 test_index = pet_create_test_index(space, state->n_test++);
619 scop = scop_from_non_affine_condition(cond, state->n_stmt++,
620 isl_multi_pw_aff_copy(test_index),
621 pet_loc_copy(loc), pc);
622 id_test = isl_multi_pw_aff_get_tuple_id(test_index, isl_dim_out);
623 domain = pet_context_get_domain(pc);
624 scop = pet_scop_add_boolean_array(scop, domain,
625 test_index, state->int_size);
627 id = isl_id_alloc(ctx, "t", NULL);
628 domain = infinite_domain(isl_id_copy(id));
629 ident = identity_aff(domain);
631 scop_body = scop_from_tree(tree_body, pc, state);
633 has_affine_break = pet_scop_has_affine_skip(scop_body, pet_skip_later);
634 if (has_affine_break)
635 skip = pet_scop_get_affine_skip_domain(scop_body,
636 pet_skip_later);
637 has_var_break = pet_scop_has_var_skip(scop_body, pet_skip_later);
638 if (has_var_break)
639 id_break_test = pet_scop_get_skip_id(scop_body, pet_skip_later);
641 scop = pet_scop_prefix(scop, 0);
642 scop = pet_scop_embed(scop, isl_set_copy(domain), isl_aff_copy(ident),
643 isl_aff_copy(ident), isl_id_copy(id));
644 scop_body = pet_scop_reset_context(scop_body);
645 scop_body = pet_scop_prefix(scop_body, 1);
646 if (expr_inc) {
647 struct pet_scop *scop_inc;
648 scop_inc = scop_from_expr(expr_inc, NULL, state->n_stmt++,
649 loc, pc);
650 scop_inc = pet_scop_prefix(scop_inc, 2);
651 if (pet_scop_has_skip(scop_body, pet_skip_later)) {
652 isl_multi_pw_aff *skip;
653 skip = pet_scop_get_skip(scop_body, pet_skip_later);
654 scop_body = pet_scop_set_skip(scop_body,
655 pet_skip_now, skip);
656 } else
657 pet_scop_reset_skip(scop_body, pet_skip_now);
658 scop_body = pet_scop_add_seq(ctx, scop_body, scop_inc);
659 } else
660 pet_loc_free(loc);
661 scop_body = pet_scop_embed(scop_body, isl_set_copy(domain),
662 isl_aff_copy(ident), ident, id);
664 if (has_affine_break) {
665 domain = apply_affine_break(domain, skip, 1, 0, NULL);
666 scop = pet_scop_intersect_domain_prefix(scop,
667 isl_set_copy(domain));
668 scop_body = pet_scop_intersect_domain_prefix(scop_body,
669 isl_set_copy(domain));
671 if (has_var_break) {
672 scop = scop_add_break(scop, isl_id_copy(id_break_test),
673 isl_set_copy(domain), isl_val_one(ctx));
674 scop_body = scop_add_break(scop_body, id_break_test,
675 isl_set_copy(domain), isl_val_one(ctx));
677 scop = scop_add_while(scop, scop_body, id_test, domain,
678 isl_val_one(ctx));
680 pet_context_free(pc);
681 return scop;
684 /* Check if the while loop is of the form
686 * while (affine expression)
687 * body
689 * If so, call scop_from_affine_while to construct a scop.
691 * Otherwise, pass control to scop_from_non_affine_while.
693 * "pc" is the context in which the affine expressions in the scop are created.
695 static struct pet_scop *scop_from_while(__isl_keep pet_tree *tree,
696 __isl_keep pet_context *pc, struct pet_state *state)
698 pet_expr *cond_expr;
699 isl_pw_aff *pa;
701 if (!tree)
702 return NULL;
704 pc = pet_context_copy(pc);
705 pc = pet_context_clear_writes_in_tree(pc, tree->u.l.body);
707 cond_expr = pet_expr_copy(tree->u.l.cond);
708 cond_expr = pet_expr_plug_in_args(cond_expr, pc);
709 pa = pet_expr_extract_affine_condition(cond_expr, pc);
710 pet_expr_free(cond_expr);
712 if (!pa)
713 goto error;
715 if (!isl_pw_aff_involves_nan(pa))
716 return scop_from_affine_while(tree, pa, pc, state);
717 isl_pw_aff_free(pa);
718 return scop_from_non_affine_while(pet_expr_copy(tree->u.l.cond),
719 pet_tree_get_loc(tree), tree->u.l.body, NULL,
720 pc, state);
721 error:
722 pet_context_free(pc);
723 return NULL;
726 /* Check whether "cond" expresses a simple loop bound
727 * on the only set dimension.
728 * In particular, if "up" is set then "cond" should contain only
729 * upper bounds on the set dimension.
730 * Otherwise, it should contain only lower bounds.
732 static int is_simple_bound(__isl_keep isl_set *cond, __isl_keep isl_val *inc)
734 if (isl_val_is_pos(inc))
735 return !isl_set_dim_has_any_lower_bound(cond, isl_dim_set, 0);
736 else
737 return !isl_set_dim_has_any_upper_bound(cond, isl_dim_set, 0);
740 /* Extend a condition on a given iteration of a loop to one that
741 * imposes the same condition on all previous iterations.
742 * "domain" expresses the lower [upper] bound on the iterations
743 * when inc is positive [negative].
745 * In particular, we construct the condition (when inc is positive)
747 * forall i' : (domain(i') and i' <= i) => cond(i')
749 * which is equivalent to
751 * not exists i' : domain(i') and i' <= i and not cond(i')
753 * We construct this set by negating cond, applying a map
755 * { [i'] -> [i] : domain(i') and i' <= i }
757 * and then negating the result again.
759 static __isl_give isl_set *valid_for_each_iteration(__isl_take isl_set *cond,
760 __isl_take isl_set *domain, __isl_take isl_val *inc)
762 isl_map *previous_to_this;
764 if (isl_val_is_pos(inc))
765 previous_to_this = isl_map_lex_le(isl_set_get_space(domain));
766 else
767 previous_to_this = isl_map_lex_ge(isl_set_get_space(domain));
769 previous_to_this = isl_map_intersect_domain(previous_to_this, domain);
771 cond = isl_set_complement(cond);
772 cond = isl_set_apply(cond, previous_to_this);
773 cond = isl_set_complement(cond);
775 isl_val_free(inc);
777 return cond;
780 /* Construct a domain of the form
782 * [id] -> { : exists a: id = init + a * inc and a >= 0 }
784 static __isl_give isl_set *strided_domain(__isl_take isl_id *id,
785 __isl_take isl_pw_aff *init, __isl_take isl_val *inc)
787 isl_aff *aff;
788 isl_space *dim;
789 isl_set *set;
791 init = isl_pw_aff_insert_dims(init, isl_dim_in, 0, 1);
792 dim = isl_pw_aff_get_domain_space(init);
793 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
794 aff = isl_aff_add_coefficient_val(aff, isl_dim_in, 0, inc);
795 init = isl_pw_aff_add(init, isl_pw_aff_from_aff(aff));
797 dim = isl_space_set_alloc(isl_pw_aff_get_ctx(init), 1, 1);
798 dim = isl_space_set_dim_id(dim, isl_dim_param, 0, id);
799 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
800 aff = isl_aff_add_coefficient_si(aff, isl_dim_param, 0, 1);
802 set = isl_pw_aff_eq_set(isl_pw_aff_from_aff(aff), init);
804 set = isl_set_lower_bound_si(set, isl_dim_set, 0, 0);
806 return isl_set_params(set);
809 /* Assuming "cond" represents a bound on a loop where the loop
810 * iterator "iv" is incremented (or decremented) by one, check if wrapping
811 * is possible.
813 * Under the given assumptions, wrapping is only possible if "cond" allows
814 * for the last value before wrapping, i.e., 2^width - 1 in case of an
815 * increasing iterator and 0 in case of a decreasing iterator.
817 static int can_wrap(__isl_keep isl_set *cond, __isl_keep pet_expr *iv,
818 __isl_keep isl_val *inc)
820 int cw;
821 isl_ctx *ctx;
822 isl_val *limit;
823 isl_set *test;
825 test = isl_set_copy(cond);
827 ctx = isl_set_get_ctx(test);
828 if (isl_val_is_neg(inc))
829 limit = isl_val_zero(ctx);
830 else {
831 limit = isl_val_int_from_ui(ctx, pet_expr_get_type_size(iv));
832 limit = isl_val_2exp(limit);
833 limit = isl_val_sub_ui(limit, 1);
836 test = isl_set_fix_val(cond, isl_dim_set, 0, limit);
837 cw = !isl_set_is_empty(test);
838 isl_set_free(test);
840 return cw;
843 /* Given a one-dimensional space, construct the following affine expression
844 * on this space
846 * { [v] -> [v mod 2^width] }
848 * where width is the number of bits used to represent the values
849 * of the unsigned variable "iv".
851 static __isl_give isl_aff *compute_wrapping(__isl_take isl_space *dim,
852 __isl_keep pet_expr *iv)
854 isl_ctx *ctx;
855 isl_val *mod;
856 isl_aff *aff;
858 ctx = isl_space_get_ctx(dim);
859 mod = isl_val_int_from_ui(ctx, pet_expr_get_type_size(iv));
860 mod = isl_val_2exp(mod);
862 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
863 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
864 aff = isl_aff_mod_val(aff, mod);
866 return aff;
869 /* Project out the parameter "id" from "set".
871 static __isl_give isl_set *set_project_out_by_id(__isl_take isl_set *set,
872 __isl_keep isl_id *id)
874 int pos;
876 pos = isl_set_find_dim_by_id(set, isl_dim_param, id);
877 if (pos >= 0)
878 set = isl_set_project_out(set, isl_dim_param, pos, 1);
880 return set;
883 /* Compute the set of parameters for which "set1" is a subset of "set2".
885 * set1 is a subset of set2 if
887 * forall i in set1 : i in set2
889 * or
891 * not exists i in set1 and i not in set2
893 * i.e.,
895 * not exists i in set1 \ set2
897 static __isl_give isl_set *enforce_subset(__isl_take isl_set *set1,
898 __isl_take isl_set *set2)
900 return isl_set_complement(isl_set_params(isl_set_subtract(set1, set2)));
903 /* Compute the set of parameter values for which "cond" holds
904 * on the next iteration for each element of "dom".
906 * We first construct mapping { [i] -> [i + inc] }, apply that to "dom"
907 * and then compute the set of parameters for which the result is a subset
908 * of "cond".
910 static __isl_give isl_set *valid_on_next(__isl_take isl_set *cond,
911 __isl_take isl_set *dom, __isl_take isl_val *inc)
913 isl_space *space;
914 isl_aff *aff;
915 isl_map *next;
917 space = isl_set_get_space(dom);
918 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
919 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
920 aff = isl_aff_add_constant_val(aff, inc);
921 next = isl_map_from_basic_map(isl_basic_map_from_aff(aff));
923 dom = isl_set_apply(dom, next);
925 return enforce_subset(dom, cond);
928 /* Extract the for loop "tree" as a while loop within the context "pc".
930 * That is, the for loop has the form
932 * for (iv = init; cond; iv += inc)
933 * body;
935 * and is treated as
937 * iv = init;
938 * while (cond) {
939 * body;
940 * iv += inc;
943 * except that the skips resulting from any continue statements
944 * in body do not apply to the increment, but are replaced by the skips
945 * resulting from break statements.
947 * If the loop iterator is declared in the for loop, then it is killed before
948 * and after the loop.
950 static struct pet_scop *scop_from_non_affine_for(__isl_keep pet_tree *tree,
951 __isl_take pet_context *pc, struct pet_state *state)
953 int declared;
954 isl_id *iv;
955 pet_expr *expr_iv, *init, *inc;
956 struct pet_scop *scop_init, *scop;
957 int type_size;
958 struct pet_array *array;
959 struct pet_scop *scop_kill;
961 iv = pet_expr_access_get_id(tree->u.l.iv);
962 pc = pet_context_mark_assigned(pc, iv);
964 declared = tree->u.l.declared;
966 expr_iv = pet_expr_copy(tree->u.l.iv);
967 type_size = pet_expr_get_type_size(expr_iv);
968 init = pet_expr_copy(tree->u.l.init);
969 init = pet_expr_new_binary(type_size, pet_op_assign, expr_iv, init);
970 scop_init = scop_from_expr(init, NULL, state->n_stmt++,
971 pet_tree_get_loc(tree), pc);
972 scop_init = pet_scop_prefix(scop_init, declared);
974 expr_iv = pet_expr_copy(tree->u.l.iv);
975 type_size = pet_expr_get_type_size(expr_iv);
976 inc = pet_expr_copy(tree->u.l.inc);
977 inc = pet_expr_new_binary(type_size, pet_op_add_assign, expr_iv, inc);
979 scop = scop_from_non_affine_while(pet_expr_copy(tree->u.l.cond),
980 pet_tree_get_loc(tree), tree->u.l.body, inc,
981 pet_context_copy(pc), state);
983 scop = pet_scop_prefix(scop, declared + 1);
984 scop = pet_scop_add_seq(state->ctx, scop_init, scop);
986 if (!declared) {
987 pet_context_free(pc);
988 return scop;
991 array = extract_array(tree->u.l.iv, pc, state);
992 if (array)
993 array->declared = 1;
994 scop_kill = kill(pet_tree_get_loc(tree), array, pc, state);
995 scop_kill = pet_scop_prefix(scop_kill, 0);
996 scop = pet_scop_add_seq(state->ctx, scop_kill, scop);
997 scop_kill = kill(pet_tree_get_loc(tree), array, pc, state);
998 scop_kill = pet_scop_add_array(scop_kill, array);
999 scop_kill = pet_scop_prefix(scop_kill, 3);
1000 scop = pet_scop_add_seq(state->ctx, scop, scop_kill);
1002 pet_context_free(pc);
1003 return scop;
1006 /* Given an access expression "expr", is the variable accessed by
1007 * "expr" assigned anywhere inside "tree"?
1009 static int is_assigned(__isl_keep pet_expr *expr, __isl_keep pet_tree *tree)
1011 int assigned = 0;
1012 isl_id *id;
1014 id = pet_expr_access_get_id(expr);
1015 assigned = pet_tree_writes(tree, id);
1016 isl_id_free(id);
1018 return assigned;
1021 /* Are all nested access parameters in "pa" allowed given "tree".
1022 * In particular, is none of them written by anywhere inside "tree".
1024 * If "tree" has any continue nodes in the current loop level,
1025 * then no nested access parameters are allowed.
1026 * In particular, if there is any nested access in a guard
1027 * for a piece of code containing a "continue", then we want to introduce
1028 * a separate statement for evaluating this guard so that we can express
1029 * that the result is false for all previous iterations.
1031 static int is_nested_allowed(__isl_keep isl_pw_aff *pa,
1032 __isl_keep pet_tree *tree)
1034 int i, nparam;
1036 if (!tree)
1037 return -1;
1039 if (!pet_nested_any_in_pw_aff(pa))
1040 return 1;
1042 if (pet_tree_has_continue(tree))
1043 return 0;
1045 nparam = isl_pw_aff_dim(pa, isl_dim_param);
1046 for (i = 0; i < nparam; ++i) {
1047 isl_id *id = isl_pw_aff_get_dim_id(pa, isl_dim_param, i);
1048 pet_expr *expr;
1049 int allowed;
1051 if (!pet_nested_in_id(id)) {
1052 isl_id_free(id);
1053 continue;
1056 expr = pet_nested_extract_expr(id);
1057 allowed = pet_expr_get_type(expr) == pet_expr_access &&
1058 !is_assigned(expr, tree);
1060 pet_expr_free(expr);
1061 isl_id_free(id);
1063 if (!allowed)
1064 return 0;
1067 return 1;
1070 /* Construct a pet_scop for a for tree with static affine initialization
1071 * and constant increment within the context "pc".
1073 * The condition is allowed to contain nested accesses, provided
1074 * they are not being written to inside the body of the loop.
1075 * Otherwise, or if the condition is otherwise non-affine, the for loop is
1076 * essentially treated as a while loop, with iteration domain
1077 * { [i] : i >= init }.
1079 * We extract a pet_scop for the body and then embed it in a loop with
1080 * iteration domain and schedule
1082 * { [i] : i >= init and condition' }
1083 * { [i] -> [i] }
1085 * or
1087 * { [i] : i <= init and condition' }
1088 * { [i] -> [-i] }
1090 * Where condition' is equal to condition if the latter is
1091 * a simple upper [lower] bound and a condition that is extended
1092 * to apply to all previous iterations otherwise.
1094 * If the condition is non-affine, then we drop the condition from the
1095 * iteration domain and instead create a separate statement
1096 * for evaluating the condition. The body is then filtered to depend
1097 * on the result of the condition evaluating to true on all iterations
1098 * up to the current iteration, while the evaluation the condition itself
1099 * is filtered to depend on the result of the condition evaluating to true
1100 * on all previous iterations.
1101 * The context of the scop representing the body is dropped
1102 * because we don't know how many times the body will be executed,
1103 * if at all.
1105 * If the stride of the loop is not 1, then "i >= init" is replaced by
1107 * (exists a: i = init + stride * a and a >= 0)
1109 * If the loop iterator i is unsigned, then wrapping may occur.
1110 * We therefore use a virtual iterator instead that does not wrap.
1111 * However, the condition in the code applies
1112 * to the wrapped value, so we need to change condition(i)
1113 * into condition([i % 2^width]). Similarly, we replace all accesses
1114 * to the original iterator by the wrapping of the virtual iterator.
1115 * Note that there may be no need to perform this final wrapping
1116 * if the loop condition (after wrapping) satisfies certain conditions.
1117 * However, the is_simple_bound condition is not enough since it doesn't
1118 * check if there even is an upper bound.
1120 * Wrapping on unsigned iterators can be avoided entirely if
1121 * loop condition is simple, the loop iterator is incremented
1122 * [decremented] by one and the last value before wrapping cannot
1123 * possibly satisfy the loop condition.
1125 * Valid parameters for a for loop are those for which the initial
1126 * value itself, the increment on each domain iteration and
1127 * the condition on both the initial value and
1128 * the result of incrementing the iterator for each iteration of the domain
1129 * can be evaluated.
1130 * If the loop condition is non-affine, then we only consider validity
1131 * of the initial value.
1133 * If the body contains any break, then we keep track of it in "skip"
1134 * (if the skip condition is affine) or it is handled in scop_add_break
1135 * (if the skip condition is not affine).
1136 * Note that the affine break condition needs to be considered with
1137 * respect to previous iterations in the virtual domain (if any).
1139 static struct pet_scop *scop_from_affine_for(__isl_keep pet_tree *tree,
1140 __isl_take isl_pw_aff *init_val, __isl_take isl_pw_aff *pa_inc,
1141 __isl_take isl_val *inc, __isl_take pet_context *pc,
1142 struct pet_state *state)
1144 isl_local_space *ls;
1145 isl_set *domain;
1146 isl_aff *sched;
1147 isl_set *cond = NULL;
1148 isl_set *skip = NULL;
1149 isl_id *id, *id_test = NULL, *id_break_test;
1150 struct pet_scop *scop, *scop_cond = NULL;
1151 int is_one;
1152 int is_unsigned;
1153 int is_simple;
1154 int is_virtual;
1155 int is_non_affine;
1156 int has_affine_break;
1157 int has_var_break;
1158 isl_map *rev_wrap = NULL;
1159 isl_aff *wrap = NULL;
1160 isl_pw_aff *pa;
1161 isl_set *valid_init;
1162 isl_set *valid_cond;
1163 isl_set *valid_cond_init;
1164 isl_set *valid_cond_next;
1165 isl_set *valid_inc;
1166 pet_expr *cond_expr;
1167 pet_context *pc_nested;
1169 id = pet_expr_access_get_id(tree->u.l.iv);
1171 cond_expr = pet_expr_copy(tree->u.l.cond);
1172 cond_expr = pet_expr_plug_in_args(cond_expr, pc);
1173 pc_nested = pet_context_copy(pc);
1174 pc_nested = pet_context_set_allow_nested(pc_nested, 1);
1175 pa = pet_expr_extract_affine_condition(cond_expr, pc_nested);
1176 pet_context_free(pc_nested);
1177 pet_expr_free(cond_expr);
1179 valid_inc = isl_pw_aff_domain(pa_inc);
1181 is_unsigned = pet_expr_get_type_size(tree->u.l.iv) > 0;
1183 is_non_affine = isl_pw_aff_involves_nan(pa) ||
1184 !is_nested_allowed(pa, tree->u.l.body);
1185 if (is_non_affine)
1186 pa = isl_pw_aff_free(pa);
1188 valid_cond = isl_pw_aff_domain(isl_pw_aff_copy(pa));
1189 cond = isl_pw_aff_non_zero_set(pa);
1190 if (is_non_affine)
1191 cond = isl_set_universe(isl_space_set_alloc(state->ctx, 0, 0));
1193 cond = embed(cond, isl_id_copy(id));
1194 valid_cond = isl_set_coalesce(valid_cond);
1195 valid_cond = embed(valid_cond, isl_id_copy(id));
1196 valid_inc = embed(valid_inc, isl_id_copy(id));
1197 is_one = isl_val_is_one(inc) || isl_val_is_negone(inc);
1198 is_virtual = is_unsigned &&
1199 (!is_one || can_wrap(cond, tree->u.l.iv, inc));
1201 valid_cond_init = enforce_subset(
1202 isl_map_range(isl_map_from_pw_aff(isl_pw_aff_copy(init_val))),
1203 isl_set_copy(valid_cond));
1204 if (is_one && !is_virtual) {
1205 isl_pw_aff_free(init_val);
1206 pa = pet_expr_extract_comparison(
1207 isl_val_is_pos(inc) ? pet_op_ge : pet_op_le,
1208 tree->u.l.iv, tree->u.l.init, pc);
1209 valid_init = isl_pw_aff_domain(isl_pw_aff_copy(pa));
1210 valid_init = set_project_out_by_id(valid_init, id);
1211 domain = isl_pw_aff_non_zero_set(pa);
1212 } else {
1213 valid_init = isl_pw_aff_domain(isl_pw_aff_copy(init_val));
1214 domain = strided_domain(isl_id_copy(id), init_val,
1215 isl_val_copy(inc));
1218 domain = embed(domain, isl_id_copy(id));
1219 if (is_virtual) {
1220 wrap = compute_wrapping(isl_set_get_space(cond), tree->u.l.iv);
1221 rev_wrap = isl_map_from_aff(isl_aff_copy(wrap));
1222 rev_wrap = isl_map_reverse(rev_wrap);
1223 cond = isl_set_apply(cond, isl_map_copy(rev_wrap));
1224 valid_cond = isl_set_apply(valid_cond, isl_map_copy(rev_wrap));
1225 valid_inc = isl_set_apply(valid_inc, isl_map_copy(rev_wrap));
1227 is_simple = is_simple_bound(cond, inc);
1228 if (!is_simple) {
1229 cond = isl_set_gist(cond, isl_set_copy(domain));
1230 is_simple = is_simple_bound(cond, inc);
1232 if (!is_simple)
1233 cond = valid_for_each_iteration(cond,
1234 isl_set_copy(domain), isl_val_copy(inc));
1235 domain = isl_set_intersect(domain, cond);
1236 domain = isl_set_set_dim_id(domain, isl_dim_set, 0, isl_id_copy(id));
1237 ls = isl_local_space_from_space(isl_set_get_space(domain));
1238 sched = isl_aff_var_on_domain(ls, isl_dim_set, 0);
1239 if (isl_val_is_neg(inc))
1240 sched = isl_aff_neg(sched);
1242 valid_cond_next = valid_on_next(valid_cond, isl_set_copy(domain),
1243 isl_val_copy(inc));
1244 valid_inc = enforce_subset(isl_set_copy(domain), valid_inc);
1246 if (!is_virtual)
1247 wrap = identity_aff(domain);
1249 if (is_non_affine) {
1250 isl_space *space;
1251 isl_multi_pw_aff *test_index;
1252 space = pet_context_get_space(pc);
1253 test_index = pet_create_test_index(space, state->n_test++);
1254 scop_cond = scop_from_non_affine_condition(
1255 pet_expr_copy(tree->u.l.cond), state->n_stmt++,
1256 isl_multi_pw_aff_copy(test_index),
1257 pet_tree_get_loc(tree), pc);
1258 id_test = isl_multi_pw_aff_get_tuple_id(test_index,
1259 isl_dim_out);
1260 scop_cond = pet_scop_add_boolean_array(scop_cond,
1261 pet_context_get_domain(pc), test_index,
1262 state->int_size);
1263 scop_cond = pet_scop_prefix(scop_cond, 0);
1264 scop_cond = pet_scop_embed(scop_cond, isl_set_copy(domain),
1265 isl_aff_copy(sched), isl_aff_copy(wrap),
1266 isl_id_copy(id));
1269 scop = scop_from_tree(tree->u.l.body, pc, state);
1270 has_affine_break = scop &&
1271 pet_scop_has_affine_skip(scop, pet_skip_later);
1272 if (has_affine_break)
1273 skip = pet_scop_get_affine_skip_domain(scop, pet_skip_later);
1274 has_var_break = scop && pet_scop_has_var_skip(scop, pet_skip_later);
1275 if (has_var_break)
1276 id_break_test = pet_scop_get_skip_id(scop, pet_skip_later);
1277 if (is_non_affine) {
1278 scop = pet_scop_reset_context(scop);
1279 scop = pet_scop_prefix(scop, 1);
1281 scop = pet_scop_embed(scop, isl_set_copy(domain), sched, wrap, id);
1282 scop = pet_scop_resolve_nested(scop);
1283 if (has_affine_break) {
1284 domain = apply_affine_break(domain, skip, isl_val_sgn(inc),
1285 is_virtual, rev_wrap);
1286 scop = pet_scop_intersect_domain_prefix(scop,
1287 isl_set_copy(domain));
1289 isl_map_free(rev_wrap);
1290 if (has_var_break)
1291 scop = scop_add_break(scop, id_break_test, isl_set_copy(domain),
1292 isl_val_copy(inc));
1293 if (is_non_affine) {
1294 scop = scop_add_while(scop_cond, scop, id_test, domain,
1295 isl_val_copy(inc));
1296 isl_set_free(valid_inc);
1297 } else {
1298 scop = pet_scop_restrict_context(scop, valid_inc);
1299 scop = pet_scop_restrict_context(scop, valid_cond_next);
1300 scop = pet_scop_restrict_context(scop, valid_cond_init);
1301 isl_set_free(domain);
1304 isl_val_free(inc);
1306 scop = pet_scop_restrict_context(scop, isl_set_params(valid_init));
1308 pet_context_free(pc);
1309 return scop;
1312 /* Construct a pet_scop for a for statement within the context of "pc".
1314 * We update the context to reflect the writes to the loop variable and
1315 * the writes inside the body.
1317 * Then we check if the initialization of the for loop
1318 * is a static affine value and the increment is a constant.
1319 * If so, we construct the pet_scop using scop_from_affine_for.
1320 * Otherwise, we treat the for loop as a while loop
1321 * in scop_from_non_affine_for.
1323 static struct pet_scop *scop_from_for(__isl_keep pet_tree *tree,
1324 __isl_keep pet_context *pc, struct pet_state *state)
1326 isl_id *iv;
1327 isl_val *inc;
1328 isl_pw_aff *pa_inc, *init_val;
1329 pet_context *pc_init_val;
1331 if (!tree)
1332 return NULL;
1334 iv = pet_expr_access_get_id(tree->u.l.iv);
1335 pc = pet_context_copy(pc);
1336 pc = pet_context_clear_value(pc, iv);
1337 pc = pet_context_clear_writes_in_tree(pc, tree->u.l.body);
1339 pc_init_val = pet_context_copy(pc);
1340 pc_init_val = pet_context_mark_unknown(pc_init_val, isl_id_copy(iv));
1341 init_val = pet_expr_extract_affine(tree->u.l.init, pc_init_val);
1342 pet_context_free(pc_init_val);
1343 pa_inc = pet_expr_extract_affine(tree->u.l.inc, pc);
1344 inc = pet_extract_cst(pa_inc);
1345 if (!pa_inc || !init_val || !inc)
1346 goto error;
1347 if (!isl_pw_aff_involves_nan(pa_inc) &&
1348 !isl_pw_aff_involves_nan(init_val) && !isl_val_is_nan(inc))
1349 return scop_from_affine_for(tree, init_val, pa_inc, inc,
1350 pc, state);
1352 isl_pw_aff_free(pa_inc);
1353 isl_pw_aff_free(init_val);
1354 isl_val_free(inc);
1355 return scop_from_non_affine_for(tree, pc, state);
1356 error:
1357 isl_pw_aff_free(pa_inc);
1358 isl_pw_aff_free(init_val);
1359 isl_val_free(inc);
1360 pet_context_free(pc);
1361 return NULL;
1364 /* Check whether "expr" is an affine constraint within the context "pc".
1366 static int is_affine_condition(__isl_keep pet_expr *expr,
1367 __isl_keep pet_context *pc)
1369 isl_pw_aff *pa;
1370 int is_affine;
1372 pa = pet_expr_extract_affine_condition(expr, pc);
1373 if (!pa)
1374 return -1;
1375 is_affine = !isl_pw_aff_involves_nan(pa);
1376 isl_pw_aff_free(pa);
1378 return is_affine;
1381 /* Check if the given if statement is a conditional assignement
1382 * with a non-affine condition.
1384 * In particular we check if "stmt" is of the form
1386 * if (condition)
1387 * a = f(...);
1388 * else
1389 * a = g(...);
1391 * where the condition is non-affine and a is some array or scalar access.
1393 static int is_conditional_assignment(__isl_keep pet_tree *tree,
1394 __isl_keep pet_context *pc)
1396 int equal;
1397 isl_ctx *ctx;
1398 pet_expr *expr1, *expr2;
1400 ctx = pet_tree_get_ctx(tree);
1401 if (!pet_options_get_detect_conditional_assignment(ctx))
1402 return 0;
1403 if (tree->type != pet_tree_if_else)
1404 return 0;
1405 if (tree->u.i.then_body->type != pet_tree_expr)
1406 return 0;
1407 if (tree->u.i.else_body->type != pet_tree_expr)
1408 return 0;
1409 expr1 = tree->u.i.then_body->u.e.expr;
1410 expr2 = tree->u.i.else_body->u.e.expr;
1411 if (pet_expr_get_type(expr1) != pet_expr_op)
1412 return 0;
1413 if (pet_expr_get_type(expr2) != pet_expr_op)
1414 return 0;
1415 if (pet_expr_op_get_type(expr1) != pet_op_assign)
1416 return 0;
1417 if (pet_expr_op_get_type(expr2) != pet_op_assign)
1418 return 0;
1419 expr1 = pet_expr_get_arg(expr1, 0);
1420 expr2 = pet_expr_get_arg(expr2, 0);
1421 equal = pet_expr_is_equal(expr1, expr2);
1422 pet_expr_free(expr1);
1423 pet_expr_free(expr2);
1424 if (equal < 0 || !equal)
1425 return 0;
1426 if (is_affine_condition(tree->u.i.cond, pc))
1427 return 0;
1429 return 1;
1432 /* Given that "tree" is of the form
1434 * if (condition)
1435 * a = f(...);
1436 * else
1437 * a = g(...);
1439 * where a is some array or scalar access, construct a pet_scop
1440 * corresponding to this conditional assignment within the context "pc".
1442 * The constructed pet_scop then corresponds to the expression
1444 * a = condition ? f(...) : g(...)
1446 * All access relations in f(...) are intersected with condition
1447 * while all access relation in g(...) are intersected with the complement.
1449 static struct pet_scop *scop_from_conditional_assignment(
1450 __isl_keep pet_tree *tree, __isl_take pet_context *pc,
1451 struct pet_state *state)
1453 int type_size;
1454 isl_pw_aff *pa;
1455 isl_set *cond, *comp;
1456 isl_multi_pw_aff *index;
1457 pet_expr *expr1, *expr2;
1458 pet_expr *pe_cond, *pe_then, *pe_else, *pe, *pe_write;
1459 pet_context *pc_nested;
1460 struct pet_scop *scop;
1462 pe_cond = pet_expr_copy(tree->u.i.cond);
1463 pe_cond = pet_expr_plug_in_args(pe_cond, pc);
1464 pc_nested = pet_context_copy(pc);
1465 pc_nested = pet_context_set_allow_nested(pc_nested, 1);
1466 pa = pet_expr_extract_affine_condition(pe_cond, pc_nested);
1467 pet_context_free(pc_nested);
1468 pet_expr_free(pe_cond);
1469 cond = isl_pw_aff_non_zero_set(isl_pw_aff_copy(pa));
1470 comp = isl_pw_aff_zero_set(isl_pw_aff_copy(pa));
1471 index = isl_multi_pw_aff_from_pw_aff(pa);
1473 expr1 = tree->u.i.then_body->u.e.expr;
1474 expr2 = tree->u.i.else_body->u.e.expr;
1476 pe_cond = pet_expr_from_index(index);
1478 pe_then = pet_expr_get_arg(expr1, 1);
1479 pe_then = pet_expr_restrict(pe_then, cond);
1480 pe_else = pet_expr_get_arg(expr2, 1);
1481 pe_else = pet_expr_restrict(pe_else, comp);
1482 pe_write = pet_expr_get_arg(expr1, 0);
1484 pe = pet_expr_new_ternary(pe_cond, pe_then, pe_else);
1485 type_size = pet_expr_get_type_size(pe_write);
1486 pe = pet_expr_new_binary(type_size, pet_op_assign, pe_write, pe);
1488 scop = scop_from_expr(pe, NULL, state->n_stmt++,
1489 pet_tree_get_loc(tree), pc);
1491 pet_context_free(pc);
1493 return scop;
1496 /* Construct a pet_scop for a non-affine if statement within the context "pc".
1498 * We create a separate statement that writes the result
1499 * of the non-affine condition to a virtual scalar.
1500 * A constraint requiring the value of this virtual scalar to be one
1501 * is added to the iteration domains of the then branch.
1502 * Similarly, a constraint requiring the value of this virtual scalar
1503 * to be zero is added to the iteration domains of the else branch, if any.
1504 * We adjust the schedules to ensure that the virtual scalar is written
1505 * before it is read.
1507 * If there are any breaks or continues in the then and/or else
1508 * branches, then we may have to compute a new skip condition.
1509 * This is handled using a pet_skip_info object.
1510 * On initialization, the object checks if skip conditions need
1511 * to be computed. If so, it does so in pet_skip_info_if_extract_index and
1512 * adds them in pet_skip_info_if_add.
1514 static struct pet_scop *scop_from_non_affine_if(__isl_keep pet_tree *tree,
1515 __isl_take pet_context *pc, struct pet_state *state)
1517 int has_else;
1518 isl_space *space;
1519 isl_set *domain;
1520 isl_multi_pw_aff *test_index;
1521 struct pet_skip_info skip;
1522 struct pet_scop *scop, *scop_then, *scop_else = NULL;
1524 has_else = tree->type == pet_tree_if_else;
1526 space = pet_context_get_space(pc);
1527 test_index = pet_create_test_index(space, state->n_test++);
1528 scop = scop_from_non_affine_condition(pet_expr_copy(tree->u.i.cond),
1529 state->n_stmt++, isl_multi_pw_aff_copy(test_index),
1530 pet_tree_get_loc(tree), pc);
1531 domain = pet_context_get_domain(pc);
1532 scop = pet_scop_add_boolean_array(scop, domain,
1533 isl_multi_pw_aff_copy(test_index), state->int_size);
1535 scop_then = scop_from_tree(tree->u.i.then_body, pc, state);
1536 if (has_else)
1537 scop_else = scop_from_tree(tree->u.i.else_body, pc, state);
1539 pet_skip_info_if_init(&skip, state->ctx, scop_then, scop_else,
1540 has_else, 0);
1541 pet_skip_info_if_extract_index(&skip, test_index, pc, state);
1543 scop = pet_scop_prefix(scop, 0);
1544 scop_then = pet_scop_prefix(scop_then, 1);
1545 scop_then = pet_scop_filter(scop_then,
1546 isl_multi_pw_aff_copy(test_index), 1);
1547 if (has_else) {
1548 scop_else = pet_scop_prefix(scop_else, 1);
1549 scop_else = pet_scop_filter(scop_else, test_index, 0);
1550 scop_then = pet_scop_add_par(state->ctx, scop_then, scop_else);
1551 } else
1552 isl_multi_pw_aff_free(test_index);
1554 scop = pet_scop_add_seq(state->ctx, scop, scop_then);
1556 scop = pet_skip_info_if_add(&skip, scop, 2);
1558 pet_context_free(pc);
1559 return scop;
1562 /* Construct a pet_scop for an affine if statement within the context "pc".
1564 * The condition is added to the iteration domains of the then branch,
1565 * while the opposite of the condition in added to the iteration domains
1566 * of the else branch, if any.
1568 * If there are any breaks or continues in the then and/or else
1569 * branches, then we may have to compute a new skip condition.
1570 * This is handled using a pet_skip_info_if object.
1571 * On initialization, the object checks if skip conditions need
1572 * to be computed. If so, it does so in pet_skip_info_if_extract_cond and
1573 * adds them in pet_skip_info_if_add.
1575 static struct pet_scop *scop_from_affine_if(__isl_keep pet_tree *tree,
1576 __isl_take isl_pw_aff *cond, __isl_take pet_context *pc,
1577 struct pet_state *state)
1579 int has_else;
1580 isl_ctx *ctx;
1581 isl_set *set;
1582 isl_set *valid;
1583 struct pet_skip_info skip;
1584 struct pet_scop *scop, *scop_then, *scop_else = NULL;
1586 ctx = pet_tree_get_ctx(tree);
1588 has_else = tree->type == pet_tree_if_else;
1590 scop_then = scop_from_tree(tree->u.i.then_body, pc, state);
1591 if (has_else)
1592 scop_else = scop_from_tree(tree->u.i.else_body, pc, state);
1594 pet_skip_info_if_init(&skip, ctx, scop_then, scop_else, has_else, 1);
1595 pet_skip_info_if_extract_cond(&skip, cond, pc, state);
1597 valid = isl_pw_aff_domain(isl_pw_aff_copy(cond));
1598 set = isl_pw_aff_non_zero_set(cond);
1599 scop = pet_scop_restrict(scop_then, isl_set_params(isl_set_copy(set)));
1601 if (has_else) {
1602 set = isl_set_subtract(isl_set_copy(valid), set);
1603 scop_else = pet_scop_restrict(scop_else, isl_set_params(set));
1604 scop = pet_scop_add_par(ctx, scop, scop_else);
1605 } else
1606 isl_set_free(set);
1607 scop = pet_scop_resolve_nested(scop);
1608 scop = pet_scop_restrict_context(scop, isl_set_params(valid));
1610 if (pet_skip_info_has_skip(&skip))
1611 scop = pet_scop_prefix(scop, 0);
1612 scop = pet_skip_info_if_add(&skip, scop, 1);
1614 pet_context_free(pc);
1615 return scop;
1618 /* Construct a pet_scop for an if statement within the context "pc".
1620 * If the condition fits the pattern of a conditional assignment,
1621 * then it is handled by scop_from_conditional_assignment.
1623 * Otherwise, we check if the condition is affine.
1624 * If so, we construct the scop in scop_from_affine_if.
1625 * Otherwise, we construct the scop in scop_from_non_affine_if.
1627 * We allow the condition to be dynamic, i.e., to refer to
1628 * scalars or array elements that may be written to outside
1629 * of the given if statement. These nested accesses are then represented
1630 * as output dimensions in the wrapping iteration domain.
1631 * If it is also written _inside_ the then or else branch, then
1632 * we treat the condition as non-affine.
1633 * As explained in extract_non_affine_if, this will introduce
1634 * an extra statement.
1635 * For aesthetic reasons, we want this statement to have a statement
1636 * number that is lower than those of the then and else branches.
1637 * In order to evaluate if we will need such a statement, however, we
1638 * first construct scops for the then and else branches.
1639 * We therefore reserve a statement number if we might have to
1640 * introduce such an extra statement.
1642 static struct pet_scop *scop_from_if(__isl_keep pet_tree *tree,
1643 __isl_keep pet_context *pc, struct pet_state *state)
1645 int has_else;
1646 isl_pw_aff *cond;
1647 pet_expr *cond_expr;
1648 pet_context *pc_nested;
1650 if (!tree)
1651 return NULL;
1653 has_else = tree->type == pet_tree_if_else;
1655 pc = pet_context_copy(pc);
1656 pc = pet_context_clear_writes_in_tree(pc, tree->u.i.then_body);
1657 if (has_else)
1658 pc = pet_context_clear_writes_in_tree(pc, tree->u.i.else_body);
1660 if (is_conditional_assignment(tree, pc))
1661 return scop_from_conditional_assignment(tree, pc, state);
1663 cond_expr = pet_expr_copy(tree->u.i.cond);
1664 cond_expr = pet_expr_plug_in_args(cond_expr, pc);
1665 pc_nested = pet_context_copy(pc);
1666 pc_nested = pet_context_set_allow_nested(pc_nested, 1);
1667 cond = pet_expr_extract_affine_condition(cond_expr, pc_nested);
1668 pet_context_free(pc_nested);
1669 pet_expr_free(cond_expr);
1671 if (!cond) {
1672 pet_context_free(pc);
1673 return NULL;
1676 if (isl_pw_aff_involves_nan(cond)) {
1677 isl_pw_aff_free(cond);
1678 return scop_from_non_affine_if(tree, pc, state);
1681 if ((!is_nested_allowed(cond, tree->u.i.then_body) ||
1682 (has_else && !is_nested_allowed(cond, tree->u.i.else_body)))) {
1683 isl_pw_aff_free(cond);
1684 return scop_from_non_affine_if(tree, pc, state);
1687 return scop_from_affine_if(tree, cond, pc, state);
1690 /* Return a one-dimensional multi piecewise affine expression that is equal
1691 * to the constant 1 and is defined over the given domain.
1693 static __isl_give isl_multi_pw_aff *one_mpa(__isl_take isl_space *space)
1695 isl_local_space *ls;
1696 isl_aff *aff;
1698 ls = isl_local_space_from_space(space);
1699 aff = isl_aff_zero_on_domain(ls);
1700 aff = isl_aff_set_constant_si(aff, 1);
1702 return isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff));
1705 /* Construct a pet_scop for a continue statement with the given domain space.
1707 * We simply create an empty scop with a universal pet_skip_now
1708 * skip condition. This skip condition will then be taken into
1709 * account by the enclosing loop construct, possibly after
1710 * being incorporated into outer skip conditions.
1712 static struct pet_scop *scop_from_continue(__isl_keep pet_tree *tree,
1713 __isl_take isl_space *space)
1715 struct pet_scop *scop;
1717 scop = pet_scop_empty(isl_space_copy(space));
1719 scop = pet_scop_set_skip(scop, pet_skip_now, one_mpa(space));
1721 return scop;
1724 /* Construct a pet_scop for a break statement with the given domain space.
1726 * We simply create an empty scop with both a universal pet_skip_now
1727 * skip condition and a universal pet_skip_later skip condition.
1728 * These skip conditions will then be taken into
1729 * account by the enclosing loop construct, possibly after
1730 * being incorporated into outer skip conditions.
1732 static struct pet_scop *scop_from_break(__isl_keep pet_tree *tree,
1733 __isl_take isl_space *space)
1735 struct pet_scop *scop;
1736 isl_multi_pw_aff *skip;
1738 scop = pet_scop_empty(isl_space_copy(space));
1740 skip = one_mpa(space);
1741 scop = pet_scop_set_skip(scop, pet_skip_now,
1742 isl_multi_pw_aff_copy(skip));
1743 scop = pet_scop_set_skip(scop, pet_skip_later, skip);
1745 return scop;
1748 /* Extract a clone of the kill statement in "scop".
1749 * The domain of the clone is given by "domain".
1750 * "scop" is expected to have been created from a DeclStmt
1751 * and should have the kill as its first statement.
1753 static struct pet_scop *extract_kill(__isl_keep isl_set *domain,
1754 struct pet_scop *scop, struct pet_state *state)
1756 pet_expr *kill;
1757 struct pet_stmt *stmt;
1758 isl_multi_pw_aff *index;
1759 isl_map *access;
1760 pet_expr *arg;
1762 if (!domain || !scop)
1763 return NULL;
1764 if (scop->n_stmt < 1)
1765 isl_die(isl_set_get_ctx(domain), isl_error_internal,
1766 "expecting at least one statement", return NULL);
1767 stmt = scop->stmts[0];
1768 if (!pet_stmt_is_kill(stmt))
1769 isl_die(isl_set_get_ctx(domain), isl_error_internal,
1770 "expecting kill statement", return NULL);
1772 arg = pet_expr_get_arg(stmt->body, 0);
1773 index = pet_expr_access_get_index(arg);
1774 access = pet_expr_access_get_access(arg);
1775 pet_expr_free(arg);
1776 index = isl_multi_pw_aff_reset_tuple_id(index, isl_dim_in);
1777 access = isl_map_reset_tuple_id(access, isl_dim_in);
1778 kill = pet_expr_kill_from_access_and_index(access, index);
1779 stmt = pet_stmt_from_pet_expr(isl_set_copy(domain),
1780 pet_loc_copy(stmt->loc), NULL, state->n_stmt++, kill);
1781 return pet_scop_from_pet_stmt(isl_set_get_space(domain), stmt);
1784 /* Mark all arrays in "scop" as being exposed.
1786 static struct pet_scop *mark_exposed(struct pet_scop *scop)
1788 int i;
1790 if (!scop)
1791 return NULL;
1792 for (i = 0; i < scop->n_array; ++i)
1793 scop->arrays[i]->exposed = 1;
1794 return scop;
1797 /* Try and construct a pet_scop corresponding to (part of)
1798 * a sequence of statements within the context "pc".
1800 * After extracting a statement, we update "pc"
1801 * based on the top-level assignments in the statement
1802 * so that we can exploit them in subsequent statements in the same block.
1804 * If there are any breaks or continues in the individual statements,
1805 * then we may have to compute a new skip condition.
1806 * This is handled using a pet_skip_info object.
1807 * On initialization, the object checks if skip conditions need
1808 * to be computed. If so, it does so in pet_skip_info_seq_extract and
1809 * adds them in pet_skip_info_seq_add.
1811 * If "block" is set, then we need to insert kill statements at
1812 * the end of the block for any array that has been declared by
1813 * one of the statements in the sequence. Each of these declarations
1814 * results in the construction of a kill statement at the place
1815 * of the declaration, so we simply collect duplicates of
1816 * those kill statements and append these duplicates to the constructed scop.
1818 * If "block" is not set, then any array declared by one of the statements
1819 * in the sequence is marked as being exposed.
1821 * If autodetect is set, then we allow the extraction of only a subrange
1822 * of the sequence of statements. However, if there is at least one statement
1823 * for which we could not construct a scop and the final range contains
1824 * either no statements or at least one kill, then we discard the entire
1825 * range.
1827 static struct pet_scop *scop_from_block(__isl_keep pet_tree *tree,
1828 __isl_keep pet_context *pc, struct pet_state *state)
1830 int i;
1831 isl_ctx *ctx;
1832 isl_space *space;
1833 isl_set *domain;
1834 struct pet_scop *scop, *kills;
1836 ctx = pet_tree_get_ctx(tree);
1838 space = pet_context_get_space(pc);
1839 domain = pet_context_get_domain(pc);
1840 pc = pet_context_copy(pc);
1841 scop = pet_scop_empty(isl_space_copy(space));
1842 kills = pet_scop_empty(space);
1843 for (i = 0; i < tree->u.b.n; ++i) {
1844 struct pet_scop *scop_i;
1846 scop_i = scop_from_tree(tree->u.b.child[i], pc, state);
1847 pc = scop_handle_writes(scop_i, pc);
1848 struct pet_skip_info skip;
1849 pet_skip_info_seq_init(&skip, ctx, scop, scop_i);
1850 pet_skip_info_seq_extract(&skip, pc, state);
1851 if (pet_skip_info_has_skip(&skip))
1852 scop_i = pet_scop_prefix(scop_i, 0);
1853 if (scop_i && pet_tree_is_decl(tree->u.b.child[i])) {
1854 if (tree->u.b.block) {
1855 struct pet_scop *kill;
1856 kill = extract_kill(domain, scop_i, state);
1857 kills = pet_scop_add_par(ctx, kills, kill);
1858 } else
1859 scop_i = mark_exposed(scop_i);
1861 scop_i = pet_scop_prefix(scop_i, i);
1862 scop = pet_scop_add_seq(ctx, scop, scop_i);
1864 scop = pet_skip_info_seq_add(&skip, scop, i);
1866 if (!scop)
1867 break;
1869 isl_set_free(domain);
1871 kills = pet_scop_prefix(kills, tree->u.b.n);
1872 scop = pet_scop_add_seq(ctx, scop, kills);
1874 pet_context_free(pc);
1876 return scop;
1879 /* Construct a pet_scop that corresponds to the pet_tree "tree"
1880 * within the context "pc" by calling the appropriate function
1881 * based on the type of "tree".
1883 static struct pet_scop *scop_from_tree(__isl_keep pet_tree *tree,
1884 __isl_keep pet_context *pc, struct pet_state *state)
1886 if (!tree)
1887 return NULL;
1889 switch (tree->type) {
1890 case pet_tree_error:
1891 return NULL;
1892 case pet_tree_block:
1893 return scop_from_block(tree, pc, state);
1894 case pet_tree_break:
1895 return scop_from_break(tree, pet_context_get_space(pc));
1896 case pet_tree_continue:
1897 return scop_from_continue(tree, pet_context_get_space(pc));
1898 case pet_tree_decl:
1899 case pet_tree_decl_init:
1900 return scop_from_decl(tree, pc, state);
1901 case pet_tree_expr:
1902 return scop_from_expr(pet_expr_copy(tree->u.e.expr),
1903 isl_id_copy(tree->label),
1904 state->n_stmt++,
1905 pet_tree_get_loc(tree), pc);
1906 case pet_tree_if:
1907 case pet_tree_if_else:
1908 return scop_from_if(tree, pc, state);
1909 case pet_tree_for:
1910 return scop_from_for(tree, pc, state);
1911 case pet_tree_while:
1912 return scop_from_while(tree, pc, state);
1913 case pet_tree_infinite_loop:
1914 return scop_from_infinite_for(tree, pc, state);
1917 isl_die(tree->ctx, isl_error_internal, "unhandled type",
1918 return NULL);
1921 /* Construct a pet_scop that corresponds to the pet_tree "tree".
1922 * "int_size" is the number of bytes need to represent an integer.
1923 * "extract_array" is a callback that we can use to create a pet_array
1924 * that corresponds to the variable accessed by an expression.
1926 * Initialize the global state, construct a context and then
1927 * construct the pet_scop by recursively visiting the tree.
1929 struct pet_scop *pet_scop_from_pet_tree(__isl_take pet_tree *tree, int int_size,
1930 struct pet_array *(*extract_array)(__isl_keep pet_expr *access,
1931 __isl_keep pet_context *pc, void *user), void *user,
1932 __isl_keep pet_context *pc)
1934 struct pet_scop *scop;
1935 struct pet_state state = { 0 };
1937 if (!tree)
1938 return NULL;
1940 state.ctx = pet_tree_get_ctx(tree);
1941 state.int_size = int_size;
1942 state.extract_array = extract_array;
1943 state.user = user;
1945 scop = scop_from_tree(tree, pc, &state);
1946 scop = pet_scop_set_loc(scop, pet_tree_get_loc(tree));
1948 pet_tree_free(tree);
1950 return scop;