2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012-2014 Ecole Normale Superieure. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials provided
15 * with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as
31 * representing official policies, either expressed or implied, of
36 #include <isl/constraint.h>
37 #include <isl/union_set.h>
45 #include "value_bounds.h"
47 /* pet_scop with extra information that is used during parsing and printing.
49 * In particular, we keep track of conditions under which we want
50 * to skip the rest of the current loop iteration (skip[pet_skip_now])
51 * and of conditions under which we want to skip subsequent
52 * loop iterations (skip[pet_skip_later]).
54 * The conditions are represented as index expressions defined
55 * over a zero-dimensional domain. The index expression is either
56 * a boolean affine expression or an access to a variable, which
57 * is assumed to attain values zero and one. The condition holds
58 * if the variable has value one or if the affine expression
59 * has value one (typically for only part of the parameter space).
61 * A missing condition (skip[type] == NULL) means that we don't want
64 * Additionally, we keep track of the original input file
65 * inside pet_transform_C_source.
70 isl_multi_pw_aff
*skip
[2];
74 /* Construct a pet_stmt with given location and statement
75 * number from a pet_expr.
76 * The initial iteration domain is the zero-dimensional universe.
77 * The name of the domain is given by "label" if it is non-NULL.
78 * Otherwise, the name is constructed as S_<id>.
79 * The domains of all access relations are modified to refer
80 * to the statement iteration domain.
82 struct pet_stmt
*pet_stmt_from_pet_expr(__isl_take pet_loc
*loc
,
83 __isl_take isl_id
*label
, int id
, __isl_take pet_expr
*expr
)
85 struct pet_stmt
*stmt
;
90 isl_multi_pw_aff
*add_name
;
96 ctx
= pet_expr_get_ctx(expr
);
97 stmt
= isl_calloc_type(ctx
, struct pet_stmt
);
101 dim
= isl_space_set_alloc(ctx
, 0, 0);
103 dim
= isl_space_set_tuple_id(dim
, isl_dim_set
, label
);
105 snprintf(name
, sizeof(name
), "S_%d", id
);
106 dim
= isl_space_set_tuple_name(dim
, isl_dim_set
, name
);
108 dom
= isl_set_universe(isl_space_copy(dim
));
109 sched
= isl_map_from_domain(isl_set_copy(dom
));
111 dim
= isl_space_from_domain(dim
);
112 add_name
= isl_multi_pw_aff_zero(dim
);
113 expr
= pet_expr_update_domain(expr
, add_name
);
117 stmt
->schedule
= sched
;
120 if (!stmt
->domain
|| !stmt
->schedule
|| !stmt
->body
)
121 return pet_stmt_free(stmt
);
131 void *pet_stmt_free(struct pet_stmt
*stmt
)
138 pet_loc_free(stmt
->loc
);
139 isl_set_free(stmt
->domain
);
140 isl_map_free(stmt
->schedule
);
141 pet_expr_free(stmt
->body
);
143 for (i
= 0; i
< stmt
->n_arg
; ++i
)
144 pet_expr_free(stmt
->args
[i
]);
151 /* Return the iteration space of "stmt".
153 * If the statement has arguments, then stmt->domain is a wrapped map
154 * mapping the iteration domain to the values of the arguments
155 * for which this statement is executed.
156 * In this case, we need to extract the domain space of this wrapped map.
158 __isl_give isl_space
*pet_stmt_get_space(struct pet_stmt
*stmt
)
165 space
= isl_set_get_space(stmt
->domain
);
166 if (isl_space_is_wrapping(space
))
167 space
= isl_space_domain(isl_space_unwrap(space
));
172 static void stmt_dump(struct pet_stmt
*stmt
, int indent
)
179 fprintf(stderr
, "%*s%d\n", indent
, "", pet_loc_get_line(stmt
->loc
));
180 fprintf(stderr
, "%*s", indent
, "");
181 isl_set_dump(stmt
->domain
);
182 fprintf(stderr
, "%*s", indent
, "");
183 isl_map_dump(stmt
->schedule
);
184 pet_expr_dump_with_indent(stmt
->body
, indent
);
185 for (i
= 0; i
< stmt
->n_arg
; ++i
)
186 pet_expr_dump_with_indent(stmt
->args
[i
], indent
+ 2);
189 void pet_stmt_dump(struct pet_stmt
*stmt
)
194 /* Allocate a new pet_type with the given "name" and "definition".
196 struct pet_type
*pet_type_alloc(isl_ctx
*ctx
, const char *name
,
197 const char *definition
)
199 struct pet_type
*type
;
201 type
= isl_alloc_type(ctx
, struct pet_type
);
205 type
->name
= strdup(name
);
206 type
->definition
= strdup(definition
);
208 if (!type
->name
|| !type
->definition
)
209 return pet_type_free(type
);
214 /* Free "type" and return NULL.
216 struct pet_type
*pet_type_free(struct pet_type
*type
)
222 free(type
->definition
);
228 struct pet_array
*pet_array_free(struct pet_array
*array
)
233 isl_set_free(array
->context
);
234 isl_set_free(array
->extent
);
235 isl_set_free(array
->value_bounds
);
236 free(array
->element_type
);
242 void pet_array_dump(struct pet_array
*array
)
247 isl_set_dump(array
->context
);
248 isl_set_dump(array
->extent
);
249 isl_set_dump(array
->value_bounds
);
250 fprintf(stderr
, "%s%s%s\n", array
->element_type
,
251 array
->element_is_record
? " element-is-record" : "",
252 array
->live_out
? " live-out" : "");
255 /* Alloc a pet_scop structure, with extra room for information that
256 * is only used during parsing.
258 struct pet_scop
*pet_scop_alloc(isl_ctx
*ctx
)
260 return &isl_calloc_type(ctx
, struct pet_scop_ext
)->scop
;
263 /* Construct a pet_scop with room for n statements.
265 * Since no information on the location is known at this point,
266 * scop->loc is initialized with pet_loc_dummy.
268 static struct pet_scop
*scop_alloc(isl_ctx
*ctx
, int n
)
271 struct pet_scop
*scop
;
273 scop
= pet_scop_alloc(ctx
);
277 space
= isl_space_params_alloc(ctx
, 0);
278 scop
->context
= isl_set_universe(isl_space_copy(space
));
279 scop
->context_value
= isl_set_universe(space
);
280 scop
->stmts
= isl_calloc_array(ctx
, struct pet_stmt
*, n
);
281 if (!scop
->context
|| !scop
->stmts
)
282 return pet_scop_free(scop
);
284 scop
->loc
= &pet_loc_dummy
;
290 struct pet_scop
*pet_scop_empty(isl_ctx
*ctx
)
292 return scop_alloc(ctx
, 0);
295 /* Update "context" with respect to the valid parameter values for "access".
297 static __isl_give isl_set
*access_extract_context(__isl_keep isl_map
*access
,
298 __isl_take isl_set
*context
)
300 context
= isl_set_intersect(context
,
301 isl_map_params(isl_map_copy(access
)));
305 /* Update "context" with respect to the valid parameter values for "expr".
307 * If "expr" represents a conditional operator, then a parameter value
308 * needs to be valid for the condition and for at least one of the
309 * remaining two arguments.
310 * If the condition is an affine expression, then we can be a bit more specific.
311 * The parameter then has to be valid for the second argument for
312 * non-zero accesses and valid for the third argument for zero accesses.
314 static __isl_give isl_set
*expr_extract_context(__isl_keep pet_expr
*expr
,
315 __isl_take isl_set
*context
)
319 if (expr
->type
== pet_expr_op
&& expr
->op
== pet_op_cond
) {
321 isl_set
*context1
, *context2
;
323 is_aff
= pet_expr_is_affine(expr
->args
[0]);
327 context
= expr_extract_context(expr
->args
[0], context
);
328 context1
= expr_extract_context(expr
->args
[1],
329 isl_set_copy(context
));
330 context2
= expr_extract_context(expr
->args
[2], context
);
336 access
= isl_map_copy(expr
->args
[0]->acc
.access
);
337 access
= isl_map_fix_si(access
, isl_dim_out
, 0, 0);
338 zero_set
= isl_map_params(access
);
339 context1
= isl_set_subtract(context1
,
340 isl_set_copy(zero_set
));
341 context2
= isl_set_intersect(context2
, zero_set
);
344 context
= isl_set_union(context1
, context2
);
345 context
= isl_set_coalesce(context
);
350 for (i
= 0; i
< expr
->n_arg
; ++i
)
351 context
= expr_extract_context(expr
->args
[i
], context
);
353 if (expr
->type
== pet_expr_access
)
354 context
= access_extract_context(expr
->acc
.access
, context
);
358 isl_set_free(context
);
362 /* Update "context" with respect to the valid parameter values for "stmt".
364 * If the statement is an assume statement with an affine expression,
365 * then intersect "context" with that expression.
366 * Otherwise, intersect "context" with the contexts of the expressions
369 static __isl_give isl_set
*stmt_extract_context(struct pet_stmt
*stmt
,
370 __isl_take isl_set
*context
)
374 if (pet_stmt_is_assume(stmt
) &&
375 pet_expr_is_affine(stmt
->body
->args
[0])) {
376 isl_multi_pw_aff
*index
;
380 index
= stmt
->body
->args
[0]->acc
.index
;
381 pa
= isl_multi_pw_aff_get_pw_aff(index
, 0);
382 cond
= isl_set_params(isl_pw_aff_non_zero_set(pa
));
383 return isl_set_intersect(context
, cond
);
386 for (i
= 0; i
< stmt
->n_arg
; ++i
)
387 context
= expr_extract_context(stmt
->args
[i
], context
);
389 context
= expr_extract_context(stmt
->body
, context
);
394 /* Construct a pet_scop that contains the given pet_stmt.
396 struct pet_scop
*pet_scop_from_pet_stmt(isl_ctx
*ctx
, struct pet_stmt
*stmt
)
398 struct pet_scop
*scop
;
403 scop
= scop_alloc(ctx
, 1);
407 scop
->context
= stmt_extract_context(stmt
, scop
->context
);
411 scop
->stmts
[0] = stmt
;
412 scop
->loc
= pet_loc_copy(stmt
->loc
);
415 return pet_scop_free(scop
);
424 /* Does "mpa" represent an access to an element of an unnamed space, i.e.,
425 * does it represent an affine expression?
427 static int multi_pw_aff_is_affine(__isl_keep isl_multi_pw_aff
*mpa
)
431 has_id
= isl_multi_pw_aff_has_tuple_id(mpa
, isl_dim_out
);
438 /* Return the piecewise affine expression "set ? 1 : 0" defined on "dom".
440 static __isl_give isl_pw_aff
*indicator_function(__isl_take isl_set
*set
,
441 __isl_take isl_set
*dom
)
444 pa
= isl_set_indicator_function(set
);
445 pa
= isl_pw_aff_intersect_domain(pa
, dom
);
449 /* Return "lhs || rhs", defined on the shared definition domain.
451 static __isl_give isl_pw_aff
*pw_aff_or(__isl_take isl_pw_aff
*lhs
,
452 __isl_take isl_pw_aff
*rhs
)
457 dom
= isl_set_intersect(isl_pw_aff_domain(isl_pw_aff_copy(lhs
)),
458 isl_pw_aff_domain(isl_pw_aff_copy(rhs
)));
459 cond
= isl_set_union(isl_pw_aff_non_zero_set(lhs
),
460 isl_pw_aff_non_zero_set(rhs
));
461 cond
= isl_set_coalesce(cond
);
462 return indicator_function(cond
, dom
);
465 /* Combine ext1->skip[type] and ext2->skip[type] into ext->skip[type].
466 * ext may be equal to either ext1 or ext2.
468 * The two skips that need to be combined are assumed to be affine expressions.
470 * We need to skip in ext if we need to skip in either ext1 or ext2.
471 * We don't need to skip in ext if we don't need to skip in both ext1 and ext2.
473 static struct pet_scop_ext
*combine_skips(struct pet_scop_ext
*ext
,
474 struct pet_scop_ext
*ext1
, struct pet_scop_ext
*ext2
,
477 isl_pw_aff
*skip
, *skip1
, *skip2
;
481 if (!ext1
->skip
[type
] && !ext2
->skip
[type
])
483 if (!ext1
->skip
[type
]) {
486 ext
->skip
[type
] = ext2
->skip
[type
];
487 ext2
->skip
[type
] = NULL
;
490 if (!ext2
->skip
[type
]) {
493 ext
->skip
[type
] = ext1
->skip
[type
];
494 ext1
->skip
[type
] = NULL
;
498 if (!multi_pw_aff_is_affine(ext1
->skip
[type
]) ||
499 !multi_pw_aff_is_affine(ext2
->skip
[type
]))
500 isl_die(isl_multi_pw_aff_get_ctx(ext1
->skip
[type
]),
501 isl_error_internal
, "can only combine affine skips",
504 skip1
= isl_multi_pw_aff_get_pw_aff(ext1
->skip
[type
], 0);
505 skip2
= isl_multi_pw_aff_get_pw_aff(ext2
->skip
[type
], 0);
506 skip
= pw_aff_or(skip1
, skip2
);
507 isl_multi_pw_aff_free(ext1
->skip
[type
]);
508 ext1
->skip
[type
] = NULL
;
509 isl_multi_pw_aff_free(ext2
->skip
[type
]);
510 ext2
->skip
[type
] = NULL
;
511 ext
->skip
[type
] = isl_multi_pw_aff_from_pw_aff(skip
);
512 if (!ext
->skip
[type
])
517 pet_scop_free(&ext
->scop
);
521 /* Combine scop1->skip[type] and scop2->skip[type] into scop->skip[type],
522 * where type takes on the values pet_skip_now and pet_skip_later.
523 * scop may be equal to either scop1 or scop2.
525 static struct pet_scop
*scop_combine_skips(struct pet_scop
*scop
,
526 struct pet_scop
*scop1
, struct pet_scop
*scop2
)
528 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
529 struct pet_scop_ext
*ext1
= (struct pet_scop_ext
*) scop1
;
530 struct pet_scop_ext
*ext2
= (struct pet_scop_ext
*) scop2
;
532 ext
= combine_skips(ext
, ext1
, ext2
, pet_skip_now
);
533 ext
= combine_skips(ext
, ext1
, ext2
, pet_skip_later
);
537 /* Update start and end of scop->loc to include the region from "start"
538 * to "end". In particular, if scop->loc == &pet_loc_dummy, then "scop"
539 * does not have any offset information yet and we simply take the information
540 * from "start" and "end". Otherwise, we update loc using "start" and "end".
542 struct pet_scop
*pet_scop_update_start_end(struct pet_scop
*scop
,
543 unsigned start
, unsigned end
)
548 if (scop
->loc
== &pet_loc_dummy
)
549 scop
->loc
= pet_loc_alloc(isl_set_get_ctx(scop
->context
),
552 scop
->loc
= pet_loc_update_start_end(scop
->loc
, start
, end
);
555 return pet_scop_free(scop
);
560 /* Update start and end of scop->loc to include the region identified
563 struct pet_scop
*pet_scop_update_start_end_from_loc(struct pet_scop
*scop
,
564 __isl_keep pet_loc
*loc
)
566 return pet_scop_update_start_end(scop
, pet_loc_get_start(loc
),
567 pet_loc_get_end(loc
));
570 /* Replace the location of "scop" by "loc".
572 struct pet_scop
*pet_scop_set_loc(struct pet_scop
*scop
,
573 __isl_take pet_loc
*loc
)
578 pet_loc_free(scop
->loc
);
588 /* Does "implication" appear in the list of implications of "scop"?
590 static int is_known_implication(struct pet_scop
*scop
,
591 struct pet_implication
*implication
)
595 for (i
= 0; i
< scop
->n_implication
; ++i
) {
596 struct pet_implication
*pi
= scop
->implications
[i
];
599 if (pi
->satisfied
!= implication
->satisfied
)
601 equal
= isl_map_is_equal(pi
->extension
, implication
->extension
);
611 /* Store the concatenation of the implications of "scop1" and "scop2"
612 * in "scop", removing duplicates (i.e., implications in "scop2" that
613 * already appear in "scop1").
615 static struct pet_scop
*scop_collect_implications(isl_ctx
*ctx
,
616 struct pet_scop
*scop
, struct pet_scop
*scop1
, struct pet_scop
*scop2
)
623 if (scop2
->n_implication
== 0) {
624 scop
->n_implication
= scop1
->n_implication
;
625 scop
->implications
= scop1
->implications
;
626 scop1
->n_implication
= 0;
627 scop1
->implications
= NULL
;
631 if (scop1
->n_implication
== 0) {
632 scop
->n_implication
= scop2
->n_implication
;
633 scop
->implications
= scop2
->implications
;
634 scop2
->n_implication
= 0;
635 scop2
->implications
= NULL
;
639 scop
->implications
= isl_calloc_array(ctx
, struct pet_implication
*,
640 scop1
->n_implication
+ scop2
->n_implication
);
641 if (!scop
->implications
)
642 return pet_scop_free(scop
);
644 for (i
= 0; i
< scop1
->n_implication
; ++i
) {
645 scop
->implications
[i
] = scop1
->implications
[i
];
646 scop1
->implications
[i
] = NULL
;
649 scop
->n_implication
= scop1
->n_implication
;
650 j
= scop1
->n_implication
;
651 for (i
= 0; i
< scop2
->n_implication
; ++i
) {
654 known
= is_known_implication(scop
, scop2
->implications
[i
]);
656 return pet_scop_free(scop
);
659 scop
->implications
[j
++] = scop2
->implications
[i
];
660 scop2
->implications
[i
] = NULL
;
662 scop
->n_implication
= j
;
667 /* Combine the offset information of "scop1" and "scop2" into "scop".
669 static struct pet_scop
*scop_combine_start_end(struct pet_scop
*scop
,
670 struct pet_scop
*scop1
, struct pet_scop
*scop2
)
672 if (scop1
->loc
!= &pet_loc_dummy
)
673 scop
= pet_scop_update_start_end_from_loc(scop
, scop1
->loc
);
674 if (scop2
->loc
!= &pet_loc_dummy
)
675 scop
= pet_scop_update_start_end_from_loc(scop
, scop2
->loc
);
679 /* Construct a pet_scop that contains the offset information,
680 * arrays, statements and skip information in "scop1" and "scop2".
682 static struct pet_scop
*pet_scop_add(isl_ctx
*ctx
, struct pet_scop
*scop1
,
683 struct pet_scop
*scop2
)
686 struct pet_scop
*scop
= NULL
;
688 if (!scop1
|| !scop2
)
691 if (scop1
->n_stmt
== 0) {
692 scop2
= scop_combine_skips(scop2
, scop1
, scop2
);
693 pet_scop_free(scop1
);
697 if (scop2
->n_stmt
== 0) {
698 scop1
= scop_combine_skips(scop1
, scop1
, scop2
);
699 pet_scop_free(scop2
);
703 scop
= scop_alloc(ctx
, scop1
->n_stmt
+ scop2
->n_stmt
);
707 scop
->arrays
= isl_calloc_array(ctx
, struct pet_array
*,
708 scop1
->n_array
+ scop2
->n_array
);
711 scop
->n_array
= scop1
->n_array
+ scop2
->n_array
;
713 for (i
= 0; i
< scop1
->n_stmt
; ++i
) {
714 scop
->stmts
[i
] = scop1
->stmts
[i
];
715 scop1
->stmts
[i
] = NULL
;
718 for (i
= 0; i
< scop2
->n_stmt
; ++i
) {
719 scop
->stmts
[scop1
->n_stmt
+ i
] = scop2
->stmts
[i
];
720 scop2
->stmts
[i
] = NULL
;
723 for (i
= 0; i
< scop1
->n_array
; ++i
) {
724 scop
->arrays
[i
] = scop1
->arrays
[i
];
725 scop1
->arrays
[i
] = NULL
;
728 for (i
= 0; i
< scop2
->n_array
; ++i
) {
729 scop
->arrays
[scop1
->n_array
+ i
] = scop2
->arrays
[i
];
730 scop2
->arrays
[i
] = NULL
;
733 scop
= scop_collect_implications(ctx
, scop
, scop1
, scop2
);
734 scop
= pet_scop_restrict_context(scop
, isl_set_copy(scop1
->context
));
735 scop
= pet_scop_restrict_context(scop
, isl_set_copy(scop2
->context
));
736 scop
= scop_combine_skips(scop
, scop1
, scop2
);
737 scop
= scop_combine_start_end(scop
, scop1
, scop2
);
739 pet_scop_free(scop1
);
740 pet_scop_free(scop2
);
743 pet_scop_free(scop1
);
744 pet_scop_free(scop2
);
749 /* Apply the skip condition "skip" to "scop".
750 * That is, make sure "scop" is not executed when the condition holds.
752 * If "skip" is an affine expression, we add the conditions under
753 * which the expression is zero to the iteration domains.
754 * Otherwise, we add a filter on the variable attaining the value zero.
756 static struct pet_scop
*restrict_skip(struct pet_scop
*scop
,
757 __isl_take isl_multi_pw_aff
*skip
)
766 is_aff
= multi_pw_aff_is_affine(skip
);
771 return pet_scop_filter(scop
, skip
, 0);
773 pa
= isl_multi_pw_aff_get_pw_aff(skip
, 0);
774 isl_multi_pw_aff_free(skip
);
775 zero
= isl_set_params(isl_pw_aff_zero_set(pa
));
776 scop
= pet_scop_restrict(scop
, zero
);
780 isl_multi_pw_aff_free(skip
);
781 return pet_scop_free(scop
);
784 /* Construct a pet_scop that contains the arrays, statements and
785 * skip information in "scop1" and "scop2", where the two scops
786 * are executed "in sequence". That is, breaks and continues
787 * in scop1 have an effect on scop2.
789 struct pet_scop
*pet_scop_add_seq(isl_ctx
*ctx
, struct pet_scop
*scop1
,
790 struct pet_scop
*scop2
)
792 if (scop1
&& pet_scop_has_skip(scop1
, pet_skip_now
))
793 scop2
= restrict_skip(scop2
,
794 pet_scop_get_skip(scop1
, pet_skip_now
));
795 return pet_scop_add(ctx
, scop1
, scop2
);
798 /* Construct a pet_scop that contains the arrays, statements and
799 * skip information in "scop1" and "scop2", where the two scops
800 * are executed "in parallel". That is, any break or continue
801 * in scop1 has no effect on scop2.
803 struct pet_scop
*pet_scop_add_par(isl_ctx
*ctx
, struct pet_scop
*scop1
,
804 struct pet_scop
*scop2
)
806 return pet_scop_add(ctx
, scop1
, scop2
);
809 void *pet_implication_free(struct pet_implication
*implication
)
816 isl_map_free(implication
->extension
);
822 struct pet_scop
*pet_scop_free(struct pet_scop
*scop
)
825 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
829 pet_loc_free(scop
->loc
);
830 isl_set_free(scop
->context
);
831 isl_set_free(scop
->context_value
);
833 for (i
= 0; i
< scop
->n_type
; ++i
)
834 pet_type_free(scop
->types
[i
]);
837 for (i
= 0; i
< scop
->n_array
; ++i
)
838 pet_array_free(scop
->arrays
[i
]);
841 for (i
= 0; i
< scop
->n_stmt
; ++i
)
842 pet_stmt_free(scop
->stmts
[i
]);
844 if (scop
->implications
)
845 for (i
= 0; i
< scop
->n_implication
; ++i
)
846 pet_implication_free(scop
->implications
[i
]);
847 free(scop
->implications
);
848 isl_multi_pw_aff_free(ext
->skip
[pet_skip_now
]);
849 isl_multi_pw_aff_free(ext
->skip
[pet_skip_later
]);
854 void pet_type_dump(struct pet_type
*type
)
859 fprintf(stderr
, "%s -> %s\n", type
->name
, type
->definition
);
862 void pet_implication_dump(struct pet_implication
*implication
)
867 fprintf(stderr
, "%d\n", implication
->satisfied
);
868 isl_map_dump(implication
->extension
);
871 void pet_scop_dump(struct pet_scop
*scop
)
874 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
879 isl_set_dump(scop
->context
);
880 isl_set_dump(scop
->context_value
);
881 for (i
= 0; i
< scop
->n_type
; ++i
)
882 pet_type_dump(scop
->types
[i
]);
883 for (i
= 0; i
< scop
->n_array
; ++i
)
884 pet_array_dump(scop
->arrays
[i
]);
885 for (i
= 0; i
< scop
->n_stmt
; ++i
)
886 pet_stmt_dump(scop
->stmts
[i
]);
887 for (i
= 0; i
< scop
->n_implication
; ++i
)
888 pet_implication_dump(scop
->implications
[i
]);
891 fprintf(stderr
, "skip\n");
892 isl_multi_pw_aff_dump(ext
->skip
[0]);
893 isl_multi_pw_aff_dump(ext
->skip
[1]);
897 /* Return 1 if the two pet_arrays are equivalent.
899 * We don't compare element_size as this may be target dependent.
901 int pet_array_is_equal(struct pet_array
*array1
, struct pet_array
*array2
)
903 if (!array1
|| !array2
)
906 if (!isl_set_is_equal(array1
->context
, array2
->context
))
908 if (!isl_set_is_equal(array1
->extent
, array2
->extent
))
910 if (!!array1
->value_bounds
!= !!array2
->value_bounds
)
912 if (array1
->value_bounds
&&
913 !isl_set_is_equal(array1
->value_bounds
, array2
->value_bounds
))
915 if (strcmp(array1
->element_type
, array2
->element_type
))
917 if (array1
->element_is_record
!= array2
->element_is_record
)
919 if (array1
->live_out
!= array2
->live_out
)
921 if (array1
->uniquely_defined
!= array2
->uniquely_defined
)
923 if (array1
->declared
!= array2
->declared
)
925 if (array1
->exposed
!= array2
->exposed
)
931 /* Return 1 if the two pet_stmts are equivalent.
933 int pet_stmt_is_equal(struct pet_stmt
*stmt1
, struct pet_stmt
*stmt2
)
937 if (!stmt1
|| !stmt2
)
940 if (pet_loc_get_line(stmt1
->loc
) != pet_loc_get_line(stmt2
->loc
))
942 if (!isl_set_is_equal(stmt1
->domain
, stmt2
->domain
))
944 if (!isl_map_is_equal(stmt1
->schedule
, stmt2
->schedule
))
946 if (!pet_expr_is_equal(stmt1
->body
, stmt2
->body
))
948 if (stmt1
->n_arg
!= stmt2
->n_arg
)
950 for (i
= 0; i
< stmt1
->n_arg
; ++i
) {
951 if (!pet_expr_is_equal(stmt1
->args
[i
], stmt2
->args
[i
]))
958 /* Return 1 if the two pet_types are equivalent.
960 * We only compare the names of the types since the exact representation
961 * of the definition may depend on the version of clang being used.
963 int pet_type_is_equal(struct pet_type
*type1
, struct pet_type
*type2
)
965 if (!type1
|| !type2
)
968 if (strcmp(type1
->name
, type2
->name
))
974 /* Return 1 if the two pet_implications are equivalent.
976 int pet_implication_is_equal(struct pet_implication
*implication1
,
977 struct pet_implication
*implication2
)
979 if (!implication1
|| !implication2
)
982 if (implication1
->satisfied
!= implication2
->satisfied
)
984 if (!isl_map_is_equal(implication1
->extension
, implication2
->extension
))
990 /* Return 1 if the two pet_scops are equivalent.
992 int pet_scop_is_equal(struct pet_scop
*scop1
, struct pet_scop
*scop2
)
996 if (!scop1
|| !scop2
)
999 if (!isl_set_is_equal(scop1
->context
, scop2
->context
))
1001 if (!isl_set_is_equal(scop1
->context_value
, scop2
->context_value
))
1004 if (scop1
->n_type
!= scop2
->n_type
)
1006 for (i
= 0; i
< scop1
->n_type
; ++i
)
1007 if (!pet_type_is_equal(scop1
->types
[i
], scop2
->types
[i
]))
1010 if (scop1
->n_array
!= scop2
->n_array
)
1012 for (i
= 0; i
< scop1
->n_array
; ++i
)
1013 if (!pet_array_is_equal(scop1
->arrays
[i
], scop2
->arrays
[i
]))
1016 if (scop1
->n_stmt
!= scop2
->n_stmt
)
1018 for (i
= 0; i
< scop1
->n_stmt
; ++i
)
1019 if (!pet_stmt_is_equal(scop1
->stmts
[i
], scop2
->stmts
[i
]))
1022 if (scop1
->n_implication
!= scop2
->n_implication
)
1024 for (i
= 0; i
< scop1
->n_implication
; ++i
)
1025 if (!pet_implication_is_equal(scop1
->implications
[i
],
1026 scop2
->implications
[i
]))
1032 /* Does the set "extent" reference a virtual array, i.e.,
1033 * one with user pointer equal to NULL?
1034 * A virtual array does not have any members.
1036 static int extent_is_virtual_array(__isl_keep isl_set
*extent
)
1041 if (!isl_set_has_tuple_id(extent
))
1043 if (isl_set_is_wrapping(extent
))
1045 id
= isl_set_get_tuple_id(extent
);
1046 is_virtual
= !isl_id_get_user(id
);
1052 /* Prefix the schedule of "stmt" with an extra dimension with constant
1055 struct pet_stmt
*pet_stmt_prefix(struct pet_stmt
*stmt
, int pos
)
1060 stmt
->schedule
= isl_map_insert_dims(stmt
->schedule
, isl_dim_out
, 0, 1);
1061 stmt
->schedule
= isl_map_fix_si(stmt
->schedule
, isl_dim_out
, 0, pos
);
1062 if (!stmt
->schedule
)
1063 return pet_stmt_free(stmt
);
1068 /* Prefix the schedules of all statements in "scop" with an extra
1069 * dimension with constant value "pos".
1071 struct pet_scop
*pet_scop_prefix(struct pet_scop
*scop
, int pos
)
1078 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
1079 scop
->stmts
[i
] = pet_stmt_prefix(scop
->stmts
[i
], pos
);
1080 if (!scop
->stmts
[i
])
1081 return pet_scop_free(scop
);
1087 /* Given a set with a parameter at "param_pos" that refers to the
1088 * iterator, "move" the iterator to the first set dimension.
1089 * That is, essentially equate the parameter to the first set dimension
1090 * and then project it out.
1092 * The first set dimension may however refer to a virtual iterator,
1093 * while the parameter refers to the "real" iterator.
1094 * We therefore need to take into account the affine expression "iv_map", which
1095 * expresses the real iterator in terms of the virtual iterator.
1096 * In particular, we equate the set dimension to the input of the map
1097 * and the parameter to the output of the map and then project out
1098 * everything we don't need anymore.
1100 static __isl_give isl_set
*internalize_iv(__isl_take isl_set
*set
,
1101 int param_pos
, __isl_take isl_aff
*iv_map
)
1103 isl_map
*map
, *map2
;
1104 map
= isl_map_from_domain(set
);
1105 map
= isl_map_add_dims(map
, isl_dim_out
, 1);
1106 map
= isl_map_equate(map
, isl_dim_in
, 0, isl_dim_out
, 0);
1107 map2
= isl_map_from_aff(iv_map
);
1108 map2
= isl_map_align_params(map2
, isl_map_get_space(map
));
1109 map
= isl_map_apply_range(map
, map2
);
1110 map
= isl_map_equate(map
, isl_dim_param
, param_pos
, isl_dim_out
, 0);
1111 map
= isl_map_project_out(map
, isl_dim_param
, param_pos
, 1);
1112 return isl_map_domain(map
);
1115 /* Data used in embed_access.
1116 * extend adds an iterator to the iteration domain (through precomposition).
1117 * iv_map expresses the real iterator in terms of the virtual iterator
1118 * var_id represents the induction variable of the corresponding loop
1120 struct pet_embed_access
{
1121 isl_multi_pw_aff
*extend
;
1126 /* Given an index expression, return an expression for the outer iterator.
1128 static __isl_give isl_aff
*index_outer_iterator(
1129 __isl_take isl_multi_pw_aff
*index
)
1132 isl_local_space
*ls
;
1134 space
= isl_multi_pw_aff_get_domain_space(index
);
1135 isl_multi_pw_aff_free(index
);
1137 ls
= isl_local_space_from_space(space
);
1138 return isl_aff_var_on_domain(ls
, isl_dim_set
, 0);
1141 /* Replace an index expression that references the new (outer) iterator variable
1142 * by one that references the corresponding (real) iterator.
1144 * The input index expression is of the form
1146 * { S[i',...] -> i[] }
1148 * where i' refers to the virtual iterator.
1150 * iv_map is of the form
1154 * Return the index expression
1156 * { S[i',...] -> [i] }
1158 static __isl_give isl_multi_pw_aff
*replace_by_iterator(
1159 __isl_take isl_multi_pw_aff
*index
, __isl_take isl_aff
*iv_map
)
1164 aff
= index_outer_iterator(index
);
1165 space
= isl_aff_get_space(aff
);
1166 iv_map
= isl_aff_align_params(iv_map
, space
);
1167 aff
= isl_aff_pullback_aff(iv_map
, aff
);
1169 return isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff
));
1172 /* Given an index expression "index" that refers to the (real) iterator
1173 * through the parameter at position "pos", plug in "iv_map", expressing
1174 * the real iterator in terms of the virtual (outer) iterator.
1176 * In particular, the index expression is of the form
1178 * [..., i, ...] -> { S[i',...] -> ... i ... }
1180 * where i refers to the real iterator and i' refers to the virtual iterator.
1182 * iv_map is of the form
1186 * Return the index expression
1188 * [..., ...] -> { S[i',...] -> ... iv_map(i') ... }
1191 * We first move the parameter to the input
1193 * [..., ...] -> { [i, i',...] -> ... i ... }
1197 * { S[i',...] -> [i=iv_map(i'), i', ...] }
1199 * and then combine the two to obtain the desired result.
1201 static __isl_give isl_multi_pw_aff
*index_internalize_iv(
1202 __isl_take isl_multi_pw_aff
*index
, int pos
, __isl_take isl_aff
*iv_map
)
1204 isl_space
*space
= isl_multi_pw_aff_get_domain_space(index
);
1207 space
= isl_space_drop_dims(space
, isl_dim_param
, pos
, 1);
1208 index
= isl_multi_pw_aff_move_dims(index
, isl_dim_in
, 0,
1209 isl_dim_param
, pos
, 1);
1211 space
= isl_space_map_from_set(space
);
1212 ma
= isl_multi_aff_identity(isl_space_copy(space
));
1213 iv_map
= isl_aff_align_params(iv_map
, space
);
1214 iv_map
= isl_aff_pullback_aff(iv_map
, isl_multi_aff_get_aff(ma
, 0));
1215 ma
= isl_multi_aff_flat_range_product(
1216 isl_multi_aff_from_aff(iv_map
), ma
);
1217 index
= isl_multi_pw_aff_pullback_multi_aff(index
, ma
);
1222 /* Does the index expression "index" reference a virtual array, i.e.,
1223 * one with user pointer equal to NULL?
1224 * A virtual array does not have any members.
1226 static int index_is_virtual_array(__isl_keep isl_multi_pw_aff
*index
)
1231 if (!isl_multi_pw_aff_has_tuple_id(index
, isl_dim_out
))
1233 if (isl_multi_pw_aff_range_is_wrapping(index
))
1235 id
= isl_multi_pw_aff_get_tuple_id(index
, isl_dim_out
);
1236 is_virtual
= !isl_id_get_user(id
);
1242 /* Does the access relation "access" reference a virtual array, i.e.,
1243 * one with user pointer equal to NULL?
1244 * A virtual array does not have any members.
1246 static int access_is_virtual_array(__isl_keep isl_map
*access
)
1251 if (!isl_map_has_tuple_id(access
, isl_dim_out
))
1253 if (isl_map_range_is_wrapping(access
))
1255 id
= isl_map_get_tuple_id(access
, isl_dim_out
);
1256 is_virtual
= !isl_id_get_user(id
);
1262 /* Embed the given index expression in an extra outer loop.
1263 * The domain of the index expression has already been updated.
1265 * If the access refers to the induction variable, then it is
1266 * turned into an access to the set of integers with index (and value)
1267 * equal to the induction variable.
1269 * If the accessed array is a virtual array (with user
1270 * pointer equal to NULL), as created by create_test_index,
1271 * then it is extended along with the domain of the index expression.
1273 static __isl_give isl_multi_pw_aff
*embed_index_expression(
1274 __isl_take isl_multi_pw_aff
*index
, struct pet_embed_access
*data
)
1276 isl_id
*array_id
= NULL
;
1279 if (isl_multi_pw_aff_has_tuple_id(index
, isl_dim_out
))
1280 array_id
= isl_multi_pw_aff_get_tuple_id(index
, isl_dim_out
);
1281 if (array_id
== data
->var_id
) {
1282 index
= replace_by_iterator(index
, isl_aff_copy(data
->iv_map
));
1283 } else if (index_is_virtual_array(index
)) {
1285 isl_multi_pw_aff
*mpa
;
1287 aff
= index_outer_iterator(isl_multi_pw_aff_copy(index
));
1288 mpa
= isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff
));
1289 index
= isl_multi_pw_aff_flat_range_product(mpa
, index
);
1290 index
= isl_multi_pw_aff_set_tuple_id(index
, isl_dim_out
,
1291 isl_id_copy(array_id
));
1293 isl_id_free(array_id
);
1295 pos
= isl_multi_pw_aff_find_dim_by_id(index
,
1296 isl_dim_param
, data
->var_id
);
1298 index
= index_internalize_iv(index
, pos
,
1299 isl_aff_copy(data
->iv_map
));
1300 index
= isl_multi_pw_aff_set_dim_id(index
, isl_dim_in
, 0,
1301 isl_id_copy(data
->var_id
));
1306 /* Embed the given access relation in an extra outer loop.
1307 * The domain of the access relation has already been updated.
1309 * If the access refers to the induction variable, then it is
1310 * turned into an access to the set of integers with index (and value)
1311 * equal to the induction variable.
1313 * If the induction variable appears in the constraints (as a parameter),
1314 * then the parameter is equated to the newly introduced iteration
1315 * domain dimension and subsequently projected out.
1317 * Similarly, if the accessed array is a virtual array (with user
1318 * pointer equal to NULL), as created by create_test_index,
1319 * then it is extended along with the domain of the access.
1321 static __isl_give isl_map
*embed_access_relation(__isl_take isl_map
*access
,
1322 struct pet_embed_access
*data
)
1324 isl_id
*array_id
= NULL
;
1327 if (isl_map_has_tuple_id(access
, isl_dim_out
))
1328 array_id
= isl_map_get_tuple_id(access
, isl_dim_out
);
1329 if (array_id
== data
->var_id
|| access_is_virtual_array(access
)) {
1330 access
= isl_map_insert_dims(access
, isl_dim_out
, 0, 1);
1331 access
= isl_map_equate(access
,
1332 isl_dim_in
, 0, isl_dim_out
, 0);
1333 if (array_id
== data
->var_id
)
1334 access
= isl_map_apply_range(access
,
1335 isl_map_from_aff(isl_aff_copy(data
->iv_map
)));
1337 access
= isl_map_set_tuple_id(access
, isl_dim_out
,
1338 isl_id_copy(array_id
));
1340 isl_id_free(array_id
);
1342 pos
= isl_map_find_dim_by_id(access
, isl_dim_param
, data
->var_id
);
1344 isl_set
*set
= isl_map_wrap(access
);
1345 set
= internalize_iv(set
, pos
, isl_aff_copy(data
->iv_map
));
1346 access
= isl_set_unwrap(set
);
1348 access
= isl_map_set_dim_id(access
, isl_dim_in
, 0,
1349 isl_id_copy(data
->var_id
));
1354 /* Given an access expression, embed the associated access relation and
1355 * index expression in an extra outer loop.
1357 * We first update the domains to insert the extra dimension and
1358 * then update the access relation and index expression to take
1359 * into account the mapping "iv_map" from virtual iterator
1362 static __isl_give pet_expr
*embed_access(__isl_take pet_expr
*expr
, void *user
)
1364 struct pet_embed_access
*data
= user
;
1366 expr
= pet_expr_cow(expr
);
1367 expr
= pet_expr_access_update_domain(expr
, data
->extend
);
1371 expr
->acc
.access
= embed_access_relation(expr
->acc
.access
, data
);
1372 expr
->acc
.index
= embed_index_expression(expr
->acc
.index
, data
);
1373 if (!expr
->acc
.access
|| !expr
->acc
.index
)
1374 return pet_expr_free(expr
);
1379 /* Embed all access subexpressions of "expr" in an extra loop.
1380 * "extend" inserts an outer loop iterator in the iteration domains
1381 * (through precomposition).
1382 * "iv_map" expresses the real iterator in terms of the virtual iterator
1383 * "var_id" represents the induction variable.
1385 static __isl_give pet_expr
*expr_embed(__isl_take pet_expr
*expr
,
1386 __isl_take isl_multi_pw_aff
*extend
, __isl_take isl_aff
*iv_map
,
1387 __isl_keep isl_id
*var_id
)
1389 struct pet_embed_access data
=
1390 { .extend
= extend
, .iv_map
= iv_map
, .var_id
= var_id
};
1392 expr
= pet_expr_map_access(expr
, &embed_access
, &data
);
1393 isl_aff_free(iv_map
);
1394 isl_multi_pw_aff_free(extend
);
1398 /* Embed the given pet_stmt in an extra outer loop with iteration domain
1399 * "dom" and schedule "sched". "var_id" represents the induction variable
1400 * of the loop. "iv_map" maps a possibly virtual iterator to the real iterator.
1401 * That is, it expresses the iterator that some of the parameters in "stmt"
1402 * may refer to in terms of the iterator used in "dom" and
1403 * the domain of "sched".
1405 * The iteration domain and schedule of the statement are updated
1406 * according to the iteration domain and schedule of the new loop.
1407 * If stmt->domain is a wrapped map, then the iteration domain
1408 * is the domain of this map, so we need to be careful to adjust
1411 * If the induction variable appears in the constraints (as a parameter)
1412 * of the current iteration domain or the schedule of the statement,
1413 * then the parameter is equated to the newly introduced iteration
1414 * domain dimension and subsequently projected out.
1416 * Finally, all access relations are updated based on the extra loop.
1418 static struct pet_stmt
*pet_stmt_embed(struct pet_stmt
*stmt
,
1419 __isl_take isl_set
*dom
, __isl_take isl_map
*sched
,
1420 __isl_take isl_aff
*iv_map
, __isl_take isl_id
*var_id
)
1426 isl_multi_pw_aff
*extend
;
1431 if (isl_set_is_wrapping(stmt
->domain
)) {
1436 map
= isl_set_unwrap(stmt
->domain
);
1437 stmt_id
= isl_map_get_tuple_id(map
, isl_dim_in
);
1438 ran_dim
= isl_space_range(isl_map_get_space(map
));
1439 ext
= isl_map_from_domain_and_range(isl_set_copy(dom
),
1440 isl_set_universe(ran_dim
));
1441 map
= isl_map_flat_domain_product(ext
, map
);
1442 map
= isl_map_set_tuple_id(map
, isl_dim_in
,
1443 isl_id_copy(stmt_id
));
1444 dim
= isl_space_domain(isl_map_get_space(map
));
1445 stmt
->domain
= isl_map_wrap(map
);
1447 stmt_id
= isl_set_get_tuple_id(stmt
->domain
);
1448 stmt
->domain
= isl_set_flat_product(isl_set_copy(dom
),
1450 stmt
->domain
= isl_set_set_tuple_id(stmt
->domain
,
1451 isl_id_copy(stmt_id
));
1452 dim
= isl_set_get_space(stmt
->domain
);
1455 pos
= isl_set_find_dim_by_id(stmt
->domain
, isl_dim_param
, var_id
);
1457 stmt
->domain
= internalize_iv(stmt
->domain
, pos
,
1458 isl_aff_copy(iv_map
));
1460 stmt
->schedule
= isl_map_flat_product(sched
, stmt
->schedule
);
1461 stmt
->schedule
= isl_map_set_tuple_id(stmt
->schedule
,
1462 isl_dim_in
, stmt_id
);
1464 pos
= isl_map_find_dim_by_id(stmt
->schedule
, isl_dim_param
, var_id
);
1466 isl_set
*set
= isl_map_wrap(stmt
->schedule
);
1467 set
= internalize_iv(set
, pos
, isl_aff_copy(iv_map
));
1468 stmt
->schedule
= isl_set_unwrap(set
);
1471 dim
= isl_space_map_from_set(dim
);
1472 extend
= isl_multi_pw_aff_identity(dim
);
1473 extend
= isl_multi_pw_aff_drop_dims(extend
, isl_dim_out
, 0, 1);
1474 extend
= isl_multi_pw_aff_set_tuple_id(extend
, isl_dim_out
,
1475 isl_multi_pw_aff_get_tuple_id(extend
, isl_dim_in
));
1476 for (i
= 0; i
< stmt
->n_arg
; ++i
)
1477 stmt
->args
[i
] = expr_embed(stmt
->args
[i
],
1478 isl_multi_pw_aff_copy(extend
),
1479 isl_aff_copy(iv_map
), var_id
);
1480 stmt
->body
= expr_embed(stmt
->body
, extend
, iv_map
, var_id
);
1483 isl_id_free(var_id
);
1485 for (i
= 0; i
< stmt
->n_arg
; ++i
)
1487 return pet_stmt_free(stmt
);
1488 if (!stmt
->domain
|| !stmt
->schedule
|| !stmt
->body
)
1489 return pet_stmt_free(stmt
);
1493 isl_map_free(sched
);
1494 isl_aff_free(iv_map
);
1495 isl_id_free(var_id
);
1499 /* Embed the given pet_array in an extra outer loop with iteration domain
1501 * This embedding only has an effect on virtual arrays (those with
1502 * user pointer equal to NULL), which need to be extended along with
1503 * the iteration domain.
1505 static struct pet_array
*pet_array_embed(struct pet_array
*array
,
1506 __isl_take isl_set
*dom
)
1508 isl_id
*array_id
= NULL
;
1512 if (!extent_is_virtual_array(array
->extent
)) {
1517 array_id
= isl_set_get_tuple_id(array
->extent
);
1518 array
->extent
= isl_set_flat_product(dom
, array
->extent
);
1519 array
->extent
= isl_set_set_tuple_id(array
->extent
, array_id
);
1521 return pet_array_free(array
);
1529 /* Update the context with respect to an embedding into a loop
1530 * with iteration domain "dom" and induction variable "id".
1531 * "iv_map" expresses the real iterator (parameter "id") in terms
1532 * of a possibly virtual iterator (used in "dom").
1534 * If the current context is independent of "id", we don't need
1536 * Otherwise, a parameter value is invalid for the embedding if
1537 * any of the corresponding iterator values is invalid.
1538 * That is, a parameter value is valid only if all the corresponding
1539 * iterator values are valid.
1540 * We therefore compute the set of parameters
1542 * forall i in dom : valid (i)
1546 * not exists i in dom : not valid(i)
1550 * not exists i in dom \ valid(i)
1552 * Before we subtract valid(i) from dom, we first need to substitute
1553 * the real iterator for the virtual iterator.
1555 * If there are any unnamed parameters in "dom", then we consider
1556 * a parameter value to be valid if it is valid for any value of those
1557 * unnamed parameters. They are therefore projected out at the end.
1559 static __isl_give isl_set
*context_embed(__isl_take isl_set
*context
,
1560 __isl_keep isl_set
*dom
, __isl_keep isl_aff
*iv_map
,
1561 __isl_keep isl_id
*id
)
1566 pos
= isl_set_find_dim_by_id(context
, isl_dim_param
, id
);
1570 context
= isl_set_from_params(context
);
1571 context
= isl_set_add_dims(context
, isl_dim_set
, 1);
1572 context
= isl_set_equate(context
, isl_dim_param
, pos
, isl_dim_set
, 0);
1573 context
= isl_set_project_out(context
, isl_dim_param
, pos
, 1);
1574 ma
= isl_multi_aff_from_aff(isl_aff_copy(iv_map
));
1575 context
= isl_set_preimage_multi_aff(context
, ma
);
1576 context
= isl_set_subtract(isl_set_copy(dom
), context
);
1577 context
= isl_set_params(context
);
1578 context
= isl_set_complement(context
);
1579 context
= pet_nested_remove_from_set(context
);
1583 /* Update the implication with respect to an embedding into a loop
1584 * with iteration domain "dom".
1586 * Since embed_access extends virtual arrays along with the domain
1587 * of the access, we need to do the same with domain and range
1588 * of the implication. Since the original implication is only valid
1589 * within a given iteration of the loop, the extended implication
1590 * maps the extra array dimension corresponding to the extra loop
1593 static struct pet_implication
*pet_implication_embed(
1594 struct pet_implication
*implication
, __isl_take isl_set
*dom
)
1602 map
= isl_set_identity(dom
);
1603 id
= isl_map_get_tuple_id(implication
->extension
, isl_dim_in
);
1604 map
= isl_map_flat_product(map
, implication
->extension
);
1605 map
= isl_map_set_tuple_id(map
, isl_dim_in
, isl_id_copy(id
));
1606 map
= isl_map_set_tuple_id(map
, isl_dim_out
, id
);
1607 implication
->extension
= map
;
1608 if (!implication
->extension
)
1609 return pet_implication_free(implication
);
1617 /* Embed all statements and arrays in "scop" in an extra outer loop
1618 * with iteration domain "dom" and schedule "sched".
1619 * "id" represents the induction variable of the loop.
1620 * "iv_map" maps a possibly virtual iterator to the real iterator.
1621 * That is, it expresses the iterator that some of the parameters in "scop"
1622 * may refer to in terms of the iterator used in "dom" and
1623 * the domain of "sched".
1625 * Any skip conditions within the loop have no effect outside of the loop.
1626 * The caller is responsible for making sure skip[pet_skip_later] has been
1627 * taken into account.
1629 struct pet_scop
*pet_scop_embed(struct pet_scop
*scop
, __isl_take isl_set
*dom
,
1630 __isl_take isl_aff
*sched
, __isl_take isl_aff
*iv_map
,
1631 __isl_take isl_id
*id
)
1636 sched_map
= isl_map_from_aff(sched
);
1641 pet_scop_reset_skip(scop
, pet_skip_now
);
1642 pet_scop_reset_skip(scop
, pet_skip_later
);
1644 scop
->context
= context_embed(scop
->context
, dom
, iv_map
, id
);
1648 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
1649 scop
->stmts
[i
] = pet_stmt_embed(scop
->stmts
[i
],
1650 isl_set_copy(dom
), isl_map_copy(sched_map
),
1651 isl_aff_copy(iv_map
), isl_id_copy(id
));
1652 if (!scop
->stmts
[i
])
1656 for (i
= 0; i
< scop
->n_array
; ++i
) {
1657 scop
->arrays
[i
] = pet_array_embed(scop
->arrays
[i
],
1659 if (!scop
->arrays
[i
])
1663 for (i
= 0; i
< scop
->n_implication
; ++i
) {
1664 scop
->implications
[i
] =
1665 pet_implication_embed(scop
->implications
[i
],
1667 if (!scop
->implications
[i
])
1672 isl_map_free(sched_map
);
1673 isl_aff_free(iv_map
);
1678 isl_map_free(sched_map
);
1679 isl_aff_free(iv_map
);
1681 return pet_scop_free(scop
);
1684 /* Add extra conditions on the parameters to the iteration domain of "stmt".
1686 static struct pet_stmt
*stmt_restrict(struct pet_stmt
*stmt
,
1687 __isl_take isl_set
*cond
)
1692 stmt
->domain
= isl_set_intersect_params(stmt
->domain
, cond
);
1697 return pet_stmt_free(stmt
);
1700 /* Add extra conditions to scop->skip[type].
1702 * The new skip condition only holds if it held before
1703 * and the condition is true. It does not hold if it did not hold
1704 * before or the condition is false.
1706 * The skip condition is assumed to be an affine expression.
1708 static struct pet_scop
*pet_scop_restrict_skip(struct pet_scop
*scop
,
1709 enum pet_skip type
, __isl_keep isl_set
*cond
)
1711 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
1717 if (!ext
->skip
[type
])
1720 if (!multi_pw_aff_is_affine(ext
->skip
[type
]))
1721 isl_die(isl_multi_pw_aff_get_ctx(ext
->skip
[type
]),
1722 isl_error_internal
, "can only restrict affine skips",
1723 return pet_scop_free(scop
));
1725 skip
= isl_multi_pw_aff_get_pw_aff(ext
->skip
[type
], 0);
1726 dom
= isl_pw_aff_domain(isl_pw_aff_copy(skip
));
1727 cond
= isl_set_copy(cond
);
1728 cond
= isl_set_from_params(cond
);
1729 cond
= isl_set_intersect(cond
, isl_pw_aff_non_zero_set(skip
));
1730 skip
= indicator_function(cond
, dom
);
1731 isl_multi_pw_aff_free(ext
->skip
[type
]);
1732 ext
->skip
[type
] = isl_multi_pw_aff_from_pw_aff(skip
);
1733 if (!ext
->skip
[type
])
1734 return pet_scop_free(scop
);
1739 /* Add extra conditions on the parameters to all iteration domains
1740 * and skip conditions.
1742 * A parameter value is valid for the result if it was valid
1743 * for the original scop and satisfies "cond" or if it does
1744 * not satisfy "cond" as in this case the scop is not executed
1745 * and the original constraints on the parameters are irrelevant.
1747 struct pet_scop
*pet_scop_restrict(struct pet_scop
*scop
,
1748 __isl_take isl_set
*cond
)
1752 scop
= pet_scop_restrict_skip(scop
, pet_skip_now
, cond
);
1753 scop
= pet_scop_restrict_skip(scop
, pet_skip_later
, cond
);
1758 scop
->context
= isl_set_intersect(scop
->context
, isl_set_copy(cond
));
1759 scop
->context
= isl_set_union(scop
->context
,
1760 isl_set_complement(isl_set_copy(cond
)));
1761 scop
->context
= isl_set_coalesce(scop
->context
);
1762 scop
->context
= pet_nested_remove_from_set(scop
->context
);
1766 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
1767 scop
->stmts
[i
] = stmt_restrict(scop
->stmts
[i
],
1768 isl_set_copy(cond
));
1769 if (!scop
->stmts
[i
])
1777 return pet_scop_free(scop
);
1780 /* Insert an argument expression corresponding to "test" in front
1781 * of the list of arguments described by *n_arg and *args.
1783 static int args_insert_access(unsigned *n_arg
, pet_expr
***args
,
1784 __isl_keep isl_multi_pw_aff
*test
)
1787 isl_ctx
*ctx
= isl_multi_pw_aff_get_ctx(test
);
1793 *args
= isl_calloc_array(ctx
, pet_expr
*, 1);
1798 ext
= isl_calloc_array(ctx
, pet_expr
*, 1 + *n_arg
);
1801 for (i
= 0; i
< *n_arg
; ++i
)
1802 ext
[1 + i
] = (*args
)[i
];
1807 (*args
)[0] = pet_expr_from_index(isl_multi_pw_aff_copy(test
));
1814 /* Look through the applications in "scop" for any that can be
1815 * applied to the filter expressed by "map" and "satisified".
1816 * If there is any, then apply it to "map" and return the result.
1817 * Otherwise, return "map".
1818 * "id" is the identifier of the virtual array.
1820 * We only introduce at most one implication for any given virtual array,
1821 * so we can apply the implication and return as soon as we find one.
1823 static __isl_give isl_map
*apply_implications(struct pet_scop
*scop
,
1824 __isl_take isl_map
*map
, __isl_keep isl_id
*id
, int satisfied
)
1828 for (i
= 0; i
< scop
->n_implication
; ++i
) {
1829 struct pet_implication
*pi
= scop
->implications
[i
];
1832 if (pi
->satisfied
!= satisfied
)
1834 pi_id
= isl_map_get_tuple_id(pi
->extension
, isl_dim_in
);
1839 return isl_map_apply_range(map
, isl_map_copy(pi
->extension
));
1845 /* Is the filter expressed by "test" and "satisfied" implied
1846 * by filter "pos" on "domain", with filter "expr", taking into
1847 * account the implications of "scop"?
1849 * For filter on domain implying that expressed by "test" and "satisfied",
1850 * the filter needs to be an access to the same (virtual) array as "test" and
1851 * the filter value needs to be equal to "satisfied".
1852 * Moreover, the filter access relation, possibly extended by
1853 * the implications in "scop" needs to contain "test".
1855 static int implies_filter(struct pet_scop
*scop
,
1856 __isl_keep isl_map
*domain
, int pos
, __isl_keep pet_expr
*expr
,
1857 __isl_keep isl_map
*test
, int satisfied
)
1859 isl_id
*test_id
, *arg_id
;
1866 if (expr
->type
!= pet_expr_access
)
1868 test_id
= isl_map_get_tuple_id(test
, isl_dim_out
);
1869 arg_id
= pet_expr_access_get_id(expr
);
1870 isl_id_free(arg_id
);
1871 isl_id_free(test_id
);
1872 if (test_id
!= arg_id
)
1874 val
= isl_map_plain_get_val_if_fixed(domain
, isl_dim_out
, pos
);
1875 is_int
= isl_val_is_int(val
);
1877 s
= isl_val_get_num_si(val
);
1886 implied
= isl_map_copy(expr
->acc
.access
);
1887 implied
= apply_implications(scop
, implied
, test_id
, satisfied
);
1888 is_subset
= isl_map_is_subset(test
, implied
);
1889 isl_map_free(implied
);
1894 /* Is the filter expressed by "test" and "satisfied" implied
1895 * by any of the filters on the domain of "stmt", taking into
1896 * account the implications of "scop"?
1898 static int filter_implied(struct pet_scop
*scop
,
1899 struct pet_stmt
*stmt
, __isl_keep isl_multi_pw_aff
*test
, int satisfied
)
1907 if (!scop
|| !stmt
|| !test
)
1909 if (scop
->n_implication
== 0)
1911 if (stmt
->n_arg
== 0)
1914 domain
= isl_set_unwrap(isl_set_copy(stmt
->domain
));
1915 test_map
= isl_map_from_multi_pw_aff(isl_multi_pw_aff_copy(test
));
1918 for (i
= 0; i
< stmt
->n_arg
; ++i
) {
1919 implied
= implies_filter(scop
, domain
, i
, stmt
->args
[i
],
1920 test_map
, satisfied
);
1921 if (implied
< 0 || implied
)
1925 isl_map_free(test_map
);
1926 isl_map_free(domain
);
1930 /* Make the statement "stmt" depend on the value of "test"
1931 * being equal to "satisfied" by adjusting stmt->domain.
1933 * The domain of "test" corresponds to the (zero or more) outer dimensions
1934 * of the iteration domain.
1936 * We first extend "test" to apply to the entire iteration domain and
1937 * then check if the filter that we are about to add is implied
1938 * by any of the current filters, possibly taking into account
1939 * the implications in "scop". If so, we leave "stmt" untouched and return.
1941 * Otherwise, we insert an argument corresponding to a read to "test"
1942 * from the iteration domain of "stmt" in front of the list of arguments.
1943 * We also insert a corresponding output dimension in the wrapped
1944 * map contained in stmt->domain, with value set to "satisfied".
1946 static struct pet_stmt
*stmt_filter(struct pet_scop
*scop
,
1947 struct pet_stmt
*stmt
, __isl_take isl_multi_pw_aff
*test
, int satisfied
)
1953 isl_pw_multi_aff
*pma
;
1954 isl_multi_aff
*add_dom
;
1956 isl_local_space
*ls
;
1962 space
= pet_stmt_get_space(stmt
);
1963 n_test_dom
= isl_multi_pw_aff_dim(test
, isl_dim_in
);
1964 space
= isl_space_from_domain(space
);
1965 space
= isl_space_add_dims(space
, isl_dim_out
, n_test_dom
);
1966 add_dom
= isl_multi_aff_zero(isl_space_copy(space
));
1967 ls
= isl_local_space_from_space(isl_space_domain(space
));
1968 for (i
= 0; i
< n_test_dom
; ++i
) {
1970 aff
= isl_aff_var_on_domain(isl_local_space_copy(ls
),
1972 add_dom
= isl_multi_aff_set_aff(add_dom
, i
, aff
);
1974 isl_local_space_free(ls
);
1975 test
= isl_multi_pw_aff_pullback_multi_aff(test
, add_dom
);
1977 implied
= filter_implied(scop
, stmt
, test
, satisfied
);
1981 isl_multi_pw_aff_free(test
);
1985 id
= isl_multi_pw_aff_get_tuple_id(test
, isl_dim_out
);
1986 pma
= pet_filter_insert_pma(isl_set_get_space(stmt
->domain
),
1988 stmt
->domain
= isl_set_preimage_pw_multi_aff(stmt
->domain
, pma
);
1990 if (args_insert_access(&stmt
->n_arg
, &stmt
->args
, test
) < 0)
1993 isl_multi_pw_aff_free(test
);
1996 isl_multi_pw_aff_free(test
);
1997 return pet_stmt_free(stmt
);
2000 /* Does "scop" have a skip condition of the given "type"?
2002 int pet_scop_has_skip(struct pet_scop
*scop
, enum pet_skip type
)
2004 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
2008 return ext
->skip
[type
] != NULL
;
2011 /* Does "scop" have a skip condition of the given "type" that
2012 * is an affine expression?
2014 int pet_scop_has_affine_skip(struct pet_scop
*scop
, enum pet_skip type
)
2016 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
2020 if (!ext
->skip
[type
])
2022 return multi_pw_aff_is_affine(ext
->skip
[type
]);
2025 /* Does "scop" have a skip condition of the given "type" that
2026 * is not an affine expression?
2028 int pet_scop_has_var_skip(struct pet_scop
*scop
, enum pet_skip type
)
2030 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
2035 if (!ext
->skip
[type
])
2037 aff
= multi_pw_aff_is_affine(ext
->skip
[type
]);
2043 /* Does "scop" have a skip condition of the given "type" that
2044 * is affine and holds on the entire domain?
2046 int pet_scop_has_universal_skip(struct pet_scop
*scop
, enum pet_skip type
)
2048 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
2054 is_aff
= pet_scop_has_affine_skip(scop
, type
);
2055 if (is_aff
< 0 || !is_aff
)
2058 pa
= isl_multi_pw_aff_get_pw_aff(ext
->skip
[type
], 0);
2059 set
= isl_pw_aff_non_zero_set(pa
);
2060 is_univ
= isl_set_plain_is_universe(set
);
2066 /* Replace scop->skip[type] by "skip".
2068 struct pet_scop
*pet_scop_set_skip(struct pet_scop
*scop
,
2069 enum pet_skip type
, __isl_take isl_multi_pw_aff
*skip
)
2071 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
2076 isl_multi_pw_aff_free(ext
->skip
[type
]);
2077 ext
->skip
[type
] = skip
;
2081 isl_multi_pw_aff_free(skip
);
2082 return pet_scop_free(scop
);
2085 /* Return a copy of scop->skip[type].
2087 __isl_give isl_multi_pw_aff
*pet_scop_get_skip(struct pet_scop
*scop
,
2090 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
2095 return isl_multi_pw_aff_copy(ext
->skip
[type
]);
2098 /* Assuming scop->skip[type] is an affine expression,
2099 * return the constraints on the parameters for which the skip condition
2102 __isl_give isl_set
*pet_scop_get_affine_skip_domain(struct pet_scop
*scop
,
2105 isl_multi_pw_aff
*skip
;
2108 skip
= pet_scop_get_skip(scop
, type
);
2109 pa
= isl_multi_pw_aff_get_pw_aff(skip
, 0);
2110 isl_multi_pw_aff_free(skip
);
2111 return isl_set_params(isl_pw_aff_non_zero_set(pa
));
2114 /* Return the identifier of the variable that is accessed by
2115 * the skip condition of the given type.
2117 * The skip condition is assumed not to be an affine condition.
2119 __isl_give isl_id
*pet_scop_get_skip_id(struct pet_scop
*scop
,
2122 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
2127 return isl_multi_pw_aff_get_tuple_id(ext
->skip
[type
], isl_dim_out
);
2130 /* Return an access pet_expr corresponding to the skip condition
2131 * of the given type.
2133 __isl_give pet_expr
*pet_scop_get_skip_expr(struct pet_scop
*scop
,
2136 return pet_expr_from_index(pet_scop_get_skip(scop
, type
));
2139 /* Drop the the skip condition scop->skip[type].
2141 void pet_scop_reset_skip(struct pet_scop
*scop
, enum pet_skip type
)
2143 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
2148 isl_multi_pw_aff_free(ext
->skip
[type
]);
2149 ext
->skip
[type
] = NULL
;
2152 /* Make the skip condition (if any) depend on the value of "test" being
2153 * equal to "satisfied".
2155 * We only support the case where the original skip condition is universal,
2156 * i.e., where skipping is unconditional, and where satisfied == 1.
2157 * In this case, the skip condition is changed to skip only when
2158 * "test" is equal to one.
2160 static struct pet_scop
*pet_scop_filter_skip(struct pet_scop
*scop
,
2161 enum pet_skip type
, __isl_keep isl_multi_pw_aff
*test
, int satisfied
)
2167 if (!pet_scop_has_skip(scop
, type
))
2171 is_univ
= pet_scop_has_universal_skip(scop
, type
);
2173 return pet_scop_free(scop
);
2174 if (satisfied
&& is_univ
) {
2175 isl_multi_pw_aff
*skip
;
2176 skip
= isl_multi_pw_aff_copy(test
);
2177 scop
= pet_scop_set_skip(scop
, type
, skip
);
2181 isl_die(isl_multi_pw_aff_get_ctx(test
), isl_error_internal
,
2182 "skip expression cannot be filtered",
2183 return pet_scop_free(scop
));
2189 /* Make all statements in "scop" depend on the value of "test"
2190 * being equal to "satisfied" by adjusting their domains.
2192 struct pet_scop
*pet_scop_filter(struct pet_scop
*scop
,
2193 __isl_take isl_multi_pw_aff
*test
, int satisfied
)
2197 scop
= pet_scop_filter_skip(scop
, pet_skip_now
, test
, satisfied
);
2198 scop
= pet_scop_filter_skip(scop
, pet_skip_later
, test
, satisfied
);
2203 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
2204 scop
->stmts
[i
] = stmt_filter(scop
, scop
->stmts
[i
],
2205 isl_multi_pw_aff_copy(test
), satisfied
);
2206 if (!scop
->stmts
[i
])
2210 isl_multi_pw_aff_free(test
);
2213 isl_multi_pw_aff_free(test
);
2214 return pet_scop_free(scop
);
2217 /* Add all parameters in "expr" to "space" and return the result.
2219 static __isl_give isl_space
*expr_collect_params(__isl_keep pet_expr
*expr
,
2220 __isl_take isl_space
*space
)
2226 for (i
= 0; i
< expr
->n_arg
; ++i
)
2227 space
= expr_collect_params(expr
->args
[i
], space
);
2229 if (expr
->type
== pet_expr_access
)
2230 space
= isl_space_align_params(space
,
2231 isl_map_get_space(expr
->acc
.access
));
2235 pet_expr_free(expr
);
2236 return isl_space_free(space
);
2239 /* Add all parameters in "stmt" to "space" and return the result.
2241 static __isl_give isl_space
*stmt_collect_params(struct pet_stmt
*stmt
,
2242 __isl_take isl_space
*space
)
2247 return isl_space_free(space
);
2249 space
= isl_space_align_params(space
, isl_set_get_space(stmt
->domain
));
2250 space
= isl_space_align_params(space
,
2251 isl_map_get_space(stmt
->schedule
));
2252 for (i
= 0; i
< stmt
->n_arg
; ++i
)
2253 space
= expr_collect_params(stmt
->args
[i
], space
);
2254 space
= expr_collect_params(stmt
->body
, space
);
2259 /* Add all parameters in "array" to "space" and return the result.
2261 static __isl_give isl_space
*array_collect_params(struct pet_array
*array
,
2262 __isl_take isl_space
*space
)
2265 return isl_space_free(space
);
2267 space
= isl_space_align_params(space
,
2268 isl_set_get_space(array
->context
));
2269 space
= isl_space_align_params(space
, isl_set_get_space(array
->extent
));
2274 /* Add all parameters in "scop" to "space" and return the result.
2276 static __isl_give isl_space
*scop_collect_params(struct pet_scop
*scop
,
2277 __isl_take isl_space
*space
)
2282 return isl_space_free(space
);
2284 for (i
= 0; i
< scop
->n_array
; ++i
)
2285 space
= array_collect_params(scop
->arrays
[i
], space
);
2287 for (i
= 0; i
< scop
->n_stmt
; ++i
)
2288 space
= stmt_collect_params(scop
->stmts
[i
], space
);
2293 /* Add all parameters in "space" to the domain, schedule and
2294 * all access relations in "stmt".
2296 static struct pet_stmt
*stmt_propagate_params(struct pet_stmt
*stmt
,
2297 __isl_take isl_space
*space
)
2304 stmt
->domain
= isl_set_align_params(stmt
->domain
,
2305 isl_space_copy(space
));
2306 stmt
->schedule
= isl_map_align_params(stmt
->schedule
,
2307 isl_space_copy(space
));
2309 for (i
= 0; i
< stmt
->n_arg
; ++i
) {
2310 stmt
->args
[i
] = pet_expr_align_params(stmt
->args
[i
],
2311 isl_space_copy(space
));
2315 stmt
->body
= pet_expr_align_params(stmt
->body
, isl_space_copy(space
));
2317 if (!stmt
->domain
|| !stmt
->schedule
|| !stmt
->body
)
2320 isl_space_free(space
);
2323 isl_space_free(space
);
2324 return pet_stmt_free(stmt
);
2327 /* Add all parameters in "space" to "array".
2329 static struct pet_array
*array_propagate_params(struct pet_array
*array
,
2330 __isl_take isl_space
*space
)
2335 array
->context
= isl_set_align_params(array
->context
,
2336 isl_space_copy(space
));
2337 array
->extent
= isl_set_align_params(array
->extent
,
2338 isl_space_copy(space
));
2339 if (array
->value_bounds
) {
2340 array
->value_bounds
= isl_set_align_params(array
->value_bounds
,
2341 isl_space_copy(space
));
2342 if (!array
->value_bounds
)
2346 if (!array
->context
|| !array
->extent
)
2349 isl_space_free(space
);
2352 isl_space_free(space
);
2353 return pet_array_free(array
);
2356 /* Add all parameters in "space" to "scop".
2358 static struct pet_scop
*scop_propagate_params(struct pet_scop
*scop
,
2359 __isl_take isl_space
*space
)
2366 for (i
= 0; i
< scop
->n_array
; ++i
) {
2367 scop
->arrays
[i
] = array_propagate_params(scop
->arrays
[i
],
2368 isl_space_copy(space
));
2369 if (!scop
->arrays
[i
])
2373 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
2374 scop
->stmts
[i
] = stmt_propagate_params(scop
->stmts
[i
],
2375 isl_space_copy(space
));
2376 if (!scop
->stmts
[i
])
2380 isl_space_free(space
);
2383 isl_space_free(space
);
2384 return pet_scop_free(scop
);
2387 /* Update all isl_sets and isl_maps in "scop" such that they all
2388 * have the same parameters.
2390 struct pet_scop
*pet_scop_align_params(struct pet_scop
*scop
)
2397 space
= isl_set_get_space(scop
->context
);
2398 space
= scop_collect_params(scop
, space
);
2400 scop
->context
= isl_set_align_params(scop
->context
,
2401 isl_space_copy(space
));
2402 scop
= scop_propagate_params(scop
, space
);
2404 if (scop
&& !scop
->context
)
2405 return pet_scop_free(scop
);
2410 /* Replace all accesses to (0D) arrays that correspond to one of the parameters
2411 * in "space" by a value equal to the corresponding parameter.
2413 static struct pet_stmt
*stmt_detect_parameter_accesses(struct pet_stmt
*stmt
,
2414 __isl_take isl_space
*space
)
2419 stmt
->body
= pet_expr_detect_parameter_accesses(stmt
->body
,
2420 isl_space_copy(space
));
2422 if (!stmt
->domain
|| !stmt
->schedule
|| !stmt
->body
)
2425 isl_space_free(space
);
2428 isl_space_free(space
);
2429 return pet_stmt_free(stmt
);
2432 /* Replace all accesses to (0D) arrays that correspond to one of the parameters
2433 * in "space" by a value equal to the corresponding parameter.
2435 static struct pet_scop
*scop_detect_parameter_accesses(struct pet_scop
*scop
,
2436 __isl_take isl_space
*space
)
2443 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
2444 scop
->stmts
[i
] = stmt_detect_parameter_accesses(scop
->stmts
[i
],
2445 isl_space_copy(space
));
2446 if (!scop
->stmts
[i
])
2450 isl_space_free(space
);
2453 isl_space_free(space
);
2454 return pet_scop_free(scop
);
2457 /* Replace all accesses to (0D) arrays that correspond to any of
2458 * the parameters used in "scop" by a value equal
2459 * to the corresponding parameter.
2461 struct pet_scop
*pet_scop_detect_parameter_accesses(struct pet_scop
*scop
)
2468 space
= isl_set_get_space(scop
->context
);
2469 space
= scop_collect_params(scop
, space
);
2471 scop
= scop_detect_parameter_accesses(scop
, space
);
2476 /* Add the access relation of the access expression "expr" to "accesses" and
2477 * return the result.
2478 * The domain of the access relation is intersected with "domain".
2479 * If "tag" is set, then the access relation is tagged with
2480 * the corresponding reference identifier.
2482 static __isl_give isl_union_map
*expr_collect_access(__isl_keep pet_expr
*expr
,
2483 int tag
, __isl_take isl_union_map
*accesses
, __isl_keep isl_set
*domain
)
2487 access
= pet_expr_access_get_may_access(expr
);
2488 access
= isl_map_intersect_domain(access
, isl_set_copy(domain
));
2490 access
= pet_expr_tag_access(expr
, access
);
2491 return isl_union_map_add_map(accesses
, access
);
2494 /* Add all read access relations (if "read" is set) and/or all write
2495 * access relations (if "write" is set) to "accesses" and return the result.
2496 * The domains of the access relations are intersected with "domain".
2497 * If "tag" is set, then the access relations are tagged with
2498 * the corresponding reference identifiers.
2500 * If "must" is set, then we only add the accesses that are definitely
2501 * performed. Otherwise, we add all potential accesses.
2502 * In particular, if the access has any arguments, then if "must" is
2503 * set we currently skip the access completely. If "must" is not set,
2504 * we project out the values of the access arguments.
2506 static __isl_give isl_union_map
*expr_collect_accesses(
2507 __isl_keep pet_expr
*expr
, int read
, int write
, int must
, int tag
,
2508 __isl_take isl_union_map
*accesses
, __isl_keep isl_set
*domain
)
2515 return isl_union_map_free(accesses
);
2517 for (i
= 0; i
< expr
->n_arg
; ++i
)
2518 accesses
= expr_collect_accesses(expr
->args
[i
],
2519 read
, write
, must
, tag
, accesses
, domain
);
2521 if (expr
->type
== pet_expr_access
&& !pet_expr_is_affine(expr
) &&
2522 ((read
&& expr
->acc
.read
) || (write
&& expr
->acc
.write
)) &&
2523 (!must
|| expr
->n_arg
== 0)) {
2524 accesses
= expr_collect_access(expr
, tag
, accesses
, domain
);
2530 /* Collect and return all read access relations (if "read" is set)
2531 * and/or all write access relations (if "write" is set) in "stmt".
2532 * If "tag" is set, then the access relations are tagged with
2533 * the corresponding reference identifiers.
2534 * If "kill" is set, then "stmt" is a kill statement and we simply
2535 * add the argument of the kill operation.
2537 * If "must" is set, then we only add the accesses that are definitely
2538 * performed. Otherwise, we add all potential accesses.
2539 * In particular, if the statement has any arguments, then if "must" is
2540 * set we currently skip the statement completely. If "must" is not set,
2541 * we project out the values of the statement arguments.
2543 static __isl_give isl_union_map
*stmt_collect_accesses(struct pet_stmt
*stmt
,
2544 int read
, int write
, int kill
, int must
, int tag
,
2545 __isl_take isl_space
*dim
)
2547 isl_union_map
*accesses
;
2553 accesses
= isl_union_map_empty(dim
);
2555 if (must
&& stmt
->n_arg
> 0)
2558 domain
= isl_set_copy(stmt
->domain
);
2559 if (isl_set_is_wrapping(domain
))
2560 domain
= isl_map_domain(isl_set_unwrap(domain
));
2563 accesses
= expr_collect_access(stmt
->body
->args
[0], tag
,
2566 accesses
= expr_collect_accesses(stmt
->body
, read
, write
,
2567 must
, tag
, accesses
, domain
);
2568 isl_set_free(domain
);
2573 /* Is "stmt" an assignment statement?
2575 int pet_stmt_is_assign(struct pet_stmt
*stmt
)
2579 if (stmt
->body
->type
!= pet_expr_op
)
2581 return stmt
->body
->op
== pet_op_assign
;
2584 /* Is "stmt" a kill statement?
2586 int pet_stmt_is_kill(struct pet_stmt
*stmt
)
2590 if (stmt
->body
->type
!= pet_expr_op
)
2592 return stmt
->body
->op
== pet_op_kill
;
2595 /* Is "stmt" an assume statement?
2597 int pet_stmt_is_assume(struct pet_stmt
*stmt
)
2601 return pet_expr_is_assume(stmt
->body
);
2604 /* Compute a mapping from all arrays (of structs) in scop
2605 * to their innermost arrays.
2607 * In particular, for each array of a primitive type, the result
2608 * contains the identity mapping on that array.
2609 * For each array involving member accesses, the result
2610 * contains a mapping from the elements of any intermediate array of structs
2611 * to all corresponding elements of the innermost nested arrays.
2613 static __isl_give isl_union_map
*compute_to_inner(struct pet_scop
*scop
)
2616 isl_union_map
*to_inner
;
2618 to_inner
= isl_union_map_empty(isl_set_get_space(scop
->context
));
2620 for (i
= 0; i
< scop
->n_array
; ++i
) {
2621 struct pet_array
*array
= scop
->arrays
[i
];
2623 isl_map
*map
, *gist
;
2625 if (array
->element_is_record
)
2628 map
= isl_set_identity(isl_set_copy(array
->extent
));
2630 set
= isl_map_domain(isl_map_copy(map
));
2631 gist
= isl_map_copy(map
);
2632 gist
= isl_map_gist_domain(gist
, isl_set_copy(set
));
2633 to_inner
= isl_union_map_add_map(to_inner
, gist
);
2635 while (set
&& isl_set_is_wrapping(set
)) {
2639 id
= isl_set_get_tuple_id(set
);
2640 wrapped
= isl_set_unwrap(set
);
2641 wrapped
= isl_map_domain_map(wrapped
);
2642 wrapped
= isl_map_set_tuple_id(wrapped
, isl_dim_in
, id
);
2643 map
= isl_map_apply_domain(map
, wrapped
);
2644 set
= isl_map_domain(isl_map_copy(map
));
2645 gist
= isl_map_copy(map
);
2646 gist
= isl_map_gist_domain(gist
, isl_set_copy(set
));
2647 to_inner
= isl_union_map_add_map(to_inner
, gist
);
2657 /* Collect and return all read access relations (if "read" is set)
2658 * and/or all write access relations (if "write" is set) in "scop".
2659 * If "kill" is set, then we only add the arguments of kill operations.
2660 * If "must" is set, then we only add the accesses that are definitely
2661 * performed. Otherwise, we add all potential accesses.
2662 * If "tag" is set, then the access relations are tagged with
2663 * the corresponding reference identifiers.
2664 * For accesses to structures, the returned access relation accesses
2665 * all individual fields in the structures.
2667 static __isl_give isl_union_map
*scop_collect_accesses(struct pet_scop
*scop
,
2668 int read
, int write
, int kill
, int must
, int tag
)
2671 isl_union_map
*accesses
;
2672 isl_union_set
*arrays
;
2673 isl_union_map
*to_inner
;
2678 accesses
= isl_union_map_empty(isl_set_get_space(scop
->context
));
2680 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
2681 struct pet_stmt
*stmt
= scop
->stmts
[i
];
2682 isl_union_map
*accesses_i
;
2685 if (kill
&& !pet_stmt_is_kill(stmt
))
2688 space
= isl_set_get_space(scop
->context
);
2689 accesses_i
= stmt_collect_accesses(stmt
, read
, write
, kill
,
2691 accesses
= isl_union_map_union(accesses
, accesses_i
);
2694 arrays
= isl_union_set_empty(isl_union_map_get_space(accesses
));
2695 for (i
= 0; i
< scop
->n_array
; ++i
) {
2696 isl_set
*extent
= isl_set_copy(scop
->arrays
[i
]->extent
);
2697 arrays
= isl_union_set_add_set(arrays
, extent
);
2699 accesses
= isl_union_map_intersect_range(accesses
, arrays
);
2701 to_inner
= compute_to_inner(scop
);
2702 accesses
= isl_union_map_apply_range(accesses
, to_inner
);
2707 /* Collect all potential read access relations.
2709 __isl_give isl_union_map
*pet_scop_collect_may_reads(struct pet_scop
*scop
)
2711 return scop_collect_accesses(scop
, 1, 0, 0, 0, 0);
2714 /* Collect all potential write access relations.
2716 __isl_give isl_union_map
*pet_scop_collect_may_writes(struct pet_scop
*scop
)
2718 return scop_collect_accesses(scop
, 0, 1, 0, 0, 0);
2721 /* Collect all definite write access relations.
2723 __isl_give isl_union_map
*pet_scop_collect_must_writes(struct pet_scop
*scop
)
2725 return scop_collect_accesses(scop
, 0, 1, 0, 1, 0);
2728 /* Collect all definite kill access relations.
2730 __isl_give isl_union_map
*pet_scop_collect_must_kills(struct pet_scop
*scop
)
2732 return scop_collect_accesses(scop
, 0, 0, 1, 1, 0);
2735 /* Collect all tagged potential read access relations.
2737 __isl_give isl_union_map
*pet_scop_collect_tagged_may_reads(
2738 struct pet_scop
*scop
)
2740 return scop_collect_accesses(scop
, 1, 0, 0, 0, 1);
2743 /* Collect all tagged potential write access relations.
2745 __isl_give isl_union_map
*pet_scop_collect_tagged_may_writes(
2746 struct pet_scop
*scop
)
2748 return scop_collect_accesses(scop
, 0, 1, 0, 0, 1);
2751 /* Collect all tagged definite write access relations.
2753 __isl_give isl_union_map
*pet_scop_collect_tagged_must_writes(
2754 struct pet_scop
*scop
)
2756 return scop_collect_accesses(scop
, 0, 1, 0, 1, 1);
2759 /* Collect all tagged definite kill access relations.
2761 __isl_give isl_union_map
*pet_scop_collect_tagged_must_kills(
2762 struct pet_scop
*scop
)
2764 return scop_collect_accesses(scop
, 0, 0, 1, 1, 1);
2767 /* Collect and return the union of iteration domains in "scop".
2769 __isl_give isl_union_set
*pet_scop_collect_domains(struct pet_scop
*scop
)
2773 isl_union_set
*domain
;
2778 domain
= isl_union_set_empty(isl_set_get_space(scop
->context
));
2780 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
2781 domain_i
= isl_set_copy(scop
->stmts
[i
]->domain
);
2782 domain
= isl_union_set_add_set(domain
, domain_i
);
2788 /* Collect and return the schedules of the statements in "scop".
2789 * The range is normalized to the maximal number of scheduling
2792 __isl_give isl_union_map
*pet_scop_collect_schedule(struct pet_scop
*scop
)
2795 isl_map
*schedule_i
;
2796 isl_union_map
*schedule
;
2797 int depth
, max_depth
= 0;
2802 schedule
= isl_union_map_empty(isl_set_get_space(scop
->context
));
2804 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
2805 depth
= isl_map_dim(scop
->stmts
[i
]->schedule
, isl_dim_out
);
2806 if (depth
> max_depth
)
2810 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
2811 schedule_i
= isl_map_copy(scop
->stmts
[i
]->schedule
);
2812 depth
= isl_map_dim(schedule_i
, isl_dim_out
);
2813 schedule_i
= isl_map_add_dims(schedule_i
, isl_dim_out
,
2815 for (j
= depth
; j
< max_depth
; ++j
)
2816 schedule_i
= isl_map_fix_si(schedule_i
,
2818 schedule
= isl_union_map_add_map(schedule
, schedule_i
);
2824 /* Add a reference identifier to all access expressions in "stmt".
2825 * "n_ref" points to an integer that contains the sequence number
2826 * of the next reference.
2828 static struct pet_stmt
*stmt_add_ref_ids(struct pet_stmt
*stmt
, int *n_ref
)
2835 for (i
= 0; i
< stmt
->n_arg
; ++i
) {
2836 stmt
->args
[i
] = pet_expr_add_ref_ids(stmt
->args
[i
], n_ref
);
2838 return pet_stmt_free(stmt
);
2841 stmt
->body
= pet_expr_add_ref_ids(stmt
->body
, n_ref
);
2843 return pet_stmt_free(stmt
);
2848 /* Add a reference identifier to all access expressions in "scop".
2850 struct pet_scop
*pet_scop_add_ref_ids(struct pet_scop
*scop
)
2859 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
2860 scop
->stmts
[i
] = stmt_add_ref_ids(scop
->stmts
[i
], &n_ref
);
2861 if (!scop
->stmts
[i
])
2862 return pet_scop_free(scop
);
2868 /* Reset the user pointer on all parameter ids in "array".
2870 static struct pet_array
*array_anonymize(struct pet_array
*array
)
2875 array
->context
= isl_set_reset_user(array
->context
);
2876 array
->extent
= isl_set_reset_user(array
->extent
);
2877 if (!array
->context
|| !array
->extent
)
2878 return pet_array_free(array
);
2883 /* Reset the user pointer on all parameter and tuple ids in "stmt".
2885 static struct pet_stmt
*stmt_anonymize(struct pet_stmt
*stmt
)
2894 stmt
->domain
= isl_set_reset_user(stmt
->domain
);
2895 stmt
->schedule
= isl_map_reset_user(stmt
->schedule
);
2896 if (!stmt
->domain
|| !stmt
->schedule
)
2897 return pet_stmt_free(stmt
);
2899 for (i
= 0; i
< stmt
->n_arg
; ++i
) {
2900 stmt
->args
[i
] = pet_expr_anonymize(stmt
->args
[i
]);
2902 return pet_stmt_free(stmt
);
2905 stmt
->body
= pet_expr_anonymize(stmt
->body
);
2907 return pet_stmt_free(stmt
);
2912 /* Reset the user pointer on the tuple ids and all parameter ids
2915 static struct pet_implication
*implication_anonymize(
2916 struct pet_implication
*implication
)
2921 implication
->extension
= isl_map_reset_user(implication
->extension
);
2922 if (!implication
->extension
)
2923 return pet_implication_free(implication
);
2928 /* Reset the user pointer on all parameter and tuple ids in "scop".
2930 struct pet_scop
*pet_scop_anonymize(struct pet_scop
*scop
)
2937 scop
->context
= isl_set_reset_user(scop
->context
);
2938 scop
->context_value
= isl_set_reset_user(scop
->context_value
);
2939 if (!scop
->context
|| !scop
->context_value
)
2940 return pet_scop_free(scop
);
2942 for (i
= 0; i
< scop
->n_array
; ++i
) {
2943 scop
->arrays
[i
] = array_anonymize(scop
->arrays
[i
]);
2944 if (!scop
->arrays
[i
])
2945 return pet_scop_free(scop
);
2948 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
2949 scop
->stmts
[i
] = stmt_anonymize(scop
->stmts
[i
]);
2950 if (!scop
->stmts
[i
])
2951 return pet_scop_free(scop
);
2954 for (i
= 0; i
< scop
->n_implication
; ++i
) {
2955 scop
->implications
[i
] =
2956 implication_anonymize(scop
->implications
[i
]);
2957 if (!scop
->implications
[i
])
2958 return pet_scop_free(scop
);
2964 /* Compute the gist of the iteration domain and all access relations
2965 * of "stmt" based on the constraints on the parameters specified by "context"
2966 * and the constraints on the values of nested accesses specified
2967 * by "value_bounds".
2969 static struct pet_stmt
*stmt_gist(struct pet_stmt
*stmt
,
2970 __isl_keep isl_set
*context
, __isl_keep isl_union_map
*value_bounds
)
2978 domain
= isl_set_copy(stmt
->domain
);
2979 if (stmt
->n_arg
> 0)
2980 domain
= isl_map_domain(isl_set_unwrap(domain
));
2982 domain
= isl_set_intersect_params(domain
, isl_set_copy(context
));
2984 for (i
= 0; i
< stmt
->n_arg
; ++i
) {
2985 stmt
->args
[i
] = pet_expr_gist(stmt
->args
[i
],
2986 domain
, value_bounds
);
2991 stmt
->body
= pet_expr_gist(stmt
->body
, domain
, value_bounds
);
2995 isl_set_free(domain
);
2997 domain
= isl_set_universe(pet_stmt_get_space(stmt
));
2998 domain
= isl_set_intersect_params(domain
, isl_set_copy(context
));
2999 if (stmt
->n_arg
> 0)
3000 domain
= pet_value_bounds_apply(domain
, stmt
->n_arg
, stmt
->args
,
3002 stmt
->domain
= isl_set_gist(stmt
->domain
, domain
);
3004 return pet_stmt_free(stmt
);
3008 isl_set_free(domain
);
3009 return pet_stmt_free(stmt
);
3012 /* Compute the gist of the extent of the array
3013 * based on the constraints on the parameters specified by "context".
3015 static struct pet_array
*array_gist(struct pet_array
*array
,
3016 __isl_keep isl_set
*context
)
3021 array
->extent
= isl_set_gist_params(array
->extent
,
3022 isl_set_copy(context
));
3024 return pet_array_free(array
);
3029 /* Compute the gist of all sets and relations in "scop"
3030 * based on the constraints on the parameters specified by "scop->context"
3031 * and the constraints on the values of nested accesses specified
3032 * by "value_bounds".
3034 struct pet_scop
*pet_scop_gist(struct pet_scop
*scop
,
3035 __isl_keep isl_union_map
*value_bounds
)
3042 scop
->context
= isl_set_coalesce(scop
->context
);
3044 return pet_scop_free(scop
);
3046 for (i
= 0; i
< scop
->n_array
; ++i
) {
3047 scop
->arrays
[i
] = array_gist(scop
->arrays
[i
], scop
->context
);
3048 if (!scop
->arrays
[i
])
3049 return pet_scop_free(scop
);
3052 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
3053 scop
->stmts
[i
] = stmt_gist(scop
->stmts
[i
], scop
->context
,
3055 if (!scop
->stmts
[i
])
3056 return pet_scop_free(scop
);
3062 /* Intersect the context of "scop" with "context".
3063 * To ensure that we don't introduce any unnamed parameters in
3064 * the context of "scop", we first remove the unnamed parameters
3067 struct pet_scop
*pet_scop_restrict_context(struct pet_scop
*scop
,
3068 __isl_take isl_set
*context
)
3073 context
= pet_nested_remove_from_set(context
);
3074 scop
->context
= isl_set_intersect(scop
->context
, context
);
3076 return pet_scop_free(scop
);
3080 isl_set_free(context
);
3081 return pet_scop_free(scop
);
3084 /* Drop the current context of "scop". That is, replace the context
3085 * by a universal set.
3087 struct pet_scop
*pet_scop_reset_context(struct pet_scop
*scop
)
3094 space
= isl_set_get_space(scop
->context
);
3095 isl_set_free(scop
->context
);
3096 scop
->context
= isl_set_universe(space
);
3098 return pet_scop_free(scop
);
3103 /* Append "array" to the arrays of "scop".
3105 struct pet_scop
*pet_scop_add_array(struct pet_scop
*scop
,
3106 struct pet_array
*array
)
3109 struct pet_array
**arrays
;
3111 if (!array
|| !scop
)
3114 ctx
= isl_set_get_ctx(scop
->context
);
3115 arrays
= isl_realloc_array(ctx
, scop
->arrays
, struct pet_array
*,
3119 scop
->arrays
= arrays
;
3120 scop
->arrays
[scop
->n_array
] = array
;
3125 pet_array_free(array
);
3126 return pet_scop_free(scop
);
3129 /* Create an index expression for an access to a virtual array
3130 * representing the result of a condition.
3131 * Unlike other accessed data, the id of the array is NULL as
3132 * there is no ValueDecl in the program corresponding to the virtual
3134 * The array starts out as a scalar, but grows along with the
3135 * statement writing to the array in pet_scop_embed.
3137 __isl_give isl_multi_pw_aff
*pet_create_test_index(isl_ctx
*ctx
, int test_nr
)
3139 isl_space
*dim
= isl_space_alloc(ctx
, 0, 0, 0);
3143 snprintf(name
, sizeof(name
), "__pet_test_%d", test_nr
);
3144 id
= isl_id_alloc(ctx
, name
, NULL
);
3145 dim
= isl_space_set_tuple_id(dim
, isl_dim_out
, id
);
3146 return isl_multi_pw_aff_zero(dim
);
3149 /* Add an array with the given extent (range of "index") to the list
3150 * of arrays in "scop" and return the extended pet_scop.
3151 * "int_size" is the number of bytes needed to represent values of type "int".
3152 * The array is marked as attaining values 0 and 1 only and
3153 * as each element being assigned at most once.
3155 struct pet_scop
*pet_scop_add_boolean_array(struct pet_scop
*scop
,
3156 __isl_take isl_multi_pw_aff
*index
, int int_size
)
3160 struct pet_array
*array
;
3163 if (!scop
|| !index
)
3166 ctx
= isl_multi_pw_aff_get_ctx(index
);
3167 array
= isl_calloc_type(ctx
, struct pet_array
);
3171 access
= isl_map_from_multi_pw_aff(index
);
3172 array
->extent
= isl_map_range(access
);
3173 space
= isl_space_params_alloc(ctx
, 0);
3174 array
->context
= isl_set_universe(space
);
3175 space
= isl_space_set_alloc(ctx
, 0, 1);
3176 array
->value_bounds
= isl_set_universe(space
);
3177 array
->value_bounds
= isl_set_lower_bound_si(array
->value_bounds
,
3179 array
->value_bounds
= isl_set_upper_bound_si(array
->value_bounds
,
3181 array
->element_type
= strdup("int");
3182 array
->element_size
= int_size
;
3183 array
->uniquely_defined
= 1;
3185 if (!array
->extent
|| !array
->context
)
3186 array
= pet_array_free(array
);
3188 scop
= pet_scop_add_array(scop
, array
);
3192 isl_multi_pw_aff_free(index
);
3193 return pet_scop_free(scop
);
3196 /* Create and return an implication on filter values equal to "satisfied"
3197 * with extension "map".
3199 static struct pet_implication
*new_implication(__isl_take isl_map
*map
,
3203 struct pet_implication
*implication
;
3207 ctx
= isl_map_get_ctx(map
);
3208 implication
= isl_alloc_type(ctx
, struct pet_implication
);
3212 implication
->extension
= map
;
3213 implication
->satisfied
= satisfied
;
3221 /* Add an implication on filter values equal to "satisfied"
3222 * with extension "map" to "scop".
3224 struct pet_scop
*pet_scop_add_implication(struct pet_scop
*scop
,
3225 __isl_take isl_map
*map
, int satisfied
)
3228 struct pet_implication
*implication
;
3229 struct pet_implication
**implications
;
3231 implication
= new_implication(map
, satisfied
);
3232 if (!scop
|| !implication
)
3235 ctx
= isl_set_get_ctx(scop
->context
);
3236 implications
= isl_realloc_array(ctx
, scop
->implications
,
3237 struct pet_implication
*,
3238 scop
->n_implication
+ 1);
3241 scop
->implications
= implications
;
3242 scop
->implications
[scop
->n_implication
] = implication
;
3243 scop
->n_implication
++;
3247 pet_implication_free(implication
);
3248 return pet_scop_free(scop
);
3251 /* Given an access expression, check if it is data dependent.
3252 * If so, set *found and abort the search.
3254 static int is_data_dependent(__isl_keep pet_expr
*expr
, void *user
)
3258 if (pet_expr_get_n_arg(expr
) > 0) {
3266 /* Does "scop" contain any data dependent accesses?
3268 * Check the body of each statement for such accesses.
3270 int pet_scop_has_data_dependent_accesses(struct pet_scop
*scop
)
3278 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
3279 int r
= pet_expr_foreach_access_expr(scop
->stmts
[i
]->body
,
3280 &is_data_dependent
, &found
);
3281 if (r
< 0 && !found
)
3290 /* Does "scop" contain and data dependent conditions?
3292 int pet_scop_has_data_dependent_conditions(struct pet_scop
*scop
)
3299 for (i
= 0; i
< scop
->n_stmt
; ++i
)
3300 if (scop
->stmts
[i
]->n_arg
> 0)
3306 /* Keep track of the "input" file inside the (extended) "scop".
3308 struct pet_scop
*pet_scop_set_input_file(struct pet_scop
*scop
, FILE *input
)
3310 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
3320 /* Print the original code corresponding to "scop" to printer "p".
3322 * pet_scop_print_original can only be called from
3323 * a pet_transform_C_source callback. This means that the input
3324 * file is stored in the extended scop and that the printer prints
3327 __isl_give isl_printer
*pet_scop_print_original(struct pet_scop
*scop
,
3328 __isl_take isl_printer
*p
)
3330 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
3332 unsigned start
, end
;
3335 return isl_printer_free(p
);
3338 isl_die(isl_printer_get_ctx(p
), isl_error_invalid
,
3339 "no input file stored in scop",
3340 return isl_printer_free(p
));
3342 output
= isl_printer_get_file(p
);
3344 return isl_printer_free(p
);
3346 start
= pet_loc_get_start(scop
->loc
);
3347 end
= pet_loc_get_end(scop
->loc
);
3348 if (copy(ext
->input
, output
, start
, end
) < 0)
3349 return isl_printer_free(p
);