2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012-2014 Ecole Normale Superieure. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials provided
15 * with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as
31 * representing official policies, either expressed or implied, of
36 #include <isl/constraint.h>
37 #include <isl/union_set.h>
46 #include "value_bounds.h"
48 /* pet_scop with extra information that is used during parsing and printing.
50 * In particular, we keep track of conditions under which we want
51 * to skip the rest of the current loop iteration (skip[pet_skip_now])
52 * and of conditions under which we want to skip subsequent
53 * loop iterations (skip[pet_skip_later]).
55 * The conditions are represented as index expressions defined
56 * over a zero-dimensional domain. The index expression is either
57 * a boolean affine expression or an access to a variable, which
58 * is assumed to attain values zero and one. The condition holds
59 * if the variable has value one or if the affine expression
60 * has value one (typically for only part of the parameter space).
62 * A missing condition (skip[type] == NULL) means that we don't want
65 * Additionally, we keep track of the original input file
66 * inside pet_transform_C_source.
71 isl_multi_pw_aff
*skip
[2];
75 /* Construct a pet_stmt with given domain, location and statement
76 * number from a pet_expr.
77 * The input domain is anonymous and is the same as the domains
78 * of the access expressions inside "expr".
79 * These domains are modified to include the name of the statement.
80 * This name is given by "label" if it is non-NULL.
81 * Otherwise, the name is constructed as S_<id>.
83 struct pet_stmt
*pet_stmt_from_pet_expr(__isl_take isl_set
*domain
,
84 __isl_take pet_loc
*loc
, __isl_take isl_id
*label
, int id
,
85 __isl_take pet_expr
*expr
)
87 struct pet_stmt
*stmt
;
92 isl_multi_pw_aff
*add_name
;
95 if (!domain
|| !loc
|| !expr
)
98 ctx
= pet_expr_get_ctx(expr
);
99 stmt
= isl_calloc_type(ctx
, struct pet_stmt
);
104 snprintf(name
, sizeof(name
), "S_%d", id
);
105 label
= isl_id_alloc(ctx
, name
, NULL
);
107 domain
= isl_set_set_tuple_id(domain
, label
);
108 space
= isl_set_get_space(domain
);
109 space
= pet_nested_remove_from_space(space
);
110 sched
= isl_map_universe(isl_space_from_domain(isl_space_copy(space
)));
111 ma
= pet_prefix_projection(space
, isl_space_dim(space
, isl_dim_set
));
113 add_name
= isl_multi_pw_aff_from_multi_aff(ma
);
114 expr
= pet_expr_update_domain(expr
, add_name
);
117 stmt
->domain
= domain
;
118 stmt
->schedule
= sched
;
121 if (!stmt
->domain
|| !stmt
->schedule
|| !stmt
->body
)
122 return pet_stmt_free(stmt
);
126 isl_set_free(domain
);
133 void *pet_stmt_free(struct pet_stmt
*stmt
)
140 pet_loc_free(stmt
->loc
);
141 isl_set_free(stmt
->domain
);
142 isl_map_free(stmt
->schedule
);
143 pet_expr_free(stmt
->body
);
145 for (i
= 0; i
< stmt
->n_arg
; ++i
)
146 pet_expr_free(stmt
->args
[i
]);
153 /* Return the iteration space of "stmt".
155 * If the statement has arguments, then stmt->domain is a wrapped map
156 * mapping the iteration domain to the values of the arguments
157 * for which this statement is executed.
158 * In this case, we need to extract the domain space of this wrapped map.
160 __isl_give isl_space
*pet_stmt_get_space(struct pet_stmt
*stmt
)
167 space
= isl_set_get_space(stmt
->domain
);
168 if (isl_space_is_wrapping(space
))
169 space
= isl_space_domain(isl_space_unwrap(space
));
174 static void stmt_dump(struct pet_stmt
*stmt
, int indent
)
181 fprintf(stderr
, "%*s%d\n", indent
, "", pet_loc_get_line(stmt
->loc
));
182 fprintf(stderr
, "%*s", indent
, "");
183 isl_set_dump(stmt
->domain
);
184 fprintf(stderr
, "%*s", indent
, "");
185 isl_map_dump(stmt
->schedule
);
186 pet_expr_dump_with_indent(stmt
->body
, indent
);
187 for (i
= 0; i
< stmt
->n_arg
; ++i
)
188 pet_expr_dump_with_indent(stmt
->args
[i
], indent
+ 2);
191 void pet_stmt_dump(struct pet_stmt
*stmt
)
196 /* Allocate a new pet_type with the given "name" and "definition".
198 struct pet_type
*pet_type_alloc(isl_ctx
*ctx
, const char *name
,
199 const char *definition
)
201 struct pet_type
*type
;
203 type
= isl_alloc_type(ctx
, struct pet_type
);
207 type
->name
= strdup(name
);
208 type
->definition
= strdup(definition
);
210 if (!type
->name
|| !type
->definition
)
211 return pet_type_free(type
);
216 /* Free "type" and return NULL.
218 struct pet_type
*pet_type_free(struct pet_type
*type
)
224 free(type
->definition
);
230 struct pet_array
*pet_array_free(struct pet_array
*array
)
235 isl_set_free(array
->context
);
236 isl_set_free(array
->extent
);
237 isl_set_free(array
->value_bounds
);
238 free(array
->element_type
);
244 void pet_array_dump(struct pet_array
*array
)
249 isl_set_dump(array
->context
);
250 isl_set_dump(array
->extent
);
251 isl_set_dump(array
->value_bounds
);
252 fprintf(stderr
, "%s%s%s\n", array
->element_type
,
253 array
->element_is_record
? " element-is-record" : "",
254 array
->live_out
? " live-out" : "");
257 /* Alloc a pet_scop structure, with extra room for information that
258 * is only used during parsing.
260 struct pet_scop
*pet_scop_alloc(isl_ctx
*ctx
)
262 return &isl_calloc_type(ctx
, struct pet_scop_ext
)->scop
;
265 /* Construct a pet_scop in the given space and with room for n statements.
267 * We currently only take into account the parameters in "space".
269 * Since no information on the location is known at this point,
270 * scop->loc is initialized with pet_loc_dummy.
272 static struct pet_scop
*scop_alloc(__isl_take isl_space
*space
, int n
)
275 struct pet_scop
*scop
;
280 ctx
= isl_space_get_ctx(space
);
281 scop
= pet_scop_alloc(ctx
);
285 space
= isl_space_params(space
);
286 scop
->context
= isl_set_universe(isl_space_copy(space
));
287 scop
->context_value
= isl_set_universe(space
);
288 scop
->stmts
= isl_calloc_array(ctx
, struct pet_stmt
*, n
);
289 if (!scop
->context
|| !scop
->stmts
)
290 return pet_scop_free(scop
);
292 scop
->loc
= &pet_loc_dummy
;
298 /* Construct a pet_scop in the given space containing 0 statements.
300 struct pet_scop
*pet_scop_empty(__isl_take isl_space
*space
)
302 return scop_alloc(space
, 0);
305 /* Update "context" with respect to the valid parameter values for "access".
307 static __isl_give isl_set
*access_extract_context(__isl_keep isl_map
*access
,
308 __isl_take isl_set
*context
)
310 context
= isl_set_intersect(context
,
311 isl_map_params(isl_map_copy(access
)));
315 /* Update "context" with respect to the valid parameter values for "expr".
317 * If "expr" represents a conditional operator, then a parameter value
318 * needs to be valid for the condition and for at least one of the
319 * remaining two arguments.
320 * If the condition is an affine expression, then we can be a bit more specific.
321 * The parameter then has to be valid for the second argument for
322 * non-zero accesses and valid for the third argument for zero accesses.
324 static __isl_give isl_set
*expr_extract_context(__isl_keep pet_expr
*expr
,
325 __isl_take isl_set
*context
)
329 if (expr
->type
== pet_expr_op
&& expr
->op
== pet_op_cond
) {
331 isl_set
*context1
, *context2
;
333 is_aff
= pet_expr_is_affine(expr
->args
[0]);
337 context
= expr_extract_context(expr
->args
[0], context
);
338 context1
= expr_extract_context(expr
->args
[1],
339 isl_set_copy(context
));
340 context2
= expr_extract_context(expr
->args
[2], context
);
346 access
= isl_map_copy(expr
->args
[0]->acc
.access
);
347 access
= isl_map_fix_si(access
, isl_dim_out
, 0, 0);
348 zero_set
= isl_map_params(access
);
349 context1
= isl_set_subtract(context1
,
350 isl_set_copy(zero_set
));
351 context2
= isl_set_intersect(context2
, zero_set
);
354 context
= isl_set_union(context1
, context2
);
355 context
= isl_set_coalesce(context
);
360 for (i
= 0; i
< expr
->n_arg
; ++i
)
361 context
= expr_extract_context(expr
->args
[i
], context
);
363 if (expr
->type
== pet_expr_access
)
364 context
= access_extract_context(expr
->acc
.access
, context
);
368 isl_set_free(context
);
372 /* Update "context" with respect to the valid parameter values for "stmt".
374 * If the statement is an assume statement with an affine expression,
375 * then intersect "context" with that expression.
376 * Otherwise, intersect "context" with the contexts of the expressions
379 static __isl_give isl_set
*stmt_extract_context(struct pet_stmt
*stmt
,
380 __isl_take isl_set
*context
)
384 if (pet_stmt_is_assume(stmt
) &&
385 pet_expr_is_affine(stmt
->body
->args
[0])) {
386 isl_multi_pw_aff
*index
;
390 index
= stmt
->body
->args
[0]->acc
.index
;
391 pa
= isl_multi_pw_aff_get_pw_aff(index
, 0);
392 cond
= isl_set_params(isl_pw_aff_non_zero_set(pa
));
393 return isl_set_intersect(context
, cond
);
396 for (i
= 0; i
< stmt
->n_arg
; ++i
)
397 context
= expr_extract_context(stmt
->args
[i
], context
);
399 context
= expr_extract_context(stmt
->body
, context
);
404 /* Construct a pet_scop in the given space that contains the given pet_stmt.
406 struct pet_scop
*pet_scop_from_pet_stmt(__isl_take isl_space
*space
,
407 struct pet_stmt
*stmt
)
409 struct pet_scop
*scop
;
412 space
= isl_space_free(space
);
414 scop
= scop_alloc(space
, 1);
418 scop
->context
= stmt_extract_context(stmt
, scop
->context
);
422 scop
->stmts
[0] = stmt
;
423 scop
->loc
= pet_loc_copy(stmt
->loc
);
426 return pet_scop_free(scop
);
435 /* Does "mpa" represent an access to an element of an unnamed space, i.e.,
436 * does it represent an affine expression?
438 static int multi_pw_aff_is_affine(__isl_keep isl_multi_pw_aff
*mpa
)
442 has_id
= isl_multi_pw_aff_has_tuple_id(mpa
, isl_dim_out
);
449 /* Return the piecewise affine expression "set ? 1 : 0" defined on "dom".
451 static __isl_give isl_pw_aff
*indicator_function(__isl_take isl_set
*set
,
452 __isl_take isl_set
*dom
)
455 pa
= isl_set_indicator_function(set
);
456 pa
= isl_pw_aff_intersect_domain(pa
, dom
);
460 /* Return "lhs || rhs", defined on the shared definition domain.
462 static __isl_give isl_pw_aff
*pw_aff_or(__isl_take isl_pw_aff
*lhs
,
463 __isl_take isl_pw_aff
*rhs
)
468 dom
= isl_set_intersect(isl_pw_aff_domain(isl_pw_aff_copy(lhs
)),
469 isl_pw_aff_domain(isl_pw_aff_copy(rhs
)));
470 cond
= isl_set_union(isl_pw_aff_non_zero_set(lhs
),
471 isl_pw_aff_non_zero_set(rhs
));
472 cond
= isl_set_coalesce(cond
);
473 return indicator_function(cond
, dom
);
476 /* Combine ext1->skip[type] and ext2->skip[type] into ext->skip[type].
477 * ext may be equal to either ext1 or ext2.
479 * The two skips that need to be combined are assumed to be affine expressions.
481 * We need to skip in ext if we need to skip in either ext1 or ext2.
482 * We don't need to skip in ext if we don't need to skip in both ext1 and ext2.
484 static struct pet_scop_ext
*combine_skips(struct pet_scop_ext
*ext
,
485 struct pet_scop_ext
*ext1
, struct pet_scop_ext
*ext2
,
488 isl_pw_aff
*skip
, *skip1
, *skip2
;
492 if (!ext1
->skip
[type
] && !ext2
->skip
[type
])
494 if (!ext1
->skip
[type
]) {
497 ext
->skip
[type
] = ext2
->skip
[type
];
498 ext2
->skip
[type
] = NULL
;
501 if (!ext2
->skip
[type
]) {
504 ext
->skip
[type
] = ext1
->skip
[type
];
505 ext1
->skip
[type
] = NULL
;
509 if (!multi_pw_aff_is_affine(ext1
->skip
[type
]) ||
510 !multi_pw_aff_is_affine(ext2
->skip
[type
]))
511 isl_die(isl_multi_pw_aff_get_ctx(ext1
->skip
[type
]),
512 isl_error_internal
, "can only combine affine skips",
515 skip1
= isl_multi_pw_aff_get_pw_aff(ext1
->skip
[type
], 0);
516 skip2
= isl_multi_pw_aff_get_pw_aff(ext2
->skip
[type
], 0);
517 skip
= pw_aff_or(skip1
, skip2
);
518 isl_multi_pw_aff_free(ext1
->skip
[type
]);
519 ext1
->skip
[type
] = NULL
;
520 isl_multi_pw_aff_free(ext2
->skip
[type
]);
521 ext2
->skip
[type
] = NULL
;
522 ext
->skip
[type
] = isl_multi_pw_aff_from_pw_aff(skip
);
523 if (!ext
->skip
[type
])
528 pet_scop_free(&ext
->scop
);
532 /* Combine scop1->skip[type] and scop2->skip[type] into scop->skip[type],
533 * where type takes on the values pet_skip_now and pet_skip_later.
534 * scop may be equal to either scop1 or scop2.
536 static struct pet_scop
*scop_combine_skips(struct pet_scop
*scop
,
537 struct pet_scop
*scop1
, struct pet_scop
*scop2
)
539 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
540 struct pet_scop_ext
*ext1
= (struct pet_scop_ext
*) scop1
;
541 struct pet_scop_ext
*ext2
= (struct pet_scop_ext
*) scop2
;
543 ext
= combine_skips(ext
, ext1
, ext2
, pet_skip_now
);
544 ext
= combine_skips(ext
, ext1
, ext2
, pet_skip_later
);
548 /* Update start and end of scop->loc to include the region from "start"
549 * to "end". In particular, if scop->loc == &pet_loc_dummy, then "scop"
550 * does not have any offset information yet and we simply take the information
551 * from "start" and "end". Otherwise, we update loc using "start" and "end".
553 struct pet_scop
*pet_scop_update_start_end(struct pet_scop
*scop
,
554 unsigned start
, unsigned end
)
559 if (scop
->loc
== &pet_loc_dummy
)
560 scop
->loc
= pet_loc_alloc(isl_set_get_ctx(scop
->context
),
563 scop
->loc
= pet_loc_update_start_end(scop
->loc
, start
, end
);
566 return pet_scop_free(scop
);
571 /* Update start and end of scop->loc to include the region identified
574 struct pet_scop
*pet_scop_update_start_end_from_loc(struct pet_scop
*scop
,
575 __isl_keep pet_loc
*loc
)
577 return pet_scop_update_start_end(scop
, pet_loc_get_start(loc
),
578 pet_loc_get_end(loc
));
581 /* Replace the location of "scop" by "loc".
583 struct pet_scop
*pet_scop_set_loc(struct pet_scop
*scop
,
584 __isl_take pet_loc
*loc
)
589 pet_loc_free(scop
->loc
);
599 /* Does "implication" appear in the list of implications of "scop"?
601 static int is_known_implication(struct pet_scop
*scop
,
602 struct pet_implication
*implication
)
606 for (i
= 0; i
< scop
->n_implication
; ++i
) {
607 struct pet_implication
*pi
= scop
->implications
[i
];
610 if (pi
->satisfied
!= implication
->satisfied
)
612 equal
= isl_map_is_equal(pi
->extension
, implication
->extension
);
622 /* Store the concatenation of the implications of "scop1" and "scop2"
623 * in "scop", removing duplicates (i.e., implications in "scop2" that
624 * already appear in "scop1").
626 static struct pet_scop
*scop_collect_implications(isl_ctx
*ctx
,
627 struct pet_scop
*scop
, struct pet_scop
*scop1
, struct pet_scop
*scop2
)
634 if (scop2
->n_implication
== 0) {
635 scop
->n_implication
= scop1
->n_implication
;
636 scop
->implications
= scop1
->implications
;
637 scop1
->n_implication
= 0;
638 scop1
->implications
= NULL
;
642 if (scop1
->n_implication
== 0) {
643 scop
->n_implication
= scop2
->n_implication
;
644 scop
->implications
= scop2
->implications
;
645 scop2
->n_implication
= 0;
646 scop2
->implications
= NULL
;
650 scop
->implications
= isl_calloc_array(ctx
, struct pet_implication
*,
651 scop1
->n_implication
+ scop2
->n_implication
);
652 if (!scop
->implications
)
653 return pet_scop_free(scop
);
655 for (i
= 0; i
< scop1
->n_implication
; ++i
) {
656 scop
->implications
[i
] = scop1
->implications
[i
];
657 scop1
->implications
[i
] = NULL
;
660 scop
->n_implication
= scop1
->n_implication
;
661 j
= scop1
->n_implication
;
662 for (i
= 0; i
< scop2
->n_implication
; ++i
) {
665 known
= is_known_implication(scop
, scop2
->implications
[i
]);
667 return pet_scop_free(scop
);
670 scop
->implications
[j
++] = scop2
->implications
[i
];
671 scop2
->implications
[i
] = NULL
;
673 scop
->n_implication
= j
;
678 /* Combine the offset information of "scop1" and "scop2" into "scop".
680 static struct pet_scop
*scop_combine_start_end(struct pet_scop
*scop
,
681 struct pet_scop
*scop1
, struct pet_scop
*scop2
)
683 if (scop1
->loc
!= &pet_loc_dummy
)
684 scop
= pet_scop_update_start_end_from_loc(scop
, scop1
->loc
);
685 if (scop2
->loc
!= &pet_loc_dummy
)
686 scop
= pet_scop_update_start_end_from_loc(scop
, scop2
->loc
);
690 /* Construct a pet_scop that contains the offset information,
691 * arrays, statements and skip information in "scop1" and "scop2".
693 static struct pet_scop
*pet_scop_add(isl_ctx
*ctx
, struct pet_scop
*scop1
,
694 struct pet_scop
*scop2
)
698 struct pet_scop
*scop
= NULL
;
700 if (!scop1
|| !scop2
)
703 if (scop1
->n_stmt
== 0) {
704 scop2
= scop_combine_skips(scop2
, scop1
, scop2
);
705 pet_scop_free(scop1
);
709 if (scop2
->n_stmt
== 0) {
710 scop1
= scop_combine_skips(scop1
, scop1
, scop2
);
711 pet_scop_free(scop2
);
715 space
= isl_set_get_space(scop1
->context
);
716 scop
= scop_alloc(space
, scop1
->n_stmt
+ scop2
->n_stmt
);
720 scop
->arrays
= isl_calloc_array(ctx
, struct pet_array
*,
721 scop1
->n_array
+ scop2
->n_array
);
724 scop
->n_array
= scop1
->n_array
+ scop2
->n_array
;
726 for (i
= 0; i
< scop1
->n_stmt
; ++i
) {
727 scop
->stmts
[i
] = scop1
->stmts
[i
];
728 scop1
->stmts
[i
] = NULL
;
731 for (i
= 0; i
< scop2
->n_stmt
; ++i
) {
732 scop
->stmts
[scop1
->n_stmt
+ i
] = scop2
->stmts
[i
];
733 scop2
->stmts
[i
] = NULL
;
736 for (i
= 0; i
< scop1
->n_array
; ++i
) {
737 scop
->arrays
[i
] = scop1
->arrays
[i
];
738 scop1
->arrays
[i
] = NULL
;
741 for (i
= 0; i
< scop2
->n_array
; ++i
) {
742 scop
->arrays
[scop1
->n_array
+ i
] = scop2
->arrays
[i
];
743 scop2
->arrays
[i
] = NULL
;
746 scop
= scop_collect_implications(ctx
, scop
, scop1
, scop2
);
747 scop
= pet_scop_restrict_context(scop
, isl_set_copy(scop1
->context
));
748 scop
= pet_scop_restrict_context(scop
, isl_set_copy(scop2
->context
));
749 scop
= scop_combine_skips(scop
, scop1
, scop2
);
750 scop
= scop_combine_start_end(scop
, scop1
, scop2
);
752 pet_scop_free(scop1
);
753 pet_scop_free(scop2
);
756 pet_scop_free(scop1
);
757 pet_scop_free(scop2
);
762 /* Apply the skip condition "skip" to "scop".
763 * That is, make sure "scop" is not executed when the condition holds.
765 * If "skip" is an affine expression, we add the conditions under
766 * which the expression is zero to the iteration domains.
767 * Otherwise, we add a filter on the variable attaining the value zero.
769 static struct pet_scop
*restrict_skip(struct pet_scop
*scop
,
770 __isl_take isl_multi_pw_aff
*skip
)
779 is_aff
= multi_pw_aff_is_affine(skip
);
784 return pet_scop_filter(scop
, skip
, 0);
786 pa
= isl_multi_pw_aff_get_pw_aff(skip
, 0);
787 isl_multi_pw_aff_free(skip
);
788 zero
= isl_set_params(isl_pw_aff_zero_set(pa
));
789 scop
= pet_scop_restrict(scop
, zero
);
793 isl_multi_pw_aff_free(skip
);
794 return pet_scop_free(scop
);
797 /* Construct a pet_scop that contains the arrays, statements and
798 * skip information in "scop1" and "scop2", where the two scops
799 * are executed "in sequence". That is, breaks and continues
800 * in scop1 have an effect on scop2.
802 struct pet_scop
*pet_scop_add_seq(isl_ctx
*ctx
, struct pet_scop
*scop1
,
803 struct pet_scop
*scop2
)
805 if (scop1
&& pet_scop_has_skip(scop1
, pet_skip_now
))
806 scop2
= restrict_skip(scop2
,
807 pet_scop_get_skip(scop1
, pet_skip_now
));
808 return pet_scop_add(ctx
, scop1
, scop2
);
811 /* Construct a pet_scop that contains the arrays, statements and
812 * skip information in "scop1" and "scop2", where the two scops
813 * are executed "in parallel". That is, any break or continue
814 * in scop1 has no effect on scop2.
816 struct pet_scop
*pet_scop_add_par(isl_ctx
*ctx
, struct pet_scop
*scop1
,
817 struct pet_scop
*scop2
)
819 return pet_scop_add(ctx
, scop1
, scop2
);
822 void *pet_implication_free(struct pet_implication
*implication
)
829 isl_map_free(implication
->extension
);
835 struct pet_scop
*pet_scop_free(struct pet_scop
*scop
)
838 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
842 pet_loc_free(scop
->loc
);
843 isl_set_free(scop
->context
);
844 isl_set_free(scop
->context_value
);
846 for (i
= 0; i
< scop
->n_type
; ++i
)
847 pet_type_free(scop
->types
[i
]);
850 for (i
= 0; i
< scop
->n_array
; ++i
)
851 pet_array_free(scop
->arrays
[i
]);
854 for (i
= 0; i
< scop
->n_stmt
; ++i
)
855 pet_stmt_free(scop
->stmts
[i
]);
857 if (scop
->implications
)
858 for (i
= 0; i
< scop
->n_implication
; ++i
)
859 pet_implication_free(scop
->implications
[i
]);
860 free(scop
->implications
);
861 isl_multi_pw_aff_free(ext
->skip
[pet_skip_now
]);
862 isl_multi_pw_aff_free(ext
->skip
[pet_skip_later
]);
867 void pet_type_dump(struct pet_type
*type
)
872 fprintf(stderr
, "%s -> %s\n", type
->name
, type
->definition
);
875 void pet_implication_dump(struct pet_implication
*implication
)
880 fprintf(stderr
, "%d\n", implication
->satisfied
);
881 isl_map_dump(implication
->extension
);
884 void pet_scop_dump(struct pet_scop
*scop
)
887 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
892 isl_set_dump(scop
->context
);
893 isl_set_dump(scop
->context_value
);
894 for (i
= 0; i
< scop
->n_type
; ++i
)
895 pet_type_dump(scop
->types
[i
]);
896 for (i
= 0; i
< scop
->n_array
; ++i
)
897 pet_array_dump(scop
->arrays
[i
]);
898 for (i
= 0; i
< scop
->n_stmt
; ++i
)
899 pet_stmt_dump(scop
->stmts
[i
]);
900 for (i
= 0; i
< scop
->n_implication
; ++i
)
901 pet_implication_dump(scop
->implications
[i
]);
904 fprintf(stderr
, "skip\n");
905 isl_multi_pw_aff_dump(ext
->skip
[0]);
906 isl_multi_pw_aff_dump(ext
->skip
[1]);
910 /* Return 1 if the two pet_arrays are equivalent.
912 * We don't compare element_size as this may be target dependent.
914 int pet_array_is_equal(struct pet_array
*array1
, struct pet_array
*array2
)
916 if (!array1
|| !array2
)
919 if (!isl_set_is_equal(array1
->context
, array2
->context
))
921 if (!isl_set_is_equal(array1
->extent
, array2
->extent
))
923 if (!!array1
->value_bounds
!= !!array2
->value_bounds
)
925 if (array1
->value_bounds
&&
926 !isl_set_is_equal(array1
->value_bounds
, array2
->value_bounds
))
928 if (strcmp(array1
->element_type
, array2
->element_type
))
930 if (array1
->element_is_record
!= array2
->element_is_record
)
932 if (array1
->live_out
!= array2
->live_out
)
934 if (array1
->uniquely_defined
!= array2
->uniquely_defined
)
936 if (array1
->declared
!= array2
->declared
)
938 if (array1
->exposed
!= array2
->exposed
)
944 /* Return 1 if the two pet_stmts are equivalent.
946 int pet_stmt_is_equal(struct pet_stmt
*stmt1
, struct pet_stmt
*stmt2
)
950 if (!stmt1
|| !stmt2
)
953 if (pet_loc_get_line(stmt1
->loc
) != pet_loc_get_line(stmt2
->loc
))
955 if (!isl_set_is_equal(stmt1
->domain
, stmt2
->domain
))
957 if (!isl_map_is_equal(stmt1
->schedule
, stmt2
->schedule
))
959 if (!pet_expr_is_equal(stmt1
->body
, stmt2
->body
))
961 if (stmt1
->n_arg
!= stmt2
->n_arg
)
963 for (i
= 0; i
< stmt1
->n_arg
; ++i
) {
964 if (!pet_expr_is_equal(stmt1
->args
[i
], stmt2
->args
[i
]))
971 /* Return 1 if the two pet_types are equivalent.
973 * We only compare the names of the types since the exact representation
974 * of the definition may depend on the version of clang being used.
976 int pet_type_is_equal(struct pet_type
*type1
, struct pet_type
*type2
)
978 if (!type1
|| !type2
)
981 if (strcmp(type1
->name
, type2
->name
))
987 /* Return 1 if the two pet_implications are equivalent.
989 int pet_implication_is_equal(struct pet_implication
*implication1
,
990 struct pet_implication
*implication2
)
992 if (!implication1
|| !implication2
)
995 if (implication1
->satisfied
!= implication2
->satisfied
)
997 if (!isl_map_is_equal(implication1
->extension
, implication2
->extension
))
1003 /* Return 1 if the two pet_scops are equivalent.
1005 int pet_scop_is_equal(struct pet_scop
*scop1
, struct pet_scop
*scop2
)
1009 if (!scop1
|| !scop2
)
1012 if (!isl_set_is_equal(scop1
->context
, scop2
->context
))
1014 if (!isl_set_is_equal(scop1
->context_value
, scop2
->context_value
))
1017 if (scop1
->n_type
!= scop2
->n_type
)
1019 for (i
= 0; i
< scop1
->n_type
; ++i
)
1020 if (!pet_type_is_equal(scop1
->types
[i
], scop2
->types
[i
]))
1023 if (scop1
->n_array
!= scop2
->n_array
)
1025 for (i
= 0; i
< scop1
->n_array
; ++i
)
1026 if (!pet_array_is_equal(scop1
->arrays
[i
], scop2
->arrays
[i
]))
1029 if (scop1
->n_stmt
!= scop2
->n_stmt
)
1031 for (i
= 0; i
< scop1
->n_stmt
; ++i
)
1032 if (!pet_stmt_is_equal(scop1
->stmts
[i
], scop2
->stmts
[i
]))
1035 if (scop1
->n_implication
!= scop2
->n_implication
)
1037 for (i
= 0; i
< scop1
->n_implication
; ++i
)
1038 if (!pet_implication_is_equal(scop1
->implications
[i
],
1039 scop2
->implications
[i
]))
1045 /* Does the set "extent" reference a virtual array, i.e.,
1046 * one with user pointer equal to NULL?
1047 * A virtual array does not have any members.
1049 static int extent_is_virtual_array(__isl_keep isl_set
*extent
)
1054 if (!isl_set_has_tuple_id(extent
))
1056 if (isl_set_is_wrapping(extent
))
1058 id
= isl_set_get_tuple_id(extent
);
1059 is_virtual
= !isl_id_get_user(id
);
1065 /* Intersect the initial dimensions of "array" with "domain", provided
1066 * that "array" represents a virtual array.
1068 * If "array" is virtual, then We take the preimage of "domain"
1069 * over the projection of the extent of "array" onto its initial dimensions
1070 * and intersect this extent with the result.
1072 static struct pet_array
*virtual_array_intersect_domain_prefix(
1073 struct pet_array
*array
, __isl_take isl_set
*domain
)
1079 if (!array
|| !extent_is_virtual_array(array
->extent
)) {
1080 isl_set_free(domain
);
1084 space
= isl_set_get_space(array
->extent
);
1085 n
= isl_set_dim(domain
, isl_dim_set
);
1086 ma
= pet_prefix_projection(space
, n
);
1087 domain
= isl_set_preimage_multi_aff(domain
, ma
);
1089 array
->extent
= isl_set_intersect(array
->extent
, domain
);
1091 return pet_array_free(array
);
1096 /* Intersect the initial dimensions of the domain of "stmt"
1099 * We take the preimage of "domain" over the projection of the
1100 * domain of "stmt" onto its initial dimensions and intersect
1101 * the domain of "stmt" with the result.
1103 static struct pet_stmt
*stmt_intersect_domain_prefix(struct pet_stmt
*stmt
,
1104 __isl_take isl_set
*domain
)
1113 space
= isl_set_get_space(stmt
->domain
);
1114 n
= isl_set_dim(domain
, isl_dim_set
);
1115 ma
= pet_prefix_projection(space
, n
);
1116 domain
= isl_set_preimage_multi_aff(domain
, ma
);
1118 stmt
->domain
= isl_set_intersect(stmt
->domain
, domain
);
1120 return pet_stmt_free(stmt
);
1124 isl_set_free(domain
);
1125 return pet_stmt_free(stmt
);
1128 /* Intersect the initial dimensions of the domain of "implication"
1131 * We take the preimage of "domain" over the projection of the
1132 * domain of "implication" onto its initial dimensions and intersect
1133 * the domain of "implication" with the result.
1135 static struct pet_implication
*implication_intersect_domain_prefix(
1136 struct pet_implication
*implication
, __isl_take isl_set
*domain
)
1145 space
= isl_map_get_space(implication
->extension
);
1146 n
= isl_set_dim(domain
, isl_dim_set
);
1147 ma
= pet_prefix_projection(isl_space_domain(space
), n
);
1148 domain
= isl_set_preimage_multi_aff(domain
, ma
);
1150 implication
->extension
=
1151 isl_map_intersect_domain(implication
->extension
, domain
);
1152 if (!implication
->extension
)
1153 return pet_implication_free(implication
);
1157 isl_set_free(domain
);
1158 return pet_implication_free(implication
);
1161 /* Intersect the initial dimensions of the domains in "scop" with "domain".
1163 * The extents of the virtual arrays match the iteration domains,
1164 * so if the iteration domain changes, we need to change those extents too.
1166 struct pet_scop
*pet_scop_intersect_domain_prefix(struct pet_scop
*scop
,
1167 __isl_take isl_set
*domain
)
1174 for (i
= 0; i
< scop
->n_array
; ++i
) {
1175 scop
->arrays
[i
] = virtual_array_intersect_domain_prefix(
1176 scop
->arrays
[i
], isl_set_copy(domain
));
1177 if (!scop
->arrays
[i
])
1181 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
1182 scop
->stmts
[i
] = stmt_intersect_domain_prefix(scop
->stmts
[i
],
1183 isl_set_copy(domain
));
1184 if (!scop
->stmts
[i
])
1188 for (i
= 0; i
< scop
->n_implication
; ++i
) {
1189 scop
->implications
[i
] =
1190 implication_intersect_domain_prefix(scop
->implications
[i
],
1191 isl_set_copy(domain
));
1192 if (!scop
->implications
[i
])
1193 return pet_scop_free(scop
);
1196 isl_set_free(domain
);
1199 isl_set_free(domain
);
1200 return pet_scop_free(scop
);
1203 /* Prefix the schedule of "stmt" with an extra dimension with constant
1206 struct pet_stmt
*pet_stmt_prefix(struct pet_stmt
*stmt
, int pos
)
1211 stmt
->schedule
= isl_map_insert_dims(stmt
->schedule
, isl_dim_out
, 0, 1);
1212 stmt
->schedule
= isl_map_fix_si(stmt
->schedule
, isl_dim_out
, 0, pos
);
1213 if (!stmt
->schedule
)
1214 return pet_stmt_free(stmt
);
1219 /* Prefix the schedules of all statements in "scop" with an extra
1220 * dimension with constant value "pos".
1222 struct pet_scop
*pet_scop_prefix(struct pet_scop
*scop
, int pos
)
1229 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
1230 scop
->stmts
[i
] = pet_stmt_prefix(scop
->stmts
[i
], pos
);
1231 if (!scop
->stmts
[i
])
1232 return pet_scop_free(scop
);
1238 /* Given a set with a parameter at "param_pos" that refers to the
1239 * iterator, "move" the iterator to the first set dimension.
1240 * That is, essentially equate the parameter to the first set dimension
1241 * and then project it out.
1243 * The first set dimension may however refer to a virtual iterator,
1244 * while the parameter refers to the "real" iterator.
1245 * We therefore need to take into account the affine expression "iv_map", which
1246 * expresses the real iterator in terms of the virtual iterator.
1247 * In particular, we equate the set dimension to the input of the map
1248 * and the parameter to the output of the map and then project out
1249 * everything we don't need anymore.
1251 static __isl_give isl_set
*internalize_iv(__isl_take isl_set
*set
,
1252 int param_pos
, __isl_take isl_aff
*iv_map
)
1254 isl_map
*map
, *map2
;
1255 map
= isl_map_from_domain(set
);
1256 map
= isl_map_add_dims(map
, isl_dim_out
, 1);
1257 map
= isl_map_equate(map
, isl_dim_in
, 0, isl_dim_out
, 0);
1258 map2
= isl_map_from_aff(iv_map
);
1259 map2
= isl_map_align_params(map2
, isl_map_get_space(map
));
1260 map
= isl_map_apply_range(map
, map2
);
1261 map
= isl_map_equate(map
, isl_dim_param
, param_pos
, isl_dim_out
, 0);
1262 map
= isl_map_project_out(map
, isl_dim_param
, param_pos
, 1);
1263 return isl_map_domain(map
);
1266 /* Data used in embed_access.
1267 * extend adds an iterator to the iteration domain (through precomposition).
1268 * iv_map expresses the real iterator in terms of the virtual iterator
1269 * var_id represents the induction variable of the corresponding loop
1271 struct pet_embed_access
{
1272 isl_multi_pw_aff
*extend
;
1277 /* Given an index expression, return an expression for the outer iterator.
1279 static __isl_give isl_aff
*index_outer_iterator(
1280 __isl_take isl_multi_pw_aff
*index
)
1283 isl_local_space
*ls
;
1285 space
= isl_multi_pw_aff_get_domain_space(index
);
1286 isl_multi_pw_aff_free(index
);
1288 ls
= isl_local_space_from_space(space
);
1289 return isl_aff_var_on_domain(ls
, isl_dim_set
, 0);
1292 /* Replace an index expression that references the new (outer) iterator variable
1293 * by one that references the corresponding (real) iterator.
1295 * The input index expression is of the form
1297 * { S[i',...] -> i[] }
1299 * where i' refers to the virtual iterator.
1301 * iv_map is of the form
1305 * Return the index expression
1307 * { S[i',...] -> [i] }
1309 static __isl_give isl_multi_pw_aff
*replace_by_iterator(
1310 __isl_take isl_multi_pw_aff
*index
, __isl_take isl_aff
*iv_map
)
1315 aff
= index_outer_iterator(index
);
1316 space
= isl_aff_get_space(aff
);
1317 iv_map
= isl_aff_align_params(iv_map
, space
);
1318 aff
= isl_aff_pullback_aff(iv_map
, aff
);
1320 return isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff
));
1323 /* Given an index expression "index" that refers to the (real) iterator
1324 * through the parameter at position "pos", plug in "iv_map", expressing
1325 * the real iterator in terms of the virtual (outer) iterator.
1327 * In particular, the index expression is of the form
1329 * [..., i, ...] -> { S[i',...] -> ... i ... }
1331 * where i refers to the real iterator and i' refers to the virtual iterator.
1333 * iv_map is of the form
1337 * Return the index expression
1339 * [..., ...] -> { S[i',...] -> ... iv_map(i') ... }
1342 * We first move the parameter to the input
1344 * [..., ...] -> { [i, i',...] -> ... i ... }
1348 * { S[i',...] -> [i=iv_map(i'), i', ...] }
1350 * and then combine the two to obtain the desired result.
1352 static __isl_give isl_multi_pw_aff
*index_internalize_iv(
1353 __isl_take isl_multi_pw_aff
*index
, int pos
, __isl_take isl_aff
*iv_map
)
1355 isl_space
*space
= isl_multi_pw_aff_get_domain_space(index
);
1358 space
= isl_space_drop_dims(space
, isl_dim_param
, pos
, 1);
1359 index
= isl_multi_pw_aff_move_dims(index
, isl_dim_in
, 0,
1360 isl_dim_param
, pos
, 1);
1362 space
= isl_space_map_from_set(space
);
1363 ma
= isl_multi_aff_identity(isl_space_copy(space
));
1364 iv_map
= isl_aff_align_params(iv_map
, space
);
1365 iv_map
= isl_aff_pullback_aff(iv_map
, isl_multi_aff_get_aff(ma
, 0));
1366 ma
= isl_multi_aff_flat_range_product(
1367 isl_multi_aff_from_aff(iv_map
), ma
);
1368 index
= isl_multi_pw_aff_pullback_multi_aff(index
, ma
);
1373 /* Does the index expression "index" reference a virtual array, i.e.,
1374 * one with user pointer equal to NULL?
1375 * A virtual array does not have any members.
1377 static int index_is_virtual_array(__isl_keep isl_multi_pw_aff
*index
)
1382 if (!isl_multi_pw_aff_has_tuple_id(index
, isl_dim_out
))
1384 if (isl_multi_pw_aff_range_is_wrapping(index
))
1386 id
= isl_multi_pw_aff_get_tuple_id(index
, isl_dim_out
);
1387 is_virtual
= !isl_id_get_user(id
);
1393 /* Does the access relation "access" reference a virtual array, i.e.,
1394 * one with user pointer equal to NULL?
1395 * A virtual array does not have any members.
1397 static int access_is_virtual_array(__isl_keep isl_map
*access
)
1402 if (!isl_map_has_tuple_id(access
, isl_dim_out
))
1404 if (isl_map_range_is_wrapping(access
))
1406 id
= isl_map_get_tuple_id(access
, isl_dim_out
);
1407 is_virtual
= !isl_id_get_user(id
);
1413 /* Embed the given index expression in an extra outer loop.
1414 * The domain of the index expression has already been updated.
1416 * If the access refers to the induction variable, then it is
1417 * turned into an access to the set of integers with index (and value)
1418 * equal to the induction variable.
1420 * If the accessed array is a virtual array (with user
1421 * pointer equal to NULL), as created by create_test_index,
1422 * then it is extended along with the domain of the index expression.
1424 static __isl_give isl_multi_pw_aff
*embed_index_expression(
1425 __isl_take isl_multi_pw_aff
*index
, struct pet_embed_access
*data
)
1427 isl_id
*array_id
= NULL
;
1430 if (isl_multi_pw_aff_has_tuple_id(index
, isl_dim_out
))
1431 array_id
= isl_multi_pw_aff_get_tuple_id(index
, isl_dim_out
);
1432 if (array_id
== data
->var_id
) {
1433 index
= replace_by_iterator(index
, isl_aff_copy(data
->iv_map
));
1434 } else if (index_is_virtual_array(index
)) {
1436 isl_multi_pw_aff
*mpa
;
1438 aff
= index_outer_iterator(isl_multi_pw_aff_copy(index
));
1439 mpa
= isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff
));
1440 index
= isl_multi_pw_aff_flat_range_product(mpa
, index
);
1441 index
= isl_multi_pw_aff_set_tuple_id(index
, isl_dim_out
,
1442 isl_id_copy(array_id
));
1444 isl_id_free(array_id
);
1446 pos
= isl_multi_pw_aff_find_dim_by_id(index
,
1447 isl_dim_param
, data
->var_id
);
1449 index
= index_internalize_iv(index
, pos
,
1450 isl_aff_copy(data
->iv_map
));
1451 index
= isl_multi_pw_aff_set_dim_id(index
, isl_dim_in
, 0,
1452 isl_id_copy(data
->var_id
));
1457 /* Embed the given access relation in an extra outer loop.
1458 * The domain of the access relation has already been updated.
1460 * If the access refers to the induction variable, then it is
1461 * turned into an access to the set of integers with index (and value)
1462 * equal to the induction variable.
1464 * If the induction variable appears in the constraints (as a parameter),
1465 * then the parameter is equated to the newly introduced iteration
1466 * domain dimension and subsequently projected out.
1468 * Similarly, if the accessed array is a virtual array (with user
1469 * pointer equal to NULL), as created by create_test_index,
1470 * then it is extended along with the domain of the access.
1472 static __isl_give isl_map
*embed_access_relation(__isl_take isl_map
*access
,
1473 struct pet_embed_access
*data
)
1475 isl_id
*array_id
= NULL
;
1478 if (isl_map_has_tuple_id(access
, isl_dim_out
))
1479 array_id
= isl_map_get_tuple_id(access
, isl_dim_out
);
1480 if (array_id
== data
->var_id
|| access_is_virtual_array(access
)) {
1481 access
= isl_map_insert_dims(access
, isl_dim_out
, 0, 1);
1482 access
= isl_map_equate(access
,
1483 isl_dim_in
, 0, isl_dim_out
, 0);
1484 if (array_id
== data
->var_id
)
1485 access
= isl_map_apply_range(access
,
1486 isl_map_from_aff(isl_aff_copy(data
->iv_map
)));
1488 access
= isl_map_set_tuple_id(access
, isl_dim_out
,
1489 isl_id_copy(array_id
));
1491 isl_id_free(array_id
);
1493 pos
= isl_map_find_dim_by_id(access
, isl_dim_param
, data
->var_id
);
1495 isl_set
*set
= isl_map_wrap(access
);
1496 set
= internalize_iv(set
, pos
, isl_aff_copy(data
->iv_map
));
1497 access
= isl_set_unwrap(set
);
1499 access
= isl_map_set_dim_id(access
, isl_dim_in
, 0,
1500 isl_id_copy(data
->var_id
));
1505 /* Given an access expression, embed the associated access relation and
1506 * index expression in an extra outer loop.
1508 * We first update the domains to insert the extra dimension and
1509 * then update the access relation and index expression to take
1510 * into account the mapping "iv_map" from virtual iterator
1513 static __isl_give pet_expr
*embed_access(__isl_take pet_expr
*expr
, void *user
)
1515 struct pet_embed_access
*data
= user
;
1517 expr
= pet_expr_cow(expr
);
1518 expr
= pet_expr_access_update_domain(expr
, data
->extend
);
1522 expr
->acc
.access
= embed_access_relation(expr
->acc
.access
, data
);
1523 expr
->acc
.index
= embed_index_expression(expr
->acc
.index
, data
);
1524 if (!expr
->acc
.access
|| !expr
->acc
.index
)
1525 return pet_expr_free(expr
);
1530 /* Embed all access subexpressions of "expr" in an extra loop.
1531 * "extend" inserts an outer loop iterator in the iteration domains
1532 * (through precomposition).
1533 * "iv_map" expresses the real iterator in terms of the virtual iterator
1534 * "var_id" represents the induction variable.
1536 static __isl_give pet_expr
*expr_embed(__isl_take pet_expr
*expr
,
1537 __isl_take isl_multi_pw_aff
*extend
, __isl_take isl_aff
*iv_map
,
1538 __isl_keep isl_id
*var_id
)
1540 struct pet_embed_access data
=
1541 { .extend
= extend
, .iv_map
= iv_map
, .var_id
= var_id
};
1543 expr
= pet_expr_map_access(expr
, &embed_access
, &data
);
1544 isl_aff_free(iv_map
);
1545 isl_multi_pw_aff_free(extend
);
1549 /* Embed the given pet_stmt in an extra outer loop with iteration domain
1550 * "dom" and schedule "sched". "var_id" represents the induction variable
1551 * of the loop. "iv_map" maps a possibly virtual iterator to the real iterator.
1552 * That is, it expresses the iterator that some of the parameters in "stmt"
1553 * may refer to in terms of the iterator used in "dom" and
1554 * the domain of "sched".
1556 * The iteration domain and schedule of the statement are updated
1557 * according to the iteration domain and schedule of the new loop.
1558 * If stmt->domain is a wrapped map, then the iteration domain
1559 * is the domain of this map, so we need to be careful to adjust
1562 * If the induction variable appears in the constraints (as a parameter)
1563 * of the current iteration domain or the schedule of the statement,
1564 * then the parameter is equated to the newly introduced iteration
1565 * domain dimension and subsequently projected out.
1567 * Finally, all access relations are updated based on the extra loop.
1569 static struct pet_stmt
*pet_stmt_embed(struct pet_stmt
*stmt
,
1570 __isl_take isl_set
*dom
, __isl_take isl_map
*sched
,
1571 __isl_take isl_aff
*iv_map
, __isl_take isl_id
*var_id
)
1577 isl_multi_pw_aff
*extend
;
1582 if (isl_set_is_wrapping(stmt
->domain
)) {
1587 map
= isl_set_unwrap(stmt
->domain
);
1588 stmt_id
= isl_map_get_tuple_id(map
, isl_dim_in
);
1589 ran_dim
= isl_space_range(isl_map_get_space(map
));
1590 ext
= isl_map_from_domain_and_range(isl_set_copy(dom
),
1591 isl_set_universe(ran_dim
));
1592 map
= isl_map_flat_domain_product(ext
, map
);
1593 map
= isl_map_set_tuple_id(map
, isl_dim_in
,
1594 isl_id_copy(stmt_id
));
1595 dim
= isl_space_domain(isl_map_get_space(map
));
1596 stmt
->domain
= isl_map_wrap(map
);
1598 stmt_id
= isl_set_get_tuple_id(stmt
->domain
);
1599 stmt
->domain
= isl_set_flat_product(isl_set_copy(dom
),
1601 stmt
->domain
= isl_set_set_tuple_id(stmt
->domain
,
1602 isl_id_copy(stmt_id
));
1603 dim
= isl_set_get_space(stmt
->domain
);
1606 pos
= isl_set_find_dim_by_id(stmt
->domain
, isl_dim_param
, var_id
);
1608 stmt
->domain
= internalize_iv(stmt
->domain
, pos
,
1609 isl_aff_copy(iv_map
));
1611 stmt
->schedule
= isl_map_flat_product(sched
, stmt
->schedule
);
1612 stmt
->schedule
= isl_map_set_tuple_id(stmt
->schedule
,
1613 isl_dim_in
, stmt_id
);
1615 pos
= isl_map_find_dim_by_id(stmt
->schedule
, isl_dim_param
, var_id
);
1617 isl_set
*set
= isl_map_wrap(stmt
->schedule
);
1618 set
= internalize_iv(set
, pos
, isl_aff_copy(iv_map
));
1619 stmt
->schedule
= isl_set_unwrap(set
);
1622 dim
= isl_space_map_from_set(dim
);
1623 extend
= isl_multi_pw_aff_identity(dim
);
1624 extend
= isl_multi_pw_aff_drop_dims(extend
, isl_dim_out
, 0, 1);
1625 extend
= isl_multi_pw_aff_set_tuple_id(extend
, isl_dim_out
,
1626 isl_multi_pw_aff_get_tuple_id(extend
, isl_dim_in
));
1627 for (i
= 0; i
< stmt
->n_arg
; ++i
)
1628 stmt
->args
[i
] = expr_embed(stmt
->args
[i
],
1629 isl_multi_pw_aff_copy(extend
),
1630 isl_aff_copy(iv_map
), var_id
);
1631 stmt
->body
= expr_embed(stmt
->body
, extend
, iv_map
, var_id
);
1634 isl_id_free(var_id
);
1636 for (i
= 0; i
< stmt
->n_arg
; ++i
)
1638 return pet_stmt_free(stmt
);
1639 if (!stmt
->domain
|| !stmt
->schedule
|| !stmt
->body
)
1640 return pet_stmt_free(stmt
);
1644 isl_map_free(sched
);
1645 isl_aff_free(iv_map
);
1646 isl_id_free(var_id
);
1650 /* Embed the given pet_array in an extra outer loop with iteration domain
1652 * This embedding only has an effect on virtual arrays (those with
1653 * user pointer equal to NULL), which need to be extended along with
1654 * the iteration domain.
1656 static struct pet_array
*pet_array_embed(struct pet_array
*array
,
1657 __isl_take isl_set
*dom
)
1659 isl_id
*array_id
= NULL
;
1663 if (!extent_is_virtual_array(array
->extent
)) {
1668 array_id
= isl_set_get_tuple_id(array
->extent
);
1669 array
->extent
= isl_set_flat_product(dom
, array
->extent
);
1670 array
->extent
= isl_set_set_tuple_id(array
->extent
, array_id
);
1672 return pet_array_free(array
);
1680 /* Update the context with respect to an embedding into a loop
1681 * with iteration domain "dom" and induction variable "id".
1682 * "iv_map" expresses the real iterator (parameter "id") in terms
1683 * of a possibly virtual iterator (used in "dom").
1685 * If the current context is independent of "id", we don't need
1687 * Otherwise, a parameter value is invalid for the embedding if
1688 * any of the corresponding iterator values is invalid.
1689 * That is, a parameter value is valid only if all the corresponding
1690 * iterator values are valid.
1691 * We therefore compute the set of parameters
1693 * forall i in dom : valid (i)
1697 * not exists i in dom : not valid(i)
1701 * not exists i in dom \ valid(i)
1703 * Before we subtract valid(i) from dom, we first need to substitute
1704 * the real iterator for the virtual iterator.
1706 * If there are any unnamed parameters in "dom", then we consider
1707 * a parameter value to be valid if it is valid for any value of those
1708 * unnamed parameters. They are therefore projected out at the end.
1710 static __isl_give isl_set
*context_embed(__isl_take isl_set
*context
,
1711 __isl_keep isl_set
*dom
, __isl_keep isl_aff
*iv_map
,
1712 __isl_keep isl_id
*id
)
1717 pos
= isl_set_find_dim_by_id(context
, isl_dim_param
, id
);
1721 context
= isl_set_from_params(context
);
1722 context
= isl_set_add_dims(context
, isl_dim_set
, 1);
1723 context
= isl_set_equate(context
, isl_dim_param
, pos
, isl_dim_set
, 0);
1724 context
= isl_set_project_out(context
, isl_dim_param
, pos
, 1);
1725 ma
= isl_multi_aff_from_aff(isl_aff_copy(iv_map
));
1726 context
= isl_set_preimage_multi_aff(context
, ma
);
1727 context
= isl_set_subtract(isl_set_copy(dom
), context
);
1728 context
= isl_set_params(context
);
1729 context
= isl_set_complement(context
);
1730 context
= pet_nested_remove_from_set(context
);
1734 /* Update the implication with respect to an embedding into a loop
1735 * with iteration domain "dom".
1737 * Since embed_access extends virtual arrays along with the domain
1738 * of the access, we need to do the same with domain and range
1739 * of the implication. Since the original implication is only valid
1740 * within a given iteration of the loop, the extended implication
1741 * maps the extra array dimension corresponding to the extra loop
1744 static struct pet_implication
*pet_implication_embed(
1745 struct pet_implication
*implication
, __isl_take isl_set
*dom
)
1753 map
= isl_set_identity(dom
);
1754 id
= isl_map_get_tuple_id(implication
->extension
, isl_dim_in
);
1755 map
= isl_map_flat_product(map
, implication
->extension
);
1756 map
= isl_map_set_tuple_id(map
, isl_dim_in
, isl_id_copy(id
));
1757 map
= isl_map_set_tuple_id(map
, isl_dim_out
, id
);
1758 implication
->extension
= map
;
1759 if (!implication
->extension
)
1760 return pet_implication_free(implication
);
1768 /* Embed all statements and arrays in "scop" in an extra outer loop
1769 * with iteration domain "dom" and schedule "sched".
1770 * "id" represents the induction variable of the loop.
1771 * "iv_map" maps a possibly virtual iterator to the real iterator.
1772 * That is, it expresses the iterator that some of the parameters in "scop"
1773 * may refer to in terms of the iterator used in "dom" and
1774 * the domain of "sched".
1776 * Any skip conditions within the loop have no effect outside of the loop.
1777 * The caller is responsible for making sure skip[pet_skip_later] has been
1778 * taken into account.
1780 struct pet_scop
*pet_scop_embed(struct pet_scop
*scop
, __isl_take isl_set
*dom
,
1781 __isl_take isl_aff
*sched
, __isl_take isl_aff
*iv_map
,
1782 __isl_take isl_id
*id
)
1787 sched_map
= isl_map_from_aff(sched
);
1792 pet_scop_reset_skip(scop
, pet_skip_now
);
1793 pet_scop_reset_skip(scop
, pet_skip_later
);
1795 scop
->context
= context_embed(scop
->context
, dom
, iv_map
, id
);
1799 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
1800 scop
->stmts
[i
] = pet_stmt_embed(scop
->stmts
[i
],
1801 isl_set_copy(dom
), isl_map_copy(sched_map
),
1802 isl_aff_copy(iv_map
), isl_id_copy(id
));
1803 if (!scop
->stmts
[i
])
1807 for (i
= 0; i
< scop
->n_array
; ++i
) {
1808 scop
->arrays
[i
] = pet_array_embed(scop
->arrays
[i
],
1810 if (!scop
->arrays
[i
])
1814 for (i
= 0; i
< scop
->n_implication
; ++i
) {
1815 scop
->implications
[i
] =
1816 pet_implication_embed(scop
->implications
[i
],
1818 if (!scop
->implications
[i
])
1823 isl_map_free(sched_map
);
1824 isl_aff_free(iv_map
);
1829 isl_map_free(sched_map
);
1830 isl_aff_free(iv_map
);
1832 return pet_scop_free(scop
);
1835 /* Add extra conditions on the parameters to the iteration domain of "stmt".
1837 static struct pet_stmt
*stmt_restrict(struct pet_stmt
*stmt
,
1838 __isl_take isl_set
*cond
)
1843 stmt
->domain
= isl_set_intersect_params(stmt
->domain
, cond
);
1848 return pet_stmt_free(stmt
);
1851 /* Add extra conditions to scop->skip[type].
1853 * The new skip condition only holds if it held before
1854 * and the condition is true. It does not hold if it did not hold
1855 * before or the condition is false.
1857 * The skip condition is assumed to be an affine expression.
1859 static struct pet_scop
*pet_scop_restrict_skip(struct pet_scop
*scop
,
1860 enum pet_skip type
, __isl_keep isl_set
*cond
)
1862 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
1868 if (!ext
->skip
[type
])
1871 if (!multi_pw_aff_is_affine(ext
->skip
[type
]))
1872 isl_die(isl_multi_pw_aff_get_ctx(ext
->skip
[type
]),
1873 isl_error_internal
, "can only restrict affine skips",
1874 return pet_scop_free(scop
));
1876 skip
= isl_multi_pw_aff_get_pw_aff(ext
->skip
[type
], 0);
1877 dom
= isl_pw_aff_domain(isl_pw_aff_copy(skip
));
1878 cond
= isl_set_copy(cond
);
1879 cond
= isl_set_from_params(cond
);
1880 cond
= isl_set_intersect(cond
, isl_pw_aff_non_zero_set(skip
));
1881 skip
= indicator_function(cond
, dom
);
1882 isl_multi_pw_aff_free(ext
->skip
[type
]);
1883 ext
->skip
[type
] = isl_multi_pw_aff_from_pw_aff(skip
);
1884 if (!ext
->skip
[type
])
1885 return pet_scop_free(scop
);
1890 /* Add extra conditions on the parameters to all iteration domains
1891 * and skip conditions.
1893 * A parameter value is valid for the result if it was valid
1894 * for the original scop and satisfies "cond" or if it does
1895 * not satisfy "cond" as in this case the scop is not executed
1896 * and the original constraints on the parameters are irrelevant.
1898 struct pet_scop
*pet_scop_restrict(struct pet_scop
*scop
,
1899 __isl_take isl_set
*cond
)
1903 scop
= pet_scop_restrict_skip(scop
, pet_skip_now
, cond
);
1904 scop
= pet_scop_restrict_skip(scop
, pet_skip_later
, cond
);
1909 scop
->context
= isl_set_intersect(scop
->context
, isl_set_copy(cond
));
1910 scop
->context
= isl_set_union(scop
->context
,
1911 isl_set_complement(isl_set_copy(cond
)));
1912 scop
->context
= isl_set_coalesce(scop
->context
);
1913 scop
->context
= pet_nested_remove_from_set(scop
->context
);
1917 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
1918 scop
->stmts
[i
] = stmt_restrict(scop
->stmts
[i
],
1919 isl_set_copy(cond
));
1920 if (!scop
->stmts
[i
])
1928 return pet_scop_free(scop
);
1931 /* Insert an argument expression corresponding to "test" in front
1932 * of the list of arguments described by *n_arg and *args.
1934 static int args_insert_access(unsigned *n_arg
, pet_expr
***args
,
1935 __isl_keep isl_multi_pw_aff
*test
)
1938 isl_ctx
*ctx
= isl_multi_pw_aff_get_ctx(test
);
1944 *args
= isl_calloc_array(ctx
, pet_expr
*, 1);
1949 ext
= isl_calloc_array(ctx
, pet_expr
*, 1 + *n_arg
);
1952 for (i
= 0; i
< *n_arg
; ++i
)
1953 ext
[1 + i
] = (*args
)[i
];
1958 (*args
)[0] = pet_expr_from_index(isl_multi_pw_aff_copy(test
));
1965 /* Look through the applications in "scop" for any that can be
1966 * applied to the filter expressed by "map" and "satisified".
1967 * If there is any, then apply it to "map" and return the result.
1968 * Otherwise, return "map".
1969 * "id" is the identifier of the virtual array.
1971 * We only introduce at most one implication for any given virtual array,
1972 * so we can apply the implication and return as soon as we find one.
1974 static __isl_give isl_map
*apply_implications(struct pet_scop
*scop
,
1975 __isl_take isl_map
*map
, __isl_keep isl_id
*id
, int satisfied
)
1979 for (i
= 0; i
< scop
->n_implication
; ++i
) {
1980 struct pet_implication
*pi
= scop
->implications
[i
];
1983 if (pi
->satisfied
!= satisfied
)
1985 pi_id
= isl_map_get_tuple_id(pi
->extension
, isl_dim_in
);
1990 return isl_map_apply_range(map
, isl_map_copy(pi
->extension
));
1996 /* Is the filter expressed by "test" and "satisfied" implied
1997 * by filter "pos" on "domain", with filter "expr", taking into
1998 * account the implications of "scop"?
2000 * For filter on domain implying that expressed by "test" and "satisfied",
2001 * the filter needs to be an access to the same (virtual) array as "test" and
2002 * the filter value needs to be equal to "satisfied".
2003 * Moreover, the filter access relation, possibly extended by
2004 * the implications in "scop" needs to contain "test".
2006 static int implies_filter(struct pet_scop
*scop
,
2007 __isl_keep isl_map
*domain
, int pos
, __isl_keep pet_expr
*expr
,
2008 __isl_keep isl_map
*test
, int satisfied
)
2010 isl_id
*test_id
, *arg_id
;
2017 if (expr
->type
!= pet_expr_access
)
2019 test_id
= isl_map_get_tuple_id(test
, isl_dim_out
);
2020 arg_id
= pet_expr_access_get_id(expr
);
2021 isl_id_free(arg_id
);
2022 isl_id_free(test_id
);
2023 if (test_id
!= arg_id
)
2025 val
= isl_map_plain_get_val_if_fixed(domain
, isl_dim_out
, pos
);
2026 is_int
= isl_val_is_int(val
);
2028 s
= isl_val_get_num_si(val
);
2037 implied
= isl_map_copy(expr
->acc
.access
);
2038 implied
= apply_implications(scop
, implied
, test_id
, satisfied
);
2039 is_subset
= isl_map_is_subset(test
, implied
);
2040 isl_map_free(implied
);
2045 /* Is the filter expressed by "test" and "satisfied" implied
2046 * by any of the filters on the domain of "stmt", taking into
2047 * account the implications of "scop"?
2049 static int filter_implied(struct pet_scop
*scop
,
2050 struct pet_stmt
*stmt
, __isl_keep isl_multi_pw_aff
*test
, int satisfied
)
2058 if (!scop
|| !stmt
|| !test
)
2060 if (scop
->n_implication
== 0)
2062 if (stmt
->n_arg
== 0)
2065 domain
= isl_set_unwrap(isl_set_copy(stmt
->domain
));
2066 test_map
= isl_map_from_multi_pw_aff(isl_multi_pw_aff_copy(test
));
2069 for (i
= 0; i
< stmt
->n_arg
; ++i
) {
2070 implied
= implies_filter(scop
, domain
, i
, stmt
->args
[i
],
2071 test_map
, satisfied
);
2072 if (implied
< 0 || implied
)
2076 isl_map_free(test_map
);
2077 isl_map_free(domain
);
2081 /* Make the statement "stmt" depend on the value of "test"
2082 * being equal to "satisfied" by adjusting stmt->domain.
2084 * The domain of "test" corresponds to the (zero or more) outer dimensions
2085 * of the iteration domain.
2087 * We first extend "test" to apply to the entire iteration domain and
2088 * then check if the filter that we are about to add is implied
2089 * by any of the current filters, possibly taking into account
2090 * the implications in "scop". If so, we leave "stmt" untouched and return.
2092 * Otherwise, we insert an argument corresponding to a read to "test"
2093 * from the iteration domain of "stmt" in front of the list of arguments.
2094 * We also insert a corresponding output dimension in the wrapped
2095 * map contained in stmt->domain, with value set to "satisfied".
2097 static struct pet_stmt
*stmt_filter(struct pet_scop
*scop
,
2098 struct pet_stmt
*stmt
, __isl_take isl_multi_pw_aff
*test
, int satisfied
)
2104 isl_pw_multi_aff
*pma
;
2105 isl_multi_aff
*add_dom
;
2107 isl_local_space
*ls
;
2113 space
= pet_stmt_get_space(stmt
);
2114 n_test_dom
= isl_multi_pw_aff_dim(test
, isl_dim_in
);
2115 space
= isl_space_from_domain(space
);
2116 space
= isl_space_add_dims(space
, isl_dim_out
, n_test_dom
);
2117 add_dom
= isl_multi_aff_zero(isl_space_copy(space
));
2118 ls
= isl_local_space_from_space(isl_space_domain(space
));
2119 for (i
= 0; i
< n_test_dom
; ++i
) {
2121 aff
= isl_aff_var_on_domain(isl_local_space_copy(ls
),
2123 add_dom
= isl_multi_aff_set_aff(add_dom
, i
, aff
);
2125 isl_local_space_free(ls
);
2126 test
= isl_multi_pw_aff_pullback_multi_aff(test
, add_dom
);
2128 implied
= filter_implied(scop
, stmt
, test
, satisfied
);
2132 isl_multi_pw_aff_free(test
);
2136 id
= isl_multi_pw_aff_get_tuple_id(test
, isl_dim_out
);
2137 pma
= pet_filter_insert_pma(isl_set_get_space(stmt
->domain
),
2139 stmt
->domain
= isl_set_preimage_pw_multi_aff(stmt
->domain
, pma
);
2141 if (args_insert_access(&stmt
->n_arg
, &stmt
->args
, test
) < 0)
2144 isl_multi_pw_aff_free(test
);
2147 isl_multi_pw_aff_free(test
);
2148 return pet_stmt_free(stmt
);
2151 /* Does "scop" have a skip condition of the given "type"?
2153 int pet_scop_has_skip(struct pet_scop
*scop
, enum pet_skip type
)
2155 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
2159 return ext
->skip
[type
] != NULL
;
2162 /* Does "scop" have a skip condition of the given "type" that
2163 * is an affine expression?
2165 int pet_scop_has_affine_skip(struct pet_scop
*scop
, enum pet_skip type
)
2167 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
2171 if (!ext
->skip
[type
])
2173 return multi_pw_aff_is_affine(ext
->skip
[type
]);
2176 /* Does "scop" have a skip condition of the given "type" that
2177 * is not an affine expression?
2179 int pet_scop_has_var_skip(struct pet_scop
*scop
, enum pet_skip type
)
2181 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
2186 if (!ext
->skip
[type
])
2188 aff
= multi_pw_aff_is_affine(ext
->skip
[type
]);
2194 /* Does "scop" have a skip condition of the given "type" that
2195 * is affine and holds on the entire domain?
2197 int pet_scop_has_universal_skip(struct pet_scop
*scop
, enum pet_skip type
)
2199 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
2205 is_aff
= pet_scop_has_affine_skip(scop
, type
);
2206 if (is_aff
< 0 || !is_aff
)
2209 pa
= isl_multi_pw_aff_get_pw_aff(ext
->skip
[type
], 0);
2210 set
= isl_pw_aff_non_zero_set(pa
);
2211 is_univ
= isl_set_plain_is_universe(set
);
2217 /* Replace scop->skip[type] by "skip".
2219 struct pet_scop
*pet_scop_set_skip(struct pet_scop
*scop
,
2220 enum pet_skip type
, __isl_take isl_multi_pw_aff
*skip
)
2222 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
2227 isl_multi_pw_aff_free(ext
->skip
[type
]);
2228 ext
->skip
[type
] = skip
;
2232 isl_multi_pw_aff_free(skip
);
2233 return pet_scop_free(scop
);
2236 /* Return a copy of scop->skip[type].
2238 __isl_give isl_multi_pw_aff
*pet_scop_get_skip(struct pet_scop
*scop
,
2241 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
2246 return isl_multi_pw_aff_copy(ext
->skip
[type
]);
2249 /* Assuming scop->skip[type] is an affine expression,
2250 * return the constraints on the parameters for which the skip condition
2253 __isl_give isl_set
*pet_scop_get_affine_skip_domain(struct pet_scop
*scop
,
2256 isl_multi_pw_aff
*skip
;
2259 skip
= pet_scop_get_skip(scop
, type
);
2260 pa
= isl_multi_pw_aff_get_pw_aff(skip
, 0);
2261 isl_multi_pw_aff_free(skip
);
2262 return isl_set_params(isl_pw_aff_non_zero_set(pa
));
2265 /* Return the identifier of the variable that is accessed by
2266 * the skip condition of the given type.
2268 * The skip condition is assumed not to be an affine condition.
2270 __isl_give isl_id
*pet_scop_get_skip_id(struct pet_scop
*scop
,
2273 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
2278 return isl_multi_pw_aff_get_tuple_id(ext
->skip
[type
], isl_dim_out
);
2281 /* Return an access pet_expr corresponding to the skip condition
2282 * of the given type.
2284 __isl_give pet_expr
*pet_scop_get_skip_expr(struct pet_scop
*scop
,
2287 return pet_expr_from_index(pet_scop_get_skip(scop
, type
));
2290 /* Drop the the skip condition scop->skip[type].
2292 void pet_scop_reset_skip(struct pet_scop
*scop
, enum pet_skip type
)
2294 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
2299 isl_multi_pw_aff_free(ext
->skip
[type
]);
2300 ext
->skip
[type
] = NULL
;
2303 /* Make the skip condition (if any) depend on the value of "test" being
2304 * equal to "satisfied".
2306 * We only support the case where the original skip condition is universal,
2307 * i.e., where skipping is unconditional, and where satisfied == 1.
2308 * In this case, the skip condition is changed to skip only when
2309 * "test" is equal to one.
2311 static struct pet_scop
*pet_scop_filter_skip(struct pet_scop
*scop
,
2312 enum pet_skip type
, __isl_keep isl_multi_pw_aff
*test
, int satisfied
)
2318 if (!pet_scop_has_skip(scop
, type
))
2322 is_univ
= pet_scop_has_universal_skip(scop
, type
);
2324 return pet_scop_free(scop
);
2325 if (satisfied
&& is_univ
) {
2326 isl_multi_pw_aff
*skip
;
2327 skip
= isl_multi_pw_aff_copy(test
);
2328 scop
= pet_scop_set_skip(scop
, type
, skip
);
2332 isl_die(isl_multi_pw_aff_get_ctx(test
), isl_error_internal
,
2333 "skip expression cannot be filtered",
2334 return pet_scop_free(scop
));
2340 /* Make all statements in "scop" depend on the value of "test"
2341 * being equal to "satisfied" by adjusting their domains.
2343 struct pet_scop
*pet_scop_filter(struct pet_scop
*scop
,
2344 __isl_take isl_multi_pw_aff
*test
, int satisfied
)
2348 scop
= pet_scop_filter_skip(scop
, pet_skip_now
, test
, satisfied
);
2349 scop
= pet_scop_filter_skip(scop
, pet_skip_later
, test
, satisfied
);
2354 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
2355 scop
->stmts
[i
] = stmt_filter(scop
, scop
->stmts
[i
],
2356 isl_multi_pw_aff_copy(test
), satisfied
);
2357 if (!scop
->stmts
[i
])
2361 isl_multi_pw_aff_free(test
);
2364 isl_multi_pw_aff_free(test
);
2365 return pet_scop_free(scop
);
2368 /* Add all parameters in "expr" to "space" and return the result.
2370 static __isl_give isl_space
*expr_collect_params(__isl_keep pet_expr
*expr
,
2371 __isl_take isl_space
*space
)
2377 for (i
= 0; i
< expr
->n_arg
; ++i
)
2378 space
= expr_collect_params(expr
->args
[i
], space
);
2380 if (expr
->type
== pet_expr_access
)
2381 space
= isl_space_align_params(space
,
2382 isl_map_get_space(expr
->acc
.access
));
2386 pet_expr_free(expr
);
2387 return isl_space_free(space
);
2390 /* Add all parameters in "stmt" to "space" and return the result.
2392 static __isl_give isl_space
*stmt_collect_params(struct pet_stmt
*stmt
,
2393 __isl_take isl_space
*space
)
2398 return isl_space_free(space
);
2400 space
= isl_space_align_params(space
, isl_set_get_space(stmt
->domain
));
2401 space
= isl_space_align_params(space
,
2402 isl_map_get_space(stmt
->schedule
));
2403 for (i
= 0; i
< stmt
->n_arg
; ++i
)
2404 space
= expr_collect_params(stmt
->args
[i
], space
);
2405 space
= expr_collect_params(stmt
->body
, space
);
2410 /* Add all parameters in "array" to "space" and return the result.
2412 static __isl_give isl_space
*array_collect_params(struct pet_array
*array
,
2413 __isl_take isl_space
*space
)
2416 return isl_space_free(space
);
2418 space
= isl_space_align_params(space
,
2419 isl_set_get_space(array
->context
));
2420 space
= isl_space_align_params(space
, isl_set_get_space(array
->extent
));
2425 /* Add all parameters in "scop" to "space" and return the result.
2427 static __isl_give isl_space
*scop_collect_params(struct pet_scop
*scop
,
2428 __isl_take isl_space
*space
)
2433 return isl_space_free(space
);
2435 for (i
= 0; i
< scop
->n_array
; ++i
)
2436 space
= array_collect_params(scop
->arrays
[i
], space
);
2438 for (i
= 0; i
< scop
->n_stmt
; ++i
)
2439 space
= stmt_collect_params(scop
->stmts
[i
], space
);
2444 /* Add all parameters in "space" to the domain, schedule and
2445 * all access relations in "stmt".
2447 static struct pet_stmt
*stmt_propagate_params(struct pet_stmt
*stmt
,
2448 __isl_take isl_space
*space
)
2455 stmt
->domain
= isl_set_align_params(stmt
->domain
,
2456 isl_space_copy(space
));
2457 stmt
->schedule
= isl_map_align_params(stmt
->schedule
,
2458 isl_space_copy(space
));
2460 for (i
= 0; i
< stmt
->n_arg
; ++i
) {
2461 stmt
->args
[i
] = pet_expr_align_params(stmt
->args
[i
],
2462 isl_space_copy(space
));
2466 stmt
->body
= pet_expr_align_params(stmt
->body
, isl_space_copy(space
));
2468 if (!stmt
->domain
|| !stmt
->schedule
|| !stmt
->body
)
2471 isl_space_free(space
);
2474 isl_space_free(space
);
2475 return pet_stmt_free(stmt
);
2478 /* Add all parameters in "space" to "array".
2480 static struct pet_array
*array_propagate_params(struct pet_array
*array
,
2481 __isl_take isl_space
*space
)
2486 array
->context
= isl_set_align_params(array
->context
,
2487 isl_space_copy(space
));
2488 array
->extent
= isl_set_align_params(array
->extent
,
2489 isl_space_copy(space
));
2490 if (array
->value_bounds
) {
2491 array
->value_bounds
= isl_set_align_params(array
->value_bounds
,
2492 isl_space_copy(space
));
2493 if (!array
->value_bounds
)
2497 if (!array
->context
|| !array
->extent
)
2500 isl_space_free(space
);
2503 isl_space_free(space
);
2504 return pet_array_free(array
);
2507 /* Add all parameters in "space" to "scop".
2509 static struct pet_scop
*scop_propagate_params(struct pet_scop
*scop
,
2510 __isl_take isl_space
*space
)
2517 for (i
= 0; i
< scop
->n_array
; ++i
) {
2518 scop
->arrays
[i
] = array_propagate_params(scop
->arrays
[i
],
2519 isl_space_copy(space
));
2520 if (!scop
->arrays
[i
])
2524 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
2525 scop
->stmts
[i
] = stmt_propagate_params(scop
->stmts
[i
],
2526 isl_space_copy(space
));
2527 if (!scop
->stmts
[i
])
2531 isl_space_free(space
);
2534 isl_space_free(space
);
2535 return pet_scop_free(scop
);
2538 /* Update all isl_sets and isl_maps in "scop" such that they all
2539 * have the same parameters.
2541 struct pet_scop
*pet_scop_align_params(struct pet_scop
*scop
)
2548 space
= isl_set_get_space(scop
->context
);
2549 space
= scop_collect_params(scop
, space
);
2551 scop
->context
= isl_set_align_params(scop
->context
,
2552 isl_space_copy(space
));
2553 scop
= scop_propagate_params(scop
, space
);
2555 if (scop
&& !scop
->context
)
2556 return pet_scop_free(scop
);
2561 /* Replace all accesses to (0D) arrays that correspond to one of the parameters
2562 * in "space" by a value equal to the corresponding parameter.
2564 static struct pet_stmt
*stmt_detect_parameter_accesses(struct pet_stmt
*stmt
,
2565 __isl_take isl_space
*space
)
2570 stmt
->body
= pet_expr_detect_parameter_accesses(stmt
->body
,
2571 isl_space_copy(space
));
2573 if (!stmt
->domain
|| !stmt
->schedule
|| !stmt
->body
)
2576 isl_space_free(space
);
2579 isl_space_free(space
);
2580 return pet_stmt_free(stmt
);
2583 /* Replace all accesses to (0D) arrays that correspond to one of the parameters
2584 * in "space" by a value equal to the corresponding parameter.
2586 static struct pet_scop
*scop_detect_parameter_accesses(struct pet_scop
*scop
,
2587 __isl_take isl_space
*space
)
2594 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
2595 scop
->stmts
[i
] = stmt_detect_parameter_accesses(scop
->stmts
[i
],
2596 isl_space_copy(space
));
2597 if (!scop
->stmts
[i
])
2601 isl_space_free(space
);
2604 isl_space_free(space
);
2605 return pet_scop_free(scop
);
2608 /* Replace all accesses to (0D) arrays that correspond to any of
2609 * the parameters used in "scop" by a value equal
2610 * to the corresponding parameter.
2612 struct pet_scop
*pet_scop_detect_parameter_accesses(struct pet_scop
*scop
)
2619 space
= isl_set_get_space(scop
->context
);
2620 space
= scop_collect_params(scop
, space
);
2622 scop
= scop_detect_parameter_accesses(scop
, space
);
2627 /* Add the access relation of the access expression "expr" to "accesses" and
2628 * return the result.
2629 * The domain of the access relation is intersected with "domain".
2630 * If "tag" is set, then the access relation is tagged with
2631 * the corresponding reference identifier.
2633 static __isl_give isl_union_map
*expr_collect_access(__isl_keep pet_expr
*expr
,
2634 int tag
, __isl_take isl_union_map
*accesses
, __isl_keep isl_set
*domain
)
2638 access
= pet_expr_access_get_may_access(expr
);
2639 access
= isl_map_intersect_domain(access
, isl_set_copy(domain
));
2641 access
= pet_expr_tag_access(expr
, access
);
2642 return isl_union_map_add_map(accesses
, access
);
2645 /* Add all read access relations (if "read" is set) and/or all write
2646 * access relations (if "write" is set) to "accesses" and return the result.
2647 * The domains of the access relations are intersected with "domain".
2648 * If "tag" is set, then the access relations are tagged with
2649 * the corresponding reference identifiers.
2651 * If "must" is set, then we only add the accesses that are definitely
2652 * performed. Otherwise, we add all potential accesses.
2653 * In particular, if the access has any arguments, then if "must" is
2654 * set we currently skip the access completely. If "must" is not set,
2655 * we project out the values of the access arguments.
2657 static __isl_give isl_union_map
*expr_collect_accesses(
2658 __isl_keep pet_expr
*expr
, int read
, int write
, int must
, int tag
,
2659 __isl_take isl_union_map
*accesses
, __isl_keep isl_set
*domain
)
2666 return isl_union_map_free(accesses
);
2668 for (i
= 0; i
< expr
->n_arg
; ++i
)
2669 accesses
= expr_collect_accesses(expr
->args
[i
],
2670 read
, write
, must
, tag
, accesses
, domain
);
2672 if (expr
->type
== pet_expr_access
&& !pet_expr_is_affine(expr
) &&
2673 ((read
&& expr
->acc
.read
) || (write
&& expr
->acc
.write
)) &&
2674 (!must
|| expr
->n_arg
== 0)) {
2675 accesses
= expr_collect_access(expr
, tag
, accesses
, domain
);
2681 /* Collect and return all read access relations (if "read" is set)
2682 * and/or all write access relations (if "write" is set) in "stmt".
2683 * If "tag" is set, then the access relations are tagged with
2684 * the corresponding reference identifiers.
2685 * If "kill" is set, then "stmt" is a kill statement and we simply
2686 * add the argument of the kill operation.
2688 * If "must" is set, then we only add the accesses that are definitely
2689 * performed. Otherwise, we add all potential accesses.
2690 * In particular, if the statement has any arguments, then if "must" is
2691 * set we currently skip the statement completely. If "must" is not set,
2692 * we project out the values of the statement arguments.
2694 static __isl_give isl_union_map
*stmt_collect_accesses(struct pet_stmt
*stmt
,
2695 int read
, int write
, int kill
, int must
, int tag
,
2696 __isl_take isl_space
*dim
)
2698 isl_union_map
*accesses
;
2704 accesses
= isl_union_map_empty(dim
);
2706 if (must
&& stmt
->n_arg
> 0)
2709 domain
= isl_set_copy(stmt
->domain
);
2710 if (isl_set_is_wrapping(domain
))
2711 domain
= isl_map_domain(isl_set_unwrap(domain
));
2714 accesses
= expr_collect_access(stmt
->body
->args
[0], tag
,
2717 accesses
= expr_collect_accesses(stmt
->body
, read
, write
,
2718 must
, tag
, accesses
, domain
);
2719 isl_set_free(domain
);
2724 /* Is "stmt" an assignment statement?
2726 int pet_stmt_is_assign(struct pet_stmt
*stmt
)
2730 if (stmt
->body
->type
!= pet_expr_op
)
2732 return stmt
->body
->op
== pet_op_assign
;
2735 /* Is "stmt" a kill statement?
2737 int pet_stmt_is_kill(struct pet_stmt
*stmt
)
2741 if (stmt
->body
->type
!= pet_expr_op
)
2743 return stmt
->body
->op
== pet_op_kill
;
2746 /* Is "stmt" an assume statement?
2748 int pet_stmt_is_assume(struct pet_stmt
*stmt
)
2752 return pet_expr_is_assume(stmt
->body
);
2755 /* Compute a mapping from all arrays (of structs) in scop
2756 * to their innermost arrays.
2758 * In particular, for each array of a primitive type, the result
2759 * contains the identity mapping on that array.
2760 * For each array involving member accesses, the result
2761 * contains a mapping from the elements of any intermediate array of structs
2762 * to all corresponding elements of the innermost nested arrays.
2764 static __isl_give isl_union_map
*compute_to_inner(struct pet_scop
*scop
)
2767 isl_union_map
*to_inner
;
2769 to_inner
= isl_union_map_empty(isl_set_get_space(scop
->context
));
2771 for (i
= 0; i
< scop
->n_array
; ++i
) {
2772 struct pet_array
*array
= scop
->arrays
[i
];
2774 isl_map
*map
, *gist
;
2776 if (array
->element_is_record
)
2779 map
= isl_set_identity(isl_set_copy(array
->extent
));
2781 set
= isl_map_domain(isl_map_copy(map
));
2782 gist
= isl_map_copy(map
);
2783 gist
= isl_map_gist_domain(gist
, isl_set_copy(set
));
2784 to_inner
= isl_union_map_add_map(to_inner
, gist
);
2786 while (set
&& isl_set_is_wrapping(set
)) {
2790 id
= isl_set_get_tuple_id(set
);
2791 wrapped
= isl_set_unwrap(set
);
2792 wrapped
= isl_map_domain_map(wrapped
);
2793 wrapped
= isl_map_set_tuple_id(wrapped
, isl_dim_in
, id
);
2794 map
= isl_map_apply_domain(map
, wrapped
);
2795 set
= isl_map_domain(isl_map_copy(map
));
2796 gist
= isl_map_copy(map
);
2797 gist
= isl_map_gist_domain(gist
, isl_set_copy(set
));
2798 to_inner
= isl_union_map_add_map(to_inner
, gist
);
2808 /* Collect and return all read access relations (if "read" is set)
2809 * and/or all write access relations (if "write" is set) in "scop".
2810 * If "kill" is set, then we only add the arguments of kill operations.
2811 * If "must" is set, then we only add the accesses that are definitely
2812 * performed. Otherwise, we add all potential accesses.
2813 * If "tag" is set, then the access relations are tagged with
2814 * the corresponding reference identifiers.
2815 * For accesses to structures, the returned access relation accesses
2816 * all individual fields in the structures.
2818 static __isl_give isl_union_map
*scop_collect_accesses(struct pet_scop
*scop
,
2819 int read
, int write
, int kill
, int must
, int tag
)
2822 isl_union_map
*accesses
;
2823 isl_union_set
*arrays
;
2824 isl_union_map
*to_inner
;
2829 accesses
= isl_union_map_empty(isl_set_get_space(scop
->context
));
2831 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
2832 struct pet_stmt
*stmt
= scop
->stmts
[i
];
2833 isl_union_map
*accesses_i
;
2836 if (kill
&& !pet_stmt_is_kill(stmt
))
2839 space
= isl_set_get_space(scop
->context
);
2840 accesses_i
= stmt_collect_accesses(stmt
, read
, write
, kill
,
2842 accesses
= isl_union_map_union(accesses
, accesses_i
);
2845 arrays
= isl_union_set_empty(isl_union_map_get_space(accesses
));
2846 for (i
= 0; i
< scop
->n_array
; ++i
) {
2847 isl_set
*extent
= isl_set_copy(scop
->arrays
[i
]->extent
);
2848 arrays
= isl_union_set_add_set(arrays
, extent
);
2850 accesses
= isl_union_map_intersect_range(accesses
, arrays
);
2852 to_inner
= compute_to_inner(scop
);
2853 accesses
= isl_union_map_apply_range(accesses
, to_inner
);
2858 /* Collect all potential read access relations.
2860 __isl_give isl_union_map
*pet_scop_collect_may_reads(struct pet_scop
*scop
)
2862 return scop_collect_accesses(scop
, 1, 0, 0, 0, 0);
2865 /* Collect all potential write access relations.
2867 __isl_give isl_union_map
*pet_scop_collect_may_writes(struct pet_scop
*scop
)
2869 return scop_collect_accesses(scop
, 0, 1, 0, 0, 0);
2872 /* Collect all definite write access relations.
2874 __isl_give isl_union_map
*pet_scop_collect_must_writes(struct pet_scop
*scop
)
2876 return scop_collect_accesses(scop
, 0, 1, 0, 1, 0);
2879 /* Collect all definite kill access relations.
2881 __isl_give isl_union_map
*pet_scop_collect_must_kills(struct pet_scop
*scop
)
2883 return scop_collect_accesses(scop
, 0, 0, 1, 1, 0);
2886 /* Collect all tagged potential read access relations.
2888 __isl_give isl_union_map
*pet_scop_collect_tagged_may_reads(
2889 struct pet_scop
*scop
)
2891 return scop_collect_accesses(scop
, 1, 0, 0, 0, 1);
2894 /* Collect all tagged potential write access relations.
2896 __isl_give isl_union_map
*pet_scop_collect_tagged_may_writes(
2897 struct pet_scop
*scop
)
2899 return scop_collect_accesses(scop
, 0, 1, 0, 0, 1);
2902 /* Collect all tagged definite write access relations.
2904 __isl_give isl_union_map
*pet_scop_collect_tagged_must_writes(
2905 struct pet_scop
*scop
)
2907 return scop_collect_accesses(scop
, 0, 1, 0, 1, 1);
2910 /* Collect all tagged definite kill access relations.
2912 __isl_give isl_union_map
*pet_scop_collect_tagged_must_kills(
2913 struct pet_scop
*scop
)
2915 return scop_collect_accesses(scop
, 0, 0, 1, 1, 1);
2918 /* Collect and return the union of iteration domains in "scop".
2920 __isl_give isl_union_set
*pet_scop_collect_domains(struct pet_scop
*scop
)
2924 isl_union_set
*domain
;
2929 domain
= isl_union_set_empty(isl_set_get_space(scop
->context
));
2931 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
2932 domain_i
= isl_set_copy(scop
->stmts
[i
]->domain
);
2933 domain
= isl_union_set_add_set(domain
, domain_i
);
2939 /* Collect and return the schedules of the statements in "scop".
2940 * The range is normalized to the maximal number of scheduling
2943 __isl_give isl_union_map
*pet_scop_collect_schedule(struct pet_scop
*scop
)
2946 isl_map
*schedule_i
;
2947 isl_union_map
*schedule
;
2948 int depth
, max_depth
= 0;
2953 schedule
= isl_union_map_empty(isl_set_get_space(scop
->context
));
2955 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
2956 depth
= isl_map_dim(scop
->stmts
[i
]->schedule
, isl_dim_out
);
2957 if (depth
> max_depth
)
2961 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
2962 schedule_i
= isl_map_copy(scop
->stmts
[i
]->schedule
);
2963 depth
= isl_map_dim(schedule_i
, isl_dim_out
);
2964 schedule_i
= isl_map_add_dims(schedule_i
, isl_dim_out
,
2966 for (j
= depth
; j
< max_depth
; ++j
)
2967 schedule_i
= isl_map_fix_si(schedule_i
,
2969 schedule
= isl_union_map_add_map(schedule
, schedule_i
);
2975 /* Add a reference identifier to all access expressions in "stmt".
2976 * "n_ref" points to an integer that contains the sequence number
2977 * of the next reference.
2979 static struct pet_stmt
*stmt_add_ref_ids(struct pet_stmt
*stmt
, int *n_ref
)
2986 for (i
= 0; i
< stmt
->n_arg
; ++i
) {
2987 stmt
->args
[i
] = pet_expr_add_ref_ids(stmt
->args
[i
], n_ref
);
2989 return pet_stmt_free(stmt
);
2992 stmt
->body
= pet_expr_add_ref_ids(stmt
->body
, n_ref
);
2994 return pet_stmt_free(stmt
);
2999 /* Add a reference identifier to all access expressions in "scop".
3001 struct pet_scop
*pet_scop_add_ref_ids(struct pet_scop
*scop
)
3010 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
3011 scop
->stmts
[i
] = stmt_add_ref_ids(scop
->stmts
[i
], &n_ref
);
3012 if (!scop
->stmts
[i
])
3013 return pet_scop_free(scop
);
3019 /* Reset the user pointer on all parameter ids in "array".
3021 static struct pet_array
*array_anonymize(struct pet_array
*array
)
3026 array
->context
= isl_set_reset_user(array
->context
);
3027 array
->extent
= isl_set_reset_user(array
->extent
);
3028 if (!array
->context
|| !array
->extent
)
3029 return pet_array_free(array
);
3034 /* Reset the user pointer on all parameter and tuple ids in "stmt".
3036 static struct pet_stmt
*stmt_anonymize(struct pet_stmt
*stmt
)
3045 stmt
->domain
= isl_set_reset_user(stmt
->domain
);
3046 stmt
->schedule
= isl_map_reset_user(stmt
->schedule
);
3047 if (!stmt
->domain
|| !stmt
->schedule
)
3048 return pet_stmt_free(stmt
);
3050 for (i
= 0; i
< stmt
->n_arg
; ++i
) {
3051 stmt
->args
[i
] = pet_expr_anonymize(stmt
->args
[i
]);
3053 return pet_stmt_free(stmt
);
3056 stmt
->body
= pet_expr_anonymize(stmt
->body
);
3058 return pet_stmt_free(stmt
);
3063 /* Reset the user pointer on the tuple ids and all parameter ids
3066 static struct pet_implication
*implication_anonymize(
3067 struct pet_implication
*implication
)
3072 implication
->extension
= isl_map_reset_user(implication
->extension
);
3073 if (!implication
->extension
)
3074 return pet_implication_free(implication
);
3079 /* Reset the user pointer on all parameter and tuple ids in "scop".
3081 struct pet_scop
*pet_scop_anonymize(struct pet_scop
*scop
)
3088 scop
->context
= isl_set_reset_user(scop
->context
);
3089 scop
->context_value
= isl_set_reset_user(scop
->context_value
);
3090 if (!scop
->context
|| !scop
->context_value
)
3091 return pet_scop_free(scop
);
3093 for (i
= 0; i
< scop
->n_array
; ++i
) {
3094 scop
->arrays
[i
] = array_anonymize(scop
->arrays
[i
]);
3095 if (!scop
->arrays
[i
])
3096 return pet_scop_free(scop
);
3099 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
3100 scop
->stmts
[i
] = stmt_anonymize(scop
->stmts
[i
]);
3101 if (!scop
->stmts
[i
])
3102 return pet_scop_free(scop
);
3105 for (i
= 0; i
< scop
->n_implication
; ++i
) {
3106 scop
->implications
[i
] =
3107 implication_anonymize(scop
->implications
[i
]);
3108 if (!scop
->implications
[i
])
3109 return pet_scop_free(scop
);
3115 /* Compute the gist of the iteration domain and all access relations
3116 * of "stmt" based on the constraints on the parameters specified by "context"
3117 * and the constraints on the values of nested accesses specified
3118 * by "value_bounds".
3120 static struct pet_stmt
*stmt_gist(struct pet_stmt
*stmt
,
3121 __isl_keep isl_set
*context
, __isl_keep isl_union_map
*value_bounds
)
3129 domain
= isl_set_copy(stmt
->domain
);
3130 if (stmt
->n_arg
> 0)
3131 domain
= isl_map_domain(isl_set_unwrap(domain
));
3133 domain
= isl_set_intersect_params(domain
, isl_set_copy(context
));
3135 for (i
= 0; i
< stmt
->n_arg
; ++i
) {
3136 stmt
->args
[i
] = pet_expr_gist(stmt
->args
[i
],
3137 domain
, value_bounds
);
3142 stmt
->body
= pet_expr_gist(stmt
->body
, domain
, value_bounds
);
3146 isl_set_free(domain
);
3148 domain
= isl_set_universe(pet_stmt_get_space(stmt
));
3149 domain
= isl_set_intersect_params(domain
, isl_set_copy(context
));
3150 if (stmt
->n_arg
> 0)
3151 domain
= pet_value_bounds_apply(domain
, stmt
->n_arg
, stmt
->args
,
3153 stmt
->domain
= isl_set_gist(stmt
->domain
, domain
);
3155 return pet_stmt_free(stmt
);
3159 isl_set_free(domain
);
3160 return pet_stmt_free(stmt
);
3163 /* Compute the gist of the extent of the array
3164 * based on the constraints on the parameters specified by "context".
3166 static struct pet_array
*array_gist(struct pet_array
*array
,
3167 __isl_keep isl_set
*context
)
3172 array
->extent
= isl_set_gist_params(array
->extent
,
3173 isl_set_copy(context
));
3175 return pet_array_free(array
);
3180 /* Compute the gist of all sets and relations in "scop"
3181 * based on the constraints on the parameters specified by "scop->context"
3182 * and the constraints on the values of nested accesses specified
3183 * by "value_bounds".
3185 struct pet_scop
*pet_scop_gist(struct pet_scop
*scop
,
3186 __isl_keep isl_union_map
*value_bounds
)
3193 scop
->context
= isl_set_coalesce(scop
->context
);
3195 return pet_scop_free(scop
);
3197 for (i
= 0; i
< scop
->n_array
; ++i
) {
3198 scop
->arrays
[i
] = array_gist(scop
->arrays
[i
], scop
->context
);
3199 if (!scop
->arrays
[i
])
3200 return pet_scop_free(scop
);
3203 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
3204 scop
->stmts
[i
] = stmt_gist(scop
->stmts
[i
], scop
->context
,
3206 if (!scop
->stmts
[i
])
3207 return pet_scop_free(scop
);
3213 /* Intersect the context of "scop" with "context".
3214 * To ensure that we don't introduce any unnamed parameters in
3215 * the context of "scop", we first remove the unnamed parameters
3218 struct pet_scop
*pet_scop_restrict_context(struct pet_scop
*scop
,
3219 __isl_take isl_set
*context
)
3224 context
= pet_nested_remove_from_set(context
);
3225 scop
->context
= isl_set_intersect(scop
->context
, context
);
3227 return pet_scop_free(scop
);
3231 isl_set_free(context
);
3232 return pet_scop_free(scop
);
3235 /* Drop the current context of "scop". That is, replace the context
3236 * by a universal set.
3238 struct pet_scop
*pet_scop_reset_context(struct pet_scop
*scop
)
3245 space
= isl_set_get_space(scop
->context
);
3246 isl_set_free(scop
->context
);
3247 scop
->context
= isl_set_universe(space
);
3249 return pet_scop_free(scop
);
3254 /* Append "array" to the arrays of "scop".
3256 struct pet_scop
*pet_scop_add_array(struct pet_scop
*scop
,
3257 struct pet_array
*array
)
3260 struct pet_array
**arrays
;
3262 if (!array
|| !scop
)
3265 ctx
= isl_set_get_ctx(scop
->context
);
3266 arrays
= isl_realloc_array(ctx
, scop
->arrays
, struct pet_array
*,
3270 scop
->arrays
= arrays
;
3271 scop
->arrays
[scop
->n_array
] = array
;
3276 pet_array_free(array
);
3277 return pet_scop_free(scop
);
3280 /* Create an index expression for an access to a virtual array
3281 * representing the result of a condition.
3282 * Unlike other accessed data, the id of the array is NULL as
3283 * there is no ValueDecl in the program corresponding to the virtual
3285 * The index expression is created as an identity mapping on "space".
3286 * That is, the dimension of the array is the same as that of "space".
3287 * Currently, the array starts out as a scalar, but grows along with the
3288 * statement writing to the array in pet_scop_embed.
3290 __isl_give isl_multi_pw_aff
*pet_create_test_index(__isl_take isl_space
*space
,
3296 snprintf(name
, sizeof(name
), "__pet_test_%d", test_nr
);
3297 id
= isl_id_alloc(isl_space_get_ctx(space
), name
, NULL
);
3298 space
= isl_space_map_from_set(space
);
3299 space
= isl_space_set_tuple_id(space
, isl_dim_out
, id
);
3300 return isl_multi_pw_aff_identity(space
);
3303 /* Add an array with the given extent to the list
3304 * of arrays in "scop" and return the extended pet_scop.
3305 * Specifically, the extent is determined by the image of "domain"
3307 * "int_size" is the number of bytes needed to represent values of type "int".
3308 * The array is marked as attaining values 0 and 1 only and
3309 * as each element being assigned at most once.
3311 struct pet_scop
*pet_scop_add_boolean_array(struct pet_scop
*scop
,
3312 __isl_take isl_set
*domain
, __isl_take isl_multi_pw_aff
*index
,
3317 struct pet_array
*array
;
3320 if (!scop
|| !domain
|| !index
)
3323 ctx
= isl_multi_pw_aff_get_ctx(index
);
3324 array
= isl_calloc_type(ctx
, struct pet_array
);
3328 access
= isl_map_from_multi_pw_aff(index
);
3329 access
= isl_map_intersect_domain(access
, domain
);
3330 array
->extent
= isl_map_range(access
);
3331 space
= isl_space_params_alloc(ctx
, 0);
3332 array
->context
= isl_set_universe(space
);
3333 space
= isl_space_set_alloc(ctx
, 0, 1);
3334 array
->value_bounds
= isl_set_universe(space
);
3335 array
->value_bounds
= isl_set_lower_bound_si(array
->value_bounds
,
3337 array
->value_bounds
= isl_set_upper_bound_si(array
->value_bounds
,
3339 array
->element_type
= strdup("int");
3340 array
->element_size
= int_size
;
3341 array
->uniquely_defined
= 1;
3343 if (!array
->extent
|| !array
->context
)
3344 array
= pet_array_free(array
);
3346 scop
= pet_scop_add_array(scop
, array
);
3350 isl_set_free(domain
);
3351 isl_multi_pw_aff_free(index
);
3352 return pet_scop_free(scop
);
3355 /* Create and return an implication on filter values equal to "satisfied"
3356 * with extension "map".
3358 static struct pet_implication
*new_implication(__isl_take isl_map
*map
,
3362 struct pet_implication
*implication
;
3366 ctx
= isl_map_get_ctx(map
);
3367 implication
= isl_alloc_type(ctx
, struct pet_implication
);
3371 implication
->extension
= map
;
3372 implication
->satisfied
= satisfied
;
3380 /* Add an implication on filter values equal to "satisfied"
3381 * with extension "map" to "scop".
3383 struct pet_scop
*pet_scop_add_implication(struct pet_scop
*scop
,
3384 __isl_take isl_map
*map
, int satisfied
)
3387 struct pet_implication
*implication
;
3388 struct pet_implication
**implications
;
3390 implication
= new_implication(map
, satisfied
);
3391 if (!scop
|| !implication
)
3394 ctx
= isl_set_get_ctx(scop
->context
);
3395 implications
= isl_realloc_array(ctx
, scop
->implications
,
3396 struct pet_implication
*,
3397 scop
->n_implication
+ 1);
3400 scop
->implications
= implications
;
3401 scop
->implications
[scop
->n_implication
] = implication
;
3402 scop
->n_implication
++;
3406 pet_implication_free(implication
);
3407 return pet_scop_free(scop
);
3410 /* Given an access expression, check if it is data dependent.
3411 * If so, set *found and abort the search.
3413 static int is_data_dependent(__isl_keep pet_expr
*expr
, void *user
)
3417 if (pet_expr_get_n_arg(expr
) > 0) {
3425 /* Does "scop" contain any data dependent accesses?
3427 * Check the body of each statement for such accesses.
3429 int pet_scop_has_data_dependent_accesses(struct pet_scop
*scop
)
3437 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
3438 int r
= pet_expr_foreach_access_expr(scop
->stmts
[i
]->body
,
3439 &is_data_dependent
, &found
);
3440 if (r
< 0 && !found
)
3449 /* Does "scop" contain and data dependent conditions?
3451 int pet_scop_has_data_dependent_conditions(struct pet_scop
*scop
)
3458 for (i
= 0; i
< scop
->n_stmt
; ++i
)
3459 if (scop
->stmts
[i
]->n_arg
> 0)
3465 /* Keep track of the "input" file inside the (extended) "scop".
3467 struct pet_scop
*pet_scop_set_input_file(struct pet_scop
*scop
, FILE *input
)
3469 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
3479 /* Print the original code corresponding to "scop" to printer "p".
3481 * pet_scop_print_original can only be called from
3482 * a pet_transform_C_source callback. This means that the input
3483 * file is stored in the extended scop and that the printer prints
3486 __isl_give isl_printer
*pet_scop_print_original(struct pet_scop
*scop
,
3487 __isl_take isl_printer
*p
)
3489 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
3491 unsigned start
, end
;
3494 return isl_printer_free(p
);
3497 isl_die(isl_printer_get_ctx(p
), isl_error_invalid
,
3498 "no input file stored in scop",
3499 return isl_printer_free(p
));
3501 output
= isl_printer_get_file(p
);
3503 return isl_printer_free(p
);
3505 start
= pet_loc_get_start(scop
->loc
);
3506 end
= pet_loc_get_end(scop
->loc
);
3507 if (copy(ext
->input
, output
, start
, end
) < 0)
3508 return isl_printer_free(p
);