pet_create_test_index: allow specification of domain space
[pet.git] / tree2scop.c
blob9d512ede6f20db836b3ec76160caeff840f80b02
1 /*
2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012-2014 Ecole Normale Superieure. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials provided
15 * with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as
31 * representing official policies, either expressed or implied, of
32 * Leiden University.
35 #include <isl/id_to_pw_aff.h>
37 #include "aff.h"
38 #include "expr.h"
39 #include "expr_arg.h"
40 #include "nest.h"
41 #include "scop.h"
42 #include "skip.h"
43 #include "state.h"
44 #include "tree2scop.h"
46 /* Update "pc" by taking into account the writes in "stmt".
47 * That is, first mark all scalar variables that are written by "stmt"
48 * as having an unknown value. Afterwards,
49 * if "stmt" is a top-level (i.e., unconditional) assignment
50 * to a scalar variable, then update "pc" accordingly.
52 * In particular, if the lhs of the assignment is a scalar variable, then mark
53 * the variable as having been assigned. If, furthermore, the rhs
54 * is an affine expression, then keep track of this value in "pc"
55 * so that we can plug it in when we later come across the same variable.
57 * We skip assignments to virtual arrays (those with NULL user pointer).
59 static __isl_give pet_context *handle_writes(struct pet_stmt *stmt,
60 __isl_take pet_context *pc)
62 pet_expr *body = stmt->body;
63 pet_expr *arg;
64 isl_id *id;
65 isl_pw_aff *pa;
67 pc = pet_context_clear_writes_in_expr(pc, body);
68 if (!pc)
69 return NULL;
71 if (pet_expr_get_type(body) != pet_expr_op)
72 return pc;
73 if (pet_expr_op_get_type(body) != pet_op_assign)
74 return pc;
75 if (!isl_set_plain_is_universe(stmt->domain))
76 return pc;
77 arg = pet_expr_get_arg(body, 0);
78 if (!pet_expr_is_scalar_access(arg)) {
79 pet_expr_free(arg);
80 return pc;
83 id = pet_expr_access_get_id(arg);
84 pet_expr_free(arg);
86 if (!isl_id_get_user(id)) {
87 isl_id_free(id);
88 return pc;
91 arg = pet_expr_get_arg(body, 1);
92 pa = pet_expr_extract_affine(arg, pc);
93 pc = pet_context_mark_assigned(pc, isl_id_copy(id));
94 pet_expr_free(arg);
96 if (pa && isl_pw_aff_involves_nan(pa)) {
97 isl_id_free(id);
98 isl_pw_aff_free(pa);
99 return pc;
102 pc = pet_context_set_value(pc, id, pa);
104 return pc;
107 /* Update "pc" based on the write accesses (and, in particular,
108 * assignments) in "scop".
110 static __isl_give pet_context *scop_handle_writes(struct pet_scop *scop,
111 __isl_take pet_context *pc)
113 int i;
115 if (!scop)
116 return pet_context_free(pc);
117 for (i = 0; i < scop->n_stmt; ++i)
118 pc = handle_writes(scop->stmts[i], pc);
120 return pc;
123 /* Convert a top-level pet_expr to a pet_scop with one statement
124 * within the context "pc".
125 * This mainly involves resolving nested expression parameters
126 * and setting the name of the iteration space.
127 * The name is given by "label" if it is non-NULL. Otherwise,
128 * it is of the form S_<stmt_nr>.
129 * The location of the statement is set to "loc".
131 static struct pet_scop *scop_from_expr(__isl_take pet_expr *expr,
132 __isl_take isl_id *label, int stmt_nr, __isl_take pet_loc *loc,
133 __isl_keep pet_context *pc)
135 isl_ctx *ctx;
136 isl_set *domain;
137 struct pet_stmt *ps;
139 ctx = pet_expr_get_ctx(expr);
141 expr = pet_expr_plug_in_args(expr, pc);
142 expr = pet_expr_resolve_nested(expr);
143 expr = pet_expr_resolve_assume(expr, pc);
144 domain = pet_context_get_domain(pc);
145 ps = pet_stmt_from_pet_expr(domain, loc, label, stmt_nr, expr);
146 return pet_scop_from_pet_stmt(ctx, ps);
149 /* Construct a pet_scop with a single statement killing the entire
150 * array "array".
151 * The location of the statement is set to "loc".
153 static struct pet_scop *kill(__isl_take pet_loc *loc, struct pet_array *array,
154 __isl_keep pet_context *pc, struct pet_state *state)
156 isl_ctx *ctx;
157 isl_id *id;
158 isl_space *space;
159 isl_multi_pw_aff *index;
160 isl_map *access;
161 pet_expr *expr;
162 struct pet_scop *scop;
164 if (!array)
165 goto error;
166 ctx = isl_set_get_ctx(array->extent);
167 access = isl_map_from_range(isl_set_copy(array->extent));
168 id = isl_set_get_tuple_id(array->extent);
169 space = isl_space_alloc(ctx, 0, 0, 0);
170 space = isl_space_set_tuple_id(space, isl_dim_out, id);
171 index = isl_multi_pw_aff_zero(space);
172 expr = pet_expr_kill_from_access_and_index(access, index);
173 return scop_from_expr(expr, NULL, state->n_stmt++, loc, pc);
174 error:
175 pet_loc_free(loc);
176 return NULL;
179 /* Construct and return a pet_array corresponding to the variable
180 * accessed by "access" by calling the extract_array callback.
182 static struct pet_array *extract_array(__isl_keep pet_expr *access,
183 __isl_keep pet_context *pc, struct pet_state *state)
185 return state->extract_array(access, pc, state->user);
188 /* Construct a pet_scop for a (single) variable declaration
189 * within the context "pc".
191 * The scop contains the variable being declared (as an array)
192 * and a statement killing the array.
194 * If the declaration comes with an initialization, then the scop
195 * also contains an assignment to the variable.
197 static struct pet_scop *scop_from_decl(__isl_keep pet_tree *tree,
198 __isl_keep pet_context *pc, struct pet_state *state)
200 int type_size;
201 isl_ctx *ctx;
202 struct pet_array *array;
203 struct pet_scop *scop_decl, *scop;
204 pet_expr *lhs, *rhs, *pe;
206 array = extract_array(tree->u.d.var, pc, state);
207 if (array)
208 array->declared = 1;
209 scop_decl = kill(pet_tree_get_loc(tree), array, pc, state);
210 scop_decl = pet_scop_add_array(scop_decl, array);
212 if (tree->type != pet_tree_decl_init)
213 return scop_decl;
215 lhs = pet_expr_copy(tree->u.d.var);
216 rhs = pet_expr_copy(tree->u.d.init);
217 type_size = pet_expr_get_type_size(lhs);
218 pe = pet_expr_new_binary(type_size, pet_op_assign, lhs, rhs);
219 scop = scop_from_expr(pe, NULL, state->n_stmt++,
220 pet_tree_get_loc(tree), pc);
222 scop_decl = pet_scop_prefix(scop_decl, 0);
223 scop = pet_scop_prefix(scop, 1);
225 ctx = pet_tree_get_ctx(tree);
226 scop = pet_scop_add_seq(ctx, scop_decl, scop);
228 return scop;
231 /* Embed the given iteration domain in an extra outer loop
232 * with induction variable "var".
233 * If this variable appeared as a parameter in the constraints,
234 * it is replaced by the new outermost dimension.
236 static __isl_give isl_set *embed(__isl_take isl_set *set,
237 __isl_take isl_id *var)
239 int pos;
241 set = isl_set_insert_dims(set, isl_dim_set, 0, 1);
242 pos = isl_set_find_dim_by_id(set, isl_dim_param, var);
243 if (pos >= 0) {
244 set = isl_set_equate(set, isl_dim_param, pos, isl_dim_set, 0);
245 set = isl_set_project_out(set, isl_dim_param, pos, 1);
248 isl_id_free(var);
249 return set;
252 /* Return those elements in the space of "cond" that come after
253 * (based on "sign") an element in "cond".
255 static __isl_give isl_set *after(__isl_take isl_set *cond, int sign)
257 isl_map *previous_to_this;
259 if (sign > 0)
260 previous_to_this = isl_map_lex_lt(isl_set_get_space(cond));
261 else
262 previous_to_this = isl_map_lex_gt(isl_set_get_space(cond));
264 cond = isl_set_apply(cond, previous_to_this);
266 return cond;
269 /* Remove those iterations of "domain" that have an earlier iteration
270 * (based on "sign") where "skip" is satisfied.
271 * "domain" has an extra outer loop compared to "skip".
272 * The skip condition is first embedded in the same space as "domain".
273 * If "apply_skip_map" is set, then "skip_map" is first applied
274 * to the embedded skip condition before removing it from the domain.
276 static __isl_give isl_set *apply_affine_break(__isl_take isl_set *domain,
277 __isl_take isl_set *skip, int sign,
278 int apply_skip_map, __isl_keep isl_map *skip_map)
280 skip = embed(skip, isl_set_get_dim_id(domain, isl_dim_set, 0));
281 if (apply_skip_map)
282 skip = isl_set_apply(skip, isl_map_copy(skip_map));
283 skip = isl_set_intersect(skip , isl_set_copy(domain));
284 return isl_set_subtract(domain, after(skip, sign));
287 /* Create the infinite iteration domain
289 * { [id] : id >= 0 }
291 static __isl_give isl_set *infinite_domain(__isl_take isl_id *id)
293 isl_ctx *ctx = isl_id_get_ctx(id);
294 isl_set *domain;
296 domain = isl_set_nat_universe(isl_space_set_alloc(ctx, 0, 1));
297 domain = isl_set_set_dim_id(domain, isl_dim_set, 0, id);
299 return domain;
302 /* Create an identity affine expression on the space containing "domain",
303 * which is assumed to be one-dimensional.
305 static __isl_give isl_aff *identity_aff(__isl_keep isl_set *domain)
307 isl_local_space *ls;
309 ls = isl_local_space_from_space(isl_set_get_space(domain));
310 return isl_aff_var_on_domain(ls, isl_dim_set, 0);
313 /* Create an affine expression that maps elements
314 * of a single-dimensional array "id_test" to the previous element
315 * (according to "inc"), provided this element belongs to "domain".
316 * That is, create the affine expression
318 * { id[x] -> id[x - inc] : x - inc in domain }
320 static __isl_give isl_multi_pw_aff *map_to_previous(__isl_take isl_id *id_test,
321 __isl_take isl_set *domain, __isl_take isl_val *inc)
323 isl_space *space;
324 isl_local_space *ls;
325 isl_aff *aff;
326 isl_multi_pw_aff *prev;
328 space = isl_set_get_space(domain);
329 ls = isl_local_space_from_space(space);
330 aff = isl_aff_var_on_domain(ls, isl_dim_set, 0);
331 aff = isl_aff_add_constant_val(aff, isl_val_neg(inc));
332 prev = isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff));
333 domain = isl_set_preimage_multi_pw_aff(domain,
334 isl_multi_pw_aff_copy(prev));
335 prev = isl_multi_pw_aff_intersect_domain(prev, domain);
336 prev = isl_multi_pw_aff_set_tuple_id(prev, isl_dim_out, id_test);
338 return prev;
341 /* Add an implication to "scop" expressing that if an element of
342 * virtual array "id_test" has value "satisfied" then all previous elements
343 * of this array also have that value. The set of previous elements
344 * is bounded by "domain". If "sign" is negative then the iterator
345 * is decreasing and we express that all subsequent array elements
346 * (but still defined previously) have the same value.
348 static struct pet_scop *add_implication(struct pet_scop *scop,
349 __isl_take isl_id *id_test, __isl_take isl_set *domain, int sign,
350 int satisfied)
352 isl_space *space;
353 isl_map *map;
355 domain = isl_set_set_tuple_id(domain, id_test);
356 space = isl_set_get_space(domain);
357 if (sign > 0)
358 map = isl_map_lex_ge(space);
359 else
360 map = isl_map_lex_le(space);
361 map = isl_map_intersect_range(map, domain);
362 scop = pet_scop_add_implication(scop, map, satisfied);
364 return scop;
367 /* Add a filter to "scop" that imposes that it is only executed
368 * when the variable identified by "id_test" has a zero value
369 * for all previous iterations of "domain".
371 * In particular, add a filter that imposes that the array
372 * has a zero value at the previous iteration of domain and
373 * add an implication that implies that it then has that
374 * value for all previous iterations.
376 static struct pet_scop *scop_add_break(struct pet_scop *scop,
377 __isl_take isl_id *id_test, __isl_take isl_set *domain,
378 __isl_take isl_val *inc)
380 isl_multi_pw_aff *prev;
381 int sign = isl_val_sgn(inc);
383 prev = map_to_previous(isl_id_copy(id_test), isl_set_copy(domain), inc);
384 scop = add_implication(scop, id_test, domain, sign, 0);
385 scop = pet_scop_filter(scop, prev, 0);
387 return scop;
390 static struct pet_scop *scop_from_tree(__isl_keep pet_tree *tree,
391 __isl_keep pet_context *pc, struct pet_state *state);
393 /* Construct a pet_scop for an infinite loop around the given body
394 * within the context "pc".
396 * We extract a pet_scop for the body and then embed it in a loop with
397 * iteration domain
399 * { [t] : t >= 0 }
401 * and schedule
403 * { [t] -> [t] }
405 * If the body contains any break, then it is taken into
406 * account in apply_affine_break (if the skip condition is affine)
407 * or in scop_add_break (if the skip condition is not affine).
409 * Note that in case of an affine skip condition,
410 * since we are dealing with a loop without loop iterator,
411 * the skip condition cannot refer to the current loop iterator and
412 * so effectively, the iteration domain is of the form
414 * { [0]; [t] : t >= 1 and not skip }
416 static struct pet_scop *scop_from_infinite_loop(__isl_keep pet_tree *body,
417 __isl_keep pet_context *pc, struct pet_state *state)
419 isl_ctx *ctx;
420 isl_id *id, *id_test;
421 isl_set *domain;
422 isl_set *skip;
423 isl_aff *ident;
424 struct pet_scop *scop;
425 int has_affine_break;
426 int has_var_break;
428 ctx = pet_tree_get_ctx(body);
429 id = isl_id_alloc(ctx, "t", NULL);
430 domain = infinite_domain(isl_id_copy(id));
431 ident = identity_aff(domain);
433 scop = scop_from_tree(body, pc, state);
435 has_affine_break = pet_scop_has_affine_skip(scop, pet_skip_later);
436 if (has_affine_break)
437 skip = pet_scop_get_affine_skip_domain(scop, pet_skip_later);
438 has_var_break = pet_scop_has_var_skip(scop, pet_skip_later);
439 if (has_var_break)
440 id_test = pet_scop_get_skip_id(scop, pet_skip_later);
442 scop = pet_scop_embed(scop, isl_set_copy(domain),
443 isl_aff_copy(ident), ident, id);
444 if (has_affine_break) {
445 domain = apply_affine_break(domain, skip, 1, 0, NULL);
446 scop = pet_scop_intersect_domain_prefix(scop,
447 isl_set_copy(domain));
449 if (has_var_break)
450 scop = scop_add_break(scop, id_test, domain, isl_val_one(ctx));
451 else
452 isl_set_free(domain);
454 return scop;
457 /* Construct a pet_scop for an infinite loop, i.e., a loop of the form
459 * for (;;)
460 * body
462 * within the context "pc".
464 static struct pet_scop *scop_from_infinite_for(__isl_keep pet_tree *tree,
465 __isl_keep pet_context *pc, struct pet_state *state)
467 struct pet_scop *scop;
469 pc = pet_context_copy(pc);
470 pc = pet_context_clear_writes_in_tree(pc, tree->u.l.body);
472 scop = scop_from_infinite_loop(tree->u.l.body, pc, state);
474 pet_context_free(pc);
476 return scop;
479 /* Construct a pet_scop for a while loop of the form
481 * while (pa)
482 * body
484 * within the context "pc".
485 * In particular, construct a scop for an infinite loop around body and
486 * intersect the domain with the affine expression.
487 * Note that this intersection may result in an empty loop.
489 static struct pet_scop *scop_from_affine_while(__isl_keep pet_tree *tree,
490 __isl_take isl_pw_aff *pa, __isl_take pet_context *pc,
491 struct pet_state *state)
493 struct pet_scop *scop;
494 isl_set *dom;
495 isl_set *valid;
497 valid = isl_pw_aff_domain(isl_pw_aff_copy(pa));
498 dom = isl_pw_aff_non_zero_set(pa);
499 scop = scop_from_infinite_loop(tree->u.l.body, pc, state);
500 scop = pet_scop_restrict(scop, isl_set_params(dom));
501 scop = pet_scop_restrict_context(scop, isl_set_params(valid));
503 pet_context_free(pc);
504 return scop;
507 /* Construct a scop for a while, given the scops for the condition
508 * and the body, the filter identifier and the iteration domain of
509 * the while loop.
511 * In particular, the scop for the condition is filtered to depend
512 * on "id_test" evaluating to true for all previous iterations
513 * of the loop, while the scop for the body is filtered to depend
514 * on "id_test" evaluating to true for all iterations up to the
515 * current iteration.
516 * The actual filter only imposes that this virtual array has
517 * value one on the previous or the current iteration.
518 * The fact that this condition also applies to the previous
519 * iterations is enforced by an implication.
521 * These filtered scops are then combined into a single scop.
523 * "sign" is positive if the iterator increases and negative
524 * if it decreases.
526 static struct pet_scop *scop_add_while(struct pet_scop *scop_cond,
527 struct pet_scop *scop_body, __isl_take isl_id *id_test,
528 __isl_take isl_set *domain, __isl_take isl_val *inc)
530 isl_ctx *ctx = isl_set_get_ctx(domain);
531 isl_space *space;
532 isl_multi_pw_aff *test_index;
533 isl_multi_pw_aff *prev;
534 int sign = isl_val_sgn(inc);
535 struct pet_scop *scop;
537 prev = map_to_previous(isl_id_copy(id_test), isl_set_copy(domain), inc);
538 scop_cond = pet_scop_filter(scop_cond, prev, 1);
540 space = isl_space_map_from_set(isl_set_get_space(domain));
541 test_index = isl_multi_pw_aff_identity(space);
542 test_index = isl_multi_pw_aff_set_tuple_id(test_index, isl_dim_out,
543 isl_id_copy(id_test));
544 scop_body = pet_scop_filter(scop_body, test_index, 1);
546 scop = pet_scop_add_seq(ctx, scop_cond, scop_body);
547 scop = add_implication(scop, id_test, domain, sign, 1);
549 return scop;
552 /* Create a pet_scop with a single statement with name S_<stmt_nr>,
553 * evaluating "cond" and writing the result to a virtual scalar,
554 * as expressed by "index".
555 * Do so within the context "pc".
556 * The location of the statement is set to "loc".
558 static struct pet_scop *scop_from_non_affine_condition(
559 __isl_take pet_expr *cond, int stmt_nr,
560 __isl_take isl_multi_pw_aff *index,
561 __isl_take pet_loc *loc, __isl_keep pet_context *pc)
563 pet_expr *expr, *write;
565 write = pet_expr_from_index(index);
566 write = pet_expr_access_set_write(write, 1);
567 write = pet_expr_access_set_read(write, 0);
568 expr = pet_expr_new_binary(1, pet_op_assign, write, cond);
570 return scop_from_expr(expr, NULL, stmt_nr, loc, pc);
573 /* Construct a generic while scop, with iteration domain
574 * { [t] : t >= 0 } around the scop for "tree_body" within the context "pc".
575 * The scop consists of two parts,
576 * one for evaluating the condition "cond" and one for the body.
577 * If "expr_inc" is not NULL, then a scop for evaluating this expression
578 * is added at the end of the body,
579 * after replacing any skip conditions resulting from continue statements
580 * by the skip conditions resulting from break statements (if any).
582 * The schedule is adjusted to reflect that the condition is evaluated
583 * before the body is executed and the body is filtered to depend
584 * on the result of the condition evaluating to true on all iterations
585 * up to the current iteration, while the evaluation of the condition itself
586 * is filtered to depend on the result of the condition evaluating to true
587 * on all previous iterations.
588 * The context of the scop representing the body is dropped
589 * because we don't know how many times the body will be executed,
590 * if at all.
592 * If the body contains any break, then it is taken into
593 * account in apply_affine_break (if the skip condition is affine)
594 * or in scop_add_break (if the skip condition is not affine).
596 * Note that in case of an affine skip condition,
597 * since we are dealing with a loop without loop iterator,
598 * the skip condition cannot refer to the current loop iterator and
599 * so effectively, the iteration domain is of the form
601 * { [0]; [t] : t >= 1 and not skip }
603 static struct pet_scop *scop_from_non_affine_while(__isl_take pet_expr *cond,
604 __isl_take pet_loc *loc, __isl_keep pet_tree *tree_body,
605 __isl_take pet_expr *expr_inc, __isl_take pet_context *pc,
606 struct pet_state *state)
608 isl_ctx *ctx;
609 isl_id *id, *id_test, *id_break_test;
610 isl_space *space;
611 isl_multi_pw_aff *test_index;
612 isl_set *domain;
613 isl_set *skip;
614 isl_aff *ident;
615 struct pet_scop *scop, *scop_body;
616 int has_affine_break;
617 int has_var_break;
619 ctx = state->ctx;
620 space = pet_context_get_space(pc);
621 test_index = pet_create_test_index(space, state->n_test++);
622 scop = scop_from_non_affine_condition(cond, state->n_stmt++,
623 isl_multi_pw_aff_copy(test_index),
624 pet_loc_copy(loc), pc);
625 id_test = isl_multi_pw_aff_get_tuple_id(test_index, isl_dim_out);
626 scop = pet_scop_add_boolean_array(scop, test_index, state->int_size);
628 id = isl_id_alloc(ctx, "t", NULL);
629 domain = infinite_domain(isl_id_copy(id));
630 ident = identity_aff(domain);
632 scop_body = scop_from_tree(tree_body, pc, state);
634 has_affine_break = pet_scop_has_affine_skip(scop_body, pet_skip_later);
635 if (has_affine_break)
636 skip = pet_scop_get_affine_skip_domain(scop_body,
637 pet_skip_later);
638 has_var_break = pet_scop_has_var_skip(scop_body, pet_skip_later);
639 if (has_var_break)
640 id_break_test = pet_scop_get_skip_id(scop_body, pet_skip_later);
642 scop = pet_scop_prefix(scop, 0);
643 scop = pet_scop_embed(scop, isl_set_copy(domain), isl_aff_copy(ident),
644 isl_aff_copy(ident), isl_id_copy(id));
645 scop_body = pet_scop_reset_context(scop_body);
646 scop_body = pet_scop_prefix(scop_body, 1);
647 if (expr_inc) {
648 struct pet_scop *scop_inc;
649 scop_inc = scop_from_expr(expr_inc, NULL, state->n_stmt++,
650 loc, pc);
651 scop_inc = pet_scop_prefix(scop_inc, 2);
652 if (pet_scop_has_skip(scop_body, pet_skip_later)) {
653 isl_multi_pw_aff *skip;
654 skip = pet_scop_get_skip(scop_body, pet_skip_later);
655 scop_body = pet_scop_set_skip(scop_body,
656 pet_skip_now, skip);
657 } else
658 pet_scop_reset_skip(scop_body, pet_skip_now);
659 scop_body = pet_scop_add_seq(ctx, scop_body, scop_inc);
660 } else
661 pet_loc_free(loc);
662 scop_body = pet_scop_embed(scop_body, isl_set_copy(domain),
663 isl_aff_copy(ident), ident, id);
665 if (has_affine_break) {
666 domain = apply_affine_break(domain, skip, 1, 0, NULL);
667 scop = pet_scop_intersect_domain_prefix(scop,
668 isl_set_copy(domain));
669 scop_body = pet_scop_intersect_domain_prefix(scop_body,
670 isl_set_copy(domain));
672 if (has_var_break) {
673 scop = scop_add_break(scop, isl_id_copy(id_break_test),
674 isl_set_copy(domain), isl_val_one(ctx));
675 scop_body = scop_add_break(scop_body, id_break_test,
676 isl_set_copy(domain), isl_val_one(ctx));
678 scop = scop_add_while(scop, scop_body, id_test, domain,
679 isl_val_one(ctx));
681 pet_context_free(pc);
682 return scop;
685 /* Check if the while loop is of the form
687 * while (affine expression)
688 * body
690 * If so, call scop_from_affine_while to construct a scop.
692 * Otherwise, pass control to scop_from_non_affine_while.
694 * "pc" is the context in which the affine expressions in the scop are created.
696 static struct pet_scop *scop_from_while(__isl_keep pet_tree *tree,
697 __isl_keep pet_context *pc, struct pet_state *state)
699 pet_expr *cond_expr;
700 isl_pw_aff *pa;
702 if (!tree)
703 return NULL;
705 pc = pet_context_copy(pc);
706 pc = pet_context_clear_writes_in_tree(pc, tree->u.l.body);
708 cond_expr = pet_expr_copy(tree->u.l.cond);
709 cond_expr = pet_expr_plug_in_args(cond_expr, pc);
710 pa = pet_expr_extract_affine_condition(cond_expr, pc);
711 pet_expr_free(cond_expr);
713 if (!pa)
714 goto error;
716 if (!isl_pw_aff_involves_nan(pa))
717 return scop_from_affine_while(tree, pa, pc, state);
718 isl_pw_aff_free(pa);
719 return scop_from_non_affine_while(pet_expr_copy(tree->u.l.cond),
720 pet_tree_get_loc(tree), tree->u.l.body, NULL,
721 pc, state);
722 error:
723 pet_context_free(pc);
724 return NULL;
727 /* Check whether "cond" expresses a simple loop bound
728 * on the only set dimension.
729 * In particular, if "up" is set then "cond" should contain only
730 * upper bounds on the set dimension.
731 * Otherwise, it should contain only lower bounds.
733 static int is_simple_bound(__isl_keep isl_set *cond, __isl_keep isl_val *inc)
735 if (isl_val_is_pos(inc))
736 return !isl_set_dim_has_any_lower_bound(cond, isl_dim_set, 0);
737 else
738 return !isl_set_dim_has_any_upper_bound(cond, isl_dim_set, 0);
741 /* Extend a condition on a given iteration of a loop to one that
742 * imposes the same condition on all previous iterations.
743 * "domain" expresses the lower [upper] bound on the iterations
744 * when inc is positive [negative].
746 * In particular, we construct the condition (when inc is positive)
748 * forall i' : (domain(i') and i' <= i) => cond(i')
750 * which is equivalent to
752 * not exists i' : domain(i') and i' <= i and not cond(i')
754 * We construct this set by negating cond, applying a map
756 * { [i'] -> [i] : domain(i') and i' <= i }
758 * and then negating the result again.
760 static __isl_give isl_set *valid_for_each_iteration(__isl_take isl_set *cond,
761 __isl_take isl_set *domain, __isl_take isl_val *inc)
763 isl_map *previous_to_this;
765 if (isl_val_is_pos(inc))
766 previous_to_this = isl_map_lex_le(isl_set_get_space(domain));
767 else
768 previous_to_this = isl_map_lex_ge(isl_set_get_space(domain));
770 previous_to_this = isl_map_intersect_domain(previous_to_this, domain);
772 cond = isl_set_complement(cond);
773 cond = isl_set_apply(cond, previous_to_this);
774 cond = isl_set_complement(cond);
776 isl_val_free(inc);
778 return cond;
781 /* Construct a domain of the form
783 * [id] -> { : exists a: id = init + a * inc and a >= 0 }
785 static __isl_give isl_set *strided_domain(__isl_take isl_id *id,
786 __isl_take isl_pw_aff *init, __isl_take isl_val *inc)
788 isl_aff *aff;
789 isl_space *dim;
790 isl_set *set;
792 init = isl_pw_aff_insert_dims(init, isl_dim_in, 0, 1);
793 dim = isl_pw_aff_get_domain_space(init);
794 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
795 aff = isl_aff_add_coefficient_val(aff, isl_dim_in, 0, inc);
796 init = isl_pw_aff_add(init, isl_pw_aff_from_aff(aff));
798 dim = isl_space_set_alloc(isl_pw_aff_get_ctx(init), 1, 1);
799 dim = isl_space_set_dim_id(dim, isl_dim_param, 0, id);
800 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
801 aff = isl_aff_add_coefficient_si(aff, isl_dim_param, 0, 1);
803 set = isl_pw_aff_eq_set(isl_pw_aff_from_aff(aff), init);
805 set = isl_set_lower_bound_si(set, isl_dim_set, 0, 0);
807 return isl_set_params(set);
810 /* Assuming "cond" represents a bound on a loop where the loop
811 * iterator "iv" is incremented (or decremented) by one, check if wrapping
812 * is possible.
814 * Under the given assumptions, wrapping is only possible if "cond" allows
815 * for the last value before wrapping, i.e., 2^width - 1 in case of an
816 * increasing iterator and 0 in case of a decreasing iterator.
818 static int can_wrap(__isl_keep isl_set *cond, __isl_keep pet_expr *iv,
819 __isl_keep isl_val *inc)
821 int cw;
822 isl_ctx *ctx;
823 isl_val *limit;
824 isl_set *test;
826 test = isl_set_copy(cond);
828 ctx = isl_set_get_ctx(test);
829 if (isl_val_is_neg(inc))
830 limit = isl_val_zero(ctx);
831 else {
832 limit = isl_val_int_from_ui(ctx, pet_expr_get_type_size(iv));
833 limit = isl_val_2exp(limit);
834 limit = isl_val_sub_ui(limit, 1);
837 test = isl_set_fix_val(cond, isl_dim_set, 0, limit);
838 cw = !isl_set_is_empty(test);
839 isl_set_free(test);
841 return cw;
844 /* Given a one-dimensional space, construct the following affine expression
845 * on this space
847 * { [v] -> [v mod 2^width] }
849 * where width is the number of bits used to represent the values
850 * of the unsigned variable "iv".
852 static __isl_give isl_aff *compute_wrapping(__isl_take isl_space *dim,
853 __isl_keep pet_expr *iv)
855 isl_ctx *ctx;
856 isl_val *mod;
857 isl_aff *aff;
859 ctx = isl_space_get_ctx(dim);
860 mod = isl_val_int_from_ui(ctx, pet_expr_get_type_size(iv));
861 mod = isl_val_2exp(mod);
863 aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim));
864 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
865 aff = isl_aff_mod_val(aff, mod);
867 return aff;
870 /* Project out the parameter "id" from "set".
872 static __isl_give isl_set *set_project_out_by_id(__isl_take isl_set *set,
873 __isl_keep isl_id *id)
875 int pos;
877 pos = isl_set_find_dim_by_id(set, isl_dim_param, id);
878 if (pos >= 0)
879 set = isl_set_project_out(set, isl_dim_param, pos, 1);
881 return set;
884 /* Compute the set of parameters for which "set1" is a subset of "set2".
886 * set1 is a subset of set2 if
888 * forall i in set1 : i in set2
890 * or
892 * not exists i in set1 and i not in set2
894 * i.e.,
896 * not exists i in set1 \ set2
898 static __isl_give isl_set *enforce_subset(__isl_take isl_set *set1,
899 __isl_take isl_set *set2)
901 return isl_set_complement(isl_set_params(isl_set_subtract(set1, set2)));
904 /* Compute the set of parameter values for which "cond" holds
905 * on the next iteration for each element of "dom".
907 * We first construct mapping { [i] -> [i + inc] }, apply that to "dom"
908 * and then compute the set of parameters for which the result is a subset
909 * of "cond".
911 static __isl_give isl_set *valid_on_next(__isl_take isl_set *cond,
912 __isl_take isl_set *dom, __isl_take isl_val *inc)
914 isl_space *space;
915 isl_aff *aff;
916 isl_map *next;
918 space = isl_set_get_space(dom);
919 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
920 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
921 aff = isl_aff_add_constant_val(aff, inc);
922 next = isl_map_from_basic_map(isl_basic_map_from_aff(aff));
924 dom = isl_set_apply(dom, next);
926 return enforce_subset(dom, cond);
929 /* Extract the for loop "tree" as a while loop within the context "pc".
931 * That is, the for loop has the form
933 * for (iv = init; cond; iv += inc)
934 * body;
936 * and is treated as
938 * iv = init;
939 * while (cond) {
940 * body;
941 * iv += inc;
944 * except that the skips resulting from any continue statements
945 * in body do not apply to the increment, but are replaced by the skips
946 * resulting from break statements.
948 * If the loop iterator is declared in the for loop, then it is killed before
949 * and after the loop.
951 static struct pet_scop *scop_from_non_affine_for(__isl_keep pet_tree *tree,
952 __isl_take pet_context *pc, struct pet_state *state)
954 int declared;
955 isl_id *iv;
956 pet_expr *expr_iv, *init, *inc;
957 struct pet_scop *scop_init, *scop;
958 int type_size;
959 struct pet_array *array;
960 struct pet_scop *scop_kill;
962 iv = pet_expr_access_get_id(tree->u.l.iv);
963 pc = pet_context_mark_assigned(pc, iv);
965 declared = tree->u.l.declared;
967 expr_iv = pet_expr_copy(tree->u.l.iv);
968 type_size = pet_expr_get_type_size(expr_iv);
969 init = pet_expr_copy(tree->u.l.init);
970 init = pet_expr_new_binary(type_size, pet_op_assign, expr_iv, init);
971 scop_init = scop_from_expr(init, NULL, state->n_stmt++,
972 pet_tree_get_loc(tree), pc);
973 scop_init = pet_scop_prefix(scop_init, declared);
975 expr_iv = pet_expr_copy(tree->u.l.iv);
976 type_size = pet_expr_get_type_size(expr_iv);
977 inc = pet_expr_copy(tree->u.l.inc);
978 inc = pet_expr_new_binary(type_size, pet_op_add_assign, expr_iv, inc);
980 scop = scop_from_non_affine_while(pet_expr_copy(tree->u.l.cond),
981 pet_tree_get_loc(tree), tree->u.l.body, inc,
982 pet_context_copy(pc), state);
984 scop = pet_scop_prefix(scop, declared + 1);
985 scop = pet_scop_add_seq(state->ctx, scop_init, scop);
987 if (!declared) {
988 pet_context_free(pc);
989 return scop;
992 array = extract_array(tree->u.l.iv, pc, state);
993 if (array)
994 array->declared = 1;
995 scop_kill = kill(pet_tree_get_loc(tree), array, pc, state);
996 scop_kill = pet_scop_prefix(scop_kill, 0);
997 scop = pet_scop_add_seq(state->ctx, scop_kill, scop);
998 scop_kill = kill(pet_tree_get_loc(tree), array, pc, state);
999 scop_kill = pet_scop_add_array(scop_kill, array);
1000 scop_kill = pet_scop_prefix(scop_kill, 3);
1001 scop = pet_scop_add_seq(state->ctx, scop, scop_kill);
1003 pet_context_free(pc);
1004 return scop;
1007 /* Given an access expression "expr", is the variable accessed by
1008 * "expr" assigned anywhere inside "tree"?
1010 static int is_assigned(__isl_keep pet_expr *expr, __isl_keep pet_tree *tree)
1012 int assigned = 0;
1013 isl_id *id;
1015 id = pet_expr_access_get_id(expr);
1016 assigned = pet_tree_writes(tree, id);
1017 isl_id_free(id);
1019 return assigned;
1022 /* Are all nested access parameters in "pa" allowed given "tree".
1023 * In particular, is none of them written by anywhere inside "tree".
1025 * If "tree" has any continue nodes in the current loop level,
1026 * then no nested access parameters are allowed.
1027 * In particular, if there is any nested access in a guard
1028 * for a piece of code containing a "continue", then we want to introduce
1029 * a separate statement for evaluating this guard so that we can express
1030 * that the result is false for all previous iterations.
1032 static int is_nested_allowed(__isl_keep isl_pw_aff *pa,
1033 __isl_keep pet_tree *tree)
1035 int i, nparam;
1037 if (!tree)
1038 return -1;
1040 if (!pet_nested_any_in_pw_aff(pa))
1041 return 1;
1043 if (pet_tree_has_continue(tree))
1044 return 0;
1046 nparam = isl_pw_aff_dim(pa, isl_dim_param);
1047 for (i = 0; i < nparam; ++i) {
1048 isl_id *id = isl_pw_aff_get_dim_id(pa, isl_dim_param, i);
1049 pet_expr *expr;
1050 int allowed;
1052 if (!pet_nested_in_id(id)) {
1053 isl_id_free(id);
1054 continue;
1057 expr = pet_nested_extract_expr(id);
1058 allowed = pet_expr_get_type(expr) == pet_expr_access &&
1059 !is_assigned(expr, tree);
1061 pet_expr_free(expr);
1062 isl_id_free(id);
1064 if (!allowed)
1065 return 0;
1068 return 1;
1071 /* Construct a pet_scop for a for tree with static affine initialization
1072 * and constant increment within the context "pc".
1074 * The condition is allowed to contain nested accesses, provided
1075 * they are not being written to inside the body of the loop.
1076 * Otherwise, or if the condition is otherwise non-affine, the for loop is
1077 * essentially treated as a while loop, with iteration domain
1078 * { [i] : i >= init }.
1080 * We extract a pet_scop for the body and then embed it in a loop with
1081 * iteration domain and schedule
1083 * { [i] : i >= init and condition' }
1084 * { [i] -> [i] }
1086 * or
1088 * { [i] : i <= init and condition' }
1089 * { [i] -> [-i] }
1091 * Where condition' is equal to condition if the latter is
1092 * a simple upper [lower] bound and a condition that is extended
1093 * to apply to all previous iterations otherwise.
1095 * If the condition is non-affine, then we drop the condition from the
1096 * iteration domain and instead create a separate statement
1097 * for evaluating the condition. The body is then filtered to depend
1098 * on the result of the condition evaluating to true on all iterations
1099 * up to the current iteration, while the evaluation the condition itself
1100 * is filtered to depend on the result of the condition evaluating to true
1101 * on all previous iterations.
1102 * The context of the scop representing the body is dropped
1103 * because we don't know how many times the body will be executed,
1104 * if at all.
1106 * If the stride of the loop is not 1, then "i >= init" is replaced by
1108 * (exists a: i = init + stride * a and a >= 0)
1110 * If the loop iterator i is unsigned, then wrapping may occur.
1111 * We therefore use a virtual iterator instead that does not wrap.
1112 * However, the condition in the code applies
1113 * to the wrapped value, so we need to change condition(i)
1114 * into condition([i % 2^width]). Similarly, we replace all accesses
1115 * to the original iterator by the wrapping of the virtual iterator.
1116 * Note that there may be no need to perform this final wrapping
1117 * if the loop condition (after wrapping) satisfies certain conditions.
1118 * However, the is_simple_bound condition is not enough since it doesn't
1119 * check if there even is an upper bound.
1121 * Wrapping on unsigned iterators can be avoided entirely if
1122 * loop condition is simple, the loop iterator is incremented
1123 * [decremented] by one and the last value before wrapping cannot
1124 * possibly satisfy the loop condition.
1126 * Valid parameters for a for loop are those for which the initial
1127 * value itself, the increment on each domain iteration and
1128 * the condition on both the initial value and
1129 * the result of incrementing the iterator for each iteration of the domain
1130 * can be evaluated.
1131 * If the loop condition is non-affine, then we only consider validity
1132 * of the initial value.
1134 * If the body contains any break, then we keep track of it in "skip"
1135 * (if the skip condition is affine) or it is handled in scop_add_break
1136 * (if the skip condition is not affine).
1137 * Note that the affine break condition needs to be considered with
1138 * respect to previous iterations in the virtual domain (if any).
1140 static struct pet_scop *scop_from_affine_for(__isl_keep pet_tree *tree,
1141 __isl_take isl_pw_aff *init_val, __isl_take isl_pw_aff *pa_inc,
1142 __isl_take isl_val *inc, __isl_take pet_context *pc,
1143 struct pet_state *state)
1145 isl_local_space *ls;
1146 isl_set *domain;
1147 isl_aff *sched;
1148 isl_set *cond = NULL;
1149 isl_set *skip = NULL;
1150 isl_id *id, *id_test = NULL, *id_break_test;
1151 struct pet_scop *scop, *scop_cond = NULL;
1152 int is_one;
1153 int is_unsigned;
1154 int is_simple;
1155 int is_virtual;
1156 int is_non_affine;
1157 int has_affine_break;
1158 int has_var_break;
1159 isl_map *rev_wrap = NULL;
1160 isl_aff *wrap = NULL;
1161 isl_pw_aff *pa;
1162 isl_set *valid_init;
1163 isl_set *valid_cond;
1164 isl_set *valid_cond_init;
1165 isl_set *valid_cond_next;
1166 isl_set *valid_inc;
1167 pet_expr *cond_expr;
1168 pet_context *pc_nested;
1170 id = pet_expr_access_get_id(tree->u.l.iv);
1172 cond_expr = pet_expr_copy(tree->u.l.cond);
1173 cond_expr = pet_expr_plug_in_args(cond_expr, pc);
1174 pc_nested = pet_context_copy(pc);
1175 pc_nested = pet_context_set_allow_nested(pc_nested, 1);
1176 pa = pet_expr_extract_affine_condition(cond_expr, pc_nested);
1177 pet_context_free(pc_nested);
1178 pet_expr_free(cond_expr);
1180 valid_inc = isl_pw_aff_domain(pa_inc);
1182 is_unsigned = pet_expr_get_type_size(tree->u.l.iv) > 0;
1184 is_non_affine = isl_pw_aff_involves_nan(pa) ||
1185 !is_nested_allowed(pa, tree->u.l.body);
1186 if (is_non_affine)
1187 pa = isl_pw_aff_free(pa);
1189 valid_cond = isl_pw_aff_domain(isl_pw_aff_copy(pa));
1190 cond = isl_pw_aff_non_zero_set(pa);
1191 if (is_non_affine)
1192 cond = isl_set_universe(isl_space_set_alloc(state->ctx, 0, 0));
1194 cond = embed(cond, isl_id_copy(id));
1195 valid_cond = isl_set_coalesce(valid_cond);
1196 valid_cond = embed(valid_cond, isl_id_copy(id));
1197 valid_inc = embed(valid_inc, isl_id_copy(id));
1198 is_one = isl_val_is_one(inc) || isl_val_is_negone(inc);
1199 is_virtual = is_unsigned &&
1200 (!is_one || can_wrap(cond, tree->u.l.iv, inc));
1202 valid_cond_init = enforce_subset(
1203 isl_map_range(isl_map_from_pw_aff(isl_pw_aff_copy(init_val))),
1204 isl_set_copy(valid_cond));
1205 if (is_one && !is_virtual) {
1206 isl_pw_aff_free(init_val);
1207 pa = pet_expr_extract_comparison(
1208 isl_val_is_pos(inc) ? pet_op_ge : pet_op_le,
1209 tree->u.l.iv, tree->u.l.init, pc);
1210 valid_init = isl_pw_aff_domain(isl_pw_aff_copy(pa));
1211 valid_init = set_project_out_by_id(valid_init, id);
1212 domain = isl_pw_aff_non_zero_set(pa);
1213 } else {
1214 valid_init = isl_pw_aff_domain(isl_pw_aff_copy(init_val));
1215 domain = strided_domain(isl_id_copy(id), init_val,
1216 isl_val_copy(inc));
1219 domain = embed(domain, isl_id_copy(id));
1220 if (is_virtual) {
1221 wrap = compute_wrapping(isl_set_get_space(cond), tree->u.l.iv);
1222 rev_wrap = isl_map_from_aff(isl_aff_copy(wrap));
1223 rev_wrap = isl_map_reverse(rev_wrap);
1224 cond = isl_set_apply(cond, isl_map_copy(rev_wrap));
1225 valid_cond = isl_set_apply(valid_cond, isl_map_copy(rev_wrap));
1226 valid_inc = isl_set_apply(valid_inc, isl_map_copy(rev_wrap));
1228 is_simple = is_simple_bound(cond, inc);
1229 if (!is_simple) {
1230 cond = isl_set_gist(cond, isl_set_copy(domain));
1231 is_simple = is_simple_bound(cond, inc);
1233 if (!is_simple)
1234 cond = valid_for_each_iteration(cond,
1235 isl_set_copy(domain), isl_val_copy(inc));
1236 domain = isl_set_intersect(domain, cond);
1237 domain = isl_set_set_dim_id(domain, isl_dim_set, 0, isl_id_copy(id));
1238 ls = isl_local_space_from_space(isl_set_get_space(domain));
1239 sched = isl_aff_var_on_domain(ls, isl_dim_set, 0);
1240 if (isl_val_is_neg(inc))
1241 sched = isl_aff_neg(sched);
1243 valid_cond_next = valid_on_next(valid_cond, isl_set_copy(domain),
1244 isl_val_copy(inc));
1245 valid_inc = enforce_subset(isl_set_copy(domain), valid_inc);
1247 if (!is_virtual)
1248 wrap = identity_aff(domain);
1250 if (is_non_affine) {
1251 isl_space *space;
1252 isl_multi_pw_aff *test_index;
1253 space = pet_context_get_space(pc);
1254 test_index = pet_create_test_index(space, state->n_test++);
1255 scop_cond = scop_from_non_affine_condition(
1256 pet_expr_copy(tree->u.l.cond), state->n_stmt++,
1257 isl_multi_pw_aff_copy(test_index),
1258 pet_tree_get_loc(tree), pc);
1259 id_test = isl_multi_pw_aff_get_tuple_id(test_index,
1260 isl_dim_out);
1261 scop_cond = pet_scop_add_boolean_array(scop_cond, test_index,
1262 state->int_size);
1263 scop_cond = pet_scop_prefix(scop_cond, 0);
1264 scop_cond = pet_scop_embed(scop_cond, isl_set_copy(domain),
1265 isl_aff_copy(sched), isl_aff_copy(wrap),
1266 isl_id_copy(id));
1269 scop = scop_from_tree(tree->u.l.body, pc, state);
1270 has_affine_break = scop &&
1271 pet_scop_has_affine_skip(scop, pet_skip_later);
1272 if (has_affine_break)
1273 skip = pet_scop_get_affine_skip_domain(scop, pet_skip_later);
1274 has_var_break = scop && pet_scop_has_var_skip(scop, pet_skip_later);
1275 if (has_var_break)
1276 id_break_test = pet_scop_get_skip_id(scop, pet_skip_later);
1277 if (is_non_affine) {
1278 scop = pet_scop_reset_context(scop);
1279 scop = pet_scop_prefix(scop, 1);
1281 scop = pet_scop_embed(scop, isl_set_copy(domain), sched, wrap, id);
1282 scop = pet_scop_resolve_nested(scop);
1283 if (has_affine_break) {
1284 domain = apply_affine_break(domain, skip, isl_val_sgn(inc),
1285 is_virtual, rev_wrap);
1286 scop = pet_scop_intersect_domain_prefix(scop,
1287 isl_set_copy(domain));
1289 isl_map_free(rev_wrap);
1290 if (has_var_break)
1291 scop = scop_add_break(scop, id_break_test, isl_set_copy(domain),
1292 isl_val_copy(inc));
1293 if (is_non_affine) {
1294 scop = scop_add_while(scop_cond, scop, id_test, domain,
1295 isl_val_copy(inc));
1296 isl_set_free(valid_inc);
1297 } else {
1298 scop = pet_scop_restrict_context(scop, valid_inc);
1299 scop = pet_scop_restrict_context(scop, valid_cond_next);
1300 scop = pet_scop_restrict_context(scop, valid_cond_init);
1301 isl_set_free(domain);
1304 isl_val_free(inc);
1306 scop = pet_scop_restrict_context(scop, isl_set_params(valid_init));
1308 pet_context_free(pc);
1309 return scop;
1312 /* Construct a pet_scop for a for statement within the context of "pc".
1314 * We update the context to reflect the writes to the loop variable and
1315 * the writes inside the body.
1317 * Then we check if the initialization of the for loop
1318 * is a static affine value and the increment is a constant.
1319 * If so, we construct the pet_scop using scop_from_affine_for.
1320 * Otherwise, we treat the for loop as a while loop
1321 * in scop_from_non_affine_for.
1323 static struct pet_scop *scop_from_for(__isl_keep pet_tree *tree,
1324 __isl_keep pet_context *pc, struct pet_state *state)
1326 isl_id *iv;
1327 isl_val *inc;
1328 isl_pw_aff *pa_inc, *init_val;
1329 pet_context *pc_init_val;
1331 if (!tree)
1332 return NULL;
1334 iv = pet_expr_access_get_id(tree->u.l.iv);
1335 pc = pet_context_copy(pc);
1336 pc = pet_context_clear_value(pc, iv);
1337 pc = pet_context_clear_writes_in_tree(pc, tree->u.l.body);
1339 pc_init_val = pet_context_copy(pc);
1340 pc_init_val = pet_context_mark_unknown(pc_init_val, isl_id_copy(iv));
1341 init_val = pet_expr_extract_affine(tree->u.l.init, pc_init_val);
1342 pet_context_free(pc_init_val);
1343 pa_inc = pet_expr_extract_affine(tree->u.l.inc, pc);
1344 inc = pet_extract_cst(pa_inc);
1345 if (!pa_inc || !init_val || !inc)
1346 goto error;
1347 if (!isl_pw_aff_involves_nan(pa_inc) &&
1348 !isl_pw_aff_involves_nan(init_val) && !isl_val_is_nan(inc))
1349 return scop_from_affine_for(tree, init_val, pa_inc, inc,
1350 pc, state);
1352 isl_pw_aff_free(pa_inc);
1353 isl_pw_aff_free(init_val);
1354 isl_val_free(inc);
1355 return scop_from_non_affine_for(tree, pc, state);
1356 error:
1357 isl_pw_aff_free(pa_inc);
1358 isl_pw_aff_free(init_val);
1359 isl_val_free(inc);
1360 pet_context_free(pc);
1361 return NULL;
1364 /* Check whether "expr" is an affine constraint within the context "pc".
1366 static int is_affine_condition(__isl_keep pet_expr *expr,
1367 __isl_keep pet_context *pc)
1369 isl_pw_aff *pa;
1370 int is_affine;
1372 pa = pet_expr_extract_affine_condition(expr, pc);
1373 if (!pa)
1374 return -1;
1375 is_affine = !isl_pw_aff_involves_nan(pa);
1376 isl_pw_aff_free(pa);
1378 return is_affine;
1381 /* Check if the given if statement is a conditional assignement
1382 * with a non-affine condition.
1384 * In particular we check if "stmt" is of the form
1386 * if (condition)
1387 * a = f(...);
1388 * else
1389 * a = g(...);
1391 * where the condition is non-affine and a is some array or scalar access.
1393 static int is_conditional_assignment(__isl_keep pet_tree *tree,
1394 __isl_keep pet_context *pc)
1396 int equal;
1397 isl_ctx *ctx;
1398 pet_expr *expr1, *expr2;
1400 ctx = pet_tree_get_ctx(tree);
1401 if (!pet_options_get_detect_conditional_assignment(ctx))
1402 return 0;
1403 if (tree->type != pet_tree_if_else)
1404 return 0;
1405 if (tree->u.i.then_body->type != pet_tree_expr)
1406 return 0;
1407 if (tree->u.i.else_body->type != pet_tree_expr)
1408 return 0;
1409 expr1 = tree->u.i.then_body->u.e.expr;
1410 expr2 = tree->u.i.else_body->u.e.expr;
1411 if (pet_expr_get_type(expr1) != pet_expr_op)
1412 return 0;
1413 if (pet_expr_get_type(expr2) != pet_expr_op)
1414 return 0;
1415 if (pet_expr_op_get_type(expr1) != pet_op_assign)
1416 return 0;
1417 if (pet_expr_op_get_type(expr2) != pet_op_assign)
1418 return 0;
1419 expr1 = pet_expr_get_arg(expr1, 0);
1420 expr2 = pet_expr_get_arg(expr2, 0);
1421 equal = pet_expr_is_equal(expr1, expr2);
1422 pet_expr_free(expr1);
1423 pet_expr_free(expr2);
1424 if (equal < 0 || !equal)
1425 return 0;
1426 if (is_affine_condition(tree->u.i.cond, pc))
1427 return 0;
1429 return 1;
1432 /* Given that "tree" is of the form
1434 * if (condition)
1435 * a = f(...);
1436 * else
1437 * a = g(...);
1439 * where a is some array or scalar access, construct a pet_scop
1440 * corresponding to this conditional assignment within the context "pc".
1442 * The constructed pet_scop then corresponds to the expression
1444 * a = condition ? f(...) : g(...)
1446 * All access relations in f(...) are intersected with condition
1447 * while all access relation in g(...) are intersected with the complement.
1449 static struct pet_scop *scop_from_conditional_assignment(
1450 __isl_keep pet_tree *tree, __isl_take pet_context *pc,
1451 struct pet_state *state)
1453 int type_size;
1454 isl_pw_aff *pa;
1455 isl_set *cond, *comp;
1456 isl_multi_pw_aff *index;
1457 pet_expr *expr1, *expr2;
1458 pet_expr *pe_cond, *pe_then, *pe_else, *pe, *pe_write;
1459 pet_context *pc_nested;
1460 struct pet_scop *scop;
1462 pe_cond = pet_expr_copy(tree->u.i.cond);
1463 pe_cond = pet_expr_plug_in_args(pe_cond, pc);
1464 pc_nested = pet_context_copy(pc);
1465 pc_nested = pet_context_set_allow_nested(pc_nested, 1);
1466 pa = pet_expr_extract_affine_condition(pe_cond, pc_nested);
1467 pet_context_free(pc_nested);
1468 pet_expr_free(pe_cond);
1469 cond = isl_pw_aff_non_zero_set(isl_pw_aff_copy(pa));
1470 comp = isl_pw_aff_zero_set(isl_pw_aff_copy(pa));
1471 index = isl_multi_pw_aff_from_pw_aff(pa);
1473 expr1 = tree->u.i.then_body->u.e.expr;
1474 expr2 = tree->u.i.else_body->u.e.expr;
1476 pe_cond = pet_expr_from_index(index);
1478 pe_then = pet_expr_get_arg(expr1, 1);
1479 pe_then = pet_expr_restrict(pe_then, cond);
1480 pe_else = pet_expr_get_arg(expr2, 1);
1481 pe_else = pet_expr_restrict(pe_else, comp);
1482 pe_write = pet_expr_get_arg(expr1, 0);
1484 pe = pet_expr_new_ternary(pe_cond, pe_then, pe_else);
1485 type_size = pet_expr_get_type_size(pe_write);
1486 pe = pet_expr_new_binary(type_size, pet_op_assign, pe_write, pe);
1488 scop = scop_from_expr(pe, NULL, state->n_stmt++,
1489 pet_tree_get_loc(tree), pc);
1491 pet_context_free(pc);
1493 return scop;
1496 /* Construct a pet_scop for a non-affine if statement within the context "pc".
1498 * We create a separate statement that writes the result
1499 * of the non-affine condition to a virtual scalar.
1500 * A constraint requiring the value of this virtual scalar to be one
1501 * is added to the iteration domains of the then branch.
1502 * Similarly, a constraint requiring the value of this virtual scalar
1503 * to be zero is added to the iteration domains of the else branch, if any.
1504 * We adjust the schedules to ensure that the virtual scalar is written
1505 * before it is read.
1507 * If there are any breaks or continues in the then and/or else
1508 * branches, then we may have to compute a new skip condition.
1509 * This is handled using a pet_skip_info object.
1510 * On initialization, the object checks if skip conditions need
1511 * to be computed. If so, it does so in pet_skip_info_if_extract_index and
1512 * adds them in pet_skip_info_if_add.
1514 static struct pet_scop *scop_from_non_affine_if(__isl_keep pet_tree *tree,
1515 __isl_take pet_context *pc, struct pet_state *state)
1517 int has_else;
1518 isl_space *space;
1519 isl_multi_pw_aff *test_index;
1520 struct pet_skip_info skip;
1521 struct pet_scop *scop, *scop_then, *scop_else = NULL;
1523 has_else = tree->type == pet_tree_if_else;
1525 space = pet_context_get_space(pc);
1526 test_index = pet_create_test_index(space, state->n_test++);
1527 scop = scop_from_non_affine_condition(pet_expr_copy(tree->u.i.cond),
1528 state->n_stmt++, isl_multi_pw_aff_copy(test_index),
1529 pet_tree_get_loc(tree), pc);
1530 scop = pet_scop_add_boolean_array(scop,
1531 isl_multi_pw_aff_copy(test_index), state->int_size);
1533 scop_then = scop_from_tree(tree->u.i.then_body, pc, state);
1534 if (has_else)
1535 scop_else = scop_from_tree(tree->u.i.else_body, pc, state);
1537 pet_skip_info_if_init(&skip, state->ctx, scop_then, scop_else,
1538 has_else, 0);
1539 pet_skip_info_if_extract_index(&skip, test_index, state);
1541 scop = pet_scop_prefix(scop, 0);
1542 scop_then = pet_scop_prefix(scop_then, 1);
1543 scop_then = pet_scop_filter(scop_then,
1544 isl_multi_pw_aff_copy(test_index), 1);
1545 if (has_else) {
1546 scop_else = pet_scop_prefix(scop_else, 1);
1547 scop_else = pet_scop_filter(scop_else, test_index, 0);
1548 scop_then = pet_scop_add_par(state->ctx, scop_then, scop_else);
1549 } else
1550 isl_multi_pw_aff_free(test_index);
1552 scop = pet_scop_add_seq(state->ctx, scop, scop_then);
1554 scop = pet_skip_info_if_add(&skip, scop, 2);
1556 pet_context_free(pc);
1557 return scop;
1560 /* Construct a pet_scop for an affine if statement within the context "pc".
1562 * The condition is added to the iteration domains of the then branch,
1563 * while the opposite of the condition in added to the iteration domains
1564 * of the else branch, if any.
1566 * If there are any breaks or continues in the then and/or else
1567 * branches, then we may have to compute a new skip condition.
1568 * This is handled using a pet_skip_info_if object.
1569 * On initialization, the object checks if skip conditions need
1570 * to be computed. If so, it does so in pet_skip_info_if_extract_cond and
1571 * adds them in pet_skip_info_if_add.
1573 static struct pet_scop *scop_from_affine_if(__isl_keep pet_tree *tree,
1574 __isl_take isl_pw_aff *cond, __isl_take pet_context *pc,
1575 struct pet_state *state)
1577 int has_else;
1578 isl_ctx *ctx;
1579 isl_set *set;
1580 isl_set *valid;
1581 struct pet_skip_info skip;
1582 struct pet_scop *scop, *scop_then, *scop_else = NULL;
1584 ctx = pet_tree_get_ctx(tree);
1586 has_else = tree->type == pet_tree_if_else;
1588 scop_then = scop_from_tree(tree->u.i.then_body, pc, state);
1589 if (has_else)
1590 scop_else = scop_from_tree(tree->u.i.else_body, pc, state);
1592 pet_skip_info_if_init(&skip, ctx, scop_then, scop_else, has_else, 1);
1593 pet_skip_info_if_extract_cond(&skip, cond, state);
1595 valid = isl_pw_aff_domain(isl_pw_aff_copy(cond));
1596 set = isl_pw_aff_non_zero_set(cond);
1597 scop = pet_scop_restrict(scop_then, isl_set_params(isl_set_copy(set)));
1599 if (has_else) {
1600 set = isl_set_subtract(isl_set_copy(valid), set);
1601 scop_else = pet_scop_restrict(scop_else, isl_set_params(set));
1602 scop = pet_scop_add_par(ctx, scop, scop_else);
1603 } else
1604 isl_set_free(set);
1605 scop = pet_scop_resolve_nested(scop);
1606 scop = pet_scop_restrict_context(scop, isl_set_params(valid));
1608 if (pet_skip_info_has_skip(&skip))
1609 scop = pet_scop_prefix(scop, 0);
1610 scop = pet_skip_info_if_add(&skip, scop, 1);
1612 pet_context_free(pc);
1613 return scop;
1616 /* Construct a pet_scop for an if statement within the context "pc".
1618 * If the condition fits the pattern of a conditional assignment,
1619 * then it is handled by scop_from_conditional_assignment.
1621 * Otherwise, we check if the condition is affine.
1622 * If so, we construct the scop in scop_from_affine_if.
1623 * Otherwise, we construct the scop in scop_from_non_affine_if.
1625 * We allow the condition to be dynamic, i.e., to refer to
1626 * scalars or array elements that may be written to outside
1627 * of the given if statement. These nested accesses are then represented
1628 * as output dimensions in the wrapping iteration domain.
1629 * If it is also written _inside_ the then or else branch, then
1630 * we treat the condition as non-affine.
1631 * As explained in extract_non_affine_if, this will introduce
1632 * an extra statement.
1633 * For aesthetic reasons, we want this statement to have a statement
1634 * number that is lower than those of the then and else branches.
1635 * In order to evaluate if we will need such a statement, however, we
1636 * first construct scops for the then and else branches.
1637 * We therefore reserve a statement number if we might have to
1638 * introduce such an extra statement.
1640 static struct pet_scop *scop_from_if(__isl_keep pet_tree *tree,
1641 __isl_keep pet_context *pc, struct pet_state *state)
1643 int has_else;
1644 isl_pw_aff *cond;
1645 pet_expr *cond_expr;
1646 pet_context *pc_nested;
1648 if (!tree)
1649 return NULL;
1651 has_else = tree->type == pet_tree_if_else;
1653 pc = pet_context_copy(pc);
1654 pc = pet_context_clear_writes_in_tree(pc, tree->u.i.then_body);
1655 if (has_else)
1656 pc = pet_context_clear_writes_in_tree(pc, tree->u.i.else_body);
1658 if (is_conditional_assignment(tree, pc))
1659 return scop_from_conditional_assignment(tree, pc, state);
1661 cond_expr = pet_expr_copy(tree->u.i.cond);
1662 cond_expr = pet_expr_plug_in_args(cond_expr, pc);
1663 pc_nested = pet_context_copy(pc);
1664 pc_nested = pet_context_set_allow_nested(pc_nested, 1);
1665 cond = pet_expr_extract_affine_condition(cond_expr, pc_nested);
1666 pet_context_free(pc_nested);
1667 pet_expr_free(cond_expr);
1669 if (!cond) {
1670 pet_context_free(pc);
1671 return NULL;
1674 if (isl_pw_aff_involves_nan(cond)) {
1675 isl_pw_aff_free(cond);
1676 return scop_from_non_affine_if(tree, pc, state);
1679 if ((!is_nested_allowed(cond, tree->u.i.then_body) ||
1680 (has_else && !is_nested_allowed(cond, tree->u.i.else_body)))) {
1681 isl_pw_aff_free(cond);
1682 return scop_from_non_affine_if(tree, pc, state);
1685 return scop_from_affine_if(tree, cond, pc, state);
1688 /* Return a one-dimensional multi piecewise affine expression that is equal
1689 * to the constant 1 and is defined over a zero-dimensional domain.
1691 static __isl_give isl_multi_pw_aff *one_mpa(isl_ctx *ctx)
1693 isl_space *space;
1694 isl_local_space *ls;
1695 isl_aff *aff;
1697 space = isl_space_set_alloc(ctx, 0, 0);
1698 ls = isl_local_space_from_space(space);
1699 aff = isl_aff_zero_on_domain(ls);
1700 aff = isl_aff_set_constant_si(aff, 1);
1702 return isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff));
1705 /* Construct a pet_scop for a continue statement.
1707 * We simply create an empty scop with a universal pet_skip_now
1708 * skip condition. This skip condition will then be taken into
1709 * account by the enclosing loop construct, possibly after
1710 * being incorporated into outer skip conditions.
1712 static struct pet_scop *scop_from_continue(__isl_keep pet_tree *tree)
1714 struct pet_scop *scop;
1715 isl_ctx *ctx;
1717 ctx = pet_tree_get_ctx(tree);
1718 scop = pet_scop_empty(ctx);
1719 if (!scop)
1720 return NULL;
1722 scop = pet_scop_set_skip(scop, pet_skip_now, one_mpa(ctx));
1724 return scop;
1727 /* Construct a pet_scop for a break statement.
1729 * We simply create an empty scop with both a universal pet_skip_now
1730 * skip condition and a universal pet_skip_later skip condition.
1731 * These skip conditions will then be taken into
1732 * account by the enclosing loop construct, possibly after
1733 * being incorporated into outer skip conditions.
1735 static struct pet_scop *scop_from_break(__isl_keep pet_tree *tree)
1737 struct pet_scop *scop;
1738 isl_ctx *ctx;
1739 isl_multi_pw_aff *skip;
1741 ctx = pet_tree_get_ctx(tree);
1742 scop = pet_scop_empty(ctx);
1743 if (!scop)
1744 return NULL;
1746 skip = one_mpa(ctx);
1747 scop = pet_scop_set_skip(scop, pet_skip_now,
1748 isl_multi_pw_aff_copy(skip));
1749 scop = pet_scop_set_skip(scop, pet_skip_later, skip);
1751 return scop;
1754 /* Extract a clone of the kill statement in "scop".
1755 * "scop" is expected to have been created from a DeclStmt
1756 * and should have the kill as its first statement.
1758 static struct pet_scop *extract_kill(isl_ctx *ctx, struct pet_scop *scop,
1759 struct pet_state *state)
1761 pet_expr *kill;
1762 struct pet_stmt *stmt;
1763 isl_set *domain;
1764 isl_multi_pw_aff *index;
1765 isl_map *access;
1766 pet_expr *arg;
1768 if (!scop)
1769 return NULL;
1770 if (scop->n_stmt < 1)
1771 isl_die(ctx, isl_error_internal,
1772 "expecting at least one statement", return NULL);
1773 stmt = scop->stmts[0];
1774 if (!pet_stmt_is_kill(stmt))
1775 isl_die(ctx, isl_error_internal,
1776 "expecting kill statement", return NULL);
1778 arg = pet_expr_get_arg(stmt->body, 0);
1779 index = pet_expr_access_get_index(arg);
1780 access = pet_expr_access_get_access(arg);
1781 pet_expr_free(arg);
1782 index = isl_multi_pw_aff_reset_tuple_id(index, isl_dim_in);
1783 access = isl_map_reset_tuple_id(access, isl_dim_in);
1784 kill = pet_expr_kill_from_access_and_index(access, index);
1785 domain = isl_set_universe(isl_space_set_alloc(ctx, 0, 0));
1786 stmt = pet_stmt_from_pet_expr(domain, pet_loc_copy(stmt->loc),
1787 NULL, state->n_stmt++, kill);
1788 return pet_scop_from_pet_stmt(ctx, stmt);
1791 /* Mark all arrays in "scop" as being exposed.
1793 static struct pet_scop *mark_exposed(struct pet_scop *scop)
1795 int i;
1797 if (!scop)
1798 return NULL;
1799 for (i = 0; i < scop->n_array; ++i)
1800 scop->arrays[i]->exposed = 1;
1801 return scop;
1804 /* Try and construct a pet_scop corresponding to (part of)
1805 * a sequence of statements within the context "pc".
1807 * After extracting a statement, we update "pc"
1808 * based on the top-level assignments in the statement
1809 * so that we can exploit them in subsequent statements in the same block.
1811 * If there are any breaks or continues in the individual statements,
1812 * then we may have to compute a new skip condition.
1813 * This is handled using a pet_skip_info object.
1814 * On initialization, the object checks if skip conditions need
1815 * to be computed. If so, it does so in pet_skip_info_seq_extract and
1816 * adds them in pet_skip_info_seq_add.
1818 * If "block" is set, then we need to insert kill statements at
1819 * the end of the block for any array that has been declared by
1820 * one of the statements in the sequence. Each of these declarations
1821 * results in the construction of a kill statement at the place
1822 * of the declaration, so we simply collect duplicates of
1823 * those kill statements and append these duplicates to the constructed scop.
1825 * If "block" is not set, then any array declared by one of the statements
1826 * in the sequence is marked as being exposed.
1828 * If autodetect is set, then we allow the extraction of only a subrange
1829 * of the sequence of statements. However, if there is at least one statement
1830 * for which we could not construct a scop and the final range contains
1831 * either no statements or at least one kill, then we discard the entire
1832 * range.
1834 static struct pet_scop *scop_from_block(__isl_keep pet_tree *tree,
1835 __isl_keep pet_context *pc, struct pet_state *state)
1837 int i;
1838 isl_ctx *ctx;
1839 struct pet_scop *scop, *kills;
1841 ctx = pet_tree_get_ctx(tree);
1843 pc = pet_context_copy(pc);
1844 scop = pet_scop_empty(ctx);
1845 kills = pet_scop_empty(ctx);
1846 for (i = 0; i < tree->u.b.n; ++i) {
1847 struct pet_scop *scop_i;
1849 scop_i = scop_from_tree(tree->u.b.child[i], pc, state);
1850 pc = scop_handle_writes(scop_i, pc);
1851 struct pet_skip_info skip;
1852 pet_skip_info_seq_init(&skip, ctx, scop, scop_i);
1853 pet_skip_info_seq_extract(&skip, state);
1854 if (pet_skip_info_has_skip(&skip))
1855 scop_i = pet_scop_prefix(scop_i, 0);
1856 if (scop_i && pet_tree_is_decl(tree->u.b.child[i])) {
1857 if (tree->u.b.block) {
1858 struct pet_scop *kill;
1859 kill = extract_kill(ctx, scop_i, state);
1860 kills = pet_scop_add_par(ctx, kills, kill);
1861 } else
1862 scop_i = mark_exposed(scop_i);
1864 scop_i = pet_scop_prefix(scop_i, i);
1865 scop = pet_scop_add_seq(ctx, scop, scop_i);
1867 scop = pet_skip_info_seq_add(&skip, scop, i);
1869 if (!scop)
1870 break;
1873 kills = pet_scop_prefix(kills, tree->u.b.n);
1874 scop = pet_scop_add_seq(ctx, scop, kills);
1876 pet_context_free(pc);
1878 return scop;
1881 /* Construct a pet_scop that corresponds to the pet_tree "tree"
1882 * within the context "pc" by calling the appropriate function
1883 * based on the type of "tree".
1885 static struct pet_scop *scop_from_tree(__isl_keep pet_tree *tree,
1886 __isl_keep pet_context *pc, struct pet_state *state)
1888 if (!tree)
1889 return NULL;
1891 switch (tree->type) {
1892 case pet_tree_error:
1893 return NULL;
1894 case pet_tree_block:
1895 return scop_from_block(tree, pc, state);
1896 case pet_tree_break:
1897 return scop_from_break(tree);
1898 case pet_tree_continue:
1899 return scop_from_continue(tree);
1900 case pet_tree_decl:
1901 case pet_tree_decl_init:
1902 return scop_from_decl(tree, pc, state);
1903 case pet_tree_expr:
1904 return scop_from_expr(pet_expr_copy(tree->u.e.expr),
1905 isl_id_copy(tree->label),
1906 state->n_stmt++,
1907 pet_tree_get_loc(tree), pc);
1908 case pet_tree_if:
1909 case pet_tree_if_else:
1910 return scop_from_if(tree, pc, state);
1911 case pet_tree_for:
1912 return scop_from_for(tree, pc, state);
1913 case pet_tree_while:
1914 return scop_from_while(tree, pc, state);
1915 case pet_tree_infinite_loop:
1916 return scop_from_infinite_for(tree, pc, state);
1919 isl_die(tree->ctx, isl_error_internal, "unhandled type",
1920 return NULL);
1923 /* Construct a pet_scop that corresponds to the pet_tree "tree".
1924 * "int_size" is the number of bytes need to represent an integer.
1925 * "extract_array" is a callback that we can use to create a pet_array
1926 * that corresponds to the variable accessed by an expression.
1928 * Initialize the global state, construct a context and then
1929 * construct the pet_scop by recursively visiting the tree.
1931 struct pet_scop *pet_scop_from_pet_tree(__isl_take pet_tree *tree, int int_size,
1932 struct pet_array *(*extract_array)(__isl_keep pet_expr *access,
1933 __isl_keep pet_context *pc, void *user), void *user,
1934 __isl_keep pet_context *pc)
1936 struct pet_scop *scop;
1937 struct pet_state state = { 0 };
1939 if (!tree)
1940 return NULL;
1942 state.ctx = pet_tree_get_ctx(tree);
1943 state.int_size = int_size;
1944 state.extract_array = extract_array;
1945 state.user = user;
1947 scop = scop_from_tree(tree, pc, &state);
1948 scop = pet_scop_set_loc(scop, pet_tree_get_loc(tree));
1950 pet_tree_free(tree);
1952 return scop;