tree2scop.c: after: handle higher dimensional domains
[pet.git] / tree2scop.c
blobf887fd059b9dc417eb2f3fba585ef86003932337
1 /*
2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012-2014 Ecole Normale Superieure. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials provided
15 * with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as
31 * representing official policies, either expressed or implied, of
32 * Leiden University.
35 #include <isl/id_to_pw_aff.h>
37 #include "aff.h"
38 #include "expr.h"
39 #include "expr_arg.h"
40 #include "nest.h"
41 #include "scop.h"
42 #include "skip.h"
43 #include "state.h"
44 #include "tree2scop.h"
46 /* Update "pc" by taking into account the writes in "stmt".
47 * That is, mark all scalar variables that are written by "stmt"
48 * as having an unknown value.
50 static __isl_give pet_context *handle_writes(struct pet_stmt *stmt,
51 __isl_take pet_context *pc)
53 return pet_context_clear_writes_in_expr(pc, stmt->body);
56 /* Update "pc" based on the write accesses in "scop".
58 static __isl_give pet_context *scop_handle_writes(struct pet_scop *scop,
59 __isl_take pet_context *pc)
61 int i;
63 if (!scop)
64 return pet_context_free(pc);
65 for (i = 0; i < scop->n_stmt; ++i)
66 pc = handle_writes(scop->stmts[i], pc);
68 return pc;
71 /* Convert a top-level pet_expr to a pet_scop with one statement
72 * within the context "pc".
73 * This mainly involves resolving nested expression parameters
74 * and setting the name of the iteration space.
75 * The name is given by "label" if it is non-NULL. Otherwise,
76 * it is of the form S_<stmt_nr>.
77 * The location of the statement is set to "loc".
79 static struct pet_scop *scop_from_expr(__isl_take pet_expr *expr,
80 __isl_take isl_id *label, int stmt_nr, __isl_take pet_loc *loc,
81 __isl_keep pet_context *pc)
83 isl_space *space;
84 isl_set *domain;
85 struct pet_stmt *ps;
87 space = pet_context_get_space(pc);
89 expr = pet_expr_plug_in_args(expr, pc);
90 expr = pet_expr_resolve_nested(expr, space);
91 expr = pet_expr_resolve_assume(expr, pc);
92 domain = pet_context_get_domain(pc);
93 ps = pet_stmt_from_pet_expr(domain, loc, label, stmt_nr, expr);
94 return pet_scop_from_pet_stmt(space, ps);
97 /* Construct a pet_scop with a single statement killing the entire
98 * array "array".
99 * The location of the statement is set to "loc".
101 static struct pet_scop *kill(__isl_take pet_loc *loc, struct pet_array *array,
102 __isl_keep pet_context *pc, struct pet_state *state)
104 isl_ctx *ctx;
105 isl_id *id;
106 isl_space *space;
107 isl_multi_pw_aff *index;
108 isl_map *access;
109 pet_expr *expr;
110 struct pet_scop *scop;
112 if (!array)
113 goto error;
114 ctx = isl_set_get_ctx(array->extent);
115 access = isl_map_from_range(isl_set_copy(array->extent));
116 id = isl_set_get_tuple_id(array->extent);
117 space = isl_space_alloc(ctx, 0, 0, 0);
118 space = isl_space_set_tuple_id(space, isl_dim_out, id);
119 index = isl_multi_pw_aff_zero(space);
120 expr = pet_expr_kill_from_access_and_index(access, index);
121 return scop_from_expr(expr, NULL, state->n_stmt++, loc, pc);
122 error:
123 pet_loc_free(loc);
124 return NULL;
127 /* Construct and return a pet_array corresponding to the variable
128 * accessed by "access" by calling the extract_array callback.
130 static struct pet_array *extract_array(__isl_keep pet_expr *access,
131 __isl_keep pet_context *pc, struct pet_state *state)
133 return state->extract_array(access, pc, state->user);
136 /* Construct a pet_scop for a (single) variable declaration
137 * within the context "pc".
139 * The scop contains the variable being declared (as an array)
140 * and a statement killing the array.
142 * If the declaration comes with an initialization, then the scop
143 * also contains an assignment to the variable.
145 static struct pet_scop *scop_from_decl(__isl_keep pet_tree *tree,
146 __isl_keep pet_context *pc, struct pet_state *state)
148 int type_size;
149 isl_ctx *ctx;
150 struct pet_array *array;
151 struct pet_scop *scop_decl, *scop;
152 pet_expr *lhs, *rhs, *pe;
154 array = extract_array(tree->u.d.var, pc, state);
155 if (array)
156 array->declared = 1;
157 scop_decl = kill(pet_tree_get_loc(tree), array, pc, state);
158 scop_decl = pet_scop_add_array(scop_decl, array);
160 if (tree->type != pet_tree_decl_init)
161 return scop_decl;
163 lhs = pet_expr_copy(tree->u.d.var);
164 rhs = pet_expr_copy(tree->u.d.init);
165 type_size = pet_expr_get_type_size(lhs);
166 pe = pet_expr_new_binary(type_size, pet_op_assign, lhs, rhs);
167 scop = scop_from_expr(pe, NULL, state->n_stmt++,
168 pet_tree_get_loc(tree), pc);
170 scop_decl = pet_scop_prefix(scop_decl, 0);
171 scop = pet_scop_prefix(scop, 1);
173 ctx = pet_tree_get_ctx(tree);
174 scop = pet_scop_add_seq(ctx, scop_decl, scop);
176 return scop;
179 /* Embed the given iteration domain in an extra outer loop
180 * with induction variable "var".
181 * If this variable appeared as a parameter in the constraints,
182 * it is replaced by the new outermost dimension.
184 static __isl_give isl_set *embed(__isl_take isl_set *set,
185 __isl_take isl_id *var)
187 int pos;
189 set = isl_set_insert_dims(set, isl_dim_set, 0, 1);
190 pos = isl_set_find_dim_by_id(set, isl_dim_param, var);
191 if (pos >= 0) {
192 set = isl_set_equate(set, isl_dim_param, pos, isl_dim_set, 0);
193 set = isl_set_project_out(set, isl_dim_param, pos, 1);
196 isl_id_free(var);
197 return set;
200 /* Return those elements in the space of "cond" that come after
201 * (based on "sign") an element in "cond" in the final dimension.
203 static __isl_give isl_set *after(__isl_take isl_set *cond, int sign)
205 isl_space *space;
206 isl_map *previous_to_this;
207 int i, dim;
209 dim = isl_set_dim(cond, isl_dim_set);
210 space = isl_space_map_from_set(isl_set_get_space(cond));
211 previous_to_this = isl_map_universe(space);
212 for (i = 0; i + 1 < dim; ++i)
213 previous_to_this = isl_map_equate(previous_to_this,
214 isl_dim_in, i, isl_dim_out, i);
215 if (sign > 0)
216 previous_to_this = isl_map_order_lt(previous_to_this,
217 isl_dim_in, dim - 1, isl_dim_out, dim - 1);
218 else
219 previous_to_this = isl_map_order_gt(previous_to_this,
220 isl_dim_in, dim - 1, isl_dim_out, dim - 1);
222 cond = isl_set_apply(cond, previous_to_this);
224 return cond;
227 /* Remove those iterations of "domain" that have an earlier iteration
228 * (based on "sign") where "skip" is satisfied.
229 * "domain" has an extra outer loop compared to "skip".
230 * The skip condition is first embedded in the same space as "domain".
231 * If "apply_skip_map" is set, then "skip_map" is first applied
232 * to the embedded skip condition before removing it from the domain.
234 static __isl_give isl_set *apply_affine_break(__isl_take isl_set *domain,
235 __isl_take isl_set *skip, int sign,
236 int apply_skip_map, __isl_keep isl_map *skip_map)
238 skip = embed(skip, isl_set_get_dim_id(domain, isl_dim_set, 0));
239 if (apply_skip_map)
240 skip = isl_set_apply(skip, isl_map_copy(skip_map));
241 skip = isl_set_intersect(skip , isl_set_copy(domain));
242 return isl_set_subtract(domain, after(skip, sign));
245 /* Create the infinite iteration domain
247 * { [id] : id >= 0 }
249 static __isl_give isl_set *infinite_domain(__isl_take isl_id *id)
251 isl_ctx *ctx = isl_id_get_ctx(id);
252 isl_set *domain;
254 domain = isl_set_nat_universe(isl_space_set_alloc(ctx, 0, 1));
255 domain = isl_set_set_dim_id(domain, isl_dim_set, 0, id);
257 return domain;
260 /* Create an identity affine expression on the space containing "domain",
261 * which is assumed to be one-dimensional.
263 static __isl_give isl_aff *identity_aff(__isl_keep isl_set *domain)
265 isl_local_space *ls;
267 ls = isl_local_space_from_space(isl_set_get_space(domain));
268 return isl_aff_var_on_domain(ls, isl_dim_set, 0);
271 /* Create an affine expression that maps elements
272 * of a single-dimensional array "id_test" to the previous element
273 * (according to "inc"), provided this element belongs to "domain".
274 * That is, create the affine expression
276 * { id[x] -> id[x - inc] : x - inc in domain }
278 static __isl_give isl_multi_pw_aff *map_to_previous(__isl_take isl_id *id_test,
279 __isl_take isl_set *domain, __isl_take isl_val *inc)
281 isl_space *space;
282 isl_local_space *ls;
283 isl_aff *aff;
284 isl_multi_pw_aff *prev;
286 space = isl_set_get_space(domain);
287 ls = isl_local_space_from_space(space);
288 aff = isl_aff_var_on_domain(ls, isl_dim_set, 0);
289 aff = isl_aff_add_constant_val(aff, isl_val_neg(inc));
290 prev = isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff));
291 domain = isl_set_preimage_multi_pw_aff(domain,
292 isl_multi_pw_aff_copy(prev));
293 prev = isl_multi_pw_aff_intersect_domain(prev, domain);
294 prev = isl_multi_pw_aff_set_tuple_id(prev, isl_dim_out, id_test);
296 return prev;
299 /* Add an implication to "scop" expressing that if an element of
300 * virtual array "id_test" has value "satisfied" then all previous elements
301 * of this array also have that value. The set of previous elements
302 * is bounded by "domain". If "sign" is negative then the iterator
303 * is decreasing and we express that all subsequent array elements
304 * (but still defined previously) have the same value.
306 static struct pet_scop *add_implication(struct pet_scop *scop,
307 __isl_take isl_id *id_test, __isl_take isl_set *domain, int sign,
308 int satisfied)
310 isl_space *space;
311 isl_map *map;
313 domain = isl_set_set_tuple_id(domain, id_test);
314 space = isl_set_get_space(domain);
315 if (sign > 0)
316 map = isl_map_lex_ge(space);
317 else
318 map = isl_map_lex_le(space);
319 map = isl_map_intersect_range(map, domain);
320 scop = pet_scop_add_implication(scop, map, satisfied);
322 return scop;
325 /* Add a filter to "scop" that imposes that it is only executed
326 * when the variable identified by "id_test" has a zero value
327 * for all previous iterations of "domain".
329 * In particular, add a filter that imposes that the array
330 * has a zero value at the previous iteration of domain and
331 * add an implication that implies that it then has that
332 * value for all previous iterations.
334 static struct pet_scop *scop_add_break(struct pet_scop *scop,
335 __isl_take isl_id *id_test, __isl_take isl_set *domain,
336 __isl_take isl_val *inc)
338 isl_multi_pw_aff *prev;
339 int sign = isl_val_sgn(inc);
341 prev = map_to_previous(isl_id_copy(id_test), isl_set_copy(domain), inc);
342 scop = add_implication(scop, id_test, domain, sign, 0);
343 scop = pet_scop_filter(scop, prev, 0);
345 return scop;
348 static struct pet_scop *scop_from_tree(__isl_keep pet_tree *tree,
349 __isl_keep pet_context *pc, struct pet_state *state);
351 /* Construct a pet_scop for an infinite loop around the given body
352 * within the context "pc".
354 * We extract a pet_scop for the body and then embed it in a loop with
355 * iteration domain
357 * { [t] : t >= 0 }
359 * and schedule
361 * { [t] -> [t] }
363 * If the body contains any break, then it is taken into
364 * account in apply_affine_break (if the skip condition is affine)
365 * or in scop_add_break (if the skip condition is not affine).
367 * Note that in case of an affine skip condition,
368 * since we are dealing with a loop without loop iterator,
369 * the skip condition cannot refer to the current loop iterator and
370 * so effectively, the iteration domain is of the form
372 * { [0]; [t] : t >= 1 and not skip }
374 static struct pet_scop *scop_from_infinite_loop(__isl_keep pet_tree *body,
375 __isl_keep pet_context *pc, struct pet_state *state)
377 isl_ctx *ctx;
378 isl_id *id, *id_test;
379 isl_set *domain;
380 isl_set *skip;
381 isl_aff *ident;
382 struct pet_scop *scop;
383 int has_affine_break;
384 int has_var_break;
386 ctx = pet_tree_get_ctx(body);
387 id = isl_id_alloc(ctx, "t", NULL);
388 domain = infinite_domain(isl_id_copy(id));
389 ident = identity_aff(domain);
391 scop = scop_from_tree(body, pc, state);
393 has_affine_break = pet_scop_has_affine_skip(scop, pet_skip_later);
394 if (has_affine_break)
395 skip = pet_scop_get_affine_skip_domain(scop, pet_skip_later);
396 has_var_break = pet_scop_has_var_skip(scop, pet_skip_later);
397 if (has_var_break)
398 id_test = pet_scop_get_skip_id(scop, pet_skip_later);
400 scop = pet_scop_embed(scop, isl_set_copy(domain),
401 isl_aff_copy(ident), ident, id);
402 if (has_affine_break) {
403 domain = apply_affine_break(domain, skip, 1, 0, NULL);
404 scop = pet_scop_intersect_domain_prefix(scop,
405 isl_set_copy(domain));
407 if (has_var_break)
408 scop = scop_add_break(scop, id_test, domain, isl_val_one(ctx));
409 else
410 isl_set_free(domain);
412 return scop;
415 /* Construct a pet_scop for an infinite loop, i.e., a loop of the form
417 * for (;;)
418 * body
420 * within the context "pc".
422 static struct pet_scop *scop_from_infinite_for(__isl_keep pet_tree *tree,
423 __isl_keep pet_context *pc, struct pet_state *state)
425 struct pet_scop *scop;
427 pc = pet_context_copy(pc);
428 pc = pet_context_clear_writes_in_tree(pc, tree->u.l.body);
430 scop = scop_from_infinite_loop(tree->u.l.body, pc, state);
432 pet_context_free(pc);
434 return scop;
437 /* Construct a pet_scop for a while loop of the form
439 * while (pa)
440 * body
442 * within the context "pc".
443 * In particular, construct a scop for an infinite loop around body and
444 * intersect the domain with the affine expression.
445 * Note that this intersection may result in an empty loop.
447 static struct pet_scop *scop_from_affine_while(__isl_keep pet_tree *tree,
448 __isl_take isl_pw_aff *pa, __isl_take pet_context *pc,
449 struct pet_state *state)
451 struct pet_scop *scop;
452 isl_set *dom;
453 isl_set *valid;
455 valid = isl_pw_aff_domain(isl_pw_aff_copy(pa));
456 dom = isl_pw_aff_non_zero_set(pa);
457 scop = scop_from_infinite_loop(tree->u.l.body, pc, state);
458 scop = pet_scop_restrict(scop, isl_set_params(dom));
459 scop = pet_scop_restrict_context(scop, isl_set_params(valid));
461 pet_context_free(pc);
462 return scop;
465 /* Construct a scop for a while, given the scops for the condition
466 * and the body, the filter identifier and the iteration domain of
467 * the while loop.
469 * In particular, the scop for the condition is filtered to depend
470 * on "id_test" evaluating to true for all previous iterations
471 * of the loop, while the scop for the body is filtered to depend
472 * on "id_test" evaluating to true for all iterations up to the
473 * current iteration.
474 * The actual filter only imposes that this virtual array has
475 * value one on the previous or the current iteration.
476 * The fact that this condition also applies to the previous
477 * iterations is enforced by an implication.
479 * These filtered scops are then combined into a single scop.
481 * "sign" is positive if the iterator increases and negative
482 * if it decreases.
484 static struct pet_scop *scop_add_while(struct pet_scop *scop_cond,
485 struct pet_scop *scop_body, __isl_take isl_id *id_test,
486 __isl_take isl_set *domain, __isl_take isl_val *inc)
488 isl_ctx *ctx = isl_set_get_ctx(domain);
489 isl_space *space;
490 isl_multi_pw_aff *test_index;
491 isl_multi_pw_aff *prev;
492 int sign = isl_val_sgn(inc);
493 struct pet_scop *scop;
495 prev = map_to_previous(isl_id_copy(id_test), isl_set_copy(domain), inc);
496 scop_cond = pet_scop_filter(scop_cond, prev, 1);
498 space = isl_space_map_from_set(isl_set_get_space(domain));
499 test_index = isl_multi_pw_aff_identity(space);
500 test_index = isl_multi_pw_aff_set_tuple_id(test_index, isl_dim_out,
501 isl_id_copy(id_test));
502 scop_body = pet_scop_filter(scop_body, test_index, 1);
504 scop = pet_scop_add_seq(ctx, scop_cond, scop_body);
505 scop = add_implication(scop, id_test, domain, sign, 1);
507 return scop;
510 /* Create a pet_scop with a single statement with name S_<stmt_nr>,
511 * evaluating "cond" and writing the result to a virtual scalar,
512 * as expressed by "index".
513 * Do so within the context "pc".
514 * The location of the statement is set to "loc".
516 static struct pet_scop *scop_from_non_affine_condition(
517 __isl_take pet_expr *cond, int stmt_nr,
518 __isl_take isl_multi_pw_aff *index,
519 __isl_take pet_loc *loc, __isl_keep pet_context *pc)
521 pet_expr *expr, *write;
523 write = pet_expr_from_index(index);
524 write = pet_expr_access_set_write(write, 1);
525 write = pet_expr_access_set_read(write, 0);
526 expr = pet_expr_new_binary(1, pet_op_assign, write, cond);
528 return scop_from_expr(expr, NULL, stmt_nr, loc, pc);
531 /* Construct a generic while scop, with iteration domain
532 * { [t] : t >= 0 } around the scop for "tree_body" within the context "pc".
533 * The scop consists of two parts,
534 * one for evaluating the condition "cond" and one for the body.
535 * If "expr_inc" is not NULL, then a scop for evaluating this expression
536 * is added at the end of the body,
537 * after replacing any skip conditions resulting from continue statements
538 * by the skip conditions resulting from break statements (if any).
540 * The schedule is adjusted to reflect that the condition is evaluated
541 * before the body is executed and the body is filtered to depend
542 * on the result of the condition evaluating to true on all iterations
543 * up to the current iteration, while the evaluation of the condition itself
544 * is filtered to depend on the result of the condition evaluating to true
545 * on all previous iterations.
546 * The context of the scop representing the body is dropped
547 * because we don't know how many times the body will be executed,
548 * if at all.
550 * If the body contains any break, then it is taken into
551 * account in apply_affine_break (if the skip condition is affine)
552 * or in scop_add_break (if the skip condition is not affine).
554 * Note that in case of an affine skip condition,
555 * since we are dealing with a loop without loop iterator,
556 * the skip condition cannot refer to the current loop iterator and
557 * so effectively, the iteration domain is of the form
559 * { [0]; [t] : t >= 1 and not skip }
561 static struct pet_scop *scop_from_non_affine_while(__isl_take pet_expr *cond,
562 __isl_take pet_loc *loc, __isl_keep pet_tree *tree_body,
563 __isl_take pet_expr *expr_inc, __isl_take pet_context *pc,
564 struct pet_state *state)
566 isl_ctx *ctx;
567 isl_id *id, *id_test, *id_break_test;
568 isl_space *space;
569 isl_multi_pw_aff *test_index;
570 isl_set *domain;
571 isl_set *skip;
572 isl_aff *ident;
573 struct pet_scop *scop, *scop_body;
574 int has_affine_break;
575 int has_var_break;
577 ctx = state->ctx;
578 space = pet_context_get_space(pc);
579 test_index = pet_create_test_index(space, state->n_test++);
580 scop = scop_from_non_affine_condition(cond, state->n_stmt++,
581 isl_multi_pw_aff_copy(test_index),
582 pet_loc_copy(loc), pc);
583 id_test = isl_multi_pw_aff_get_tuple_id(test_index, isl_dim_out);
584 domain = pet_context_get_domain(pc);
585 scop = pet_scop_add_boolean_array(scop, domain,
586 test_index, state->int_size);
588 id = isl_id_alloc(ctx, "t", NULL);
589 domain = infinite_domain(isl_id_copy(id));
590 ident = identity_aff(domain);
592 scop_body = scop_from_tree(tree_body, pc, state);
594 has_affine_break = pet_scop_has_affine_skip(scop_body, pet_skip_later);
595 if (has_affine_break)
596 skip = pet_scop_get_affine_skip_domain(scop_body,
597 pet_skip_later);
598 has_var_break = pet_scop_has_var_skip(scop_body, pet_skip_later);
599 if (has_var_break)
600 id_break_test = pet_scop_get_skip_id(scop_body, pet_skip_later);
602 scop = pet_scop_prefix(scop, 0);
603 scop = pet_scop_embed(scop, isl_set_copy(domain), isl_aff_copy(ident),
604 isl_aff_copy(ident), isl_id_copy(id));
605 scop_body = pet_scop_reset_context(scop_body);
606 scop_body = pet_scop_prefix(scop_body, 1);
607 if (expr_inc) {
608 struct pet_scop *scop_inc;
609 scop_inc = scop_from_expr(expr_inc, NULL, state->n_stmt++,
610 loc, pc);
611 scop_inc = pet_scop_prefix(scop_inc, 2);
612 if (pet_scop_has_skip(scop_body, pet_skip_later)) {
613 isl_multi_pw_aff *skip;
614 skip = pet_scop_get_skip(scop_body, pet_skip_later);
615 scop_body = pet_scop_set_skip(scop_body,
616 pet_skip_now, skip);
617 } else
618 pet_scop_reset_skip(scop_body, pet_skip_now);
619 scop_body = pet_scop_add_seq(ctx, scop_body, scop_inc);
620 } else
621 pet_loc_free(loc);
622 scop_body = pet_scop_embed(scop_body, isl_set_copy(domain),
623 isl_aff_copy(ident), ident, id);
625 if (has_affine_break) {
626 domain = apply_affine_break(domain, skip, 1, 0, NULL);
627 scop = pet_scop_intersect_domain_prefix(scop,
628 isl_set_copy(domain));
629 scop_body = pet_scop_intersect_domain_prefix(scop_body,
630 isl_set_copy(domain));
632 if (has_var_break) {
633 scop = scop_add_break(scop, isl_id_copy(id_break_test),
634 isl_set_copy(domain), isl_val_one(ctx));
635 scop_body = scop_add_break(scop_body, id_break_test,
636 isl_set_copy(domain), isl_val_one(ctx));
638 scop = scop_add_while(scop, scop_body, id_test, domain,
639 isl_val_one(ctx));
641 pet_context_free(pc);
642 return scop;
645 /* Check if the while loop is of the form
647 * while (affine expression)
648 * body
650 * If so, call scop_from_affine_while to construct a scop.
652 * Otherwise, pass control to scop_from_non_affine_while.
654 * "pc" is the context in which the affine expressions in the scop are created.
656 static struct pet_scop *scop_from_while(__isl_keep pet_tree *tree,
657 __isl_keep pet_context *pc, struct pet_state *state)
659 pet_expr *cond_expr;
660 isl_pw_aff *pa;
662 if (!tree)
663 return NULL;
665 pc = pet_context_copy(pc);
666 pc = pet_context_clear_writes_in_tree(pc, tree->u.l.body);
668 cond_expr = pet_expr_copy(tree->u.l.cond);
669 cond_expr = pet_expr_plug_in_args(cond_expr, pc);
670 pa = pet_expr_extract_affine_condition(cond_expr, pc);
671 pet_expr_free(cond_expr);
673 if (!pa)
674 goto error;
676 if (!isl_pw_aff_involves_nan(pa))
677 return scop_from_affine_while(tree, pa, pc, state);
678 isl_pw_aff_free(pa);
679 return scop_from_non_affine_while(pet_expr_copy(tree->u.l.cond),
680 pet_tree_get_loc(tree), tree->u.l.body, NULL,
681 pc, state);
682 error:
683 pet_context_free(pc);
684 return NULL;
687 /* Check whether "cond" expresses a simple loop bound
688 * on the only set dimension.
689 * In particular, if "up" is set then "cond" should contain only
690 * upper bounds on the set dimension.
691 * Otherwise, it should contain only lower bounds.
693 static int is_simple_bound(__isl_keep isl_set *cond, __isl_keep isl_val *inc)
695 if (isl_val_is_pos(inc))
696 return !isl_set_dim_has_any_lower_bound(cond, isl_dim_set, 0);
697 else
698 return !isl_set_dim_has_any_upper_bound(cond, isl_dim_set, 0);
701 /* Extend a condition on a given iteration of a loop to one that
702 * imposes the same condition on all previous iterations.
703 * "domain" expresses the lower [upper] bound on the iterations
704 * when inc is positive [negative].
706 * In particular, we construct the condition (when inc is positive)
708 * forall i' : (domain(i') and i' <= i) => cond(i')
710 * which is equivalent to
712 * not exists i' : domain(i') and i' <= i and not cond(i')
714 * We construct this set by negating cond, applying a map
716 * { [i'] -> [i] : domain(i') and i' <= i }
718 * and then negating the result again.
720 static __isl_give isl_set *valid_for_each_iteration(__isl_take isl_set *cond,
721 __isl_take isl_set *domain, __isl_take isl_val *inc)
723 isl_map *previous_to_this;
725 if (isl_val_is_pos(inc))
726 previous_to_this = isl_map_lex_le(isl_set_get_space(domain));
727 else
728 previous_to_this = isl_map_lex_ge(isl_set_get_space(domain));
730 previous_to_this = isl_map_intersect_domain(previous_to_this, domain);
732 cond = isl_set_complement(cond);
733 cond = isl_set_apply(cond, previous_to_this);
734 cond = isl_set_complement(cond);
736 isl_val_free(inc);
738 return cond;
741 /* Construct a domain of the form
743 * [id] -> { : exists a: id = init + a * inc and a >= 0 }
745 static __isl_give isl_set *strided_domain(__isl_take isl_id *id,
746 __isl_take isl_pw_aff *init, __isl_take isl_val *inc)
748 isl_aff *aff;
749 isl_space *dim;
750 isl_set *set;
752 init = isl_pw_aff_insert_dims(init, isl_dim_in, 0, 1);
753 dim = isl_pw_aff_get_domain_space(init);
754 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
755 aff = isl_aff_add_coefficient_val(aff, isl_dim_in, 0, inc);
756 init = isl_pw_aff_add(init, isl_pw_aff_from_aff(aff));
758 dim = isl_space_set_alloc(isl_pw_aff_get_ctx(init), 1, 1);
759 dim = isl_space_set_dim_id(dim, isl_dim_param, 0, id);
760 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
761 aff = isl_aff_add_coefficient_si(aff, isl_dim_param, 0, 1);
763 set = isl_pw_aff_eq_set(isl_pw_aff_from_aff(aff), init);
765 set = isl_set_lower_bound_si(set, isl_dim_set, 0, 0);
767 return isl_set_params(set);
770 /* Assuming "cond" represents a bound on a loop where the loop
771 * iterator "iv" is incremented (or decremented) by one, check if wrapping
772 * is possible.
774 * Under the given assumptions, wrapping is only possible if "cond" allows
775 * for the last value before wrapping, i.e., 2^width - 1 in case of an
776 * increasing iterator and 0 in case of a decreasing iterator.
778 static int can_wrap(__isl_keep isl_set *cond, __isl_keep pet_expr *iv,
779 __isl_keep isl_val *inc)
781 int cw;
782 isl_ctx *ctx;
783 isl_val *limit;
784 isl_set *test;
786 test = isl_set_copy(cond);
788 ctx = isl_set_get_ctx(test);
789 if (isl_val_is_neg(inc))
790 limit = isl_val_zero(ctx);
791 else {
792 limit = isl_val_int_from_ui(ctx, pet_expr_get_type_size(iv));
793 limit = isl_val_2exp(limit);
794 limit = isl_val_sub_ui(limit, 1);
797 test = isl_set_fix_val(cond, isl_dim_set, 0, limit);
798 cw = !isl_set_is_empty(test);
799 isl_set_free(test);
801 return cw;
804 /* Given a one-dimensional space, construct the following affine expression
805 * on this space
807 * { [v] -> [v mod 2^width] }
809 * where width is the number of bits used to represent the values
810 * of the unsigned variable "iv".
812 static __isl_give isl_aff *compute_wrapping(__isl_take isl_space *dim,
813 __isl_keep pet_expr *iv)
815 isl_ctx *ctx;
816 isl_val *mod;
817 isl_aff *aff;
819 ctx = isl_space_get_ctx(dim);
820 mod = isl_val_int_from_ui(ctx, pet_expr_get_type_size(iv));
821 mod = isl_val_2exp(mod);
823 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
824 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
825 aff = isl_aff_mod_val(aff, mod);
827 return aff;
830 /* Project out the parameter "id" from "set".
832 static __isl_give isl_set *set_project_out_by_id(__isl_take isl_set *set,
833 __isl_keep isl_id *id)
835 int pos;
837 pos = isl_set_find_dim_by_id(set, isl_dim_param, id);
838 if (pos >= 0)
839 set = isl_set_project_out(set, isl_dim_param, pos, 1);
841 return set;
844 /* Compute the set of parameters for which "set1" is a subset of "set2".
846 * set1 is a subset of set2 if
848 * forall i in set1 : i in set2
850 * or
852 * not exists i in set1 and i not in set2
854 * i.e.,
856 * not exists i in set1 \ set2
858 static __isl_give isl_set *enforce_subset(__isl_take isl_set *set1,
859 __isl_take isl_set *set2)
861 return isl_set_complement(isl_set_params(isl_set_subtract(set1, set2)));
864 /* Compute the set of parameter values for which "cond" holds
865 * on the next iteration for each element of "dom".
867 * We first construct mapping { [i] -> [i + inc] }, apply that to "dom"
868 * and then compute the set of parameters for which the result is a subset
869 * of "cond".
871 static __isl_give isl_set *valid_on_next(__isl_take isl_set *cond,
872 __isl_take isl_set *dom, __isl_take isl_val *inc)
874 isl_space *space;
875 isl_aff *aff;
876 isl_map *next;
878 space = isl_set_get_space(dom);
879 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
880 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
881 aff = isl_aff_add_constant_val(aff, inc);
882 next = isl_map_from_basic_map(isl_basic_map_from_aff(aff));
884 dom = isl_set_apply(dom, next);
886 return enforce_subset(dom, cond);
889 /* Extract the for loop "tree" as a while loop within the context "pc".
891 * That is, the for loop has the form
893 * for (iv = init; cond; iv += inc)
894 * body;
896 * and is treated as
898 * iv = init;
899 * while (cond) {
900 * body;
901 * iv += inc;
904 * except that the skips resulting from any continue statements
905 * in body do not apply to the increment, but are replaced by the skips
906 * resulting from break statements.
908 * If the loop iterator is declared in the for loop, then it is killed before
909 * and after the loop.
911 static struct pet_scop *scop_from_non_affine_for(__isl_keep pet_tree *tree,
912 __isl_take pet_context *pc, struct pet_state *state)
914 int declared;
915 isl_id *iv;
916 pet_expr *expr_iv, *init, *inc;
917 struct pet_scop *scop_init, *scop;
918 int type_size;
919 struct pet_array *array;
920 struct pet_scop *scop_kill;
922 iv = pet_expr_access_get_id(tree->u.l.iv);
923 pc = pet_context_mark_assigned(pc, iv);
925 declared = tree->u.l.declared;
927 expr_iv = pet_expr_copy(tree->u.l.iv);
928 type_size = pet_expr_get_type_size(expr_iv);
929 init = pet_expr_copy(tree->u.l.init);
930 init = pet_expr_new_binary(type_size, pet_op_assign, expr_iv, init);
931 scop_init = scop_from_expr(init, NULL, state->n_stmt++,
932 pet_tree_get_loc(tree), pc);
933 scop_init = pet_scop_prefix(scop_init, declared);
935 expr_iv = pet_expr_copy(tree->u.l.iv);
936 type_size = pet_expr_get_type_size(expr_iv);
937 inc = pet_expr_copy(tree->u.l.inc);
938 inc = pet_expr_new_binary(type_size, pet_op_add_assign, expr_iv, inc);
940 scop = scop_from_non_affine_while(pet_expr_copy(tree->u.l.cond),
941 pet_tree_get_loc(tree), tree->u.l.body, inc,
942 pet_context_copy(pc), state);
944 scop = pet_scop_prefix(scop, declared + 1);
945 scop = pet_scop_add_seq(state->ctx, scop_init, scop);
947 if (!declared) {
948 pet_context_free(pc);
949 return scop;
952 array = extract_array(tree->u.l.iv, pc, state);
953 if (array)
954 array->declared = 1;
955 scop_kill = kill(pet_tree_get_loc(tree), array, pc, state);
956 scop_kill = pet_scop_prefix(scop_kill, 0);
957 scop = pet_scop_add_seq(state->ctx, scop_kill, scop);
958 scop_kill = kill(pet_tree_get_loc(tree), array, pc, state);
959 scop_kill = pet_scop_add_array(scop_kill, array);
960 scop_kill = pet_scop_prefix(scop_kill, 3);
961 scop = pet_scop_add_seq(state->ctx, scop, scop_kill);
963 pet_context_free(pc);
964 return scop;
967 /* Given an access expression "expr", is the variable accessed by
968 * "expr" assigned anywhere inside "tree"?
970 static int is_assigned(__isl_keep pet_expr *expr, __isl_keep pet_tree *tree)
972 int assigned = 0;
973 isl_id *id;
975 id = pet_expr_access_get_id(expr);
976 assigned = pet_tree_writes(tree, id);
977 isl_id_free(id);
979 return assigned;
982 /* Are all nested access parameters in "pa" allowed given "tree".
983 * In particular, is none of them written by anywhere inside "tree".
985 * If "tree" has any continue nodes in the current loop level,
986 * then no nested access parameters are allowed.
987 * In particular, if there is any nested access in a guard
988 * for a piece of code containing a "continue", then we want to introduce
989 * a separate statement for evaluating this guard so that we can express
990 * that the result is false for all previous iterations.
992 static int is_nested_allowed(__isl_keep isl_pw_aff *pa,
993 __isl_keep pet_tree *tree)
995 int i, nparam;
997 if (!tree)
998 return -1;
1000 if (!pet_nested_any_in_pw_aff(pa))
1001 return 1;
1003 if (pet_tree_has_continue(tree))
1004 return 0;
1006 nparam = isl_pw_aff_dim(pa, isl_dim_param);
1007 for (i = 0; i < nparam; ++i) {
1008 isl_id *id = isl_pw_aff_get_dim_id(pa, isl_dim_param, i);
1009 pet_expr *expr;
1010 int allowed;
1012 if (!pet_nested_in_id(id)) {
1013 isl_id_free(id);
1014 continue;
1017 expr = pet_nested_extract_expr(id);
1018 allowed = pet_expr_get_type(expr) == pet_expr_access &&
1019 !is_assigned(expr, tree);
1021 pet_expr_free(expr);
1022 isl_id_free(id);
1024 if (!allowed)
1025 return 0;
1028 return 1;
1031 /* Construct a pet_scop for a for tree with static affine initialization
1032 * and constant increment within the context "pc".
1034 * The condition is allowed to contain nested accesses, provided
1035 * they are not being written to inside the body of the loop.
1036 * Otherwise, or if the condition is otherwise non-affine, the for loop is
1037 * essentially treated as a while loop, with iteration domain
1038 * { [i] : i >= init }.
1040 * We extract a pet_scop for the body and then embed it in a loop with
1041 * iteration domain and schedule
1043 * { [i] : i >= init and condition' }
1044 * { [i] -> [i] }
1046 * or
1048 * { [i] : i <= init and condition' }
1049 * { [i] -> [-i] }
1051 * Where condition' is equal to condition if the latter is
1052 * a simple upper [lower] bound and a condition that is extended
1053 * to apply to all previous iterations otherwise.
1055 * If the condition is non-affine, then we drop the condition from the
1056 * iteration domain and instead create a separate statement
1057 * for evaluating the condition. The body is then filtered to depend
1058 * on the result of the condition evaluating to true on all iterations
1059 * up to the current iteration, while the evaluation the condition itself
1060 * is filtered to depend on the result of the condition evaluating to true
1061 * on all previous iterations.
1062 * The context of the scop representing the body is dropped
1063 * because we don't know how many times the body will be executed,
1064 * if at all.
1066 * If the stride of the loop is not 1, then "i >= init" is replaced by
1068 * (exists a: i = init + stride * a and a >= 0)
1070 * If the loop iterator i is unsigned, then wrapping may occur.
1071 * We therefore use a virtual iterator instead that does not wrap.
1072 * However, the condition in the code applies
1073 * to the wrapped value, so we need to change condition(i)
1074 * into condition([i % 2^width]). Similarly, we replace all accesses
1075 * to the original iterator by the wrapping of the virtual iterator.
1076 * Note that there may be no need to perform this final wrapping
1077 * if the loop condition (after wrapping) satisfies certain conditions.
1078 * However, the is_simple_bound condition is not enough since it doesn't
1079 * check if there even is an upper bound.
1081 * Wrapping on unsigned iterators can be avoided entirely if
1082 * loop condition is simple, the loop iterator is incremented
1083 * [decremented] by one and the last value before wrapping cannot
1084 * possibly satisfy the loop condition.
1086 * Valid parameters for a for loop are those for which the initial
1087 * value itself, the increment on each domain iteration and
1088 * the condition on both the initial value and
1089 * the result of incrementing the iterator for each iteration of the domain
1090 * can be evaluated.
1091 * If the loop condition is non-affine, then we only consider validity
1092 * of the initial value.
1094 * If the body contains any break, then we keep track of it in "skip"
1095 * (if the skip condition is affine) or it is handled in scop_add_break
1096 * (if the skip condition is not affine).
1097 * Note that the affine break condition needs to be considered with
1098 * respect to previous iterations in the virtual domain (if any).
1100 static struct pet_scop *scop_from_affine_for(__isl_keep pet_tree *tree,
1101 __isl_take isl_pw_aff *init_val, __isl_take isl_pw_aff *pa_inc,
1102 __isl_take isl_val *inc, __isl_take pet_context *pc,
1103 struct pet_state *state)
1105 isl_local_space *ls;
1106 isl_set *domain;
1107 isl_aff *sched;
1108 isl_set *cond = NULL;
1109 isl_set *skip = NULL;
1110 isl_id *id, *id_test = NULL, *id_break_test;
1111 struct pet_scop *scop, *scop_cond = NULL;
1112 int is_one;
1113 int is_unsigned;
1114 int is_simple;
1115 int is_virtual;
1116 int is_non_affine;
1117 int has_affine_break;
1118 int has_var_break;
1119 isl_map *rev_wrap = NULL;
1120 isl_aff *wrap = NULL;
1121 isl_pw_aff *pa;
1122 isl_set *valid_init;
1123 isl_set *valid_cond;
1124 isl_set *valid_cond_init;
1125 isl_set *valid_cond_next;
1126 isl_set *valid_inc;
1127 pet_expr *cond_expr;
1128 pet_context *pc_nested;
1130 id = pet_expr_access_get_id(tree->u.l.iv);
1132 cond_expr = pet_expr_copy(tree->u.l.cond);
1133 cond_expr = pet_expr_plug_in_args(cond_expr, pc);
1134 pc_nested = pet_context_copy(pc);
1135 pc_nested = pet_context_set_allow_nested(pc_nested, 1);
1136 pa = pet_expr_extract_affine_condition(cond_expr, pc_nested);
1137 pet_context_free(pc_nested);
1138 pet_expr_free(cond_expr);
1140 valid_inc = isl_pw_aff_domain(pa_inc);
1142 is_unsigned = pet_expr_get_type_size(tree->u.l.iv) > 0;
1144 is_non_affine = isl_pw_aff_involves_nan(pa) ||
1145 !is_nested_allowed(pa, tree->u.l.body);
1146 if (is_non_affine)
1147 pa = isl_pw_aff_free(pa);
1149 valid_cond = isl_pw_aff_domain(isl_pw_aff_copy(pa));
1150 cond = isl_pw_aff_non_zero_set(pa);
1151 if (is_non_affine)
1152 cond = isl_set_universe(isl_space_set_alloc(state->ctx, 0, 0));
1154 cond = embed(cond, isl_id_copy(id));
1155 valid_cond = isl_set_coalesce(valid_cond);
1156 valid_cond = embed(valid_cond, isl_id_copy(id));
1157 valid_inc = embed(valid_inc, isl_id_copy(id));
1158 is_one = isl_val_is_one(inc) || isl_val_is_negone(inc);
1159 is_virtual = is_unsigned &&
1160 (!is_one || can_wrap(cond, tree->u.l.iv, inc));
1162 valid_cond_init = enforce_subset(
1163 isl_map_range(isl_map_from_pw_aff(isl_pw_aff_copy(init_val))),
1164 isl_set_copy(valid_cond));
1165 if (is_one && !is_virtual) {
1166 isl_pw_aff_free(init_val);
1167 pa = pet_expr_extract_comparison(
1168 isl_val_is_pos(inc) ? pet_op_ge : pet_op_le,
1169 tree->u.l.iv, tree->u.l.init, pc);
1170 valid_init = isl_pw_aff_domain(isl_pw_aff_copy(pa));
1171 valid_init = set_project_out_by_id(valid_init, id);
1172 domain = isl_pw_aff_non_zero_set(pa);
1173 } else {
1174 valid_init = isl_pw_aff_domain(isl_pw_aff_copy(init_val));
1175 domain = strided_domain(isl_id_copy(id), init_val,
1176 isl_val_copy(inc));
1179 domain = embed(domain, isl_id_copy(id));
1180 if (is_virtual) {
1181 wrap = compute_wrapping(isl_set_get_space(cond), tree->u.l.iv);
1182 rev_wrap = isl_map_from_aff(isl_aff_copy(wrap));
1183 rev_wrap = isl_map_reverse(rev_wrap);
1184 cond = isl_set_apply(cond, isl_map_copy(rev_wrap));
1185 valid_cond = isl_set_apply(valid_cond, isl_map_copy(rev_wrap));
1186 valid_inc = isl_set_apply(valid_inc, isl_map_copy(rev_wrap));
1188 is_simple = is_simple_bound(cond, inc);
1189 if (!is_simple) {
1190 cond = isl_set_gist(cond, isl_set_copy(domain));
1191 is_simple = is_simple_bound(cond, inc);
1193 if (!is_simple)
1194 cond = valid_for_each_iteration(cond,
1195 isl_set_copy(domain), isl_val_copy(inc));
1196 domain = isl_set_intersect(domain, cond);
1197 domain = isl_set_set_dim_id(domain, isl_dim_set, 0, isl_id_copy(id));
1198 ls = isl_local_space_from_space(isl_set_get_space(domain));
1199 sched = isl_aff_var_on_domain(ls, isl_dim_set, 0);
1200 if (isl_val_is_neg(inc))
1201 sched = isl_aff_neg(sched);
1203 valid_cond_next = valid_on_next(valid_cond, isl_set_copy(domain),
1204 isl_val_copy(inc));
1205 valid_inc = enforce_subset(isl_set_copy(domain), valid_inc);
1207 if (!is_virtual)
1208 wrap = identity_aff(domain);
1210 if (is_non_affine) {
1211 isl_space *space;
1212 isl_multi_pw_aff *test_index;
1213 space = pet_context_get_space(pc);
1214 test_index = pet_create_test_index(space, state->n_test++);
1215 scop_cond = scop_from_non_affine_condition(
1216 pet_expr_copy(tree->u.l.cond), state->n_stmt++,
1217 isl_multi_pw_aff_copy(test_index),
1218 pet_tree_get_loc(tree), pc);
1219 id_test = isl_multi_pw_aff_get_tuple_id(test_index,
1220 isl_dim_out);
1221 scop_cond = pet_scop_add_boolean_array(scop_cond,
1222 pet_context_get_domain(pc), test_index,
1223 state->int_size);
1224 scop_cond = pet_scop_prefix(scop_cond, 0);
1225 scop_cond = pet_scop_embed(scop_cond, isl_set_copy(domain),
1226 isl_aff_copy(sched), isl_aff_copy(wrap),
1227 isl_id_copy(id));
1230 scop = scop_from_tree(tree->u.l.body, pc, state);
1231 has_affine_break = scop &&
1232 pet_scop_has_affine_skip(scop, pet_skip_later);
1233 if (has_affine_break)
1234 skip = pet_scop_get_affine_skip_domain(scop, pet_skip_later);
1235 has_var_break = scop && pet_scop_has_var_skip(scop, pet_skip_later);
1236 if (has_var_break)
1237 id_break_test = pet_scop_get_skip_id(scop, pet_skip_later);
1238 if (is_non_affine) {
1239 scop = pet_scop_reset_context(scop);
1240 scop = pet_scop_prefix(scop, 1);
1242 scop = pet_scop_embed(scop, isl_set_copy(domain), sched, wrap, id);
1243 scop = pet_scop_resolve_nested(scop);
1244 if (has_affine_break) {
1245 domain = apply_affine_break(domain, skip, isl_val_sgn(inc),
1246 is_virtual, rev_wrap);
1247 scop = pet_scop_intersect_domain_prefix(scop,
1248 isl_set_copy(domain));
1250 isl_map_free(rev_wrap);
1251 if (has_var_break)
1252 scop = scop_add_break(scop, id_break_test, isl_set_copy(domain),
1253 isl_val_copy(inc));
1254 if (is_non_affine) {
1255 scop = scop_add_while(scop_cond, scop, id_test, domain,
1256 isl_val_copy(inc));
1257 isl_set_free(valid_inc);
1258 } else {
1259 scop = pet_scop_restrict_context(scop, valid_inc);
1260 scop = pet_scop_restrict_context(scop, valid_cond_next);
1261 scop = pet_scop_restrict_context(scop, valid_cond_init);
1262 isl_set_free(domain);
1265 isl_val_free(inc);
1267 scop = pet_scop_restrict_context(scop, isl_set_params(valid_init));
1269 pet_context_free(pc);
1270 return scop;
1273 /* Construct a pet_scop for a for statement within the context of "pc".
1275 * We update the context to reflect the writes to the loop variable and
1276 * the writes inside the body.
1278 * Then we check if the initialization of the for loop
1279 * is a static affine value and the increment is a constant.
1280 * If so, we construct the pet_scop using scop_from_affine_for.
1281 * Otherwise, we treat the for loop as a while loop
1282 * in scop_from_non_affine_for.
1284 static struct pet_scop *scop_from_for(__isl_keep pet_tree *tree,
1285 __isl_keep pet_context *pc, struct pet_state *state)
1287 isl_id *iv;
1288 isl_val *inc;
1289 isl_pw_aff *pa_inc, *init_val;
1290 pet_context *pc_init_val;
1292 if (!tree)
1293 return NULL;
1295 iv = pet_expr_access_get_id(tree->u.l.iv);
1296 pc = pet_context_copy(pc);
1297 pc = pet_context_clear_value(pc, iv);
1298 pc = pet_context_clear_writes_in_tree(pc, tree->u.l.body);
1300 pc_init_val = pet_context_copy(pc);
1301 pc_init_val = pet_context_mark_unknown(pc_init_val, isl_id_copy(iv));
1302 init_val = pet_expr_extract_affine(tree->u.l.init, pc_init_val);
1303 pet_context_free(pc_init_val);
1304 pa_inc = pet_expr_extract_affine(tree->u.l.inc, pc);
1305 inc = pet_extract_cst(pa_inc);
1306 if (!pa_inc || !init_val || !inc)
1307 goto error;
1308 if (!isl_pw_aff_involves_nan(pa_inc) &&
1309 !isl_pw_aff_involves_nan(init_val) && !isl_val_is_nan(inc))
1310 return scop_from_affine_for(tree, init_val, pa_inc, inc,
1311 pc, state);
1313 isl_pw_aff_free(pa_inc);
1314 isl_pw_aff_free(init_val);
1315 isl_val_free(inc);
1316 return scop_from_non_affine_for(tree, pc, state);
1317 error:
1318 isl_pw_aff_free(pa_inc);
1319 isl_pw_aff_free(init_val);
1320 isl_val_free(inc);
1321 pet_context_free(pc);
1322 return NULL;
1325 /* Check whether "expr" is an affine constraint within the context "pc".
1327 static int is_affine_condition(__isl_keep pet_expr *expr,
1328 __isl_keep pet_context *pc)
1330 isl_pw_aff *pa;
1331 int is_affine;
1333 pa = pet_expr_extract_affine_condition(expr, pc);
1334 if (!pa)
1335 return -1;
1336 is_affine = !isl_pw_aff_involves_nan(pa);
1337 isl_pw_aff_free(pa);
1339 return is_affine;
1342 /* Check if the given if statement is a conditional assignement
1343 * with a non-affine condition.
1345 * In particular we check if "stmt" is of the form
1347 * if (condition)
1348 * a = f(...);
1349 * else
1350 * a = g(...);
1352 * where the condition is non-affine and a is some array or scalar access.
1354 static int is_conditional_assignment(__isl_keep pet_tree *tree,
1355 __isl_keep pet_context *pc)
1357 int equal;
1358 isl_ctx *ctx;
1359 pet_expr *expr1, *expr2;
1361 ctx = pet_tree_get_ctx(tree);
1362 if (!pet_options_get_detect_conditional_assignment(ctx))
1363 return 0;
1364 if (tree->type != pet_tree_if_else)
1365 return 0;
1366 if (tree->u.i.then_body->type != pet_tree_expr)
1367 return 0;
1368 if (tree->u.i.else_body->type != pet_tree_expr)
1369 return 0;
1370 expr1 = tree->u.i.then_body->u.e.expr;
1371 expr2 = tree->u.i.else_body->u.e.expr;
1372 if (pet_expr_get_type(expr1) != pet_expr_op)
1373 return 0;
1374 if (pet_expr_get_type(expr2) != pet_expr_op)
1375 return 0;
1376 if (pet_expr_op_get_type(expr1) != pet_op_assign)
1377 return 0;
1378 if (pet_expr_op_get_type(expr2) != pet_op_assign)
1379 return 0;
1380 expr1 = pet_expr_get_arg(expr1, 0);
1381 expr2 = pet_expr_get_arg(expr2, 0);
1382 equal = pet_expr_is_equal(expr1, expr2);
1383 pet_expr_free(expr1);
1384 pet_expr_free(expr2);
1385 if (equal < 0 || !equal)
1386 return 0;
1387 if (is_affine_condition(tree->u.i.cond, pc))
1388 return 0;
1390 return 1;
1393 /* Given that "tree" is of the form
1395 * if (condition)
1396 * a = f(...);
1397 * else
1398 * a = g(...);
1400 * where a is some array or scalar access, construct a pet_scop
1401 * corresponding to this conditional assignment within the context "pc".
1403 * The constructed pet_scop then corresponds to the expression
1405 * a = condition ? f(...) : g(...)
1407 * All access relations in f(...) are intersected with condition
1408 * while all access relation in g(...) are intersected with the complement.
1410 static struct pet_scop *scop_from_conditional_assignment(
1411 __isl_keep pet_tree *tree, __isl_take pet_context *pc,
1412 struct pet_state *state)
1414 int type_size;
1415 isl_pw_aff *pa;
1416 isl_set *cond, *comp;
1417 isl_multi_pw_aff *index;
1418 pet_expr *expr1, *expr2;
1419 pet_expr *pe_cond, *pe_then, *pe_else, *pe, *pe_write;
1420 pet_context *pc_nested;
1421 struct pet_scop *scop;
1423 pe_cond = pet_expr_copy(tree->u.i.cond);
1424 pe_cond = pet_expr_plug_in_args(pe_cond, pc);
1425 pc_nested = pet_context_copy(pc);
1426 pc_nested = pet_context_set_allow_nested(pc_nested, 1);
1427 pa = pet_expr_extract_affine_condition(pe_cond, pc_nested);
1428 pet_context_free(pc_nested);
1429 pet_expr_free(pe_cond);
1430 cond = isl_pw_aff_non_zero_set(isl_pw_aff_copy(pa));
1431 comp = isl_pw_aff_zero_set(isl_pw_aff_copy(pa));
1432 index = isl_multi_pw_aff_from_pw_aff(pa);
1434 expr1 = tree->u.i.then_body->u.e.expr;
1435 expr2 = tree->u.i.else_body->u.e.expr;
1437 pe_cond = pet_expr_from_index(index);
1439 pe_then = pet_expr_get_arg(expr1, 1);
1440 pe_then = pet_expr_restrict(pe_then, cond);
1441 pe_else = pet_expr_get_arg(expr2, 1);
1442 pe_else = pet_expr_restrict(pe_else, comp);
1443 pe_write = pet_expr_get_arg(expr1, 0);
1445 pe = pet_expr_new_ternary(pe_cond, pe_then, pe_else);
1446 type_size = pet_expr_get_type_size(pe_write);
1447 pe = pet_expr_new_binary(type_size, pet_op_assign, pe_write, pe);
1449 scop = scop_from_expr(pe, NULL, state->n_stmt++,
1450 pet_tree_get_loc(tree), pc);
1452 pet_context_free(pc);
1454 return scop;
1457 /* Construct a pet_scop for a non-affine if statement within the context "pc".
1459 * We create a separate statement that writes the result
1460 * of the non-affine condition to a virtual scalar.
1461 * A constraint requiring the value of this virtual scalar to be one
1462 * is added to the iteration domains of the then branch.
1463 * Similarly, a constraint requiring the value of this virtual scalar
1464 * to be zero is added to the iteration domains of the else branch, if any.
1465 * We adjust the schedules to ensure that the virtual scalar is written
1466 * before it is read.
1468 * If there are any breaks or continues in the then and/or else
1469 * branches, then we may have to compute a new skip condition.
1470 * This is handled using a pet_skip_info object.
1471 * On initialization, the object checks if skip conditions need
1472 * to be computed. If so, it does so in pet_skip_info_if_extract_index and
1473 * adds them in pet_skip_info_if_add.
1475 static struct pet_scop *scop_from_non_affine_if(__isl_keep pet_tree *tree,
1476 __isl_take pet_context *pc, struct pet_state *state)
1478 int has_else;
1479 isl_space *space;
1480 isl_set *domain;
1481 isl_multi_pw_aff *test_index;
1482 struct pet_skip_info skip;
1483 struct pet_scop *scop, *scop_then, *scop_else = NULL;
1485 has_else = tree->type == pet_tree_if_else;
1487 space = pet_context_get_space(pc);
1488 test_index = pet_create_test_index(space, state->n_test++);
1489 scop = scop_from_non_affine_condition(pet_expr_copy(tree->u.i.cond),
1490 state->n_stmt++, isl_multi_pw_aff_copy(test_index),
1491 pet_tree_get_loc(tree), pc);
1492 domain = pet_context_get_domain(pc);
1493 scop = pet_scop_add_boolean_array(scop, domain,
1494 isl_multi_pw_aff_copy(test_index), state->int_size);
1496 scop_then = scop_from_tree(tree->u.i.then_body, pc, state);
1497 if (has_else)
1498 scop_else = scop_from_tree(tree->u.i.else_body, pc, state);
1500 pet_skip_info_if_init(&skip, state->ctx, scop_then, scop_else,
1501 has_else, 0);
1502 pet_skip_info_if_extract_index(&skip, test_index, pc, state);
1504 scop = pet_scop_prefix(scop, 0);
1505 scop_then = pet_scop_prefix(scop_then, 1);
1506 scop_then = pet_scop_filter(scop_then,
1507 isl_multi_pw_aff_copy(test_index), 1);
1508 if (has_else) {
1509 scop_else = pet_scop_prefix(scop_else, 1);
1510 scop_else = pet_scop_filter(scop_else, test_index, 0);
1511 scop_then = pet_scop_add_par(state->ctx, scop_then, scop_else);
1512 } else
1513 isl_multi_pw_aff_free(test_index);
1515 scop = pet_scop_add_seq(state->ctx, scop, scop_then);
1517 scop = pet_skip_info_if_add(&skip, scop, 2);
1519 pet_context_free(pc);
1520 return scop;
1523 /* Construct a pet_scop for an affine if statement within the context "pc".
1525 * The condition is added to the iteration domains of the then branch,
1526 * while the opposite of the condition in added to the iteration domains
1527 * of the else branch, if any.
1529 * If there are any breaks or continues in the then and/or else
1530 * branches, then we may have to compute a new skip condition.
1531 * This is handled using a pet_skip_info_if object.
1532 * On initialization, the object checks if skip conditions need
1533 * to be computed. If so, it does so in pet_skip_info_if_extract_cond and
1534 * adds them in pet_skip_info_if_add.
1536 static struct pet_scop *scop_from_affine_if(__isl_keep pet_tree *tree,
1537 __isl_take isl_pw_aff *cond, __isl_take pet_context *pc,
1538 struct pet_state *state)
1540 int has_else;
1541 isl_ctx *ctx;
1542 isl_set *set;
1543 isl_set *valid;
1544 struct pet_skip_info skip;
1545 struct pet_scop *scop, *scop_then, *scop_else = NULL;
1547 ctx = pet_tree_get_ctx(tree);
1549 has_else = tree->type == pet_tree_if_else;
1551 scop_then = scop_from_tree(tree->u.i.then_body, pc, state);
1552 if (has_else)
1553 scop_else = scop_from_tree(tree->u.i.else_body, pc, state);
1555 pet_skip_info_if_init(&skip, ctx, scop_then, scop_else, has_else, 1);
1556 pet_skip_info_if_extract_cond(&skip, cond, pc, state);
1558 valid = isl_pw_aff_domain(isl_pw_aff_copy(cond));
1559 set = isl_pw_aff_non_zero_set(cond);
1560 scop = pet_scop_restrict(scop_then, isl_set_params(isl_set_copy(set)));
1562 if (has_else) {
1563 set = isl_set_subtract(isl_set_copy(valid), set);
1564 scop_else = pet_scop_restrict(scop_else, isl_set_params(set));
1565 scop = pet_scop_add_par(ctx, scop, scop_else);
1566 } else
1567 isl_set_free(set);
1568 scop = pet_scop_resolve_nested(scop);
1569 scop = pet_scop_restrict_context(scop, isl_set_params(valid));
1571 if (pet_skip_info_has_skip(&skip))
1572 scop = pet_scop_prefix(scop, 0);
1573 scop = pet_skip_info_if_add(&skip, scop, 1);
1575 pet_context_free(pc);
1576 return scop;
1579 /* Construct a pet_scop for an if statement within the context "pc".
1581 * If the condition fits the pattern of a conditional assignment,
1582 * then it is handled by scop_from_conditional_assignment.
1584 * Otherwise, we check if the condition is affine.
1585 * If so, we construct the scop in scop_from_affine_if.
1586 * Otherwise, we construct the scop in scop_from_non_affine_if.
1588 * We allow the condition to be dynamic, i.e., to refer to
1589 * scalars or array elements that may be written to outside
1590 * of the given if statement. These nested accesses are then represented
1591 * as output dimensions in the wrapping iteration domain.
1592 * If it is also written _inside_ the then or else branch, then
1593 * we treat the condition as non-affine.
1594 * As explained in extract_non_affine_if, this will introduce
1595 * an extra statement.
1596 * For aesthetic reasons, we want this statement to have a statement
1597 * number that is lower than those of the then and else branches.
1598 * In order to evaluate if we will need such a statement, however, we
1599 * first construct scops for the then and else branches.
1600 * We therefore reserve a statement number if we might have to
1601 * introduce such an extra statement.
1603 static struct pet_scop *scop_from_if(__isl_keep pet_tree *tree,
1604 __isl_keep pet_context *pc, struct pet_state *state)
1606 int has_else;
1607 isl_pw_aff *cond;
1608 pet_expr *cond_expr;
1609 pet_context *pc_nested;
1611 if (!tree)
1612 return NULL;
1614 has_else = tree->type == pet_tree_if_else;
1616 pc = pet_context_copy(pc);
1617 pc = pet_context_clear_writes_in_tree(pc, tree->u.i.then_body);
1618 if (has_else)
1619 pc = pet_context_clear_writes_in_tree(pc, tree->u.i.else_body);
1621 if (is_conditional_assignment(tree, pc))
1622 return scop_from_conditional_assignment(tree, pc, state);
1624 cond_expr = pet_expr_copy(tree->u.i.cond);
1625 cond_expr = pet_expr_plug_in_args(cond_expr, pc);
1626 pc_nested = pet_context_copy(pc);
1627 pc_nested = pet_context_set_allow_nested(pc_nested, 1);
1628 cond = pet_expr_extract_affine_condition(cond_expr, pc_nested);
1629 pet_context_free(pc_nested);
1630 pet_expr_free(cond_expr);
1632 if (!cond) {
1633 pet_context_free(pc);
1634 return NULL;
1637 if (isl_pw_aff_involves_nan(cond)) {
1638 isl_pw_aff_free(cond);
1639 return scop_from_non_affine_if(tree, pc, state);
1642 if ((!is_nested_allowed(cond, tree->u.i.then_body) ||
1643 (has_else && !is_nested_allowed(cond, tree->u.i.else_body)))) {
1644 isl_pw_aff_free(cond);
1645 return scop_from_non_affine_if(tree, pc, state);
1648 return scop_from_affine_if(tree, cond, pc, state);
1651 /* Return a one-dimensional multi piecewise affine expression that is equal
1652 * to the constant 1 and is defined over the given domain.
1654 static __isl_give isl_multi_pw_aff *one_mpa(__isl_take isl_space *space)
1656 isl_local_space *ls;
1657 isl_aff *aff;
1659 ls = isl_local_space_from_space(space);
1660 aff = isl_aff_zero_on_domain(ls);
1661 aff = isl_aff_set_constant_si(aff, 1);
1663 return isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff));
1666 /* Construct a pet_scop for a continue statement with the given domain space.
1668 * We simply create an empty scop with a universal pet_skip_now
1669 * skip condition. This skip condition will then be taken into
1670 * account by the enclosing loop construct, possibly after
1671 * being incorporated into outer skip conditions.
1673 static struct pet_scop *scop_from_continue(__isl_keep pet_tree *tree,
1674 __isl_take isl_space *space)
1676 struct pet_scop *scop;
1678 scop = pet_scop_empty(isl_space_copy(space));
1680 scop = pet_scop_set_skip(scop, pet_skip_now, one_mpa(space));
1682 return scop;
1685 /* Construct a pet_scop for a break statement with the given domain space.
1687 * We simply create an empty scop with both a universal pet_skip_now
1688 * skip condition and a universal pet_skip_later skip condition.
1689 * These skip conditions will then be taken into
1690 * account by the enclosing loop construct, possibly after
1691 * being incorporated into outer skip conditions.
1693 static struct pet_scop *scop_from_break(__isl_keep pet_tree *tree,
1694 __isl_take isl_space *space)
1696 struct pet_scop *scop;
1697 isl_multi_pw_aff *skip;
1699 scop = pet_scop_empty(isl_space_copy(space));
1701 skip = one_mpa(space);
1702 scop = pet_scop_set_skip(scop, pet_skip_now,
1703 isl_multi_pw_aff_copy(skip));
1704 scop = pet_scop_set_skip(scop, pet_skip_later, skip);
1706 return scop;
1709 /* Extract a clone of the kill statement in "scop".
1710 * The domain of the clone is given by "domain".
1711 * "scop" is expected to have been created from a DeclStmt
1712 * and should have the kill as its first statement.
1714 static struct pet_scop *extract_kill(__isl_keep isl_set *domain,
1715 struct pet_scop *scop, struct pet_state *state)
1717 pet_expr *kill;
1718 struct pet_stmt *stmt;
1719 isl_multi_pw_aff *index;
1720 isl_map *access;
1721 pet_expr *arg;
1723 if (!domain || !scop)
1724 return NULL;
1725 if (scop->n_stmt < 1)
1726 isl_die(isl_set_get_ctx(domain), isl_error_internal,
1727 "expecting at least one statement", return NULL);
1728 stmt = scop->stmts[0];
1729 if (!pet_stmt_is_kill(stmt))
1730 isl_die(isl_set_get_ctx(domain), isl_error_internal,
1731 "expecting kill statement", return NULL);
1733 arg = pet_expr_get_arg(stmt->body, 0);
1734 index = pet_expr_access_get_index(arg);
1735 access = pet_expr_access_get_access(arg);
1736 pet_expr_free(arg);
1737 index = isl_multi_pw_aff_reset_tuple_id(index, isl_dim_in);
1738 access = isl_map_reset_tuple_id(access, isl_dim_in);
1739 kill = pet_expr_kill_from_access_and_index(access, index);
1740 stmt = pet_stmt_from_pet_expr(isl_set_copy(domain),
1741 pet_loc_copy(stmt->loc), NULL, state->n_stmt++, kill);
1742 return pet_scop_from_pet_stmt(isl_set_get_space(domain), stmt);
1745 /* Does "tree" represent an assignment to a variable?
1747 * The assignment may be one of
1748 * - a declaration with initialization
1749 * - an expression with a top-level assignment operator
1751 static int is_assignment(__isl_keep pet_tree *tree)
1753 if (!tree)
1754 return 0;
1755 if (tree->type == pet_tree_decl_init)
1756 return 1;
1757 return pet_tree_is_assign(tree);
1760 /* Update "pc" by taking into account the assignment performed by "tree",
1761 * where "tree" satisfies is_assignment.
1763 * In particular, if the lhs of the assignment is a scalar variable and
1764 * if the rhs is an affine expression, then keep track of this value in "pc"
1765 * so that we can plug it in when we later come across the same variable.
1767 * The variable has already been marked as having been assigned
1768 * an unknown value by scop_handle_writes.
1770 static __isl_give pet_context *handle_assignment(__isl_take pet_context *pc,
1771 __isl_keep pet_tree *tree)
1773 pet_expr *var, *val;
1774 isl_id *id;
1775 isl_pw_aff *pa;
1777 if (pet_tree_get_type(tree) == pet_tree_decl_init) {
1778 var = pet_tree_decl_get_var(tree);
1779 val = pet_tree_decl_get_init(tree);
1780 } else {
1781 pet_expr *expr;
1782 expr = pet_tree_expr_get_expr(tree);
1783 var = pet_expr_get_arg(expr, 0);
1784 val = pet_expr_get_arg(expr, 1);
1785 pet_expr_free(expr);
1788 if (!pet_expr_is_scalar_access(var)) {
1789 pet_expr_free(var);
1790 pet_expr_free(val);
1791 return pc;
1794 pa = pet_expr_extract_affine(val, pc);
1795 if (!pa)
1796 pc = pet_context_free(pc);
1798 if (!isl_pw_aff_involves_nan(pa)) {
1799 id = pet_expr_access_get_id(var);
1800 pc = pet_context_set_value(pc, id, pa);
1801 } else {
1802 isl_pw_aff_free(pa);
1804 pet_expr_free(var);
1805 pet_expr_free(val);
1807 return pc;
1810 /* Mark all arrays in "scop" as being exposed.
1812 static struct pet_scop *mark_exposed(struct pet_scop *scop)
1814 int i;
1816 if (!scop)
1817 return NULL;
1818 for (i = 0; i < scop->n_array; ++i)
1819 scop->arrays[i]->exposed = 1;
1820 return scop;
1823 /* Try and construct a pet_scop corresponding to (part of)
1824 * a sequence of statements within the context "pc".
1826 * After extracting a statement, we update "pc"
1827 * based on the top-level assignments in the statement
1828 * so that we can exploit them in subsequent statements in the same block.
1830 * If there are any breaks or continues in the individual statements,
1831 * then we may have to compute a new skip condition.
1832 * This is handled using a pet_skip_info object.
1833 * On initialization, the object checks if skip conditions need
1834 * to be computed. If so, it does so in pet_skip_info_seq_extract and
1835 * adds them in pet_skip_info_seq_add.
1837 * If "block" is set, then we need to insert kill statements at
1838 * the end of the block for any array that has been declared by
1839 * one of the statements in the sequence. Each of these declarations
1840 * results in the construction of a kill statement at the place
1841 * of the declaration, so we simply collect duplicates of
1842 * those kill statements and append these duplicates to the constructed scop.
1844 * If "block" is not set, then any array declared by one of the statements
1845 * in the sequence is marked as being exposed.
1847 * If autodetect is set, then we allow the extraction of only a subrange
1848 * of the sequence of statements. However, if there is at least one statement
1849 * for which we could not construct a scop and the final range contains
1850 * either no statements or at least one kill, then we discard the entire
1851 * range.
1853 static struct pet_scop *scop_from_block(__isl_keep pet_tree *tree,
1854 __isl_keep pet_context *pc, struct pet_state *state)
1856 int i;
1857 isl_ctx *ctx;
1858 isl_space *space;
1859 isl_set *domain;
1860 struct pet_scop *scop, *kills;
1862 ctx = pet_tree_get_ctx(tree);
1864 space = pet_context_get_space(pc);
1865 domain = pet_context_get_domain(pc);
1866 pc = pet_context_copy(pc);
1867 scop = pet_scop_empty(isl_space_copy(space));
1868 kills = pet_scop_empty(space);
1869 for (i = 0; i < tree->u.b.n; ++i) {
1870 struct pet_scop *scop_i;
1872 scop_i = scop_from_tree(tree->u.b.child[i], pc, state);
1873 pc = scop_handle_writes(scop_i, pc);
1874 if (is_assignment(tree->u.b.child[i]))
1875 pc = handle_assignment(pc, tree->u.b.child[i]);
1876 struct pet_skip_info skip;
1877 pet_skip_info_seq_init(&skip, ctx, scop, scop_i);
1878 pet_skip_info_seq_extract(&skip, pc, state);
1879 if (pet_skip_info_has_skip(&skip))
1880 scop_i = pet_scop_prefix(scop_i, 0);
1881 if (scop_i && pet_tree_is_decl(tree->u.b.child[i])) {
1882 if (tree->u.b.block) {
1883 struct pet_scop *kill;
1884 kill = extract_kill(domain, scop_i, state);
1885 kills = pet_scop_add_par(ctx, kills, kill);
1886 } else
1887 scop_i = mark_exposed(scop_i);
1889 scop_i = pet_scop_prefix(scop_i, i);
1890 scop = pet_scop_add_seq(ctx, scop, scop_i);
1892 scop = pet_skip_info_seq_add(&skip, scop, i);
1894 if (!scop)
1895 break;
1897 isl_set_free(domain);
1899 kills = pet_scop_prefix(kills, tree->u.b.n);
1900 scop = pet_scop_add_seq(ctx, scop, kills);
1902 pet_context_free(pc);
1904 return scop;
1907 /* Construct a pet_scop that corresponds to the pet_tree "tree"
1908 * within the context "pc" by calling the appropriate function
1909 * based on the type of "tree".
1911 static struct pet_scop *scop_from_tree(__isl_keep pet_tree *tree,
1912 __isl_keep pet_context *pc, struct pet_state *state)
1914 if (!tree)
1915 return NULL;
1917 switch (tree->type) {
1918 case pet_tree_error:
1919 return NULL;
1920 case pet_tree_block:
1921 return scop_from_block(tree, pc, state);
1922 case pet_tree_break:
1923 return scop_from_break(tree, pet_context_get_space(pc));
1924 case pet_tree_continue:
1925 return scop_from_continue(tree, pet_context_get_space(pc));
1926 case pet_tree_decl:
1927 case pet_tree_decl_init:
1928 return scop_from_decl(tree, pc, state);
1929 case pet_tree_expr:
1930 return scop_from_expr(pet_expr_copy(tree->u.e.expr),
1931 isl_id_copy(tree->label),
1932 state->n_stmt++,
1933 pet_tree_get_loc(tree), pc);
1934 case pet_tree_if:
1935 case pet_tree_if_else:
1936 return scop_from_if(tree, pc, state);
1937 case pet_tree_for:
1938 return scop_from_for(tree, pc, state);
1939 case pet_tree_while:
1940 return scop_from_while(tree, pc, state);
1941 case pet_tree_infinite_loop:
1942 return scop_from_infinite_for(tree, pc, state);
1945 isl_die(tree->ctx, isl_error_internal, "unhandled type",
1946 return NULL);
1949 /* Construct a pet_scop that corresponds to the pet_tree "tree".
1950 * "int_size" is the number of bytes need to represent an integer.
1951 * "extract_array" is a callback that we can use to create a pet_array
1952 * that corresponds to the variable accessed by an expression.
1954 * Initialize the global state, construct a context and then
1955 * construct the pet_scop by recursively visiting the tree.
1957 struct pet_scop *pet_scop_from_pet_tree(__isl_take pet_tree *tree, int int_size,
1958 struct pet_array *(*extract_array)(__isl_keep pet_expr *access,
1959 __isl_keep pet_context *pc, void *user), void *user,
1960 __isl_keep pet_context *pc)
1962 struct pet_scop *scop;
1963 struct pet_state state = { 0 };
1965 if (!tree)
1966 return NULL;
1968 state.ctx = pet_tree_get_ctx(tree);
1969 state.int_size = int_size;
1970 state.extract_array = extract_array;
1971 state.user = user;
1973 scop = scop_from_tree(tree, pc, &state);
1974 scop = pet_scop_set_loc(scop, pet_tree_get_loc(tree));
1976 pet_tree_free(tree);
1978 return scop;