tree2scop.c: scop_from_infinite_loop: delay construction of body pet_scop
[pet.git] / tree2scop.c
blob91ce9d84b529fa18e9e61de032c710eeeb373aa8
1 /*
2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012-2014 Ecole Normale Superieure. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials provided
15 * with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as
31 * representing official policies, either expressed or implied, of
32 * Leiden University.
35 #include <isl/id_to_pw_aff.h>
37 #include "aff.h"
38 #include "expr.h"
39 #include "expr_arg.h"
40 #include "nest.h"
41 #include "scop.h"
42 #include "skip.h"
43 #include "state.h"
44 #include "tree2scop.h"
46 /* Update "pc" by taking into account the writes in "stmt".
47 * That is, first mark all scalar variables that are written by "stmt"
48 * as having an unknown value. Afterwards,
49 * if "stmt" is a top-level (i.e., unconditional) assignment
50 * to a scalar variable, then update "pc" accordingly.
52 * In particular, if the lhs of the assignment is a scalar variable, then mark
53 * the variable as having been assigned. If, furthermore, the rhs
54 * is an affine expression, then keep track of this value in "pc"
55 * so that we can plug it in when we later come across the same variable.
57 * We skip assignments to virtual arrays (those with NULL user pointer).
59 static __isl_give pet_context *handle_writes(struct pet_stmt *stmt,
60 __isl_take pet_context *pc)
62 pet_expr *body = stmt->body;
63 pet_expr *arg;
64 isl_id *id;
65 isl_pw_aff *pa;
67 pc = pet_context_clear_writes_in_expr(pc, body);
68 if (!pc)
69 return NULL;
71 if (pet_expr_get_type(body) != pet_expr_op)
72 return pc;
73 if (pet_expr_op_get_type(body) != pet_op_assign)
74 return pc;
75 if (!isl_set_plain_is_universe(stmt->domain))
76 return pc;
77 arg = pet_expr_get_arg(body, 0);
78 if (!pet_expr_is_scalar_access(arg)) {
79 pet_expr_free(arg);
80 return pc;
83 id = pet_expr_access_get_id(arg);
84 pet_expr_free(arg);
86 if (!isl_id_get_user(id)) {
87 isl_id_free(id);
88 return pc;
91 arg = pet_expr_get_arg(body, 1);
92 pa = pet_expr_extract_affine(arg, pc);
93 pc = pet_context_mark_assigned(pc, isl_id_copy(id));
94 pet_expr_free(arg);
96 if (pa && isl_pw_aff_involves_nan(pa)) {
97 isl_id_free(id);
98 isl_pw_aff_free(pa);
99 return pc;
102 pc = pet_context_set_value(pc, id, pa);
104 return pc;
107 /* Update "pc" based on the write accesses (and, in particular,
108 * assignments) in "scop".
110 static __isl_give pet_context *scop_handle_writes(struct pet_scop *scop,
111 __isl_take pet_context *pc)
113 int i;
115 if (!scop)
116 return pet_context_free(pc);
117 for (i = 0; i < scop->n_stmt; ++i)
118 pc = handle_writes(scop->stmts[i], pc);
120 return pc;
123 /* Convert a top-level pet_expr to a pet_scop with one statement
124 * within the context "pc".
125 * This mainly involves resolving nested expression parameters
126 * and setting the name of the iteration space.
127 * The name is given by "label" if it is non-NULL. Otherwise,
128 * it is of the form S_<stmt_nr>.
129 * The location of the statement is set to "loc".
131 static struct pet_scop *scop_from_expr(__isl_take pet_expr *expr,
132 __isl_take isl_id *label, int stmt_nr, __isl_take pet_loc *loc,
133 __isl_keep pet_context *pc)
135 isl_ctx *ctx;
136 struct pet_stmt *ps;
138 ctx = pet_expr_get_ctx(expr);
140 expr = pet_expr_plug_in_args(expr, pc);
141 expr = pet_expr_resolve_nested(expr);
142 expr = pet_expr_resolve_assume(expr, pc);
143 ps = pet_stmt_from_pet_expr(loc, label, stmt_nr, expr);
144 return pet_scop_from_pet_stmt(ctx, ps);
147 /* Construct a pet_scop with a single statement killing the entire
148 * array "array".
149 * The location of the statement is set to "loc".
151 static struct pet_scop *kill(__isl_take pet_loc *loc, struct pet_array *array,
152 __isl_keep pet_context *pc, struct pet_state *state)
154 isl_ctx *ctx;
155 isl_id *id;
156 isl_space *space;
157 isl_multi_pw_aff *index;
158 isl_map *access;
159 pet_expr *expr;
160 struct pet_scop *scop;
162 if (!array)
163 goto error;
164 ctx = isl_set_get_ctx(array->extent);
165 access = isl_map_from_range(isl_set_copy(array->extent));
166 id = isl_set_get_tuple_id(array->extent);
167 space = isl_space_alloc(ctx, 0, 0, 0);
168 space = isl_space_set_tuple_id(space, isl_dim_out, id);
169 index = isl_multi_pw_aff_zero(space);
170 expr = pet_expr_kill_from_access_and_index(access, index);
171 return scop_from_expr(expr, NULL, state->n_stmt++, loc, pc);
172 error:
173 pet_loc_free(loc);
174 return NULL;
177 /* Construct and return a pet_array corresponding to the variable
178 * accessed by "access" by calling the extract_array callback.
180 static struct pet_array *extract_array(__isl_keep pet_expr *access,
181 __isl_keep pet_context *pc, struct pet_state *state)
183 return state->extract_array(access, pc, state->user);
186 /* Construct a pet_scop for a (single) variable declaration
187 * within the context "pc".
189 * The scop contains the variable being declared (as an array)
190 * and a statement killing the array.
192 * If the declaration comes with an initialization, then the scop
193 * also contains an assignment to the variable.
195 static struct pet_scop *scop_from_decl(__isl_keep pet_tree *tree,
196 __isl_keep pet_context *pc, struct pet_state *state)
198 int type_size;
199 isl_ctx *ctx;
200 struct pet_array *array;
201 struct pet_scop *scop_decl, *scop;
202 pet_expr *lhs, *rhs, *pe;
204 array = extract_array(tree->u.d.var, pc, state);
205 if (array)
206 array->declared = 1;
207 scop_decl = kill(pet_tree_get_loc(tree), array, pc, state);
208 scop_decl = pet_scop_add_array(scop_decl, array);
210 if (tree->type != pet_tree_decl_init)
211 return scop_decl;
213 lhs = pet_expr_copy(tree->u.d.var);
214 rhs = pet_expr_copy(tree->u.d.init);
215 type_size = pet_expr_get_type_size(lhs);
216 pe = pet_expr_new_binary(type_size, pet_op_assign, lhs, rhs);
217 scop = scop_from_expr(pe, NULL, state->n_stmt++,
218 pet_tree_get_loc(tree), pc);
220 scop_decl = pet_scop_prefix(scop_decl, 0);
221 scop = pet_scop_prefix(scop, 1);
223 ctx = pet_tree_get_ctx(tree);
224 scop = pet_scop_add_seq(ctx, scop_decl, scop);
226 return scop;
229 /* Embed the given iteration domain in an extra outer loop
230 * with induction variable "var".
231 * If this variable appeared as a parameter in the constraints,
232 * it is replaced by the new outermost dimension.
234 static __isl_give isl_set *embed(__isl_take isl_set *set,
235 __isl_take isl_id *var)
237 int pos;
239 set = isl_set_insert_dims(set, isl_dim_set, 0, 1);
240 pos = isl_set_find_dim_by_id(set, isl_dim_param, var);
241 if (pos >= 0) {
242 set = isl_set_equate(set, isl_dim_param, pos, isl_dim_set, 0);
243 set = isl_set_project_out(set, isl_dim_param, pos, 1);
246 isl_id_free(var);
247 return set;
250 /* Return those elements in the space of "cond" that come after
251 * (based on "sign") an element in "cond".
253 static __isl_give isl_set *after(__isl_take isl_set *cond, int sign)
255 isl_map *previous_to_this;
257 if (sign > 0)
258 previous_to_this = isl_map_lex_lt(isl_set_get_space(cond));
259 else
260 previous_to_this = isl_map_lex_gt(isl_set_get_space(cond));
262 cond = isl_set_apply(cond, previous_to_this);
264 return cond;
267 /* Remove those iterations of "domain" that have an earlier iteration
268 * (based on "sign") where "skip" is satisfied.
269 * "domain" has an extra outer loop compared to "skip".
270 * The skip condition is first embedded in the same space as "domain".
271 * If "apply_skip_map" is set, then "skip_map" is first applied
272 * to the embedded skip condition before removing it from the domain.
274 static __isl_give isl_set *apply_affine_break(__isl_take isl_set *domain,
275 __isl_take isl_set *skip, int sign,
276 int apply_skip_map, __isl_keep isl_map *skip_map)
278 skip = embed(skip, isl_set_get_dim_id(domain, isl_dim_set, 0));
279 if (apply_skip_map)
280 skip = isl_set_apply(skip, isl_map_copy(skip_map));
281 skip = isl_set_intersect(skip , isl_set_copy(domain));
282 return isl_set_subtract(domain, after(skip, sign));
285 /* Create the infinite iteration domain
287 * { [id] : id >= 0 }
289 static __isl_give isl_set *infinite_domain(__isl_take isl_id *id)
291 isl_ctx *ctx = isl_id_get_ctx(id);
292 isl_set *domain;
294 domain = isl_set_nat_universe(isl_space_set_alloc(ctx, 0, 1));
295 domain = isl_set_set_dim_id(domain, isl_dim_set, 0, id);
297 return domain;
300 /* Create an identity affine expression on the space containing "domain",
301 * which is assumed to be one-dimensional.
303 static __isl_give isl_aff *identity_aff(__isl_keep isl_set *domain)
305 isl_local_space *ls;
307 ls = isl_local_space_from_space(isl_set_get_space(domain));
308 return isl_aff_var_on_domain(ls, isl_dim_set, 0);
311 /* Create an affine expression that maps elements
312 * of a single-dimensional array "id_test" to the previous element
313 * (according to "inc"), provided this element belongs to "domain".
314 * That is, create the affine expression
316 * { id[x] -> id[x - inc] : x - inc in domain }
318 static __isl_give isl_multi_pw_aff *map_to_previous(__isl_take isl_id *id_test,
319 __isl_take isl_set *domain, __isl_take isl_val *inc)
321 isl_space *space;
322 isl_local_space *ls;
323 isl_aff *aff;
324 isl_multi_pw_aff *prev;
326 space = isl_set_get_space(domain);
327 ls = isl_local_space_from_space(space);
328 aff = isl_aff_var_on_domain(ls, isl_dim_set, 0);
329 aff = isl_aff_add_constant_val(aff, isl_val_neg(inc));
330 prev = isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff));
331 domain = isl_set_preimage_multi_pw_aff(domain,
332 isl_multi_pw_aff_copy(prev));
333 prev = isl_multi_pw_aff_intersect_domain(prev, domain);
334 prev = isl_multi_pw_aff_set_tuple_id(prev, isl_dim_out, id_test);
336 return prev;
339 /* Add an implication to "scop" expressing that if an element of
340 * virtual array "id_test" has value "satisfied" then all previous elements
341 * of this array also have that value. The set of previous elements
342 * is bounded by "domain". If "sign" is negative then the iterator
343 * is decreasing and we express that all subsequent array elements
344 * (but still defined previously) have the same value.
346 static struct pet_scop *add_implication(struct pet_scop *scop,
347 __isl_take isl_id *id_test, __isl_take isl_set *domain, int sign,
348 int satisfied)
350 isl_space *space;
351 isl_map *map;
353 domain = isl_set_set_tuple_id(domain, id_test);
354 space = isl_set_get_space(domain);
355 if (sign > 0)
356 map = isl_map_lex_ge(space);
357 else
358 map = isl_map_lex_le(space);
359 map = isl_map_intersect_range(map, domain);
360 scop = pet_scop_add_implication(scop, map, satisfied);
362 return scop;
365 /* Add a filter to "scop" that imposes that it is only executed
366 * when the variable identified by "id_test" has a zero value
367 * for all previous iterations of "domain".
369 * In particular, add a filter that imposes that the array
370 * has a zero value at the previous iteration of domain and
371 * add an implication that implies that it then has that
372 * value for all previous iterations.
374 static struct pet_scop *scop_add_break(struct pet_scop *scop,
375 __isl_take isl_id *id_test, __isl_take isl_set *domain,
376 __isl_take isl_val *inc)
378 isl_multi_pw_aff *prev;
379 int sign = isl_val_sgn(inc);
381 prev = map_to_previous(isl_id_copy(id_test), isl_set_copy(domain), inc);
382 scop = add_implication(scop, id_test, domain, sign, 0);
383 scop = pet_scop_filter(scop, prev, 0);
385 return scop;
388 static struct pet_scop *scop_from_tree(__isl_keep pet_tree *tree,
389 __isl_keep pet_context *pc, struct pet_state *state);
391 /* Construct a pet_scop for an infinite loop around the given body
392 * within the context "pc".
394 * We extract a pet_scop for the body and then embed it in a loop with
395 * iteration domain
397 * { [t] : t >= 0 }
399 * and schedule
401 * { [t] -> [t] }
403 * If the body contains any break, then it is taken into
404 * account in apply_affine_break (if the skip condition is affine)
405 * or in scop_add_break (if the skip condition is not affine).
407 * Note that in case of an affine skip condition,
408 * since we are dealing with a loop without loop iterator,
409 * the skip condition cannot refer to the current loop iterator and
410 * so effectively, the iteration domain is of the form
412 * { [0]; [t] : t >= 1 and not skip }
414 static struct pet_scop *scop_from_infinite_loop(__isl_keep pet_tree *body,
415 __isl_keep pet_context *pc, struct pet_state *state)
417 isl_ctx *ctx;
418 isl_id *id, *id_test;
419 isl_set *domain;
420 isl_set *skip;
421 isl_aff *ident;
422 struct pet_scop *scop;
423 int has_affine_break;
424 int has_var_break;
426 ctx = pet_tree_get_ctx(body);
427 id = isl_id_alloc(ctx, "t", NULL);
428 domain = infinite_domain(isl_id_copy(id));
429 ident = identity_aff(domain);
431 scop = scop_from_tree(body, pc, state);
433 has_affine_break = pet_scop_has_affine_skip(scop, pet_skip_later);
434 if (has_affine_break)
435 skip = pet_scop_get_affine_skip_domain(scop, pet_skip_later);
436 has_var_break = pet_scop_has_var_skip(scop, pet_skip_later);
437 if (has_var_break)
438 id_test = pet_scop_get_skip_id(scop, pet_skip_later);
440 scop = pet_scop_embed(scop, isl_set_copy(domain),
441 isl_aff_copy(ident), ident, id);
442 if (has_affine_break) {
443 domain = apply_affine_break(domain, skip, 1, 0, NULL);
444 scop = pet_scop_intersect_domain_prefix(scop,
445 isl_set_copy(domain));
447 if (has_var_break)
448 scop = scop_add_break(scop, id_test, domain, isl_val_one(ctx));
449 else
450 isl_set_free(domain);
452 return scop;
455 /* Construct a pet_scop for an infinite loop, i.e., a loop of the form
457 * for (;;)
458 * body
460 * within the context "pc".
462 static struct pet_scop *scop_from_infinite_for(__isl_keep pet_tree *tree,
463 __isl_keep pet_context *pc, struct pet_state *state)
465 struct pet_scop *scop;
467 pc = pet_context_copy(pc);
468 pc = pet_context_clear_writes_in_tree(pc, tree->u.l.body);
470 scop = scop_from_infinite_loop(tree->u.l.body, pc, state);
472 pet_context_free(pc);
474 return scop;
477 /* Construct a pet_scop for a while loop of the form
479 * while (pa)
480 * body
482 * within the context "pc".
483 * In particular, construct a scop for an infinite loop around body and
484 * intersect the domain with the affine expression.
485 * Note that this intersection may result in an empty loop.
487 static struct pet_scop *scop_from_affine_while(__isl_keep pet_tree *tree,
488 __isl_take isl_pw_aff *pa, __isl_take pet_context *pc,
489 struct pet_state *state)
491 struct pet_scop *scop;
492 isl_set *dom;
493 isl_set *valid;
495 valid = isl_pw_aff_domain(isl_pw_aff_copy(pa));
496 dom = isl_pw_aff_non_zero_set(pa);
497 scop = scop_from_infinite_loop(tree->u.l.body, pc, state);
498 scop = pet_scop_restrict(scop, isl_set_params(dom));
499 scop = pet_scop_restrict_context(scop, isl_set_params(valid));
501 pet_context_free(pc);
502 return scop;
505 /* Construct a scop for a while, given the scops for the condition
506 * and the body, the filter identifier and the iteration domain of
507 * the while loop.
509 * In particular, the scop for the condition is filtered to depend
510 * on "id_test" evaluating to true for all previous iterations
511 * of the loop, while the scop for the body is filtered to depend
512 * on "id_test" evaluating to true for all iterations up to the
513 * current iteration.
514 * The actual filter only imposes that this virtual array has
515 * value one on the previous or the current iteration.
516 * The fact that this condition also applies to the previous
517 * iterations is enforced by an implication.
519 * These filtered scops are then combined into a single scop.
521 * "sign" is positive if the iterator increases and negative
522 * if it decreases.
524 static struct pet_scop *scop_add_while(struct pet_scop *scop_cond,
525 struct pet_scop *scop_body, __isl_take isl_id *id_test,
526 __isl_take isl_set *domain, __isl_take isl_val *inc)
528 isl_ctx *ctx = isl_set_get_ctx(domain);
529 isl_space *space;
530 isl_multi_pw_aff *test_index;
531 isl_multi_pw_aff *prev;
532 int sign = isl_val_sgn(inc);
533 struct pet_scop *scop;
535 prev = map_to_previous(isl_id_copy(id_test), isl_set_copy(domain), inc);
536 scop_cond = pet_scop_filter(scop_cond, prev, 1);
538 space = isl_space_map_from_set(isl_set_get_space(domain));
539 test_index = isl_multi_pw_aff_identity(space);
540 test_index = isl_multi_pw_aff_set_tuple_id(test_index, isl_dim_out,
541 isl_id_copy(id_test));
542 scop_body = pet_scop_filter(scop_body, test_index, 1);
544 scop = pet_scop_add_seq(ctx, scop_cond, scop_body);
545 scop = add_implication(scop, id_test, domain, sign, 1);
547 return scop;
550 /* Create a pet_scop with a single statement with name S_<stmt_nr>,
551 * evaluating "cond" and writing the result to a virtual scalar,
552 * as expressed by "index".
553 * Do so within the context "pc".
554 * The location of the statement is set to "loc".
556 static struct pet_scop *scop_from_non_affine_condition(
557 __isl_take pet_expr *cond, int stmt_nr,
558 __isl_take isl_multi_pw_aff *index,
559 __isl_take pet_loc *loc, __isl_keep pet_context *pc)
561 pet_expr *expr, *write;
563 write = pet_expr_from_index(index);
564 write = pet_expr_access_set_write(write, 1);
565 write = pet_expr_access_set_read(write, 0);
566 expr = pet_expr_new_binary(1, pet_op_assign, write, cond);
568 return scop_from_expr(expr, NULL, stmt_nr, loc, pc);
571 /* Construct a generic while scop, with iteration domain
572 * { [t] : t >= 0 } around "scop_body" within the context "pc".
573 * The scop consists of two parts,
574 * one for evaluating the condition "cond" and one for the body.
575 * "test_nr" is the sequence number of the virtual test variable that contains
576 * the result of the condition and "stmt_nr" is the sequence number
577 * of the statement that evaluates the condition.
578 * If "scop_inc" is not NULL, then it is added at the end of the body,
579 * after replacing any skip conditions resulting from continue statements
580 * by the skip conditions resulting from break statements (if any).
582 * The schedule is adjusted to reflect that the condition is evaluated
583 * before the body is executed and the body is filtered to depend
584 * on the result of the condition evaluating to true on all iterations
585 * up to the current iteration, while the evaluation of the condition itself
586 * is filtered to depend on the result of the condition evaluating to true
587 * on all previous iterations.
588 * The context of the scop representing the body is dropped
589 * because we don't know how many times the body will be executed,
590 * if at all.
592 * If the body contains any break, then it is taken into
593 * account in apply_affine_break (if the skip condition is affine)
594 * or in scop_add_break (if the skip condition is not affine).
596 * Note that in case of an affine skip condition,
597 * since we are dealing with a loop without loop iterator,
598 * the skip condition cannot refer to the current loop iterator and
599 * so effectively, the iteration domain is of the form
601 * { [0]; [t] : t >= 1 and not skip }
603 static struct pet_scop *scop_from_non_affine_while(__isl_take pet_expr *cond,
604 int test_nr, int stmt_nr, __isl_take pet_loc *loc,
605 struct pet_scop *scop_body, struct pet_scop *scop_inc,
606 __isl_take pet_context *pc, struct pet_state *state)
608 isl_ctx *ctx;
609 isl_id *id, *id_test, *id_break_test;
610 isl_multi_pw_aff *test_index;
611 isl_set *domain;
612 isl_set *skip;
613 isl_aff *ident;
614 struct pet_scop *scop;
615 int has_affine_break;
616 int has_var_break;
618 ctx = state->ctx;
619 test_index = pet_create_test_index(ctx, test_nr);
620 scop = scop_from_non_affine_condition(cond, stmt_nr,
621 isl_multi_pw_aff_copy(test_index), loc, pc);
622 id_test = isl_multi_pw_aff_get_tuple_id(test_index, isl_dim_out);
623 scop = pet_scop_add_boolean_array(scop, test_index, state->int_size);
625 id = isl_id_alloc(ctx, "t", NULL);
626 domain = infinite_domain(isl_id_copy(id));
627 ident = identity_aff(domain);
629 has_affine_break = pet_scop_has_affine_skip(scop_body, pet_skip_later);
630 if (has_affine_break)
631 skip = pet_scop_get_affine_skip_domain(scop_body,
632 pet_skip_later);
633 has_var_break = pet_scop_has_var_skip(scop_body, pet_skip_later);
634 if (has_var_break)
635 id_break_test = pet_scop_get_skip_id(scop_body, pet_skip_later);
637 scop = pet_scop_prefix(scop, 0);
638 scop = pet_scop_embed(scop, isl_set_copy(domain), isl_aff_copy(ident),
639 isl_aff_copy(ident), isl_id_copy(id));
640 scop_body = pet_scop_reset_context(scop_body);
641 scop_body = pet_scop_prefix(scop_body, 1);
642 if (scop_inc) {
643 scop_inc = pet_scop_prefix(scop_inc, 2);
644 if (pet_scop_has_skip(scop_body, pet_skip_later)) {
645 isl_multi_pw_aff *skip;
646 skip = pet_scop_get_skip(scop_body, pet_skip_later);
647 scop_body = pet_scop_set_skip(scop_body,
648 pet_skip_now, skip);
649 } else
650 pet_scop_reset_skip(scop_body, pet_skip_now);
651 scop_body = pet_scop_add_seq(ctx, scop_body, scop_inc);
653 scop_body = pet_scop_embed(scop_body, isl_set_copy(domain),
654 isl_aff_copy(ident), ident, id);
656 if (has_affine_break) {
657 domain = apply_affine_break(domain, skip, 1, 0, NULL);
658 scop = pet_scop_intersect_domain_prefix(scop,
659 isl_set_copy(domain));
660 scop_body = pet_scop_intersect_domain_prefix(scop_body,
661 isl_set_copy(domain));
663 if (has_var_break) {
664 scop = scop_add_break(scop, isl_id_copy(id_break_test),
665 isl_set_copy(domain), isl_val_one(ctx));
666 scop_body = scop_add_break(scop_body, id_break_test,
667 isl_set_copy(domain), isl_val_one(ctx));
669 scop = scop_add_while(scop, scop_body, id_test, domain,
670 isl_val_one(ctx));
672 pet_context_free(pc);
673 return scop;
676 /* Check if the while loop is of the form
678 * while (affine expression)
679 * body
681 * If so, call scop_from_affine_while to construct a scop.
683 * Otherwise, extract the body and pass control to scop_from_non_affine_while
684 * to extend the iteration domain with an infinite loop.
686 * "pc" is the context in which the affine expressions in the scop are created.
688 static struct pet_scop *scop_from_while(__isl_keep pet_tree *tree,
689 __isl_keep pet_context *pc, struct pet_state *state)
691 pet_expr *cond_expr;
692 int test_nr, stmt_nr;
693 isl_pw_aff *pa;
694 struct pet_scop *scop_body;
696 if (!tree)
697 return NULL;
699 pc = pet_context_copy(pc);
700 pc = pet_context_clear_writes_in_tree(pc, tree->u.l.body);
702 cond_expr = pet_expr_copy(tree->u.l.cond);
703 cond_expr = pet_expr_plug_in_args(cond_expr, pc);
704 pa = pet_expr_extract_affine_condition(cond_expr, pc);
705 pet_expr_free(cond_expr);
707 if (!pa)
708 goto error;
710 if (!isl_pw_aff_involves_nan(pa))
711 return scop_from_affine_while(tree, pa, pc, state);
712 isl_pw_aff_free(pa);
713 test_nr = state->n_test++;
714 stmt_nr = state->n_stmt++;
715 scop_body = scop_from_tree(tree->u.l.body, pc, state);
716 return scop_from_non_affine_while(pet_expr_copy(tree->u.l.cond),
717 test_nr, stmt_nr, pet_tree_get_loc(tree),
718 scop_body, NULL, pc, state);
719 error:
720 pet_context_free(pc);
721 return NULL;
724 /* Check whether "cond" expresses a simple loop bound
725 * on the only set dimension.
726 * In particular, if "up" is set then "cond" should contain only
727 * upper bounds on the set dimension.
728 * Otherwise, it should contain only lower bounds.
730 static int is_simple_bound(__isl_keep isl_set *cond, __isl_keep isl_val *inc)
732 if (isl_val_is_pos(inc))
733 return !isl_set_dim_has_any_lower_bound(cond, isl_dim_set, 0);
734 else
735 return !isl_set_dim_has_any_upper_bound(cond, isl_dim_set, 0);
738 /* Extend a condition on a given iteration of a loop to one that
739 * imposes the same condition on all previous iterations.
740 * "domain" expresses the lower [upper] bound on the iterations
741 * when inc is positive [negative].
743 * In particular, we construct the condition (when inc is positive)
745 * forall i' : (domain(i') and i' <= i) => cond(i')
747 * which is equivalent to
749 * not exists i' : domain(i') and i' <= i and not cond(i')
751 * We construct this set by negating cond, applying a map
753 * { [i'] -> [i] : domain(i') and i' <= i }
755 * and then negating the result again.
757 static __isl_give isl_set *valid_for_each_iteration(__isl_take isl_set *cond,
758 __isl_take isl_set *domain, __isl_take isl_val *inc)
760 isl_map *previous_to_this;
762 if (isl_val_is_pos(inc))
763 previous_to_this = isl_map_lex_le(isl_set_get_space(domain));
764 else
765 previous_to_this = isl_map_lex_ge(isl_set_get_space(domain));
767 previous_to_this = isl_map_intersect_domain(previous_to_this, domain);
769 cond = isl_set_complement(cond);
770 cond = isl_set_apply(cond, previous_to_this);
771 cond = isl_set_complement(cond);
773 isl_val_free(inc);
775 return cond;
778 /* Construct a domain of the form
780 * [id] -> { : exists a: id = init + a * inc and a >= 0 }
782 static __isl_give isl_set *strided_domain(__isl_take isl_id *id,
783 __isl_take isl_pw_aff *init, __isl_take isl_val *inc)
785 isl_aff *aff;
786 isl_space *dim;
787 isl_set *set;
789 init = isl_pw_aff_insert_dims(init, isl_dim_in, 0, 1);
790 dim = isl_pw_aff_get_domain_space(init);
791 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
792 aff = isl_aff_add_coefficient_val(aff, isl_dim_in, 0, inc);
793 init = isl_pw_aff_add(init, isl_pw_aff_from_aff(aff));
795 dim = isl_space_set_alloc(isl_pw_aff_get_ctx(init), 1, 1);
796 dim = isl_space_set_dim_id(dim, isl_dim_param, 0, id);
797 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
798 aff = isl_aff_add_coefficient_si(aff, isl_dim_param, 0, 1);
800 set = isl_pw_aff_eq_set(isl_pw_aff_from_aff(aff), init);
802 set = isl_set_lower_bound_si(set, isl_dim_set, 0, 0);
804 return isl_set_params(set);
807 /* Assuming "cond" represents a bound on a loop where the loop
808 * iterator "iv" is incremented (or decremented) by one, check if wrapping
809 * is possible.
811 * Under the given assumptions, wrapping is only possible if "cond" allows
812 * for the last value before wrapping, i.e., 2^width - 1 in case of an
813 * increasing iterator and 0 in case of a decreasing iterator.
815 static int can_wrap(__isl_keep isl_set *cond, __isl_keep pet_expr *iv,
816 __isl_keep isl_val *inc)
818 int cw;
819 isl_ctx *ctx;
820 isl_val *limit;
821 isl_set *test;
823 test = isl_set_copy(cond);
825 ctx = isl_set_get_ctx(test);
826 if (isl_val_is_neg(inc))
827 limit = isl_val_zero(ctx);
828 else {
829 limit = isl_val_int_from_ui(ctx, pet_expr_get_type_size(iv));
830 limit = isl_val_2exp(limit);
831 limit = isl_val_sub_ui(limit, 1);
834 test = isl_set_fix_val(cond, isl_dim_set, 0, limit);
835 cw = !isl_set_is_empty(test);
836 isl_set_free(test);
838 return cw;
841 /* Given a one-dimensional space, construct the following affine expression
842 * on this space
844 * { [v] -> [v mod 2^width] }
846 * where width is the number of bits used to represent the values
847 * of the unsigned variable "iv".
849 static __isl_give isl_aff *compute_wrapping(__isl_take isl_space *dim,
850 __isl_keep pet_expr *iv)
852 isl_ctx *ctx;
853 isl_val *mod;
854 isl_aff *aff;
856 ctx = isl_space_get_ctx(dim);
857 mod = isl_val_int_from_ui(ctx, pet_expr_get_type_size(iv));
858 mod = isl_val_2exp(mod);
860 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
861 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
862 aff = isl_aff_mod_val(aff, mod);
864 return aff;
867 /* Project out the parameter "id" from "set".
869 static __isl_give isl_set *set_project_out_by_id(__isl_take isl_set *set,
870 __isl_keep isl_id *id)
872 int pos;
874 pos = isl_set_find_dim_by_id(set, isl_dim_param, id);
875 if (pos >= 0)
876 set = isl_set_project_out(set, isl_dim_param, pos, 1);
878 return set;
881 /* Compute the set of parameters for which "set1" is a subset of "set2".
883 * set1 is a subset of set2 if
885 * forall i in set1 : i in set2
887 * or
889 * not exists i in set1 and i not in set2
891 * i.e.,
893 * not exists i in set1 \ set2
895 static __isl_give isl_set *enforce_subset(__isl_take isl_set *set1,
896 __isl_take isl_set *set2)
898 return isl_set_complement(isl_set_params(isl_set_subtract(set1, set2)));
901 /* Compute the set of parameter values for which "cond" holds
902 * on the next iteration for each element of "dom".
904 * We first construct mapping { [i] -> [i + inc] }, apply that to "dom"
905 * and then compute the set of parameters for which the result is a subset
906 * of "cond".
908 static __isl_give isl_set *valid_on_next(__isl_take isl_set *cond,
909 __isl_take isl_set *dom, __isl_take isl_val *inc)
911 isl_space *space;
912 isl_aff *aff;
913 isl_map *next;
915 space = isl_set_get_space(dom);
916 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
917 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
918 aff = isl_aff_add_constant_val(aff, inc);
919 next = isl_map_from_basic_map(isl_basic_map_from_aff(aff));
921 dom = isl_set_apply(dom, next);
923 return enforce_subset(dom, cond);
926 /* Extract the for loop "tree" as a while loop within the context "pc".
928 * That is, the for loop has the form
930 * for (iv = init; cond; iv += inc)
931 * body;
933 * and is treated as
935 * iv = init;
936 * while (cond) {
937 * body;
938 * iv += inc;
941 * except that the skips resulting from any continue statements
942 * in body do not apply to the increment, but are replaced by the skips
943 * resulting from break statements.
945 * If the loop iterator is declared in the for loop, then it is killed before
946 * and after the loop.
948 static struct pet_scop *scop_from_non_affine_for(__isl_keep pet_tree *tree,
949 __isl_take pet_context *pc, struct pet_state *state)
951 int declared;
952 int test_nr, stmt_nr;
953 isl_id *iv;
954 pet_expr *expr_iv, *init, *inc;
955 struct pet_scop *scop_init, *scop_inc, *scop, *scop_body;
956 int type_size;
957 struct pet_array *array;
958 struct pet_scop *scop_kill;
960 iv = pet_expr_access_get_id(tree->u.l.iv);
961 pc = pet_context_mark_assigned(pc, iv);
963 declared = tree->u.l.declared;
965 expr_iv = pet_expr_copy(tree->u.l.iv);
966 type_size = pet_expr_get_type_size(expr_iv);
967 init = pet_expr_copy(tree->u.l.init);
968 init = pet_expr_new_binary(type_size, pet_op_assign, expr_iv, init);
969 scop_init = scop_from_expr(init, NULL, state->n_stmt++,
970 pet_tree_get_loc(tree), pc);
971 scop_init = pet_scop_prefix(scop_init, declared);
973 test_nr = state->n_test++;
974 stmt_nr = state->n_stmt++;
975 scop_body = scop_from_tree(tree->u.l.body, pc, state);
977 expr_iv = pet_expr_copy(tree->u.l.iv);
978 type_size = pet_expr_get_type_size(expr_iv);
979 inc = pet_expr_copy(tree->u.l.inc);
980 inc = pet_expr_new_binary(type_size, pet_op_add_assign, expr_iv, inc);
981 scop_inc = scop_from_expr(inc, NULL, state->n_stmt++,
982 pet_tree_get_loc(tree), pc);
984 scop = scop_from_non_affine_while(pet_expr_copy(tree->u.l.cond),
985 test_nr, stmt_nr, pet_tree_get_loc(tree),
986 scop_body, scop_inc, pet_context_copy(pc), state);
988 scop = pet_scop_prefix(scop, declared + 1);
989 scop = pet_scop_add_seq(state->ctx, scop_init, scop);
991 if (!declared) {
992 pet_context_free(pc);
993 return scop;
996 array = extract_array(tree->u.l.iv, pc, state);
997 if (array)
998 array->declared = 1;
999 scop_kill = kill(pet_tree_get_loc(tree), array, pc, state);
1000 scop_kill = pet_scop_prefix(scop_kill, 0);
1001 scop = pet_scop_add_seq(state->ctx, scop_kill, scop);
1002 scop_kill = kill(pet_tree_get_loc(tree), array, pc, state);
1003 scop_kill = pet_scop_add_array(scop_kill, array);
1004 scop_kill = pet_scop_prefix(scop_kill, 3);
1005 scop = pet_scop_add_seq(state->ctx, scop, scop_kill);
1007 pet_context_free(pc);
1008 return scop;
1011 /* Given an access expression "expr", is the variable accessed by
1012 * "expr" assigned anywhere inside "tree"?
1014 static int is_assigned(__isl_keep pet_expr *expr, __isl_keep pet_tree *tree)
1016 int assigned = 0;
1017 isl_id *id;
1019 id = pet_expr_access_get_id(expr);
1020 assigned = pet_tree_writes(tree, id);
1021 isl_id_free(id);
1023 return assigned;
1026 /* Are all nested access parameters in "pa" allowed given "tree".
1027 * In particular, is none of them written by anywhere inside "tree".
1029 * If "tree" has any continue nodes in the current loop level,
1030 * then no nested access parameters are allowed.
1031 * In particular, if there is any nested access in a guard
1032 * for a piece of code containing a "continue", then we want to introduce
1033 * a separate statement for evaluating this guard so that we can express
1034 * that the result is false for all previous iterations.
1036 static int is_nested_allowed(__isl_keep isl_pw_aff *pa,
1037 __isl_keep pet_tree *tree)
1039 int i, nparam;
1041 if (!tree)
1042 return -1;
1044 if (!pet_nested_any_in_pw_aff(pa))
1045 return 1;
1047 if (pet_tree_has_continue(tree))
1048 return 0;
1050 nparam = isl_pw_aff_dim(pa, isl_dim_param);
1051 for (i = 0; i < nparam; ++i) {
1052 isl_id *id = isl_pw_aff_get_dim_id(pa, isl_dim_param, i);
1053 pet_expr *expr;
1054 int allowed;
1056 if (!pet_nested_in_id(id)) {
1057 isl_id_free(id);
1058 continue;
1061 expr = pet_nested_extract_expr(id);
1062 allowed = pet_expr_get_type(expr) == pet_expr_access &&
1063 !is_assigned(expr, tree);
1065 pet_expr_free(expr);
1066 isl_id_free(id);
1068 if (!allowed)
1069 return 0;
1072 return 1;
1075 /* Construct a pet_scop for a for tree with static affine initialization
1076 * and constant increment within the context "pc".
1078 * The condition is allowed to contain nested accesses, provided
1079 * they are not being written to inside the body of the loop.
1080 * Otherwise, or if the condition is otherwise non-affine, the for loop is
1081 * essentially treated as a while loop, with iteration domain
1082 * { [i] : i >= init }.
1084 * We extract a pet_scop for the body and then embed it in a loop with
1085 * iteration domain and schedule
1087 * { [i] : i >= init and condition' }
1088 * { [i] -> [i] }
1090 * or
1092 * { [i] : i <= init and condition' }
1093 * { [i] -> [-i] }
1095 * Where condition' is equal to condition if the latter is
1096 * a simple upper [lower] bound and a condition that is extended
1097 * to apply to all previous iterations otherwise.
1099 * If the condition is non-affine, then we drop the condition from the
1100 * iteration domain and instead create a separate statement
1101 * for evaluating the condition. The body is then filtered to depend
1102 * on the result of the condition evaluating to true on all iterations
1103 * up to the current iteration, while the evaluation the condition itself
1104 * is filtered to depend on the result of the condition evaluating to true
1105 * on all previous iterations.
1106 * The context of the scop representing the body is dropped
1107 * because we don't know how many times the body will be executed,
1108 * if at all.
1110 * If the stride of the loop is not 1, then "i >= init" is replaced by
1112 * (exists a: i = init + stride * a and a >= 0)
1114 * If the loop iterator i is unsigned, then wrapping may occur.
1115 * We therefore use a virtual iterator instead that does not wrap.
1116 * However, the condition in the code applies
1117 * to the wrapped value, so we need to change condition(i)
1118 * into condition([i % 2^width]). Similarly, we replace all accesses
1119 * to the original iterator by the wrapping of the virtual iterator.
1120 * Note that there may be no need to perform this final wrapping
1121 * if the loop condition (after wrapping) satisfies certain conditions.
1122 * However, the is_simple_bound condition is not enough since it doesn't
1123 * check if there even is an upper bound.
1125 * Wrapping on unsigned iterators can be avoided entirely if
1126 * loop condition is simple, the loop iterator is incremented
1127 * [decremented] by one and the last value before wrapping cannot
1128 * possibly satisfy the loop condition.
1130 * Valid parameters for a for loop are those for which the initial
1131 * value itself, the increment on each domain iteration and
1132 * the condition on both the initial value and
1133 * the result of incrementing the iterator for each iteration of the domain
1134 * can be evaluated.
1135 * If the loop condition is non-affine, then we only consider validity
1136 * of the initial value.
1138 * If the body contains any break, then we keep track of it in "skip"
1139 * (if the skip condition is affine) or it is handled in scop_add_break
1140 * (if the skip condition is not affine).
1141 * Note that the affine break condition needs to be considered with
1142 * respect to previous iterations in the virtual domain (if any).
1144 static struct pet_scop *scop_from_affine_for(__isl_keep pet_tree *tree,
1145 __isl_take isl_pw_aff *init_val, __isl_take isl_pw_aff *pa_inc,
1146 __isl_take isl_val *inc, __isl_take pet_context *pc,
1147 struct pet_state *state)
1149 isl_local_space *ls;
1150 isl_set *domain;
1151 isl_aff *sched;
1152 isl_set *cond = NULL;
1153 isl_set *skip = NULL;
1154 isl_id *id, *id_test = NULL, *id_break_test;
1155 struct pet_scop *scop, *scop_cond = NULL;
1156 int is_one;
1157 int is_unsigned;
1158 int is_simple;
1159 int is_virtual;
1160 int is_non_affine;
1161 int has_affine_break;
1162 int has_var_break;
1163 isl_map *rev_wrap = NULL;
1164 isl_aff *wrap = NULL;
1165 isl_pw_aff *pa;
1166 isl_set *valid_init;
1167 isl_set *valid_cond;
1168 isl_set *valid_cond_init;
1169 isl_set *valid_cond_next;
1170 isl_set *valid_inc;
1171 pet_expr *cond_expr;
1172 pet_context *pc_nested;
1174 id = pet_expr_access_get_id(tree->u.l.iv);
1176 cond_expr = pet_expr_copy(tree->u.l.cond);
1177 cond_expr = pet_expr_plug_in_args(cond_expr, pc);
1178 pc_nested = pet_context_copy(pc);
1179 pc_nested = pet_context_set_allow_nested(pc_nested, 1);
1180 pa = pet_expr_extract_affine_condition(cond_expr, pc_nested);
1181 pet_context_free(pc_nested);
1182 pet_expr_free(cond_expr);
1184 valid_inc = isl_pw_aff_domain(pa_inc);
1186 is_unsigned = pet_expr_get_type_size(tree->u.l.iv) > 0;
1188 is_non_affine = isl_pw_aff_involves_nan(pa) ||
1189 !is_nested_allowed(pa, tree->u.l.body);
1190 if (is_non_affine)
1191 pa = isl_pw_aff_free(pa);
1193 valid_cond = isl_pw_aff_domain(isl_pw_aff_copy(pa));
1194 cond = isl_pw_aff_non_zero_set(pa);
1195 if (is_non_affine) {
1196 isl_multi_pw_aff *test_index;
1197 test_index = pet_create_test_index(state->ctx, state->n_test++);
1198 scop_cond = scop_from_non_affine_condition(
1199 pet_expr_copy(tree->u.l.cond), state->n_stmt++,
1200 isl_multi_pw_aff_copy(test_index),
1201 pet_tree_get_loc(tree), pc);
1202 id_test = isl_multi_pw_aff_get_tuple_id(test_index,
1203 isl_dim_out);
1204 scop_cond = pet_scop_add_boolean_array(scop_cond, test_index,
1205 state->int_size);
1206 scop_cond = pet_scop_prefix(scop_cond, 0);
1207 cond = isl_set_universe(isl_space_set_alloc(state->ctx, 0, 0));
1210 cond = embed(cond, isl_id_copy(id));
1211 valid_cond = isl_set_coalesce(valid_cond);
1212 valid_cond = embed(valid_cond, isl_id_copy(id));
1213 valid_inc = embed(valid_inc, isl_id_copy(id));
1214 is_one = isl_val_is_one(inc) || isl_val_is_negone(inc);
1215 is_virtual = is_unsigned &&
1216 (!is_one || can_wrap(cond, tree->u.l.iv, inc));
1218 valid_cond_init = enforce_subset(
1219 isl_map_range(isl_map_from_pw_aff(isl_pw_aff_copy(init_val))),
1220 isl_set_copy(valid_cond));
1221 if (is_one && !is_virtual) {
1222 isl_pw_aff_free(init_val);
1223 pa = pet_expr_extract_comparison(
1224 isl_val_is_pos(inc) ? pet_op_ge : pet_op_le,
1225 tree->u.l.iv, tree->u.l.init, pc);
1226 valid_init = isl_pw_aff_domain(isl_pw_aff_copy(pa));
1227 valid_init = set_project_out_by_id(valid_init, id);
1228 domain = isl_pw_aff_non_zero_set(pa);
1229 } else {
1230 valid_init = isl_pw_aff_domain(isl_pw_aff_copy(init_val));
1231 domain = strided_domain(isl_id_copy(id), init_val,
1232 isl_val_copy(inc));
1235 domain = embed(domain, isl_id_copy(id));
1236 if (is_virtual) {
1237 wrap = compute_wrapping(isl_set_get_space(cond), tree->u.l.iv);
1238 rev_wrap = isl_map_from_aff(isl_aff_copy(wrap));
1239 rev_wrap = isl_map_reverse(rev_wrap);
1240 cond = isl_set_apply(cond, isl_map_copy(rev_wrap));
1241 valid_cond = isl_set_apply(valid_cond, isl_map_copy(rev_wrap));
1242 valid_inc = isl_set_apply(valid_inc, isl_map_copy(rev_wrap));
1244 is_simple = is_simple_bound(cond, inc);
1245 if (!is_simple) {
1246 cond = isl_set_gist(cond, isl_set_copy(domain));
1247 is_simple = is_simple_bound(cond, inc);
1249 if (!is_simple)
1250 cond = valid_for_each_iteration(cond,
1251 isl_set_copy(domain), isl_val_copy(inc));
1252 domain = isl_set_intersect(domain, cond);
1253 domain = isl_set_set_dim_id(domain, isl_dim_set, 0, isl_id_copy(id));
1254 ls = isl_local_space_from_space(isl_set_get_space(domain));
1255 sched = isl_aff_var_on_domain(ls, isl_dim_set, 0);
1256 if (isl_val_is_neg(inc))
1257 sched = isl_aff_neg(sched);
1259 valid_cond_next = valid_on_next(valid_cond, isl_set_copy(domain),
1260 isl_val_copy(inc));
1261 valid_inc = enforce_subset(isl_set_copy(domain), valid_inc);
1263 if (!is_virtual)
1264 wrap = identity_aff(domain);
1266 scop = scop_from_tree(tree->u.l.body, pc, state);
1268 scop_cond = pet_scop_embed(scop_cond, isl_set_copy(domain),
1269 isl_aff_copy(sched), isl_aff_copy(wrap), isl_id_copy(id));
1270 has_affine_break = scop &&
1271 pet_scop_has_affine_skip(scop, pet_skip_later);
1272 if (has_affine_break)
1273 skip = pet_scop_get_affine_skip_domain(scop, pet_skip_later);
1274 has_var_break = scop && pet_scop_has_var_skip(scop, pet_skip_later);
1275 if (has_var_break)
1276 id_break_test = pet_scop_get_skip_id(scop, pet_skip_later);
1277 if (is_non_affine) {
1278 scop = pet_scop_reset_context(scop);
1279 scop = pet_scop_prefix(scop, 1);
1281 scop = pet_scop_embed(scop, isl_set_copy(domain), sched, wrap, id);
1282 scop = pet_scop_resolve_nested(scop);
1283 if (has_affine_break) {
1284 domain = apply_affine_break(domain, skip, isl_val_sgn(inc),
1285 is_virtual, rev_wrap);
1286 scop = pet_scop_intersect_domain_prefix(scop,
1287 isl_set_copy(domain));
1289 isl_map_free(rev_wrap);
1290 if (has_var_break)
1291 scop = scop_add_break(scop, id_break_test, isl_set_copy(domain),
1292 isl_val_copy(inc));
1293 if (is_non_affine) {
1294 scop = scop_add_while(scop_cond, scop, id_test, domain,
1295 isl_val_copy(inc));
1296 isl_set_free(valid_inc);
1297 } else {
1298 scop = pet_scop_restrict_context(scop, valid_inc);
1299 scop = pet_scop_restrict_context(scop, valid_cond_next);
1300 scop = pet_scop_restrict_context(scop, valid_cond_init);
1301 isl_set_free(domain);
1304 isl_val_free(inc);
1306 scop = pet_scop_restrict_context(scop, isl_set_params(valid_init));
1308 pet_context_free(pc);
1309 return scop;
1312 /* Construct a pet_scop for a for statement within the context of "pc".
1314 * We update the context to reflect the writes to the loop variable and
1315 * the writes inside the body.
1317 * Then we check if the initialization of the for loop
1318 * is a static affine value and the increment is a constant.
1319 * If so, we construct the pet_scop using scop_from_affine_for.
1320 * Otherwise, we treat the for loop as a while loop
1321 * in scop_from_non_affine_for.
1323 static struct pet_scop *scop_from_for(__isl_keep pet_tree *tree,
1324 __isl_keep pet_context *pc, struct pet_state *state)
1326 isl_id *iv;
1327 isl_val *inc;
1328 isl_pw_aff *pa_inc, *init_val;
1329 pet_context *pc_init_val;
1331 if (!tree)
1332 return NULL;
1334 iv = pet_expr_access_get_id(tree->u.l.iv);
1335 pc = pet_context_copy(pc);
1336 pc = pet_context_clear_value(pc, iv);
1337 pc = pet_context_clear_writes_in_tree(pc, tree->u.l.body);
1339 pc_init_val = pet_context_copy(pc);
1340 pc_init_val = pet_context_mark_unknown(pc_init_val, isl_id_copy(iv));
1341 init_val = pet_expr_extract_affine(tree->u.l.init, pc_init_val);
1342 pet_context_free(pc_init_val);
1343 pa_inc = pet_expr_extract_affine(tree->u.l.inc, pc);
1344 inc = pet_extract_cst(pa_inc);
1345 if (!pa_inc || !init_val || !inc)
1346 goto error;
1347 if (!isl_pw_aff_involves_nan(pa_inc) &&
1348 !isl_pw_aff_involves_nan(init_val) && !isl_val_is_nan(inc))
1349 return scop_from_affine_for(tree, init_val, pa_inc, inc,
1350 pc, state);
1352 isl_pw_aff_free(pa_inc);
1353 isl_pw_aff_free(init_val);
1354 isl_val_free(inc);
1355 return scop_from_non_affine_for(tree, pc, state);
1356 error:
1357 isl_pw_aff_free(pa_inc);
1358 isl_pw_aff_free(init_val);
1359 isl_val_free(inc);
1360 pet_context_free(pc);
1361 return NULL;
1364 /* Check whether "expr" is an affine constraint within the context "pc".
1366 static int is_affine_condition(__isl_keep pet_expr *expr,
1367 __isl_keep pet_context *pc)
1369 isl_pw_aff *pa;
1370 int is_affine;
1372 pa = pet_expr_extract_affine_condition(expr, pc);
1373 if (!pa)
1374 return -1;
1375 is_affine = !isl_pw_aff_involves_nan(pa);
1376 isl_pw_aff_free(pa);
1378 return is_affine;
1381 /* Check if the given if statement is a conditional assignement
1382 * with a non-affine condition.
1384 * In particular we check if "stmt" is of the form
1386 * if (condition)
1387 * a = f(...);
1388 * else
1389 * a = g(...);
1391 * where the condition is non-affine and a is some array or scalar access.
1393 static int is_conditional_assignment(__isl_keep pet_tree *tree,
1394 __isl_keep pet_context *pc)
1396 int equal;
1397 isl_ctx *ctx;
1398 pet_expr *expr1, *expr2;
1400 ctx = pet_tree_get_ctx(tree);
1401 if (!pet_options_get_detect_conditional_assignment(ctx))
1402 return 0;
1403 if (tree->type != pet_tree_if_else)
1404 return 0;
1405 if (tree->u.i.then_body->type != pet_tree_expr)
1406 return 0;
1407 if (tree->u.i.else_body->type != pet_tree_expr)
1408 return 0;
1409 expr1 = tree->u.i.then_body->u.e.expr;
1410 expr2 = tree->u.i.else_body->u.e.expr;
1411 if (pet_expr_get_type(expr1) != pet_expr_op)
1412 return 0;
1413 if (pet_expr_get_type(expr2) != pet_expr_op)
1414 return 0;
1415 if (pet_expr_op_get_type(expr1) != pet_op_assign)
1416 return 0;
1417 if (pet_expr_op_get_type(expr2) != pet_op_assign)
1418 return 0;
1419 expr1 = pet_expr_get_arg(expr1, 0);
1420 expr2 = pet_expr_get_arg(expr2, 0);
1421 equal = pet_expr_is_equal(expr1, expr2);
1422 pet_expr_free(expr1);
1423 pet_expr_free(expr2);
1424 if (equal < 0 || !equal)
1425 return 0;
1426 if (is_affine_condition(tree->u.i.cond, pc))
1427 return 0;
1429 return 1;
1432 /* Given that "tree" is of the form
1434 * if (condition)
1435 * a = f(...);
1436 * else
1437 * a = g(...);
1439 * where a is some array or scalar access, construct a pet_scop
1440 * corresponding to this conditional assignment within the context "pc".
1442 * The constructed pet_scop then corresponds to the expression
1444 * a = condition ? f(...) : g(...)
1446 * All access relations in f(...) are intersected with condition
1447 * while all access relation in g(...) are intersected with the complement.
1449 static struct pet_scop *scop_from_conditional_assignment(
1450 __isl_keep pet_tree *tree, __isl_take pet_context *pc,
1451 struct pet_state *state)
1453 int type_size;
1454 isl_pw_aff *pa;
1455 isl_set *cond, *comp;
1456 isl_multi_pw_aff *index;
1457 pet_expr *expr1, *expr2;
1458 pet_expr *pe_cond, *pe_then, *pe_else, *pe, *pe_write;
1459 pet_context *pc_nested;
1460 struct pet_scop *scop;
1462 pe_cond = pet_expr_copy(tree->u.i.cond);
1463 pe_cond = pet_expr_plug_in_args(pe_cond, pc);
1464 pc_nested = pet_context_copy(pc);
1465 pc_nested = pet_context_set_allow_nested(pc_nested, 1);
1466 pa = pet_expr_extract_affine_condition(pe_cond, pc_nested);
1467 pet_context_free(pc_nested);
1468 pet_expr_free(pe_cond);
1469 cond = isl_pw_aff_non_zero_set(isl_pw_aff_copy(pa));
1470 comp = isl_pw_aff_zero_set(isl_pw_aff_copy(pa));
1471 index = isl_multi_pw_aff_from_pw_aff(pa);
1473 expr1 = tree->u.i.then_body->u.e.expr;
1474 expr2 = tree->u.i.else_body->u.e.expr;
1476 pe_cond = pet_expr_from_index(index);
1478 pe_then = pet_expr_get_arg(expr1, 1);
1479 pe_then = pet_expr_restrict(pe_then, cond);
1480 pe_else = pet_expr_get_arg(expr2, 1);
1481 pe_else = pet_expr_restrict(pe_else, comp);
1482 pe_write = pet_expr_get_arg(expr1, 0);
1484 pe = pet_expr_new_ternary(pe_cond, pe_then, pe_else);
1485 type_size = pet_expr_get_type_size(pe_write);
1486 pe = pet_expr_new_binary(type_size, pet_op_assign, pe_write, pe);
1488 scop = scop_from_expr(pe, NULL, state->n_stmt++,
1489 pet_tree_get_loc(tree), pc);
1491 pet_context_free(pc);
1493 return scop;
1496 /* Construct a pet_scop for a non-affine if statement within the context "pc".
1498 * We create a separate statement that writes the result
1499 * of the non-affine condition to a virtual scalar.
1500 * A constraint requiring the value of this virtual scalar to be one
1501 * is added to the iteration domains of the then branch.
1502 * Similarly, a constraint requiring the value of this virtual scalar
1503 * to be zero is added to the iteration domains of the else branch, if any.
1504 * We adjust the schedules to ensure that the virtual scalar is written
1505 * before it is read.
1507 * If there are any breaks or continues in the then and/or else
1508 * branches, then we may have to compute a new skip condition.
1509 * This is handled using a pet_skip_info object.
1510 * On initialization, the object checks if skip conditions need
1511 * to be computed. If so, it does so in pet_skip_info_if_extract_index and
1512 * adds them in pet_skip_info_if_add.
1514 static struct pet_scop *scop_from_non_affine_if(__isl_keep pet_tree *tree,
1515 struct pet_scop *scop_then, struct pet_scop *scop_else, int stmt_id,
1516 __isl_take pet_context *pc, struct pet_state *state)
1518 int has_else;
1519 int save_n_stmt = state->n_stmt;
1520 isl_multi_pw_aff *test_index;
1521 struct pet_skip_info skip;
1522 struct pet_scop *scop;
1524 has_else = tree->type == pet_tree_if_else;
1526 test_index = pet_create_test_index(state->ctx, state->n_test++);
1527 state->n_stmt = stmt_id;
1528 scop = scop_from_non_affine_condition(pet_expr_copy(tree->u.i.cond),
1529 state->n_stmt++, isl_multi_pw_aff_copy(test_index),
1530 pet_tree_get_loc(tree), pc);
1531 state->n_stmt = save_n_stmt;
1532 scop = pet_scop_add_boolean_array(scop,
1533 isl_multi_pw_aff_copy(test_index), state->int_size);
1535 pet_skip_info_if_init(&skip, state->ctx, scop_then, scop_else,
1536 has_else, 0);
1537 pet_skip_info_if_extract_index(&skip, test_index, state);
1539 scop = pet_scop_prefix(scop, 0);
1540 scop_then = pet_scop_prefix(scop_then, 1);
1541 scop_then = pet_scop_filter(scop_then,
1542 isl_multi_pw_aff_copy(test_index), 1);
1543 if (has_else) {
1544 scop_else = pet_scop_prefix(scop_else, 1);
1545 scop_else = pet_scop_filter(scop_else, test_index, 0);
1546 scop_then = pet_scop_add_par(state->ctx, scop_then, scop_else);
1547 } else
1548 isl_multi_pw_aff_free(test_index);
1550 scop = pet_scop_add_seq(state->ctx, scop, scop_then);
1552 scop = pet_skip_info_if_add(&skip, scop, 2);
1554 pet_context_free(pc);
1555 return scop;
1558 /* Construct a pet_scop for an affine if statement within the context "pc".
1560 * The condition is added to the iteration domains of the then branch,
1561 * while the opposite of the condition in added to the iteration domains
1562 * of the else branch, if any.
1564 * If there are any breaks or continues in the then and/or else
1565 * branches, then we may have to compute a new skip condition.
1566 * This is handled using a pet_skip_info_if object.
1567 * On initialization, the object checks if skip conditions need
1568 * to be computed. If so, it does so in pet_skip_info_if_extract_cond and
1569 * adds them in pet_skip_info_if_add.
1571 static struct pet_scop *scop_from_affine_if(__isl_keep pet_tree *tree,
1572 __isl_take isl_pw_aff *cond,
1573 struct pet_scop *scop_then, struct pet_scop *scop_else,
1574 struct pet_state *state)
1576 int has_else;
1577 isl_ctx *ctx;
1578 isl_set *set;
1579 isl_set *valid;
1580 struct pet_skip_info skip;
1581 struct pet_scop *scop;
1583 ctx = pet_tree_get_ctx(tree);
1585 has_else = tree->type == pet_tree_if_else;
1587 pet_skip_info_if_init(&skip, ctx, scop_then, scop_else, has_else, 1);
1588 pet_skip_info_if_extract_cond(&skip, cond, state);
1590 valid = isl_pw_aff_domain(isl_pw_aff_copy(cond));
1591 set = isl_pw_aff_non_zero_set(cond);
1592 scop = pet_scop_restrict(scop_then, isl_set_params(isl_set_copy(set)));
1594 if (has_else) {
1595 set = isl_set_subtract(isl_set_copy(valid), set);
1596 scop_else = pet_scop_restrict(scop_else, isl_set_params(set));
1597 scop = pet_scop_add_par(ctx, scop, scop_else);
1598 } else
1599 isl_set_free(set);
1600 scop = pet_scop_resolve_nested(scop);
1601 scop = pet_scop_restrict_context(scop, isl_set_params(valid));
1603 if (pet_skip_info_has_skip(&skip))
1604 scop = pet_scop_prefix(scop, 0);
1605 scop = pet_skip_info_if_add(&skip, scop, 1);
1607 return scop;
1610 /* Construct a pet_scop for an if statement within the context "pc".
1612 * If the condition fits the pattern of a conditional assignment,
1613 * then it is handled by scop_from_conditional_assignment.
1615 * Otherwise, we check if the condition is affine.
1616 * If so, we construct the scop in scop_from_affine_if.
1617 * Otherwise, we construct the scop in scop_from_non_affine_if.
1619 * We allow the condition to be dynamic, i.e., to refer to
1620 * scalars or array elements that may be written to outside
1621 * of the given if statement. These nested accesses are then represented
1622 * as output dimensions in the wrapping iteration domain.
1623 * If it is also written _inside_ the then or else branch, then
1624 * we treat the condition as non-affine.
1625 * As explained in extract_non_affine_if, this will introduce
1626 * an extra statement.
1627 * For aesthetic reasons, we want this statement to have a statement
1628 * number that is lower than those of the then and else branches.
1629 * In order to evaluate if we will need such a statement, however, we
1630 * first construct scops for the then and else branches.
1631 * We therefore reserve a statement number if we might have to
1632 * introduce such an extra statement.
1634 static struct pet_scop *scop_from_if(__isl_keep pet_tree *tree,
1635 __isl_keep pet_context *pc, struct pet_state *state)
1637 int has_else;
1638 int stmt_id;
1639 isl_pw_aff *cond;
1640 pet_expr *cond_expr;
1641 struct pet_scop *scop_then, *scop_else = NULL;
1642 pet_context *pc_nested;
1644 if (!tree)
1645 return NULL;
1647 has_else = tree->type == pet_tree_if_else;
1649 pc = pet_context_copy(pc);
1650 pc = pet_context_clear_writes_in_tree(pc, tree->u.i.then_body);
1651 if (has_else)
1652 pc = pet_context_clear_writes_in_tree(pc, tree->u.i.else_body);
1654 if (is_conditional_assignment(tree, pc))
1655 return scop_from_conditional_assignment(tree, pc, state);
1657 cond_expr = pet_expr_copy(tree->u.i.cond);
1658 cond_expr = pet_expr_plug_in_args(cond_expr, pc);
1659 pc_nested = pet_context_copy(pc);
1660 pc_nested = pet_context_set_allow_nested(pc_nested, 1);
1661 cond = pet_expr_extract_affine_condition(cond_expr, pc_nested);
1662 pet_context_free(pc_nested);
1663 pet_expr_free(cond_expr);
1665 if (!cond) {
1666 pet_context_free(pc);
1667 return NULL;
1670 if (isl_pw_aff_involves_nan(cond) || pet_nested_any_in_pw_aff(cond))
1671 stmt_id = state->n_stmt++;
1673 scop_then = scop_from_tree(tree->u.i.then_body, pc, state);
1674 if (has_else)
1675 scop_else = scop_from_tree(tree->u.i.else_body, pc, state);
1677 if (isl_pw_aff_involves_nan(cond)) {
1678 isl_pw_aff_free(cond);
1679 return scop_from_non_affine_if(tree, scop_then, scop_else,
1680 stmt_id, pc, state);
1683 if ((!is_nested_allowed(cond, tree->u.i.then_body) ||
1684 (has_else && !is_nested_allowed(cond, tree->u.i.else_body)))) {
1685 isl_pw_aff_free(cond);
1686 return scop_from_non_affine_if(tree, scop_then, scop_else,
1687 stmt_id, pc, state);
1690 pet_context_free(pc);
1691 return scop_from_affine_if(tree, cond, scop_then, scop_else, state);
1694 /* Return a one-dimensional multi piecewise affine expression that is equal
1695 * to the constant 1 and is defined over a zero-dimensional domain.
1697 static __isl_give isl_multi_pw_aff *one_mpa(isl_ctx *ctx)
1699 isl_space *space;
1700 isl_local_space *ls;
1701 isl_aff *aff;
1703 space = isl_space_set_alloc(ctx, 0, 0);
1704 ls = isl_local_space_from_space(space);
1705 aff = isl_aff_zero_on_domain(ls);
1706 aff = isl_aff_set_constant_si(aff, 1);
1708 return isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff));
1711 /* Construct a pet_scop for a continue statement.
1713 * We simply create an empty scop with a universal pet_skip_now
1714 * skip condition. This skip condition will then be taken into
1715 * account by the enclosing loop construct, possibly after
1716 * being incorporated into outer skip conditions.
1718 static struct pet_scop *scop_from_continue(__isl_keep pet_tree *tree)
1720 struct pet_scop *scop;
1721 isl_ctx *ctx;
1723 ctx = pet_tree_get_ctx(tree);
1724 scop = pet_scop_empty(ctx);
1725 if (!scop)
1726 return NULL;
1728 scop = pet_scop_set_skip(scop, pet_skip_now, one_mpa(ctx));
1730 return scop;
1733 /* Construct a pet_scop for a break statement.
1735 * We simply create an empty scop with both a universal pet_skip_now
1736 * skip condition and a universal pet_skip_later skip condition.
1737 * These skip conditions will then be taken into
1738 * account by the enclosing loop construct, possibly after
1739 * being incorporated into outer skip conditions.
1741 static struct pet_scop *scop_from_break(__isl_keep pet_tree *tree)
1743 struct pet_scop *scop;
1744 isl_ctx *ctx;
1745 isl_multi_pw_aff *skip;
1747 ctx = pet_tree_get_ctx(tree);
1748 scop = pet_scop_empty(ctx);
1749 if (!scop)
1750 return NULL;
1752 skip = one_mpa(ctx);
1753 scop = pet_scop_set_skip(scop, pet_skip_now,
1754 isl_multi_pw_aff_copy(skip));
1755 scop = pet_scop_set_skip(scop, pet_skip_later, skip);
1757 return scop;
1760 /* Extract a clone of the kill statement in "scop".
1761 * "scop" is expected to have been created from a DeclStmt
1762 * and should have the kill as its first statement.
1764 static struct pet_scop *extract_kill(isl_ctx *ctx, struct pet_scop *scop,
1765 struct pet_state *state)
1767 pet_expr *kill;
1768 struct pet_stmt *stmt;
1769 isl_multi_pw_aff *index;
1770 isl_map *access;
1771 pet_expr *arg;
1773 if (!scop)
1774 return NULL;
1775 if (scop->n_stmt < 1)
1776 isl_die(ctx, isl_error_internal,
1777 "expecting at least one statement", return NULL);
1778 stmt = scop->stmts[0];
1779 if (!pet_stmt_is_kill(stmt))
1780 isl_die(ctx, isl_error_internal,
1781 "expecting kill statement", return NULL);
1783 arg = pet_expr_get_arg(stmt->body, 0);
1784 index = pet_expr_access_get_index(arg);
1785 access = pet_expr_access_get_access(arg);
1786 pet_expr_free(arg);
1787 index = isl_multi_pw_aff_reset_tuple_id(index, isl_dim_in);
1788 access = isl_map_reset_tuple_id(access, isl_dim_in);
1789 kill = pet_expr_kill_from_access_and_index(access, index);
1790 stmt = pet_stmt_from_pet_expr(pet_loc_copy(stmt->loc),
1791 NULL, state->n_stmt++, kill);
1792 return pet_scop_from_pet_stmt(ctx, stmt);
1795 /* Mark all arrays in "scop" as being exposed.
1797 static struct pet_scop *mark_exposed(struct pet_scop *scop)
1799 int i;
1801 if (!scop)
1802 return NULL;
1803 for (i = 0; i < scop->n_array; ++i)
1804 scop->arrays[i]->exposed = 1;
1805 return scop;
1808 /* Try and construct a pet_scop corresponding to (part of)
1809 * a sequence of statements within the context "pc".
1811 * After extracting a statement, we update "pc"
1812 * based on the top-level assignments in the statement
1813 * so that we can exploit them in subsequent statements in the same block.
1815 * If there are any breaks or continues in the individual statements,
1816 * then we may have to compute a new skip condition.
1817 * This is handled using a pet_skip_info object.
1818 * On initialization, the object checks if skip conditions need
1819 * to be computed. If so, it does so in pet_skip_info_seq_extract and
1820 * adds them in pet_skip_info_seq_add.
1822 * If "block" is set, then we need to insert kill statements at
1823 * the end of the block for any array that has been declared by
1824 * one of the statements in the sequence. Each of these declarations
1825 * results in the construction of a kill statement at the place
1826 * of the declaration, so we simply collect duplicates of
1827 * those kill statements and append these duplicates to the constructed scop.
1829 * If "block" is not set, then any array declared by one of the statements
1830 * in the sequence is marked as being exposed.
1832 * If autodetect is set, then we allow the extraction of only a subrange
1833 * of the sequence of statements. However, if there is at least one statement
1834 * for which we could not construct a scop and the final range contains
1835 * either no statements or at least one kill, then we discard the entire
1836 * range.
1838 static struct pet_scop *scop_from_block(__isl_keep pet_tree *tree,
1839 __isl_keep pet_context *pc, struct pet_state *state)
1841 int i;
1842 isl_ctx *ctx;
1843 struct pet_scop *scop, *kills;
1845 ctx = pet_tree_get_ctx(tree);
1847 pc = pet_context_copy(pc);
1848 scop = pet_scop_empty(ctx);
1849 kills = pet_scop_empty(ctx);
1850 for (i = 0; i < tree->u.b.n; ++i) {
1851 struct pet_scop *scop_i;
1853 scop_i = scop_from_tree(tree->u.b.child[i], pc, state);
1854 pc = scop_handle_writes(scop_i, pc);
1855 struct pet_skip_info skip;
1856 pet_skip_info_seq_init(&skip, ctx, scop, scop_i);
1857 pet_skip_info_seq_extract(&skip, state);
1858 if (pet_skip_info_has_skip(&skip))
1859 scop_i = pet_scop_prefix(scop_i, 0);
1860 if (scop_i && pet_tree_is_decl(tree->u.b.child[i])) {
1861 if (tree->u.b.block) {
1862 struct pet_scop *kill;
1863 kill = extract_kill(ctx, scop_i, state);
1864 kills = pet_scop_add_par(ctx, kills, kill);
1865 } else
1866 scop_i = mark_exposed(scop_i);
1868 scop_i = pet_scop_prefix(scop_i, i);
1869 scop = pet_scop_add_seq(ctx, scop, scop_i);
1871 scop = pet_skip_info_seq_add(&skip, scop, i);
1873 if (!scop)
1874 break;
1877 kills = pet_scop_prefix(kills, tree->u.b.n);
1878 scop = pet_scop_add_seq(ctx, scop, kills);
1880 pet_context_free(pc);
1882 return scop;
1885 /* Construct a pet_scop that corresponds to the pet_tree "tree"
1886 * within the context "pc" by calling the appropriate function
1887 * based on the type of "tree".
1889 static struct pet_scop *scop_from_tree(__isl_keep pet_tree *tree,
1890 __isl_keep pet_context *pc, struct pet_state *state)
1892 if (!tree)
1893 return NULL;
1895 switch (tree->type) {
1896 case pet_tree_error:
1897 return NULL;
1898 case pet_tree_block:
1899 return scop_from_block(tree, pc, state);
1900 case pet_tree_break:
1901 return scop_from_break(tree);
1902 case pet_tree_continue:
1903 return scop_from_continue(tree);
1904 case pet_tree_decl:
1905 case pet_tree_decl_init:
1906 return scop_from_decl(tree, pc, state);
1907 case pet_tree_expr:
1908 return scop_from_expr(pet_expr_copy(tree->u.e.expr),
1909 isl_id_copy(tree->label),
1910 state->n_stmt++,
1911 pet_tree_get_loc(tree), pc);
1912 case pet_tree_if:
1913 case pet_tree_if_else:
1914 return scop_from_if(tree, pc, state);
1915 case pet_tree_for:
1916 return scop_from_for(tree, pc, state);
1917 case pet_tree_while:
1918 return scop_from_while(tree, pc, state);
1919 case pet_tree_infinite_loop:
1920 return scop_from_infinite_for(tree, pc, state);
1923 isl_die(tree->ctx, isl_error_internal, "unhandled type",
1924 return NULL);
1927 /* Construct a pet_scop that corresponds to the pet_tree "tree".
1928 * "int_size" is the number of bytes need to represent an integer.
1929 * "extract_array" is a callback that we can use to create a pet_array
1930 * that corresponds to the variable accessed by an expression.
1932 * Initialize the global state, construct a context and then
1933 * construct the pet_scop by recursively visiting the tree.
1935 struct pet_scop *pet_scop_from_pet_tree(__isl_take pet_tree *tree, int int_size,
1936 struct pet_array *(*extract_array)(__isl_keep pet_expr *access,
1937 __isl_keep pet_context *pc, void *user), void *user,
1938 __isl_keep pet_context *pc)
1940 struct pet_scop *scop;
1941 struct pet_state state = { 0 };
1943 if (!tree)
1944 return NULL;
1946 state.ctx = pet_tree_get_ctx(tree);
1947 state.int_size = int_size;
1948 state.extract_array = extract_array;
1949 state.user = user;
1951 scop = scop_from_tree(tree, pc, &state);
1952 scop = pet_scop_set_loc(scop, pet_tree_get_loc(tree));
1954 pet_tree_free(tree);
1956 return scop;