2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012-2013 Ecole Normale Superieure. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials provided
15 * with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as
31 * representing official policies, either expressed or implied, of
36 #include <isl/constraint.h>
37 #include <isl/union_set.h>
42 #define ARRAY_SIZE(array) (sizeof(array)/sizeof(*array))
44 static char *type_str
[] = {
45 [pet_expr_access
] = "access",
46 [pet_expr_call
] = "call",
47 [pet_expr_cast
] = "cast",
48 [pet_expr_double
] = "double",
49 [pet_expr_unary
] = "unary",
50 [pet_expr_binary
] = "binary",
51 [pet_expr_ternary
] = "ternary"
54 static char *op_str
[] = {
55 [pet_op_add_assign
] = "+=",
56 [pet_op_sub_assign
] = "-=",
57 [pet_op_mul_assign
] = "*=",
58 [pet_op_div_assign
] = "/=",
59 [pet_op_assign
] = "=",
74 [pet_op_post_inc
] = "++",
75 [pet_op_post_dec
] = "--",
76 [pet_op_pre_inc
] = "++",
77 [pet_op_pre_dec
] = "--",
78 [pet_op_address_of
] = "&",
83 [pet_op_assume
] = "assume",
84 [pet_op_kill
] = "kill"
87 /* pet_scop with extra information that is used during parsing and printing.
89 * In particular, we keep track of conditions under which we want
90 * to skip the rest of the current loop iteration (skip[pet_skip_now])
91 * and of conditions under which we want to skip subsequent
92 * loop iterations (skip[pet_skip_later]).
94 * The conditions are represented as index expressions defined
95 * over a zero-dimensiona domain. The index expression is either
96 * a boolean affine expression or an access to a variable, which
97 * is assumed to attain values zero and one. The condition holds
98 * if the variable has value one or if the affine expression
99 * has value one (typically for only part of the parameter space).
101 * A missing condition (skip[type] == NULL) means that we don't want
104 * Additionally, we keep track of the original input file
105 * inside pet_transform_C_source.
107 struct pet_scop_ext
{
108 struct pet_scop scop
;
110 isl_multi_pw_aff
*skip
[2];
114 const char *pet_op_str(enum pet_op_type op
)
119 int pet_op_is_inc_dec(enum pet_op_type op
)
121 return op
== pet_op_post_inc
|| op
== pet_op_post_dec
||
122 op
== pet_op_pre_inc
|| op
== pet_op_pre_dec
;
125 const char *pet_type_str(enum pet_expr_type type
)
127 return type_str
[type
];
130 enum pet_op_type
pet_str_op(const char *str
)
134 for (i
= 0; i
< ARRAY_SIZE(op_str
); ++i
)
135 if (!strcmp(op_str
[i
], str
))
141 enum pet_expr_type
pet_str_type(const char *str
)
145 for (i
= 0; i
< ARRAY_SIZE(type_str
); ++i
)
146 if (!strcmp(type_str
[i
], str
))
152 /* Construct an access pet_expr from an access relation and an index expression.
153 * By default, it is considered to be a read access.
155 struct pet_expr
*pet_expr_from_access_and_index( __isl_take isl_map
*access
,
156 __isl_take isl_multi_pw_aff
*index
)
158 isl_ctx
*ctx
= isl_map_get_ctx(access
);
159 struct pet_expr
*expr
;
161 if (!index
|| !access
)
163 expr
= isl_calloc_type(ctx
, struct pet_expr
);
167 expr
->type
= pet_expr_access
;
168 expr
->acc
.access
= access
;
169 expr
->acc
.index
= index
;
175 isl_map_free(access
);
176 isl_multi_pw_aff_free(index
);
180 /* Construct an access pet_expr from an index expression.
181 * By default, the access is considered to be a read access.
183 struct pet_expr
*pet_expr_from_index(__isl_take isl_multi_pw_aff
*index
)
187 access
= isl_map_from_multi_pw_aff(isl_multi_pw_aff_copy(index
));
188 return pet_expr_from_access_and_index(access
, index
);
191 /* Extend the range of "access" with "n" dimensions, retaining
192 * the tuple identifier on this range.
194 * If "access" represents a member access, then extend the range
197 static __isl_give isl_map
*extend_range(__isl_take isl_map
*access
, int n
)
201 id
= isl_map_get_tuple_id(access
, isl_dim_out
);
203 if (!isl_map_range_is_wrapping(access
)) {
204 access
= isl_map_add_dims(access
, isl_dim_out
, n
);
208 domain
= isl_map_copy(access
);
209 domain
= isl_map_range_factor_domain(domain
);
210 access
= isl_map_range_factor_range(access
);
211 access
= extend_range(access
, n
);
212 access
= isl_map_range_product(domain
, access
);
215 access
= isl_map_set_tuple_id(access
, isl_dim_out
, id
);
220 /* Construct an access pet_expr from an index expression and
221 * the depth of the accessed array.
222 * By default, the access is considered to be a read access.
224 * If the number of indices is smaller than the depth of the array,
225 * then we assume that all elements of the remaining dimensions
228 struct pet_expr
*pet_expr_from_index_and_depth(
229 __isl_take isl_multi_pw_aff
*index
, int depth
)
234 access
= isl_map_from_multi_pw_aff(isl_multi_pw_aff_copy(index
));
237 dim
= isl_map_dim(access
, isl_dim_out
);
239 isl_die(isl_map_get_ctx(access
), isl_error_internal
,
240 "number of indices greater than depth",
241 access
= isl_map_free(access
));
243 return pet_expr_from_access_and_index(access
, index
);
245 access
= extend_range(access
, depth
- dim
);
247 return pet_expr_from_access_and_index(access
, index
);
249 isl_multi_pw_aff_free(index
);
253 /* Construct a pet_expr that kills the elements specified by
254 * the index expression "index" and the access relation "access".
256 struct pet_expr
*pet_expr_kill_from_access_and_index(__isl_take isl_map
*access
,
257 __isl_take isl_multi_pw_aff
*index
)
260 struct pet_expr
*expr
;
262 if (!access
|| !index
)
265 ctx
= isl_multi_pw_aff_get_ctx(index
);
266 expr
= pet_expr_from_access_and_index(access
, index
);
270 return pet_expr_new_unary(ctx
, pet_op_kill
, expr
);
272 isl_map_free(access
);
273 isl_multi_pw_aff_free(index
);
277 /* Construct a unary pet_expr that performs "op" on "arg".
279 struct pet_expr
*pet_expr_new_unary(isl_ctx
*ctx
, enum pet_op_type op
,
280 struct pet_expr
*arg
)
282 struct pet_expr
*expr
;
286 expr
= isl_alloc_type(ctx
, struct pet_expr
);
290 expr
->type
= pet_expr_unary
;
293 expr
->args
= isl_calloc_array(ctx
, struct pet_expr
*, 1);
296 expr
->args
[pet_un_arg
] = arg
;
304 /* Construct a binary pet_expr that performs "op" on "lhs" and "rhs".
306 struct pet_expr
*pet_expr_new_binary(isl_ctx
*ctx
, enum pet_op_type op
,
307 struct pet_expr
*lhs
, struct pet_expr
*rhs
)
309 struct pet_expr
*expr
;
313 expr
= isl_alloc_type(ctx
, struct pet_expr
);
317 expr
->type
= pet_expr_binary
;
320 expr
->args
= isl_calloc_array(ctx
, struct pet_expr
*, 2);
323 expr
->args
[pet_bin_lhs
] = lhs
;
324 expr
->args
[pet_bin_rhs
] = rhs
;
333 /* Construct a ternary pet_expr that performs "cond" ? "lhs" : "rhs".
335 struct pet_expr
*pet_expr_new_ternary(isl_ctx
*ctx
, struct pet_expr
*cond
,
336 struct pet_expr
*lhs
, struct pet_expr
*rhs
)
338 struct pet_expr
*expr
;
340 if (!cond
|| !lhs
|| !rhs
)
342 expr
= isl_alloc_type(ctx
, struct pet_expr
);
346 expr
->type
= pet_expr_ternary
;
348 expr
->args
= isl_calloc_array(ctx
, struct pet_expr
*, 3);
351 expr
->args
[pet_ter_cond
] = cond
;
352 expr
->args
[pet_ter_true
] = lhs
;
353 expr
->args
[pet_ter_false
] = rhs
;
363 /* Construct a call pet_expr that calls function "name" with "n_arg"
364 * arguments. The caller is responsible for filling in the arguments.
366 struct pet_expr
*pet_expr_new_call(isl_ctx
*ctx
, const char *name
,
369 struct pet_expr
*expr
;
371 expr
= isl_alloc_type(ctx
, struct pet_expr
);
375 expr
->type
= pet_expr_call
;
377 expr
->name
= strdup(name
);
378 expr
->args
= isl_calloc_array(ctx
, struct pet_expr
*, n_arg
);
379 if (!expr
->name
|| !expr
->args
)
380 return pet_expr_free(expr
);
385 /* Construct a pet_expr that represents the cast of "arg" to "type_name".
387 struct pet_expr
*pet_expr_new_cast(isl_ctx
*ctx
, const char *type_name
,
388 struct pet_expr
*arg
)
390 struct pet_expr
*expr
;
395 expr
= isl_alloc_type(ctx
, struct pet_expr
);
399 expr
->type
= pet_expr_cast
;
401 expr
->type_name
= strdup(type_name
);
402 expr
->args
= isl_calloc_array(ctx
, struct pet_expr
*, 1);
403 if (!expr
->type_name
|| !expr
->args
)
415 /* Construct a pet_expr that represents the double "d".
417 struct pet_expr
*pet_expr_new_double(isl_ctx
*ctx
, double val
, const char *s
)
419 struct pet_expr
*expr
;
421 expr
= isl_calloc_type(ctx
, struct pet_expr
);
425 expr
->type
= pet_expr_double
;
427 expr
->d
.s
= strdup(s
);
429 return pet_expr_free(expr
);
434 struct pet_expr
*pet_expr_free(struct pet_expr
*expr
)
441 for (i
= 0; i
< expr
->n_arg
; ++i
)
442 pet_expr_free(expr
->args
[i
]);
445 switch (expr
->type
) {
446 case pet_expr_access
:
447 isl_id_free(expr
->acc
.ref_id
);
448 isl_map_free(expr
->acc
.access
);
449 isl_multi_pw_aff_free(expr
->acc
.index
);
455 free(expr
->type_name
);
457 case pet_expr_double
:
461 case pet_expr_binary
:
462 case pet_expr_ternary
:
470 static void expr_dump(struct pet_expr
*expr
, int indent
)
477 fprintf(stderr
, "%*s", indent
, "");
479 switch (expr
->type
) {
480 case pet_expr_double
:
481 fprintf(stderr
, "%s\n", expr
->d
.s
);
483 case pet_expr_access
:
484 isl_id_dump(expr
->acc
.ref_id
);
485 fprintf(stderr
, "%*s", indent
, "");
486 isl_map_dump(expr
->acc
.access
);
487 fprintf(stderr
, "%*s", indent
, "");
488 isl_multi_pw_aff_dump(expr
->acc
.index
);
489 fprintf(stderr
, "%*sread: %d\n", indent
+ 2,
491 fprintf(stderr
, "%*swrite: %d\n", indent
+ 2,
492 "", expr
->acc
.write
);
493 for (i
= 0; i
< expr
->n_arg
; ++i
)
494 expr_dump(expr
->args
[i
], indent
+ 2);
497 fprintf(stderr
, "%s\n", op_str
[expr
->op
]);
498 expr_dump(expr
->args
[pet_un_arg
], indent
+ 2);
500 case pet_expr_binary
:
501 fprintf(stderr
, "%s\n", op_str
[expr
->op
]);
502 expr_dump(expr
->args
[pet_bin_lhs
], indent
+ 2);
503 expr_dump(expr
->args
[pet_bin_rhs
], indent
+ 2);
505 case pet_expr_ternary
:
506 fprintf(stderr
, "?:\n");
507 expr_dump(expr
->args
[pet_ter_cond
], indent
+ 2);
508 expr_dump(expr
->args
[pet_ter_true
], indent
+ 2);
509 expr_dump(expr
->args
[pet_ter_false
], indent
+ 2);
512 fprintf(stderr
, "%s/%d\n", expr
->name
, expr
->n_arg
);
513 for (i
= 0; i
< expr
->n_arg
; ++i
)
514 expr_dump(expr
->args
[i
], indent
+ 2);
517 fprintf(stderr
, "(%s)\n", expr
->type_name
);
518 for (i
= 0; i
< expr
->n_arg
; ++i
)
519 expr_dump(expr
->args
[i
], indent
+ 2);
524 void pet_expr_dump(struct pet_expr
*expr
)
529 /* Does "expr" represent an access to an unnamed space, i.e.,
530 * does it represent an affine expression?
532 int pet_expr_is_affine(struct pet_expr
*expr
)
538 if (expr
->type
!= pet_expr_access
)
541 has_id
= isl_map_has_tuple_id(expr
->acc
.access
, isl_dim_out
);
548 /* Return the identifier of the array accessed by "expr".
550 * If "expr" represents a member access, then return the identifier
551 * of the outer structure array.
553 __isl_give isl_id
*pet_expr_access_get_id(struct pet_expr
*expr
)
557 if (expr
->type
!= pet_expr_access
)
560 if (isl_map_range_is_wrapping(expr
->acc
.access
)) {
564 space
= isl_map_get_space(expr
->acc
.access
);
565 space
= isl_space_range(space
);
566 while (space
&& isl_space_is_wrapping(space
))
567 space
= isl_space_domain(isl_space_unwrap(space
));
568 id
= isl_space_get_tuple_id(space
, isl_dim_set
);
569 isl_space_free(space
);
574 return isl_map_get_tuple_id(expr
->acc
.access
, isl_dim_out
);
577 /* Align the parameters of expr->acc.index and expr->acc.access.
579 struct pet_expr
*pet_expr_access_align_params(struct pet_expr
*expr
)
583 if (expr
->type
!= pet_expr_access
)
584 return pet_expr_free(expr
);
586 expr
->acc
.access
= isl_map_align_params(expr
->acc
.access
,
587 isl_multi_pw_aff_get_space(expr
->acc
.index
));
588 expr
->acc
.index
= isl_multi_pw_aff_align_params(expr
->acc
.index
,
589 isl_map_get_space(expr
->acc
.access
));
590 if (!expr
->acc
.access
|| !expr
->acc
.index
)
591 return pet_expr_free(expr
);
596 /* Does "expr" represent an access to a scalar, i.e., zero-dimensional array?
598 int pet_expr_is_scalar_access(struct pet_expr
*expr
)
602 if (expr
->type
!= pet_expr_access
)
605 return isl_map_dim(expr
->acc
.access
, isl_dim_out
) == 0;
608 /* Return 1 if the two pet_exprs are equivalent.
610 int pet_expr_is_equal(struct pet_expr
*expr1
, struct pet_expr
*expr2
)
614 if (!expr1
|| !expr2
)
617 if (expr1
->type
!= expr2
->type
)
619 if (expr1
->n_arg
!= expr2
->n_arg
)
621 for (i
= 0; i
< expr1
->n_arg
; ++i
)
622 if (!pet_expr_is_equal(expr1
->args
[i
], expr2
->args
[i
]))
624 switch (expr1
->type
) {
625 case pet_expr_double
:
626 if (strcmp(expr1
->d
.s
, expr2
->d
.s
))
628 if (expr1
->d
.val
!= expr2
->d
.val
)
631 case pet_expr_access
:
632 if (expr1
->acc
.read
!= expr2
->acc
.read
)
634 if (expr1
->acc
.write
!= expr2
->acc
.write
)
636 if (expr1
->acc
.ref_id
!= expr2
->acc
.ref_id
)
638 if (!expr1
->acc
.access
|| !expr2
->acc
.access
)
640 if (!isl_map_is_equal(expr1
->acc
.access
, expr2
->acc
.access
))
642 if (!expr1
->acc
.index
|| !expr2
->acc
.index
)
644 if (!isl_multi_pw_aff_plain_is_equal(expr1
->acc
.index
,
649 case pet_expr_binary
:
650 case pet_expr_ternary
:
651 if (expr1
->op
!= expr2
->op
)
655 if (strcmp(expr1
->name
, expr2
->name
))
659 if (strcmp(expr1
->type_name
, expr2
->type_name
))
667 /* Add extra conditions on the parameters to all access relations in "expr".
669 * The conditions are not added to the index expression. Instead, they
670 * are used to try and simplifty the index expression.
672 struct pet_expr
*pet_expr_restrict(struct pet_expr
*expr
,
673 __isl_take isl_set
*cond
)
680 for (i
= 0; i
< expr
->n_arg
; ++i
) {
681 expr
->args
[i
] = pet_expr_restrict(expr
->args
[i
],
687 if (expr
->type
== pet_expr_access
) {
688 expr
->acc
.access
= isl_map_intersect_params(expr
->acc
.access
,
690 expr
->acc
.index
= isl_multi_pw_aff_gist_params(
691 expr
->acc
.index
, isl_set_copy(cond
));
692 if (!expr
->acc
.access
|| !expr
->acc
.index
)
700 return pet_expr_free(expr
);
703 /* Tag the access relation "access" with "id".
704 * That is, insert the id as the range of a wrapped relation
705 * in the domain of "access".
707 * If "access" is of the form
711 * then the result is of the form
713 * [D[i] -> id[]] -> A[a]
715 static __isl_give isl_map
*tag_access(__isl_take isl_map
*access
,
716 __isl_take isl_id
*id
)
721 space
= isl_space_range(isl_map_get_space(access
));
722 space
= isl_space_from_range(space
);
723 space
= isl_space_set_tuple_id(space
, isl_dim_in
, id
);
724 add_tag
= isl_map_universe(space
);
725 access
= isl_map_domain_product(access
, add_tag
);
730 /* Modify all expressions of type pet_expr_access in "expr"
731 * by calling "fn" on them.
733 struct pet_expr
*pet_expr_map_access(struct pet_expr
*expr
,
734 struct pet_expr
*(*fn
)(struct pet_expr
*expr
, void *user
),
742 for (i
= 0; i
< expr
->n_arg
; ++i
) {
743 expr
->args
[i
] = pet_expr_map_access(expr
->args
[i
], fn
, user
);
745 return pet_expr_free(expr
);
748 if (expr
->type
== pet_expr_access
)
749 expr
= fn(expr
, user
);
754 /* Call "fn" on each of the subexpressions of "expr" of type pet_expr_access.
756 * Return -1 on error (where fn return a negative value is treated as an error).
757 * Otherwise return 0.
759 int pet_expr_foreach_access_expr(struct pet_expr
*expr
,
760 int (*fn
)(struct pet_expr
*expr
, void *user
), void *user
)
767 for (i
= 0; i
< expr
->n_arg
; ++i
)
768 if (pet_expr_foreach_access_expr(expr
->args
[i
], fn
, user
) < 0)
771 if (expr
->type
== pet_expr_access
)
772 return fn(expr
, user
);
777 /* Modify the access relation and index expression
778 * of the given access expression
779 * based on the given iteration space transformation.
780 * In particular, precompose the access relation and index expression
781 * with the update function.
783 * If the access has any arguments then the domain of the access relation
784 * is a wrapped mapping from the iteration space to the space of
785 * argument values. We only need to change the domain of this wrapped
786 * mapping, so we extend the input transformation with an identity mapping
787 * on the space of argument values.
789 static struct pet_expr
*update_domain(struct pet_expr
*expr
, void *user
)
791 isl_multi_pw_aff
*update
= user
;
794 update
= isl_multi_pw_aff_copy(update
);
796 space
= isl_map_get_space(expr
->acc
.access
);
797 space
= isl_space_domain(space
);
798 if (!isl_space_is_wrapping(space
))
799 isl_space_free(space
);
801 isl_multi_pw_aff
*id
;
802 space
= isl_space_unwrap(space
);
803 space
= isl_space_range(space
);
804 space
= isl_space_map_from_set(space
);
805 id
= isl_multi_pw_aff_identity(space
);
806 update
= isl_multi_pw_aff_product(update
, id
);
809 expr
->acc
.access
= isl_map_preimage_domain_multi_pw_aff(
811 isl_multi_pw_aff_copy(update
));
812 expr
->acc
.index
= isl_multi_pw_aff_pullback_multi_pw_aff(
813 expr
->acc
.index
, update
);
814 if (!expr
->acc
.access
|| !expr
->acc
.index
)
815 return pet_expr_free(expr
);
820 /* Modify all access relations in "expr" by precomposing them with
821 * the given iteration space transformation.
823 static struct pet_expr
*expr_update_domain(struct pet_expr
*expr
,
824 __isl_take isl_multi_pw_aff
*update
)
826 expr
= pet_expr_map_access(expr
, &update_domain
, update
);
827 isl_multi_pw_aff_free(update
);
831 /* Construct a pet_stmt with given line number and statement
832 * number from a pet_expr.
833 * The initial iteration domain is the zero-dimensional universe.
834 * The name of the domain is given by "label" if it is non-NULL.
835 * Otherwise, the name is constructed as S_<id>.
836 * The domains of all access relations are modified to refer
837 * to the statement iteration domain.
839 struct pet_stmt
*pet_stmt_from_pet_expr(isl_ctx
*ctx
, int line
,
840 __isl_take isl_id
*label
, int id
, struct pet_expr
*expr
)
842 struct pet_stmt
*stmt
;
846 isl_multi_pw_aff
*add_name
;
852 stmt
= isl_calloc_type(ctx
, struct pet_stmt
);
856 dim
= isl_space_set_alloc(ctx
, 0, 0);
858 dim
= isl_space_set_tuple_id(dim
, isl_dim_set
, label
);
860 snprintf(name
, sizeof(name
), "S_%d", id
);
861 dim
= isl_space_set_tuple_name(dim
, isl_dim_set
, name
);
863 dom
= isl_set_universe(isl_space_copy(dim
));
864 sched
= isl_map_from_domain(isl_set_copy(dom
));
866 dim
= isl_space_from_domain(dim
);
867 add_name
= isl_multi_pw_aff_zero(dim
);
868 expr
= expr_update_domain(expr
, add_name
);
872 stmt
->schedule
= sched
;
875 if (!stmt
->domain
|| !stmt
->schedule
|| !stmt
->body
)
876 return pet_stmt_free(stmt
);
885 void *pet_stmt_free(struct pet_stmt
*stmt
)
892 isl_set_free(stmt
->domain
);
893 isl_map_free(stmt
->schedule
);
894 pet_expr_free(stmt
->body
);
896 for (i
= 0; i
< stmt
->n_arg
; ++i
)
897 pet_expr_free(stmt
->args
[i
]);
904 static void stmt_dump(struct pet_stmt
*stmt
, int indent
)
911 fprintf(stderr
, "%*s%d\n", indent
, "", stmt
->line
);
912 fprintf(stderr
, "%*s", indent
, "");
913 isl_set_dump(stmt
->domain
);
914 fprintf(stderr
, "%*s", indent
, "");
915 isl_map_dump(stmt
->schedule
);
916 expr_dump(stmt
->body
, indent
);
917 for (i
= 0; i
< stmt
->n_arg
; ++i
)
918 expr_dump(stmt
->args
[i
], indent
+ 2);
921 void pet_stmt_dump(struct pet_stmt
*stmt
)
926 /* Allocate a new pet_type with the given "name" and "definition".
928 struct pet_type
*pet_type_alloc(isl_ctx
*ctx
, const char *name
,
929 const char *definition
)
931 struct pet_type
*type
;
933 type
= isl_alloc_type(ctx
, struct pet_type
);
937 type
->name
= strdup(name
);
938 type
->definition
= strdup(definition
);
940 if (!type
->name
|| !type
->definition
)
941 return pet_type_free(type
);
946 /* Free "type" and return NULL.
948 struct pet_type
*pet_type_free(struct pet_type
*type
)
954 free(type
->definition
);
960 struct pet_array
*pet_array_free(struct pet_array
*array
)
965 isl_set_free(array
->context
);
966 isl_set_free(array
->extent
);
967 isl_set_free(array
->value_bounds
);
968 free(array
->element_type
);
974 void pet_array_dump(struct pet_array
*array
)
979 isl_set_dump(array
->context
);
980 isl_set_dump(array
->extent
);
981 isl_set_dump(array
->value_bounds
);
982 fprintf(stderr
, "%s%s%s\n", array
->element_type
,
983 array
->element_is_record
? " element-is-record" : "",
984 array
->live_out
? " live-out" : "");
987 /* Alloc a pet_scop structure, with extra room for information that
988 * is only used during parsing.
990 struct pet_scop
*pet_scop_alloc(isl_ctx
*ctx
)
992 return &isl_calloc_type(ctx
, struct pet_scop_ext
)->scop
;
995 /* Construct a pet_scop with room for n statements.
997 static struct pet_scop
*scop_alloc(isl_ctx
*ctx
, int n
)
1000 struct pet_scop
*scop
;
1002 scop
= pet_scop_alloc(ctx
);
1006 space
= isl_space_params_alloc(ctx
, 0);
1007 scop
->context
= isl_set_universe(isl_space_copy(space
));
1008 scop
->context_value
= isl_set_universe(space
);
1009 scop
->stmts
= isl_calloc_array(ctx
, struct pet_stmt
*, n
);
1010 if (!scop
->context
|| !scop
->stmts
)
1011 return pet_scop_free(scop
);
1018 struct pet_scop
*pet_scop_empty(isl_ctx
*ctx
)
1020 return scop_alloc(ctx
, 0);
1023 /* Update "context" with respect to the valid parameter values for "access".
1025 static __isl_give isl_set
*access_extract_context(__isl_keep isl_map
*access
,
1026 __isl_take isl_set
*context
)
1028 context
= isl_set_intersect(context
,
1029 isl_map_params(isl_map_copy(access
)));
1033 /* Update "context" with respect to the valid parameter values for "expr".
1035 * If "expr" represents a ternary operator, then a parameter value
1036 * needs to be valid for the condition and for at least one of the
1037 * remaining two arguments.
1038 * If the condition is an affine expression, then we can be a bit more specific.
1039 * The parameter then has to be valid for the second argument for
1040 * non-zero accesses and valid for the third argument for zero accesses.
1042 static __isl_give isl_set
*expr_extract_context(struct pet_expr
*expr
,
1043 __isl_take isl_set
*context
)
1047 if (expr
->type
== pet_expr_ternary
) {
1049 isl_set
*context1
, *context2
;
1051 is_aff
= pet_expr_is_affine(expr
->args
[0]);
1055 context
= expr_extract_context(expr
->args
[0], context
);
1056 context1
= expr_extract_context(expr
->args
[1],
1057 isl_set_copy(context
));
1058 context2
= expr_extract_context(expr
->args
[2], context
);
1064 access
= isl_map_copy(expr
->args
[0]->acc
.access
);
1065 access
= isl_map_fix_si(access
, isl_dim_out
, 0, 0);
1066 zero_set
= isl_map_params(access
);
1067 context1
= isl_set_subtract(context1
,
1068 isl_set_copy(zero_set
));
1069 context2
= isl_set_intersect(context2
, zero_set
);
1072 context
= isl_set_union(context1
, context2
);
1073 context
= isl_set_coalesce(context
);
1078 for (i
= 0; i
< expr
->n_arg
; ++i
)
1079 context
= expr_extract_context(expr
->args
[i
], context
);
1081 if (expr
->type
== pet_expr_access
)
1082 context
= access_extract_context(expr
->acc
.access
, context
);
1086 isl_set_free(context
);
1090 /* Update "context" with respect to the valid parameter values for "stmt".
1092 * If the statement is an assume statement with an affine expression,
1093 * then intersect "context" with that expression.
1094 * Otherwise, intersect "context" with the contexts of the expressions
1097 static __isl_give isl_set
*stmt_extract_context(struct pet_stmt
*stmt
,
1098 __isl_take isl_set
*context
)
1102 if (pet_stmt_is_assume(stmt
) &&
1103 pet_expr_is_affine(stmt
->body
->args
[0])) {
1104 isl_multi_pw_aff
*index
;
1108 index
= stmt
->body
->args
[0]->acc
.index
;
1109 pa
= isl_multi_pw_aff_get_pw_aff(index
, 0);
1110 cond
= isl_set_params(isl_pw_aff_non_zero_set(pa
));
1111 return isl_set_intersect(context
, cond
);
1114 for (i
= 0; i
< stmt
->n_arg
; ++i
)
1115 context
= expr_extract_context(stmt
->args
[i
], context
);
1117 context
= expr_extract_context(stmt
->body
, context
);
1122 /* Construct a pet_scop that contains the given pet_stmt.
1124 struct pet_scop
*pet_scop_from_pet_stmt(isl_ctx
*ctx
, struct pet_stmt
*stmt
)
1126 struct pet_scop
*scop
;
1131 scop
= scop_alloc(ctx
, 1);
1135 scop
->context
= stmt_extract_context(stmt
, scop
->context
);
1139 scop
->stmts
[0] = stmt
;
1143 pet_stmt_free(stmt
);
1144 pet_scop_free(scop
);
1148 /* Does "mpa" represent an access to an element of an unnamed space, i.e.,
1149 * does it represent an affine expression?
1151 static int multi_pw_aff_is_affine(__isl_keep isl_multi_pw_aff
*mpa
)
1155 has_id
= isl_multi_pw_aff_has_tuple_id(mpa
, isl_dim_out
);
1162 /* Return the piecewise affine expression "set ? 1 : 0" defined on "dom".
1164 static __isl_give isl_pw_aff
*indicator_function(__isl_take isl_set
*set
,
1165 __isl_take isl_set
*dom
)
1168 pa
= isl_set_indicator_function(set
);
1169 pa
= isl_pw_aff_intersect_domain(pa
, dom
);
1173 /* Return "lhs || rhs", defined on the shared definition domain.
1175 static __isl_give isl_pw_aff
*pw_aff_or(__isl_take isl_pw_aff
*lhs
,
1176 __isl_take isl_pw_aff
*rhs
)
1181 dom
= isl_set_intersect(isl_pw_aff_domain(isl_pw_aff_copy(lhs
)),
1182 isl_pw_aff_domain(isl_pw_aff_copy(rhs
)));
1183 cond
= isl_set_union(isl_pw_aff_non_zero_set(lhs
),
1184 isl_pw_aff_non_zero_set(rhs
));
1185 cond
= isl_set_coalesce(cond
);
1186 return indicator_function(cond
, dom
);
1189 /* Combine ext1->skip[type] and ext2->skip[type] into ext->skip[type].
1190 * ext may be equal to either ext1 or ext2.
1192 * The two skips that need to be combined are assumed to be affine expressions.
1194 * We need to skip in ext if we need to skip in either ext1 or ext2.
1195 * We don't need to skip in ext if we don't need to skip in both ext1 and ext2.
1197 static struct pet_scop_ext
*combine_skips(struct pet_scop_ext
*ext
,
1198 struct pet_scop_ext
*ext1
, struct pet_scop_ext
*ext2
,
1201 isl_pw_aff
*skip
, *skip1
, *skip2
;
1205 if (!ext1
->skip
[type
] && !ext2
->skip
[type
])
1207 if (!ext1
->skip
[type
]) {
1210 ext
->skip
[type
] = ext2
->skip
[type
];
1211 ext2
->skip
[type
] = NULL
;
1214 if (!ext2
->skip
[type
]) {
1217 ext
->skip
[type
] = ext1
->skip
[type
];
1218 ext1
->skip
[type
] = NULL
;
1222 if (!multi_pw_aff_is_affine(ext1
->skip
[type
]) ||
1223 !multi_pw_aff_is_affine(ext2
->skip
[type
]))
1224 isl_die(isl_multi_pw_aff_get_ctx(ext1
->skip
[type
]),
1225 isl_error_internal
, "can only combine affine skips",
1228 skip1
= isl_multi_pw_aff_get_pw_aff(ext1
->skip
[type
], 0);
1229 skip2
= isl_multi_pw_aff_get_pw_aff(ext2
->skip
[type
], 0);
1230 skip
= pw_aff_or(skip1
, skip2
);
1231 isl_multi_pw_aff_free(ext1
->skip
[type
]);
1232 ext1
->skip
[type
] = NULL
;
1233 isl_multi_pw_aff_free(ext2
->skip
[type
]);
1234 ext2
->skip
[type
] = NULL
;
1235 ext
->skip
[type
] = isl_multi_pw_aff_from_pw_aff(skip
);
1236 if (!ext
->skip
[type
])
1241 pet_scop_free(&ext
->scop
);
1245 /* Combine scop1->skip[type] and scop2->skip[type] into scop->skip[type],
1246 * where type takes on the values pet_skip_now and pet_skip_later.
1247 * scop may be equal to either scop1 or scop2.
1249 static struct pet_scop
*scop_combine_skips(struct pet_scop
*scop
,
1250 struct pet_scop
*scop1
, struct pet_scop
*scop2
)
1252 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
1253 struct pet_scop_ext
*ext1
= (struct pet_scop_ext
*) scop1
;
1254 struct pet_scop_ext
*ext2
= (struct pet_scop_ext
*) scop2
;
1256 ext
= combine_skips(ext
, ext1
, ext2
, pet_skip_now
);
1257 ext
= combine_skips(ext
, ext1
, ext2
, pet_skip_later
);
1261 /* Update scop->start and scop->end to include the region from "start"
1262 * to "end". In particular, if scop->end == 0, then "scop" does not
1263 * have any offset information yet and we simply take the information
1264 * from "start" and "end". Otherwise, we update the fields if the
1265 * region from "start" to "end" is not already included.
1267 struct pet_scop
*pet_scop_update_start_end(struct pet_scop
*scop
,
1268 unsigned start
, unsigned end
)
1272 if (scop
->end
== 0) {
1273 scop
->start
= start
;
1276 if (start
< scop
->start
)
1277 scop
->start
= start
;
1278 if (end
> scop
->end
)
1285 /* Does "implication" appear in the list of implications of "scop"?
1287 static int is_known_implication(struct pet_scop
*scop
,
1288 struct pet_implication
*implication
)
1292 for (i
= 0; i
< scop
->n_implication
; ++i
) {
1293 struct pet_implication
*pi
= scop
->implications
[i
];
1296 if (pi
->satisfied
!= implication
->satisfied
)
1298 equal
= isl_map_is_equal(pi
->extension
, implication
->extension
);
1308 /* Store the concatenation of the impliciations of "scop1" and "scop2"
1309 * in "scop", removing duplicates (i.e., implications in "scop2" that
1310 * already appear in "scop1").
1312 static struct pet_scop
*scop_collect_implications(isl_ctx
*ctx
,
1313 struct pet_scop
*scop
, struct pet_scop
*scop1
, struct pet_scop
*scop2
)
1320 if (scop2
->n_implication
== 0) {
1321 scop
->n_implication
= scop1
->n_implication
;
1322 scop
->implications
= scop1
->implications
;
1323 scop1
->n_implication
= 0;
1324 scop1
->implications
= NULL
;
1328 if (scop1
->n_implication
== 0) {
1329 scop
->n_implication
= scop2
->n_implication
;
1330 scop
->implications
= scop2
->implications
;
1331 scop2
->n_implication
= 0;
1332 scop2
->implications
= NULL
;
1336 scop
->implications
= isl_calloc_array(ctx
, struct pet_implication
*,
1337 scop1
->n_implication
+ scop2
->n_implication
);
1338 if (!scop
->implications
)
1339 return pet_scop_free(scop
);
1341 for (i
= 0; i
< scop1
->n_implication
; ++i
) {
1342 scop
->implications
[i
] = scop1
->implications
[i
];
1343 scop1
->implications
[i
] = NULL
;
1346 scop
->n_implication
= scop1
->n_implication
;
1347 j
= scop1
->n_implication
;
1348 for (i
= 0; i
< scop2
->n_implication
; ++i
) {
1351 known
= is_known_implication(scop
, scop2
->implications
[i
]);
1353 return pet_scop_free(scop
);
1356 scop
->implications
[j
++] = scop2
->implications
[i
];
1357 scop2
->implications
[i
] = NULL
;
1359 scop
->n_implication
= j
;
1364 /* Combine the offset information of "scop1" and "scop2" into "scop".
1366 static struct pet_scop
*scop_combine_start_end(struct pet_scop
*scop
,
1367 struct pet_scop
*scop1
, struct pet_scop
*scop2
)
1370 scop
= pet_scop_update_start_end(scop
,
1371 scop1
->start
, scop1
->end
);
1373 scop
= pet_scop_update_start_end(scop
,
1374 scop2
->start
, scop2
->end
);
1378 /* Construct a pet_scop that contains the offset information,
1379 * arrays, statements and skip information in "scop1" and "scop2".
1381 static struct pet_scop
*pet_scop_add(isl_ctx
*ctx
, struct pet_scop
*scop1
,
1382 struct pet_scop
*scop2
)
1385 struct pet_scop
*scop
= NULL
;
1387 if (!scop1
|| !scop2
)
1390 if (scop1
->n_stmt
== 0) {
1391 scop2
= scop_combine_skips(scop2
, scop1
, scop2
);
1392 pet_scop_free(scop1
);
1396 if (scop2
->n_stmt
== 0) {
1397 scop1
= scop_combine_skips(scop1
, scop1
, scop2
);
1398 pet_scop_free(scop2
);
1402 scop
= scop_alloc(ctx
, scop1
->n_stmt
+ scop2
->n_stmt
);
1406 scop
->arrays
= isl_calloc_array(ctx
, struct pet_array
*,
1407 scop1
->n_array
+ scop2
->n_array
);
1410 scop
->n_array
= scop1
->n_array
+ scop2
->n_array
;
1412 for (i
= 0; i
< scop1
->n_stmt
; ++i
) {
1413 scop
->stmts
[i
] = scop1
->stmts
[i
];
1414 scop1
->stmts
[i
] = NULL
;
1417 for (i
= 0; i
< scop2
->n_stmt
; ++i
) {
1418 scop
->stmts
[scop1
->n_stmt
+ i
] = scop2
->stmts
[i
];
1419 scop2
->stmts
[i
] = NULL
;
1422 for (i
= 0; i
< scop1
->n_array
; ++i
) {
1423 scop
->arrays
[i
] = scop1
->arrays
[i
];
1424 scop1
->arrays
[i
] = NULL
;
1427 for (i
= 0; i
< scop2
->n_array
; ++i
) {
1428 scop
->arrays
[scop1
->n_array
+ i
] = scop2
->arrays
[i
];
1429 scop2
->arrays
[i
] = NULL
;
1432 scop
= scop_collect_implications(ctx
, scop
, scop1
, scop2
);
1433 scop
= pet_scop_restrict_context(scop
, isl_set_copy(scop1
->context
));
1434 scop
= pet_scop_restrict_context(scop
, isl_set_copy(scop2
->context
));
1435 scop
= scop_combine_skips(scop
, scop1
, scop2
);
1436 scop
= scop_combine_start_end(scop
, scop1
, scop2
);
1438 pet_scop_free(scop1
);
1439 pet_scop_free(scop2
);
1442 pet_scop_free(scop1
);
1443 pet_scop_free(scop2
);
1444 pet_scop_free(scop
);
1448 /* Apply the skip condition "skip" to "scop".
1449 * That is, make sure "scop" is not executed when the condition holds.
1451 * If "skip" is an affine expression, we add the conditions under
1452 * which the expression is zero to the iteration domains.
1453 * Otherwise, we add a filter on the variable attaining the value zero.
1455 static struct pet_scop
*restrict_skip(struct pet_scop
*scop
,
1456 __isl_take isl_multi_pw_aff
*skip
)
1465 is_aff
= multi_pw_aff_is_affine(skip
);
1470 return pet_scop_filter(scop
, skip
, 0);
1472 pa
= isl_multi_pw_aff_get_pw_aff(skip
, 0);
1473 isl_multi_pw_aff_free(skip
);
1474 zero
= isl_set_params(isl_pw_aff_zero_set(pa
));
1475 scop
= pet_scop_restrict(scop
, zero
);
1479 isl_multi_pw_aff_free(skip
);
1480 return pet_scop_free(scop
);
1483 /* Construct a pet_scop that contains the arrays, statements and
1484 * skip information in "scop1" and "scop2", where the two scops
1485 * are executed "in sequence". That is, breaks and continues
1486 * in scop1 have an effect on scop2.
1488 struct pet_scop
*pet_scop_add_seq(isl_ctx
*ctx
, struct pet_scop
*scop1
,
1489 struct pet_scop
*scop2
)
1491 if (scop1
&& pet_scop_has_skip(scop1
, pet_skip_now
))
1492 scop2
= restrict_skip(scop2
,
1493 pet_scop_get_skip(scop1
, pet_skip_now
));
1494 return pet_scop_add(ctx
, scop1
, scop2
);
1497 /* Construct a pet_scop that contains the arrays, statements and
1498 * skip information in "scop1" and "scop2", where the two scops
1499 * are executed "in parallel". That is, any break or continue
1500 * in scop1 has no effect on scop2.
1502 struct pet_scop
*pet_scop_add_par(isl_ctx
*ctx
, struct pet_scop
*scop1
,
1503 struct pet_scop
*scop2
)
1505 return pet_scop_add(ctx
, scop1
, scop2
);
1508 void *pet_implication_free(struct pet_implication
*implication
)
1515 isl_map_free(implication
->extension
);
1521 struct pet_scop
*pet_scop_free(struct pet_scop
*scop
)
1524 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
1528 isl_set_free(scop
->context
);
1529 isl_set_free(scop
->context_value
);
1531 for (i
= 0; i
< scop
->n_type
; ++i
)
1532 pet_type_free(scop
->types
[i
]);
1535 for (i
= 0; i
< scop
->n_array
; ++i
)
1536 pet_array_free(scop
->arrays
[i
]);
1539 for (i
= 0; i
< scop
->n_stmt
; ++i
)
1540 pet_stmt_free(scop
->stmts
[i
]);
1542 if (scop
->implications
)
1543 for (i
= 0; i
< scop
->n_implication
; ++i
)
1544 pet_implication_free(scop
->implications
[i
]);
1545 free(scop
->implications
);
1546 isl_multi_pw_aff_free(ext
->skip
[pet_skip_now
]);
1547 isl_multi_pw_aff_free(ext
->skip
[pet_skip_later
]);
1552 void pet_type_dump(struct pet_type
*type
)
1557 fprintf(stderr
, "%s -> %s\n", type
->name
, type
->definition
);
1560 void pet_implication_dump(struct pet_implication
*implication
)
1565 fprintf(stderr
, "%d\n", implication
->satisfied
);
1566 isl_map_dump(implication
->extension
);
1569 void pet_scop_dump(struct pet_scop
*scop
)
1572 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
1577 isl_set_dump(scop
->context
);
1578 isl_set_dump(scop
->context_value
);
1579 for (i
= 0; i
< scop
->n_type
; ++i
)
1580 pet_type_dump(scop
->types
[i
]);
1581 for (i
= 0; i
< scop
->n_array
; ++i
)
1582 pet_array_dump(scop
->arrays
[i
]);
1583 for (i
= 0; i
< scop
->n_stmt
; ++i
)
1584 pet_stmt_dump(scop
->stmts
[i
]);
1585 for (i
= 0; i
< scop
->n_implication
; ++i
)
1586 pet_implication_dump(scop
->implications
[i
]);
1589 fprintf(stderr
, "skip\n");
1590 isl_multi_pw_aff_dump(ext
->skip
[0]);
1591 isl_multi_pw_aff_dump(ext
->skip
[1]);
1595 /* Return 1 if the two pet_arrays are equivalent.
1597 * We don't compare element_size as this may be target dependent.
1599 int pet_array_is_equal(struct pet_array
*array1
, struct pet_array
*array2
)
1601 if (!array1
|| !array2
)
1604 if (!isl_set_is_equal(array1
->context
, array2
->context
))
1606 if (!isl_set_is_equal(array1
->extent
, array2
->extent
))
1608 if (!!array1
->value_bounds
!= !!array2
->value_bounds
)
1610 if (array1
->value_bounds
&&
1611 !isl_set_is_equal(array1
->value_bounds
, array2
->value_bounds
))
1613 if (strcmp(array1
->element_type
, array2
->element_type
))
1615 if (array1
->element_is_record
!= array2
->element_is_record
)
1617 if (array1
->live_out
!= array2
->live_out
)
1619 if (array1
->uniquely_defined
!= array2
->uniquely_defined
)
1621 if (array1
->declared
!= array2
->declared
)
1623 if (array1
->exposed
!= array2
->exposed
)
1629 /* Return 1 if the two pet_stmts are equivalent.
1631 int pet_stmt_is_equal(struct pet_stmt
*stmt1
, struct pet_stmt
*stmt2
)
1635 if (!stmt1
|| !stmt2
)
1638 if (stmt1
->line
!= stmt2
->line
)
1640 if (!isl_set_is_equal(stmt1
->domain
, stmt2
->domain
))
1642 if (!isl_map_is_equal(stmt1
->schedule
, stmt2
->schedule
))
1644 if (!pet_expr_is_equal(stmt1
->body
, stmt2
->body
))
1646 if (stmt1
->n_arg
!= stmt2
->n_arg
)
1648 for (i
= 0; i
< stmt1
->n_arg
; ++i
) {
1649 if (!pet_expr_is_equal(stmt1
->args
[i
], stmt2
->args
[i
]))
1656 /* Return 1 if the two pet_types are equivalent.
1658 * We only compare the names of the types since the exact representation
1659 * of the definition may depend on the version of clang being used.
1661 int pet_type_is_equal(struct pet_type
*type1
, struct pet_type
*type2
)
1663 if (!type1
|| !type2
)
1666 if (strcmp(type1
->name
, type2
->name
))
1672 /* Return 1 if the two pet_implications are equivalent.
1674 int pet_implication_is_equal(struct pet_implication
*implication1
,
1675 struct pet_implication
*implication2
)
1677 if (!implication1
|| !implication2
)
1680 if (implication1
->satisfied
!= implication2
->satisfied
)
1682 if (!isl_map_is_equal(implication1
->extension
, implication2
->extension
))
1688 /* Return 1 if the two pet_scops are equivalent.
1690 int pet_scop_is_equal(struct pet_scop
*scop1
, struct pet_scop
*scop2
)
1694 if (!scop1
|| !scop2
)
1697 if (!isl_set_is_equal(scop1
->context
, scop2
->context
))
1699 if (!isl_set_is_equal(scop1
->context_value
, scop2
->context_value
))
1702 if (scop1
->n_type
!= scop2
->n_type
)
1704 for (i
= 0; i
< scop1
->n_type
; ++i
)
1705 if (!pet_type_is_equal(scop1
->types
[i
], scop2
->types
[i
]))
1708 if (scop1
->n_array
!= scop2
->n_array
)
1710 for (i
= 0; i
< scop1
->n_array
; ++i
)
1711 if (!pet_array_is_equal(scop1
->arrays
[i
], scop2
->arrays
[i
]))
1714 if (scop1
->n_stmt
!= scop2
->n_stmt
)
1716 for (i
= 0; i
< scop1
->n_stmt
; ++i
)
1717 if (!pet_stmt_is_equal(scop1
->stmts
[i
], scop2
->stmts
[i
]))
1720 if (scop1
->n_implication
!= scop2
->n_implication
)
1722 for (i
= 0; i
< scop1
->n_implication
; ++i
)
1723 if (!pet_implication_is_equal(scop1
->implications
[i
],
1724 scop2
->implications
[i
]))
1730 /* Prefix the schedule of "stmt" with an extra dimension with constant
1733 struct pet_stmt
*pet_stmt_prefix(struct pet_stmt
*stmt
, int pos
)
1738 stmt
->schedule
= isl_map_insert_dims(stmt
->schedule
, isl_dim_out
, 0, 1);
1739 stmt
->schedule
= isl_map_fix_si(stmt
->schedule
, isl_dim_out
, 0, pos
);
1740 if (!stmt
->schedule
)
1741 return pet_stmt_free(stmt
);
1746 /* Prefix the schedules of all statements in "scop" with an extra
1747 * dimension with constant value "pos".
1749 struct pet_scop
*pet_scop_prefix(struct pet_scop
*scop
, int pos
)
1756 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
1757 scop
->stmts
[i
] = pet_stmt_prefix(scop
->stmts
[i
], pos
);
1758 if (!scop
->stmts
[i
])
1759 return pet_scop_free(scop
);
1765 /* Given a set with a parameter at "param_pos" that refers to the
1766 * iterator, "move" the iterator to the first set dimension.
1767 * That is, essentially equate the parameter to the first set dimension
1768 * and then project it out.
1770 * The first set dimension may however refer to a virtual iterator,
1771 * while the parameter refers to the "real" iterator.
1772 * We therefore need to take into account the affine expression "iv_map", which
1773 * expresses the real iterator in terms of the virtual iterator.
1774 * In particular, we equate the set dimension to the input of the map
1775 * and the parameter to the output of the map and then project out
1776 * everything we don't need anymore.
1778 static __isl_give isl_set
*internalize_iv(__isl_take isl_set
*set
,
1779 int param_pos
, __isl_take isl_aff
*iv_map
)
1781 isl_map
*map
, *map2
;
1782 map
= isl_map_from_domain(set
);
1783 map
= isl_map_add_dims(map
, isl_dim_out
, 1);
1784 map
= isl_map_equate(map
, isl_dim_in
, 0, isl_dim_out
, 0);
1785 map2
= isl_map_from_aff(iv_map
);
1786 map2
= isl_map_align_params(map2
, isl_map_get_space(map
));
1787 map
= isl_map_apply_range(map
, map2
);
1788 map
= isl_map_equate(map
, isl_dim_param
, param_pos
, isl_dim_out
, 0);
1789 map
= isl_map_project_out(map
, isl_dim_param
, param_pos
, 1);
1790 return isl_map_domain(map
);
1793 /* Data used in embed_access.
1794 * extend adds an iterator to the iteration domain (through precomposition).
1795 * iv_map expresses the real iterator in terms of the virtual iterator
1796 * var_id represents the induction variable of the corresponding loop
1798 struct pet_embed_access
{
1799 isl_multi_pw_aff
*extend
;
1804 /* Given an index expression, return an expression for the outer iterator.
1806 static __isl_give isl_aff
*index_outer_iterator(
1807 __isl_take isl_multi_pw_aff
*index
)
1810 isl_local_space
*ls
;
1812 space
= isl_multi_pw_aff_get_domain_space(index
);
1813 isl_multi_pw_aff_free(index
);
1815 ls
= isl_local_space_from_space(space
);
1816 return isl_aff_var_on_domain(ls
, isl_dim_set
, 0);
1819 /* Replace an index expression that references the new (outer) iterator variable
1820 * by one that references the corresponding (real) iterator.
1822 * The input index expression is of the form
1824 * { S[i',...] -> i[] }
1826 * where i' refers to the virtual iterator.
1828 * iv_map is of the form
1832 * Return the index expression
1834 * { S[i',...] -> [i] }
1836 static __isl_give isl_multi_pw_aff
*replace_by_iterator(
1837 __isl_take isl_multi_pw_aff
*index
, __isl_take isl_aff
*iv_map
)
1842 aff
= index_outer_iterator(index
);
1843 space
= isl_aff_get_space(aff
);
1844 iv_map
= isl_aff_align_params(iv_map
, space
);
1845 aff
= isl_aff_pullback_aff(iv_map
, aff
);
1847 return isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff
));
1850 /* Given an index expression "index" that refers to the (real) iterator
1851 * through the parameter at position "pos", plug in "iv_map", expressing
1852 * the real iterator in terms of the virtual (outer) iterator.
1854 * In particular, the index expression is of the form
1856 * [..., i, ...] -> { S[i',...] -> ... i ... }
1858 * where i refers to the real iterator and i' refers to the virtual iterator.
1860 * iv_map is of the form
1864 * Return the index expression
1866 * [..., ...] -> { S[i',...] -> ... iv_map(i') ... }
1869 * We first move the parameter to the input
1871 * [..., ...] -> { [i, i',...] -> ... i ... }
1875 * { S[i',...] -> [i=iv_map(i'), i', ...] }
1877 * and then combine the two to obtain the desired result.
1879 static __isl_give isl_multi_pw_aff
*index_internalize_iv(
1880 __isl_take isl_multi_pw_aff
*index
, int pos
, __isl_take isl_aff
*iv_map
)
1882 isl_space
*space
= isl_multi_pw_aff_get_domain_space(index
);
1885 space
= isl_space_drop_dims(space
, isl_dim_param
, pos
, 1);
1886 index
= isl_multi_pw_aff_move_dims(index
, isl_dim_in
, 0,
1887 isl_dim_param
, pos
, 1);
1889 space
= isl_space_map_from_set(space
);
1890 ma
= isl_multi_aff_identity(isl_space_copy(space
));
1891 iv_map
= isl_aff_align_params(iv_map
, space
);
1892 iv_map
= isl_aff_pullback_aff(iv_map
, isl_multi_aff_get_aff(ma
, 0));
1893 ma
= isl_multi_aff_flat_range_product(
1894 isl_multi_aff_from_aff(iv_map
), ma
);
1895 index
= isl_multi_pw_aff_pullback_multi_aff(index
, ma
);
1900 /* Does the index expression "index" reference a virtual array, i.e.,
1901 * one with user pointer equal to NULL?
1902 * A virtual array does not have any members.
1904 static int index_is_virtual_array(__isl_keep isl_multi_pw_aff
*index
)
1909 if (!isl_multi_pw_aff_has_tuple_id(index
, isl_dim_out
))
1911 if (isl_multi_pw_aff_range_is_wrapping(index
))
1913 id
= isl_multi_pw_aff_get_tuple_id(index
, isl_dim_out
);
1914 is_virtual
= !isl_id_get_user(id
);
1920 /* Does the access relation "access" reference a virtual array, i.e.,
1921 * one with user pointer equal to NULL?
1922 * A virtual array does not have any members.
1924 static int access_is_virtual_array(__isl_keep isl_map
*access
)
1929 if (!isl_map_has_tuple_id(access
, isl_dim_out
))
1931 if (isl_map_range_is_wrapping(access
))
1933 id
= isl_map_get_tuple_id(access
, isl_dim_out
);
1934 is_virtual
= !isl_id_get_user(id
);
1940 /* Embed the given index expression in an extra outer loop.
1941 * The domain of the index expression has already been updated.
1943 * If the access refers to the induction variable, then it is
1944 * turned into an access to the set of integers with index (and value)
1945 * equal to the induction variable.
1947 * If the accessed array is a virtual array (with user
1948 * pointer equal to NULL), as created by create_test_index,
1949 * then it is extended along with the domain of the index expression.
1951 static __isl_give isl_multi_pw_aff
*embed_index_expression(
1952 __isl_take isl_multi_pw_aff
*index
, struct pet_embed_access
*data
)
1954 isl_id
*array_id
= NULL
;
1957 if (isl_multi_pw_aff_has_tuple_id(index
, isl_dim_out
))
1958 array_id
= isl_multi_pw_aff_get_tuple_id(index
, isl_dim_out
);
1959 if (array_id
== data
->var_id
) {
1960 index
= replace_by_iterator(index
, isl_aff_copy(data
->iv_map
));
1961 } else if (index_is_virtual_array(index
)) {
1963 isl_multi_pw_aff
*mpa
;
1965 aff
= index_outer_iterator(isl_multi_pw_aff_copy(index
));
1966 mpa
= isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff
));
1967 index
= isl_multi_pw_aff_flat_range_product(mpa
, index
);
1968 index
= isl_multi_pw_aff_set_tuple_id(index
, isl_dim_out
,
1969 isl_id_copy(array_id
));
1971 isl_id_free(array_id
);
1973 pos
= isl_multi_pw_aff_find_dim_by_id(index
,
1974 isl_dim_param
, data
->var_id
);
1976 index
= index_internalize_iv(index
, pos
,
1977 isl_aff_copy(data
->iv_map
));
1978 index
= isl_multi_pw_aff_set_dim_id(index
, isl_dim_in
, 0,
1979 isl_id_copy(data
->var_id
));
1984 /* Embed the given access relation in an extra outer loop.
1985 * The domain of the access relation has already been updated.
1987 * If the access refers to the induction variable, then it is
1988 * turned into an access to the set of integers with index (and value)
1989 * equal to the induction variable.
1991 * If the induction variable appears in the constraints (as a parameter),
1992 * then the parameter is equated to the newly introduced iteration
1993 * domain dimension and subsequently projected out.
1995 * Similarly, if the accessed array is a virtual array (with user
1996 * pointer equal to NULL), as created by create_test_index,
1997 * then it is extended along with the domain of the access.
1999 static __isl_give isl_map
*embed_access_relation(__isl_take isl_map
*access
,
2000 struct pet_embed_access
*data
)
2002 isl_id
*array_id
= NULL
;
2005 if (isl_map_has_tuple_id(access
, isl_dim_out
))
2006 array_id
= isl_map_get_tuple_id(access
, isl_dim_out
);
2007 if (array_id
== data
->var_id
|| access_is_virtual_array(access
)) {
2008 access
= isl_map_insert_dims(access
, isl_dim_out
, 0, 1);
2009 access
= isl_map_equate(access
,
2010 isl_dim_in
, 0, isl_dim_out
, 0);
2011 if (array_id
== data
->var_id
)
2012 access
= isl_map_apply_range(access
,
2013 isl_map_from_aff(isl_aff_copy(data
->iv_map
)));
2015 access
= isl_map_set_tuple_id(access
, isl_dim_out
,
2016 isl_id_copy(array_id
));
2018 isl_id_free(array_id
);
2020 pos
= isl_map_find_dim_by_id(access
, isl_dim_param
, data
->var_id
);
2022 isl_set
*set
= isl_map_wrap(access
);
2023 set
= internalize_iv(set
, pos
, isl_aff_copy(data
->iv_map
));
2024 access
= isl_set_unwrap(set
);
2026 access
= isl_map_set_dim_id(access
, isl_dim_in
, 0,
2027 isl_id_copy(data
->var_id
));
2032 /* Given an access expression, embed the associated access relation and
2033 * index expression in an extra outer loop.
2035 * We first update the domains to insert the extra dimension and
2036 * then update the access relation and index expression to take
2037 * into account the mapping "iv_map" from virtual iterator
2040 static struct pet_expr
*embed_access(struct pet_expr
*expr
, void *user
)
2043 struct pet_embed_access
*data
= user
;
2045 expr
= update_domain(expr
, data
->extend
);
2049 expr
->acc
.access
= embed_access_relation(expr
->acc
.access
, data
);
2050 expr
->acc
.index
= embed_index_expression(expr
->acc
.index
, data
);
2051 if (!expr
->acc
.access
|| !expr
->acc
.index
)
2052 return pet_expr_free(expr
);
2057 /* Embed all access subexpressions of "expr" in an extra loop.
2058 * "extend" inserts an outer loop iterator in the iteration domains
2059 * (through precomposition).
2060 * "iv_map" expresses the real iterator in terms of the virtual iterator
2061 * "var_id" represents the induction variable.
2063 static struct pet_expr
*expr_embed(struct pet_expr
*expr
,
2064 __isl_take isl_multi_pw_aff
*extend
, __isl_take isl_aff
*iv_map
,
2065 __isl_keep isl_id
*var_id
)
2067 struct pet_embed_access data
=
2068 { .extend
= extend
, .iv_map
= iv_map
, .var_id
= var_id
};
2070 expr
= pet_expr_map_access(expr
, &embed_access
, &data
);
2071 isl_aff_free(iv_map
);
2072 isl_multi_pw_aff_free(extend
);
2076 /* Embed the given pet_stmt in an extra outer loop with iteration domain
2077 * "dom" and schedule "sched". "var_id" represents the induction variable
2078 * of the loop. "iv_map" maps a possibly virtual iterator to the real iterator.
2079 * That is, it expresses the iterator that some of the parameters in "stmt"
2080 * may refer to in terms of the iterator used in "dom" and
2081 * the domain of "sched".
2083 * The iteration domain and schedule of the statement are updated
2084 * according to the iteration domain and schedule of the new loop.
2085 * If stmt->domain is a wrapped map, then the iteration domain
2086 * is the domain of this map, so we need to be careful to adjust
2089 * If the induction variable appears in the constraints (as a parameter)
2090 * of the current iteration domain or the schedule of the statement,
2091 * then the parameter is equated to the newly introduced iteration
2092 * domain dimension and subsequently projected out.
2094 * Finally, all access relations are updated based on the extra loop.
2096 static struct pet_stmt
*pet_stmt_embed(struct pet_stmt
*stmt
,
2097 __isl_take isl_set
*dom
, __isl_take isl_map
*sched
,
2098 __isl_take isl_aff
*iv_map
, __isl_take isl_id
*var_id
)
2104 isl_multi_pw_aff
*extend
;
2109 if (isl_set_is_wrapping(stmt
->domain
)) {
2114 map
= isl_set_unwrap(stmt
->domain
);
2115 stmt_id
= isl_map_get_tuple_id(map
, isl_dim_in
);
2116 ran_dim
= isl_space_range(isl_map_get_space(map
));
2117 ext
= isl_map_from_domain_and_range(isl_set_copy(dom
),
2118 isl_set_universe(ran_dim
));
2119 map
= isl_map_flat_domain_product(ext
, map
);
2120 map
= isl_map_set_tuple_id(map
, isl_dim_in
,
2121 isl_id_copy(stmt_id
));
2122 dim
= isl_space_domain(isl_map_get_space(map
));
2123 stmt
->domain
= isl_map_wrap(map
);
2125 stmt_id
= isl_set_get_tuple_id(stmt
->domain
);
2126 stmt
->domain
= isl_set_flat_product(isl_set_copy(dom
),
2128 stmt
->domain
= isl_set_set_tuple_id(stmt
->domain
,
2129 isl_id_copy(stmt_id
));
2130 dim
= isl_set_get_space(stmt
->domain
);
2133 pos
= isl_set_find_dim_by_id(stmt
->domain
, isl_dim_param
, var_id
);
2135 stmt
->domain
= internalize_iv(stmt
->domain
, pos
,
2136 isl_aff_copy(iv_map
));
2138 stmt
->schedule
= isl_map_flat_product(sched
, stmt
->schedule
);
2139 stmt
->schedule
= isl_map_set_tuple_id(stmt
->schedule
,
2140 isl_dim_in
, stmt_id
);
2142 pos
= isl_map_find_dim_by_id(stmt
->schedule
, isl_dim_param
, var_id
);
2144 isl_set
*set
= isl_map_wrap(stmt
->schedule
);
2145 set
= internalize_iv(set
, pos
, isl_aff_copy(iv_map
));
2146 stmt
->schedule
= isl_set_unwrap(set
);
2149 dim
= isl_space_map_from_set(dim
);
2150 extend
= isl_multi_pw_aff_identity(dim
);
2151 extend
= isl_multi_pw_aff_drop_dims(extend
, isl_dim_out
, 0, 1);
2152 extend
= isl_multi_pw_aff_set_tuple_id(extend
, isl_dim_out
,
2153 isl_multi_pw_aff_get_tuple_id(extend
, isl_dim_in
));
2154 for (i
= 0; i
< stmt
->n_arg
; ++i
)
2155 stmt
->args
[i
] = expr_embed(stmt
->args
[i
],
2156 isl_multi_pw_aff_copy(extend
),
2157 isl_aff_copy(iv_map
), var_id
);
2158 stmt
->body
= expr_embed(stmt
->body
, extend
, iv_map
, var_id
);
2161 isl_id_free(var_id
);
2163 for (i
= 0; i
< stmt
->n_arg
; ++i
)
2165 return pet_stmt_free(stmt
);
2166 if (!stmt
->domain
|| !stmt
->schedule
|| !stmt
->body
)
2167 return pet_stmt_free(stmt
);
2171 isl_map_free(sched
);
2172 isl_aff_free(iv_map
);
2173 isl_id_free(var_id
);
2177 /* Embed the given pet_array in an extra outer loop with iteration domain
2179 * This embedding only has an effect on virtual arrays (those with
2180 * user pointer equal to NULL), which need to be extended along with
2181 * the iteration domain.
2183 static struct pet_array
*pet_array_embed(struct pet_array
*array
,
2184 __isl_take isl_set
*dom
)
2186 isl_id
*array_id
= NULL
;
2191 if (isl_set_has_tuple_id(array
->extent
))
2192 array_id
= isl_set_get_tuple_id(array
->extent
);
2194 if (array_id
&& !isl_id_get_user(array_id
)) {
2195 array
->extent
= isl_set_flat_product(dom
, array
->extent
);
2196 array
->extent
= isl_set_set_tuple_id(array
->extent
, array_id
);
2198 return pet_array_free(array
);
2201 isl_id_free(array_id
);
2210 /* Project out all unnamed parameters from "set" and return the result.
2212 static __isl_give isl_set
*set_project_out_unnamed_params(
2213 __isl_take isl_set
*set
)
2217 n
= isl_set_dim(set
, isl_dim_param
);
2218 for (i
= n
- 1; i
>= 0; --i
) {
2219 if (isl_set_has_dim_name(set
, isl_dim_param
, i
))
2221 set
= isl_set_project_out(set
, isl_dim_param
, i
, 1);
2227 /* Update the context with respect to an embedding into a loop
2228 * with iteration domain "dom" and induction variable "id".
2229 * "iv_map" expresses the real iterator (parameter "id") in terms
2230 * of a possibly virtual iterator (used in "dom").
2232 * If the current context is independent of "id", we don't need
2234 * Otherwise, a parameter value is invalid for the embedding if
2235 * any of the corresponding iterator values is invalid.
2236 * That is, a parameter value is valid only if all the corresponding
2237 * iterator values are valid.
2238 * We therefore compute the set of parameters
2240 * forall i in dom : valid (i)
2244 * not exists i in dom : not valid(i)
2248 * not exists i in dom \ valid(i)
2250 * Before we subtract valid(i) from dom, we first need to substitute
2251 * the real iterator for the virtual iterator.
2253 * If there are any unnamed parameters in "dom", then we consider
2254 * a parameter value to be valid if it is valid for any value of those
2255 * unnamed parameters. They are therefore projected out at the end.
2257 static __isl_give isl_set
*context_embed(__isl_take isl_set
*context
,
2258 __isl_keep isl_set
*dom
, __isl_keep isl_aff
*iv_map
,
2259 __isl_keep isl_id
*id
)
2264 pos
= isl_set_find_dim_by_id(context
, isl_dim_param
, id
);
2268 context
= isl_set_from_params(context
);
2269 context
= isl_set_add_dims(context
, isl_dim_set
, 1);
2270 context
= isl_set_equate(context
, isl_dim_param
, pos
, isl_dim_set
, 0);
2271 context
= isl_set_project_out(context
, isl_dim_param
, pos
, 1);
2272 ma
= isl_multi_aff_from_aff(isl_aff_copy(iv_map
));
2273 context
= isl_set_preimage_multi_aff(context
, ma
);
2274 context
= isl_set_subtract(isl_set_copy(dom
), context
);
2275 context
= isl_set_params(context
);
2276 context
= isl_set_complement(context
);
2277 context
= set_project_out_unnamed_params(context
);
2281 /* Update the implication with respect to an embedding into a loop
2282 * with iteration domain "dom".
2284 * Since embed_access extends virtual arrays along with the domain
2285 * of the access, we need to do the same with domain and range
2286 * of the implication. Since the original implication is only valid
2287 * within a given iteration of the loop, the extended implication
2288 * maps the extra array dimension corresponding to the extra loop
2291 static struct pet_implication
*pet_implication_embed(
2292 struct pet_implication
*implication
, __isl_take isl_set
*dom
)
2300 map
= isl_set_identity(dom
);
2301 id
= isl_map_get_tuple_id(implication
->extension
, isl_dim_in
);
2302 map
= isl_map_flat_product(map
, implication
->extension
);
2303 map
= isl_map_set_tuple_id(map
, isl_dim_in
, isl_id_copy(id
));
2304 map
= isl_map_set_tuple_id(map
, isl_dim_out
, id
);
2305 implication
->extension
= map
;
2306 if (!implication
->extension
)
2307 return pet_implication_free(implication
);
2315 /* Embed all statements and arrays in "scop" in an extra outer loop
2316 * with iteration domain "dom" and schedule "sched".
2317 * "id" represents the induction variable of the loop.
2318 * "iv_map" maps a possibly virtual iterator to the real iterator.
2319 * That is, it expresses the iterator that some of the parameters in "scop"
2320 * may refer to in terms of the iterator used in "dom" and
2321 * the domain of "sched".
2323 * Any skip conditions within the loop have no effect outside of the loop.
2324 * The caller is responsible for making sure skip[pet_skip_later] has been
2325 * taken into account.
2327 struct pet_scop
*pet_scop_embed(struct pet_scop
*scop
, __isl_take isl_set
*dom
,
2328 __isl_take isl_map
*sched
, __isl_take isl_aff
*iv_map
,
2329 __isl_take isl_id
*id
)
2336 pet_scop_reset_skip(scop
, pet_skip_now
);
2337 pet_scop_reset_skip(scop
, pet_skip_later
);
2339 scop
->context
= context_embed(scop
->context
, dom
, iv_map
, id
);
2343 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
2344 scop
->stmts
[i
] = pet_stmt_embed(scop
->stmts
[i
],
2345 isl_set_copy(dom
), isl_map_copy(sched
),
2346 isl_aff_copy(iv_map
), isl_id_copy(id
));
2347 if (!scop
->stmts
[i
])
2351 for (i
= 0; i
< scop
->n_array
; ++i
) {
2352 scop
->arrays
[i
] = pet_array_embed(scop
->arrays
[i
],
2354 if (!scop
->arrays
[i
])
2358 for (i
= 0; i
< scop
->n_implication
; ++i
) {
2359 scop
->implications
[i
] =
2360 pet_implication_embed(scop
->implications
[i
],
2362 if (!scop
->implications
[i
])
2367 isl_map_free(sched
);
2368 isl_aff_free(iv_map
);
2373 isl_map_free(sched
);
2374 isl_aff_free(iv_map
);
2376 return pet_scop_free(scop
);
2379 /* Add extra conditions on the parameters to iteration domain of "stmt".
2381 static struct pet_stmt
*stmt_restrict(struct pet_stmt
*stmt
,
2382 __isl_take isl_set
*cond
)
2387 stmt
->domain
= isl_set_intersect_params(stmt
->domain
, cond
);
2392 return pet_stmt_free(stmt
);
2395 /* Add extra conditions to scop->skip[type].
2397 * The new skip condition only holds if it held before
2398 * and the condition is true. It does not hold if it did not hold
2399 * before or the condition is false.
2401 * The skip condition is assumed to be an affine expression.
2403 static struct pet_scop
*pet_scop_restrict_skip(struct pet_scop
*scop
,
2404 enum pet_skip type
, __isl_keep isl_set
*cond
)
2406 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
2412 if (!ext
->skip
[type
])
2415 if (!multi_pw_aff_is_affine(ext
->skip
[type
]))
2416 isl_die(isl_multi_pw_aff_get_ctx(ext
->skip
[type
]),
2417 isl_error_internal
, "can only resrict affine skips",
2418 return pet_scop_free(scop
));
2420 skip
= isl_multi_pw_aff_get_pw_aff(ext
->skip
[type
], 0);
2421 dom
= isl_pw_aff_domain(isl_pw_aff_copy(skip
));
2422 cond
= isl_set_copy(cond
);
2423 cond
= isl_set_from_params(cond
);
2424 cond
= isl_set_intersect(cond
, isl_pw_aff_non_zero_set(skip
));
2425 skip
= indicator_function(cond
, dom
);
2426 isl_multi_pw_aff_free(ext
->skip
[type
]);
2427 ext
->skip
[type
] = isl_multi_pw_aff_from_pw_aff(skip
);
2428 if (!ext
->skip
[type
])
2429 return pet_scop_free(scop
);
2434 /* Add extra conditions on the parameters to all iteration domains
2435 * and skip conditions.
2437 * A parameter value is valid for the result if it was valid
2438 * for the original scop and satisfies "cond" or if it does
2439 * not satisfy "cond" as in this case the scop is not executed
2440 * and the original constraints on the parameters are irrelevant.
2442 struct pet_scop
*pet_scop_restrict(struct pet_scop
*scop
,
2443 __isl_take isl_set
*cond
)
2447 scop
= pet_scop_restrict_skip(scop
, pet_skip_now
, cond
);
2448 scop
= pet_scop_restrict_skip(scop
, pet_skip_later
, cond
);
2453 scop
->context
= isl_set_intersect(scop
->context
, isl_set_copy(cond
));
2454 scop
->context
= isl_set_union(scop
->context
,
2455 isl_set_complement(isl_set_copy(cond
)));
2456 scop
->context
= isl_set_coalesce(scop
->context
);
2457 scop
->context
= set_project_out_unnamed_params(scop
->context
);
2461 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
2462 scop
->stmts
[i
] = stmt_restrict(scop
->stmts
[i
],
2463 isl_set_copy(cond
));
2464 if (!scop
->stmts
[i
])
2472 return pet_scop_free(scop
);
2475 /* Construct a function that (upon precomposition) inserts
2476 * a filter value with name "id" and value "satisfied"
2477 * in the list of filter values embedded in the set space "space".
2479 * If "space" does not contain any filter values yet, we first create
2480 * a function that inserts 0 filter values, i.e.,
2482 * [space -> []] -> space
2484 * We can now assume that space is of the form [dom -> [filters]]
2485 * We construct an identity mapping on dom and a mapping on filters
2486 * that (upon precomposition) inserts the new filter
2489 * [satisfied, filters] -> [filters]
2491 * and then compute the cross product
2493 * [dom -> [satisfied, filters]] -> [dom -> [filters]]
2495 static __isl_give isl_pw_multi_aff
*insert_filter_pma(
2496 __isl_take isl_space
*space
, __isl_take isl_id
*id
, int satisfied
)
2500 isl_pw_multi_aff
*pma0
, *pma
, *pma_dom
, *pma_ran
;
2503 if (isl_space_is_wrapping(space
)) {
2504 space2
= isl_space_map_from_set(isl_space_copy(space
));
2505 ma
= isl_multi_aff_identity(space2
);
2506 space
= isl_space_unwrap(space
);
2508 space
= isl_space_from_domain(space
);
2509 ma
= isl_multi_aff_domain_map(isl_space_copy(space
));
2512 space2
= isl_space_domain(isl_space_copy(space
));
2513 pma_dom
= isl_pw_multi_aff_identity(isl_space_map_from_set(space2
));
2514 space
= isl_space_range(space
);
2515 space
= isl_space_insert_dims(space
, isl_dim_set
, 0, 1);
2516 pma_ran
= isl_pw_multi_aff_project_out_map(space
, isl_dim_set
, 0, 1);
2517 pma_ran
= isl_pw_multi_aff_set_dim_id(pma_ran
, isl_dim_in
, 0, id
);
2518 pma_ran
= isl_pw_multi_aff_fix_si(pma_ran
, isl_dim_in
, 0, satisfied
);
2519 pma
= isl_pw_multi_aff_product(pma_dom
, pma_ran
);
2521 pma0
= isl_pw_multi_aff_from_multi_aff(ma
);
2522 pma
= isl_pw_multi_aff_pullback_pw_multi_aff(pma0
, pma
);
2527 /* Insert an argument expression corresponding to "test" in front
2528 * of the list of arguments described by *n_arg and *args.
2530 static int args_insert_access(unsigned *n_arg
, struct pet_expr
***args
,
2531 __isl_keep isl_multi_pw_aff
*test
)
2534 isl_ctx
*ctx
= isl_multi_pw_aff_get_ctx(test
);
2540 *args
= isl_calloc_array(ctx
, struct pet_expr
*, 1);
2544 struct pet_expr
**ext
;
2545 ext
= isl_calloc_array(ctx
, struct pet_expr
*, 1 + *n_arg
);
2548 for (i
= 0; i
< *n_arg
; ++i
)
2549 ext
[1 + i
] = (*args
)[i
];
2554 (*args
)[0] = pet_expr_from_index(isl_multi_pw_aff_copy(test
));
2561 /* Make the expression "expr" depend on the value of "test"
2562 * being equal to "satisfied".
2564 * If "test" is an affine expression, we simply add the conditions
2565 * on the expression having the value "satisfied" to all access relations
2566 * and index expressions.
2568 * Otherwise, we add a filter to "expr" (which is then assumed to be
2569 * an access expression) corresponding to "test" being equal to "satisfied".
2571 struct pet_expr
*pet_expr_filter(struct pet_expr
*expr
,
2572 __isl_take isl_multi_pw_aff
*test
, int satisfied
)
2577 isl_pw_multi_aff
*pma
;
2582 if (!isl_multi_pw_aff_has_tuple_id(test
, isl_dim_out
)) {
2586 pa
= isl_multi_pw_aff_get_pw_aff(test
, 0);
2587 isl_multi_pw_aff_free(test
);
2589 cond
= isl_pw_aff_non_zero_set(pa
);
2591 cond
= isl_pw_aff_zero_set(pa
);
2592 return pet_expr_restrict(expr
, isl_set_params(cond
));
2595 ctx
= isl_multi_pw_aff_get_ctx(test
);
2596 if (expr
->type
!= pet_expr_access
)
2597 isl_die(ctx
, isl_error_invalid
,
2598 "can only filter access expressions", goto error
);
2600 space
= isl_space_domain(isl_map_get_space(expr
->acc
.access
));
2601 id
= isl_multi_pw_aff_get_tuple_id(test
, isl_dim_out
);
2602 pma
= insert_filter_pma(space
, id
, satisfied
);
2604 expr
->acc
.access
= isl_map_preimage_domain_pw_multi_aff(
2606 isl_pw_multi_aff_copy(pma
));
2607 expr
->acc
.index
= isl_multi_pw_aff_pullback_pw_multi_aff(
2608 expr
->acc
.index
, pma
);
2609 if (!expr
->acc
.access
|| !expr
->acc
.index
)
2612 if (args_insert_access(&expr
->n_arg
, &expr
->args
, test
) < 0)
2615 isl_multi_pw_aff_free(test
);
2618 isl_multi_pw_aff_free(test
);
2619 return pet_expr_free(expr
);
2622 /* Look through the applications in "scop" for any that can be
2623 * applied to the filter expressed by "map" and "satisified".
2624 * If there is any, then apply it to "map" and return the result.
2625 * Otherwise, return "map".
2626 * "id" is the identifier of the virtual array.
2628 * We only introduce at most one implication for any given virtual array,
2629 * so we can apply the implication and return as soon as we find one.
2631 static __isl_give isl_map
*apply_implications(struct pet_scop
*scop
,
2632 __isl_take isl_map
*map
, __isl_keep isl_id
*id
, int satisfied
)
2636 for (i
= 0; i
< scop
->n_implication
; ++i
) {
2637 struct pet_implication
*pi
= scop
->implications
[i
];
2640 if (pi
->satisfied
!= satisfied
)
2642 pi_id
= isl_map_get_tuple_id(pi
->extension
, isl_dim_in
);
2647 return isl_map_apply_range(map
, isl_map_copy(pi
->extension
));
2653 /* Is the filter expressed by "test" and "satisfied" implied
2654 * by filter "pos" on "domain", with filter "expr", taking into
2655 * account the implications of "scop"?
2657 * For filter on domain implying that expressed by "test" and "satisfied",
2658 * the filter needs to be an access to the same (virtual) array as "test" and
2659 * the filter value needs to be equal to "satisfied".
2660 * Moreover, the filter access relation, possibly extended by
2661 * the implications in "scop" needs to contain "test".
2663 static int implies_filter(struct pet_scop
*scop
,
2664 __isl_keep isl_map
*domain
, int pos
, struct pet_expr
*expr
,
2665 __isl_keep isl_map
*test
, int satisfied
)
2667 isl_id
*test_id
, *arg_id
;
2674 if (expr
->type
!= pet_expr_access
)
2676 test_id
= isl_map_get_tuple_id(test
, isl_dim_out
);
2677 arg_id
= pet_expr_access_get_id(expr
);
2678 isl_id_free(arg_id
);
2679 isl_id_free(test_id
);
2680 if (test_id
!= arg_id
)
2682 val
= isl_map_plain_get_val_if_fixed(domain
, isl_dim_out
, pos
);
2683 is_int
= isl_val_is_int(val
);
2685 s
= isl_val_get_num_si(val
);
2694 implied
= isl_map_copy(expr
->acc
.access
);
2695 implied
= apply_implications(scop
, implied
, test_id
, satisfied
);
2696 is_subset
= isl_map_is_subset(test
, implied
);
2697 isl_map_free(implied
);
2702 /* Is the filter expressed by "test" and "satisfied" implied
2703 * by any of the filters on the domain of "stmt", taking into
2704 * account the implications of "scop"?
2706 static int filter_implied(struct pet_scop
*scop
,
2707 struct pet_stmt
*stmt
, __isl_keep isl_multi_pw_aff
*test
, int satisfied
)
2715 if (!scop
|| !stmt
|| !test
)
2717 if (scop
->n_implication
== 0)
2719 if (stmt
->n_arg
== 0)
2722 domain
= isl_set_unwrap(isl_set_copy(stmt
->domain
));
2723 test_map
= isl_map_from_multi_pw_aff(isl_multi_pw_aff_copy(test
));
2726 for (i
= 0; i
< stmt
->n_arg
; ++i
) {
2727 implied
= implies_filter(scop
, domain
, i
, stmt
->args
[i
],
2728 test_map
, satisfied
);
2729 if (implied
< 0 || implied
)
2733 isl_map_free(test_map
);
2734 isl_map_free(domain
);
2738 /* Make the statement "stmt" depend on the value of "test"
2739 * being equal to "satisfied" by adjusting stmt->domain.
2741 * The domain of "test" corresponds to the (zero or more) outer dimensions
2742 * of the iteration domain.
2744 * We first extend "test" to apply to the entire iteration domain and
2745 * then check if the filter that we are about to add is implied
2746 * by any of the current filters, possibly taking into account
2747 * the implications in "scop". If so, we leave "stmt" untouched and return.
2749 * Otherwise, we insert an argument corresponding to a read to "test"
2750 * from the iteration domain of "stmt" in front of the list of arguments.
2751 * We also insert a corresponding output dimension in the wrapped
2752 * map contained in stmt->domain, with value set to "satisfied".
2754 static struct pet_stmt
*stmt_filter(struct pet_scop
*scop
,
2755 struct pet_stmt
*stmt
, __isl_take isl_multi_pw_aff
*test
, int satisfied
)
2761 isl_pw_multi_aff
*pma
;
2762 isl_multi_aff
*add_dom
;
2764 isl_local_space
*ls
;
2770 space
= isl_set_get_space(stmt
->domain
);
2771 if (isl_space_is_wrapping(space
))
2772 space
= isl_space_domain(isl_space_unwrap(space
));
2773 n_test_dom
= isl_multi_pw_aff_dim(test
, isl_dim_in
);
2774 space
= isl_space_from_domain(space
);
2775 space
= isl_space_add_dims(space
, isl_dim_out
, n_test_dom
);
2776 add_dom
= isl_multi_aff_zero(isl_space_copy(space
));
2777 ls
= isl_local_space_from_space(isl_space_domain(space
));
2778 for (i
= 0; i
< n_test_dom
; ++i
) {
2780 aff
= isl_aff_var_on_domain(isl_local_space_copy(ls
),
2782 add_dom
= isl_multi_aff_set_aff(add_dom
, i
, aff
);
2784 isl_local_space_free(ls
);
2785 test
= isl_multi_pw_aff_pullback_multi_aff(test
, add_dom
);
2787 implied
= filter_implied(scop
, stmt
, test
, satisfied
);
2791 isl_multi_pw_aff_free(test
);
2795 id
= isl_multi_pw_aff_get_tuple_id(test
, isl_dim_out
);
2796 pma
= insert_filter_pma(isl_set_get_space(stmt
->domain
), id
, satisfied
);
2797 stmt
->domain
= isl_set_preimage_pw_multi_aff(stmt
->domain
, pma
);
2799 if (args_insert_access(&stmt
->n_arg
, &stmt
->args
, test
) < 0)
2802 isl_multi_pw_aff_free(test
);
2805 isl_multi_pw_aff_free(test
);
2806 return pet_stmt_free(stmt
);
2809 /* Does "scop" have a skip condition of the given "type"?
2811 int pet_scop_has_skip(struct pet_scop
*scop
, enum pet_skip type
)
2813 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
2817 return ext
->skip
[type
] != NULL
;
2820 /* Does "scop" have a skip condition of the given "type" that
2821 * is an affine expression?
2823 int pet_scop_has_affine_skip(struct pet_scop
*scop
, enum pet_skip type
)
2825 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
2829 if (!ext
->skip
[type
])
2831 return multi_pw_aff_is_affine(ext
->skip
[type
]);
2834 /* Does "scop" have a skip condition of the given "type" that
2835 * is not an affine expression?
2837 int pet_scop_has_var_skip(struct pet_scop
*scop
, enum pet_skip type
)
2839 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
2844 if (!ext
->skip
[type
])
2846 aff
= multi_pw_aff_is_affine(ext
->skip
[type
]);
2852 /* Does "scop" have a skip condition of the given "type" that
2853 * is affine and holds on the entire domain?
2855 int pet_scop_has_universal_skip(struct pet_scop
*scop
, enum pet_skip type
)
2857 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
2863 is_aff
= pet_scop_has_affine_skip(scop
, type
);
2864 if (is_aff
< 0 || !is_aff
)
2867 pa
= isl_multi_pw_aff_get_pw_aff(ext
->skip
[type
], 0);
2868 set
= isl_pw_aff_non_zero_set(pa
);
2869 is_univ
= isl_set_plain_is_universe(set
);
2875 /* Replace scop->skip[type] by "skip".
2877 struct pet_scop
*pet_scop_set_skip(struct pet_scop
*scop
,
2878 enum pet_skip type
, __isl_take isl_multi_pw_aff
*skip
)
2880 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
2885 isl_multi_pw_aff_free(ext
->skip
[type
]);
2886 ext
->skip
[type
] = skip
;
2890 isl_multi_pw_aff_free(skip
);
2891 return pet_scop_free(scop
);
2894 /* Return a copy of scop->skip[type].
2896 __isl_give isl_multi_pw_aff
*pet_scop_get_skip(struct pet_scop
*scop
,
2899 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
2904 return isl_multi_pw_aff_copy(ext
->skip
[type
]);
2907 /* Assuming scop->skip[type] is an affine expression,
2908 * return the constraints on the parameters for which the skip condition
2911 __isl_give isl_set
*pet_scop_get_affine_skip_domain(struct pet_scop
*scop
,
2914 isl_multi_pw_aff
*skip
;
2917 skip
= pet_scop_get_skip(scop
, type
);
2918 pa
= isl_multi_pw_aff_get_pw_aff(skip
, 0);
2919 isl_multi_pw_aff_free(skip
);
2920 return isl_set_params(isl_pw_aff_non_zero_set(pa
));
2923 /* Return the identifier of the variable that is accessed by
2924 * the skip condition of the given type.
2926 * The skip condition is assumed not to be an affine condition.
2928 __isl_give isl_id
*pet_scop_get_skip_id(struct pet_scop
*scop
,
2931 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
2936 return isl_multi_pw_aff_get_tuple_id(ext
->skip
[type
], isl_dim_out
);
2939 /* Return an access pet_expr corresponding to the skip condition
2940 * of the given type.
2942 struct pet_expr
*pet_scop_get_skip_expr(struct pet_scop
*scop
,
2945 return pet_expr_from_index(pet_scop_get_skip(scop
, type
));
2948 /* Drop the the skip condition scop->skip[type].
2950 void pet_scop_reset_skip(struct pet_scop
*scop
, enum pet_skip type
)
2952 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
2957 isl_multi_pw_aff_free(ext
->skip
[type
]);
2958 ext
->skip
[type
] = NULL
;
2961 /* Make the skip condition (if any) depend on the value of "test" being
2962 * equal to "satisfied".
2964 * We only support the case where the original skip condition is universal,
2965 * i.e., where skipping is unconditional, and where satisfied == 1.
2966 * In this case, the skip condition is changed to skip only when
2967 * "test" is equal to one.
2969 static struct pet_scop
*pet_scop_filter_skip(struct pet_scop
*scop
,
2970 enum pet_skip type
, __isl_keep isl_multi_pw_aff
*test
, int satisfied
)
2976 if (!pet_scop_has_skip(scop
, type
))
2980 is_univ
= pet_scop_has_universal_skip(scop
, type
);
2982 return pet_scop_free(scop
);
2983 if (satisfied
&& is_univ
) {
2984 isl_space
*space
= isl_multi_pw_aff_get_space(test
);
2985 isl_multi_pw_aff
*skip
;
2986 skip
= isl_multi_pw_aff_zero(space
);
2987 scop
= pet_scop_set_skip(scop
, type
, skip
);
2991 isl_die(isl_multi_pw_aff_get_ctx(test
), isl_error_internal
,
2992 "skip expression cannot be filtered",
2993 return pet_scop_free(scop
));
2999 /* Make all statements in "scop" depend on the value of "test"
3000 * being equal to "satisfied" by adjusting their domains.
3002 struct pet_scop
*pet_scop_filter(struct pet_scop
*scop
,
3003 __isl_take isl_multi_pw_aff
*test
, int satisfied
)
3007 scop
= pet_scop_filter_skip(scop
, pet_skip_now
, test
, satisfied
);
3008 scop
= pet_scop_filter_skip(scop
, pet_skip_later
, test
, satisfied
);
3013 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
3014 scop
->stmts
[i
] = stmt_filter(scop
, scop
->stmts
[i
],
3015 isl_multi_pw_aff_copy(test
), satisfied
);
3016 if (!scop
->stmts
[i
])
3020 isl_multi_pw_aff_free(test
);
3023 isl_multi_pw_aff_free(test
);
3024 return pet_scop_free(scop
);
3027 /* Add all parameters in "expr" to "dim" and return the result.
3029 static __isl_give isl_space
*expr_collect_params(struct pet_expr
*expr
,
3030 __isl_take isl_space
*dim
)
3036 for (i
= 0; i
< expr
->n_arg
; ++i
)
3038 dim
= expr_collect_params(expr
->args
[i
], dim
);
3040 if (expr
->type
== pet_expr_access
)
3041 dim
= isl_space_align_params(dim
,
3042 isl_map_get_space(expr
->acc
.access
));
3046 pet_expr_free(expr
);
3047 return isl_space_free(dim
);
3050 /* Add all parameters in "stmt" to "dim" and return the result.
3052 static __isl_give isl_space
*stmt_collect_params(struct pet_stmt
*stmt
,
3053 __isl_take isl_space
*dim
)
3058 dim
= isl_space_align_params(dim
, isl_set_get_space(stmt
->domain
));
3059 dim
= isl_space_align_params(dim
, isl_map_get_space(stmt
->schedule
));
3060 dim
= expr_collect_params(stmt
->body
, dim
);
3064 isl_space_free(dim
);
3065 return pet_stmt_free(stmt
);
3068 /* Add all parameters in "array" to "dim" and return the result.
3070 static __isl_give isl_space
*array_collect_params(struct pet_array
*array
,
3071 __isl_take isl_space
*dim
)
3076 dim
= isl_space_align_params(dim
, isl_set_get_space(array
->context
));
3077 dim
= isl_space_align_params(dim
, isl_set_get_space(array
->extent
));
3081 pet_array_free(array
);
3082 return isl_space_free(dim
);
3085 /* Add all parameters in "scop" to "dim" and return the result.
3087 static __isl_give isl_space
*scop_collect_params(struct pet_scop
*scop
,
3088 __isl_take isl_space
*dim
)
3095 for (i
= 0; i
< scop
->n_array
; ++i
)
3096 dim
= array_collect_params(scop
->arrays
[i
], dim
);
3098 for (i
= 0; i
< scop
->n_stmt
; ++i
)
3099 dim
= stmt_collect_params(scop
->stmts
[i
], dim
);
3103 isl_space_free(dim
);
3104 pet_scop_free(scop
);
3108 /* Add all parameters in "dim" to all access relations and index expressions
3111 static struct pet_expr
*expr_propagate_params(struct pet_expr
*expr
,
3112 __isl_take isl_space
*dim
)
3119 for (i
= 0; i
< expr
->n_arg
; ++i
) {
3121 expr_propagate_params(expr
->args
[i
],
3122 isl_space_copy(dim
));
3127 if (expr
->type
== pet_expr_access
) {
3128 expr
->acc
.access
= isl_map_align_params(expr
->acc
.access
,
3129 isl_space_copy(dim
));
3130 expr
->acc
.index
= isl_multi_pw_aff_align_params(expr
->acc
.index
,
3131 isl_space_copy(dim
));
3132 if (!expr
->acc
.access
|| !expr
->acc
.index
)
3136 isl_space_free(dim
);
3139 isl_space_free(dim
);
3140 return pet_expr_free(expr
);
3143 /* Add all parameters in "dim" to the domain, schedule and
3144 * all access relations in "stmt".
3146 static struct pet_stmt
*stmt_propagate_params(struct pet_stmt
*stmt
,
3147 __isl_take isl_space
*dim
)
3152 stmt
->domain
= isl_set_align_params(stmt
->domain
, isl_space_copy(dim
));
3153 stmt
->schedule
= isl_map_align_params(stmt
->schedule
,
3154 isl_space_copy(dim
));
3155 stmt
->body
= expr_propagate_params(stmt
->body
, isl_space_copy(dim
));
3157 if (!stmt
->domain
|| !stmt
->schedule
|| !stmt
->body
)
3160 isl_space_free(dim
);
3163 isl_space_free(dim
);
3164 return pet_stmt_free(stmt
);
3167 /* Add all parameters in "dim" to "array".
3169 static struct pet_array
*array_propagate_params(struct pet_array
*array
,
3170 __isl_take isl_space
*dim
)
3175 array
->context
= isl_set_align_params(array
->context
,
3176 isl_space_copy(dim
));
3177 array
->extent
= isl_set_align_params(array
->extent
,
3178 isl_space_copy(dim
));
3179 if (array
->value_bounds
) {
3180 array
->value_bounds
= isl_set_align_params(array
->value_bounds
,
3181 isl_space_copy(dim
));
3182 if (!array
->value_bounds
)
3186 if (!array
->context
|| !array
->extent
)
3189 isl_space_free(dim
);
3192 isl_space_free(dim
);
3193 return pet_array_free(array
);
3196 /* Add all parameters in "dim" to "scop".
3198 static struct pet_scop
*scop_propagate_params(struct pet_scop
*scop
,
3199 __isl_take isl_space
*dim
)
3206 for (i
= 0; i
< scop
->n_array
; ++i
) {
3207 scop
->arrays
[i
] = array_propagate_params(scop
->arrays
[i
],
3208 isl_space_copy(dim
));
3209 if (!scop
->arrays
[i
])
3213 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
3214 scop
->stmts
[i
] = stmt_propagate_params(scop
->stmts
[i
],
3215 isl_space_copy(dim
));
3216 if (!scop
->stmts
[i
])
3220 isl_space_free(dim
);
3223 isl_space_free(dim
);
3224 return pet_scop_free(scop
);
3227 /* Update all isl_sets and isl_maps in "scop" such that they all
3228 * have the same parameters.
3230 struct pet_scop
*pet_scop_align_params(struct pet_scop
*scop
)
3237 dim
= isl_set_get_space(scop
->context
);
3238 dim
= scop_collect_params(scop
, dim
);
3240 scop
->context
= isl_set_align_params(scop
->context
, isl_space_copy(dim
));
3241 scop
= scop_propagate_params(scop
, dim
);
3246 /* Check if the given index expression accesses a (0D) array that corresponds
3247 * to one of the parameters in "dim". If so, replace the array access
3248 * by an access to the set of integers with as index (and value)
3251 static __isl_give isl_multi_pw_aff
*index_detect_parameter(
3252 __isl_take isl_multi_pw_aff
*index
, __isl_take isl_space
*space
)
3254 isl_local_space
*ls
;
3255 isl_id
*array_id
= NULL
;
3259 if (isl_multi_pw_aff_has_tuple_id(index
, isl_dim_out
)) {
3260 array_id
= isl_multi_pw_aff_get_tuple_id(index
, isl_dim_out
);
3261 pos
= isl_space_find_dim_by_id(space
, isl_dim_param
, array_id
);
3263 isl_space_free(space
);
3266 isl_id_free(array_id
);
3270 space
= isl_multi_pw_aff_get_domain_space(index
);
3271 isl_multi_pw_aff_free(index
);
3273 pos
= isl_space_find_dim_by_id(space
, isl_dim_param
, array_id
);
3275 space
= isl_space_insert_dims(space
, isl_dim_param
, 0, 1);
3276 space
= isl_space_set_dim_id(space
, isl_dim_param
, 0, array_id
);
3279 isl_id_free(array_id
);
3281 ls
= isl_local_space_from_space(space
);
3282 aff
= isl_aff_var_on_domain(ls
, isl_dim_param
, pos
);
3283 index
= isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff
));
3288 /* Check if the given access relation accesses a (0D) array that corresponds
3289 * to one of the parameters in "dim". If so, replace the array access
3290 * by an access to the set of integers with as index (and value)
3293 static __isl_give isl_map
*access_detect_parameter(__isl_take isl_map
*access
,
3294 __isl_take isl_space
*dim
)
3296 isl_id
*array_id
= NULL
;
3299 if (isl_map_has_tuple_id(access
, isl_dim_out
)) {
3300 array_id
= isl_map_get_tuple_id(access
, isl_dim_out
);
3301 pos
= isl_space_find_dim_by_id(dim
, isl_dim_param
, array_id
);
3303 isl_space_free(dim
);
3306 isl_id_free(array_id
);
3310 pos
= isl_map_find_dim_by_id(access
, isl_dim_param
, array_id
);
3312 access
= isl_map_insert_dims(access
, isl_dim_param
, 0, 1);
3313 access
= isl_map_set_dim_id(access
, isl_dim_param
, 0, array_id
);
3316 isl_id_free(array_id
);
3318 access
= isl_map_insert_dims(access
, isl_dim_out
, 0, 1);
3319 access
= isl_map_equate(access
, isl_dim_param
, pos
, isl_dim_out
, 0);
3324 /* Replace all accesses to (0D) arrays that correspond to one of the parameters
3325 * in "dim" by a value equal to the corresponding parameter.
3327 static struct pet_expr
*expr_detect_parameter_accesses(struct pet_expr
*expr
,
3328 __isl_take isl_space
*dim
)
3335 for (i
= 0; i
< expr
->n_arg
; ++i
) {
3337 expr_detect_parameter_accesses(expr
->args
[i
],
3338 isl_space_copy(dim
));
3343 if (expr
->type
== pet_expr_access
) {
3344 expr
->acc
.access
= access_detect_parameter(expr
->acc
.access
,
3345 isl_space_copy(dim
));
3346 expr
->acc
.index
= index_detect_parameter(expr
->acc
.index
,
3347 isl_space_copy(dim
));
3348 if (!expr
->acc
.access
|| !expr
->acc
.index
)
3352 isl_space_free(dim
);
3355 isl_space_free(dim
);
3356 return pet_expr_free(expr
);
3359 /* Replace all accesses to (0D) arrays that correspond to one of the parameters
3360 * in "dim" by a value equal to the corresponding parameter.
3362 static struct pet_stmt
*stmt_detect_parameter_accesses(struct pet_stmt
*stmt
,
3363 __isl_take isl_space
*dim
)
3368 stmt
->body
= expr_detect_parameter_accesses(stmt
->body
,
3369 isl_space_copy(dim
));
3371 if (!stmt
->domain
|| !stmt
->schedule
|| !stmt
->body
)
3374 isl_space_free(dim
);
3377 isl_space_free(dim
);
3378 return pet_stmt_free(stmt
);
3381 /* Replace all accesses to (0D) arrays that correspond to one of the parameters
3382 * in "dim" by a value equal to the corresponding parameter.
3384 static struct pet_scop
*scop_detect_parameter_accesses(struct pet_scop
*scop
,
3385 __isl_take isl_space
*dim
)
3392 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
3393 scop
->stmts
[i
] = stmt_detect_parameter_accesses(scop
->stmts
[i
],
3394 isl_space_copy(dim
));
3395 if (!scop
->stmts
[i
])
3399 isl_space_free(dim
);
3402 isl_space_free(dim
);
3403 return pet_scop_free(scop
);
3406 /* Replace all accesses to (0D) arrays that correspond to any of
3407 * the parameters used in "scop" by a value equal
3408 * to the corresponding parameter.
3410 struct pet_scop
*pet_scop_detect_parameter_accesses(struct pet_scop
*scop
)
3417 dim
= isl_set_get_space(scop
->context
);
3418 dim
= scop_collect_params(scop
, dim
);
3420 scop
= scop_detect_parameter_accesses(scop
, dim
);
3425 /* Return the relation mapping domain iterations to all possibly
3426 * accessed data elements.
3427 * In particular, take the access relation and project out the values
3428 * of the arguments, if any.
3430 __isl_give isl_map
*pet_expr_access_get_may_access(struct pet_expr
*expr
)
3438 if (expr
->type
!= pet_expr_access
)
3441 access
= isl_map_copy(expr
->acc
.access
);
3442 if (expr
->n_arg
== 0)
3445 space
= isl_space_domain(isl_map_get_space(access
));
3446 map
= isl_map_universe(isl_space_unwrap(space
));
3447 map
= isl_map_domain_map(map
);
3448 access
= isl_map_apply_domain(access
, map
);
3453 /* Return the relation mapping domain iterations to all possibly
3454 * accessed data elements, with its domain tagged with the reference
3457 __isl_give isl_map
*pet_expr_access_get_tagged_may_access(
3458 struct pet_expr
*expr
)
3465 access
= pet_expr_access_get_may_access(expr
);
3466 access
= tag_access(access
, isl_id_copy(expr
->acc
.ref_id
));
3471 /* Add the access relation of the access expression "expr" to "accesses" and
3472 * return the result.
3473 * The domain of the access relation is intersected with "domain".
3474 * If "tag" is set, then the access relation is tagged with
3475 * the corresponding reference identifier.
3477 static __isl_give isl_union_map
*expr_collect_access(struct pet_expr
*expr
,
3478 int tag
, __isl_take isl_union_map
*accesses
, __isl_keep isl_set
*domain
)
3482 access
= pet_expr_access_get_may_access(expr
);
3483 access
= isl_map_intersect_domain(access
, isl_set_copy(domain
));
3485 access
= tag_access(access
, isl_id_copy(expr
->acc
.ref_id
));
3486 return isl_union_map_add_map(accesses
, access
);
3489 /* Add all read access relations (if "read" is set) and/or all write
3490 * access relations (if "write" is set) to "accesses" and return the result.
3491 * The domains of the access relations are intersected with "domain".
3492 * If "tag" is set, then the access relations are tagged with
3493 * the corresponding reference identifiers.
3495 * If "must" is set, then we only add the accesses that are definitely
3496 * performed. Otherwise, we add all potential accesses.
3497 * In particular, if the access has any arguments, then if "must" is
3498 * set we currently skip the access completely. If "must" is not set,
3499 * we project out the values of the access arguments.
3501 static __isl_give isl_union_map
*expr_collect_accesses(struct pet_expr
*expr
,
3502 int read
, int write
, int must
, int tag
,
3503 __isl_take isl_union_map
*accesses
, __isl_keep isl_set
*domain
)
3510 return isl_union_map_free(accesses
);
3512 for (i
= 0; i
< expr
->n_arg
; ++i
)
3513 accesses
= expr_collect_accesses(expr
->args
[i
],
3514 read
, write
, must
, tag
, accesses
, domain
);
3516 if (expr
->type
== pet_expr_access
&& !pet_expr_is_affine(expr
) &&
3517 ((read
&& expr
->acc
.read
) || (write
&& expr
->acc
.write
)) &&
3518 (!must
|| expr
->n_arg
== 0)) {
3519 accesses
= expr_collect_access(expr
, tag
, accesses
, domain
);
3525 /* Collect and return all read access relations (if "read" is set)
3526 * and/or all write access relations (if "write" is set) in "stmt".
3527 * If "tag" is set, then the access relations are tagged with
3528 * the corresponding reference identifiers.
3529 * If "kill" is set, then "stmt" is a kill statement and we simply
3530 * add the argument of the kill operation.
3532 * If "must" is set, then we only add the accesses that are definitely
3533 * performed. Otherwise, we add all potential accesses.
3534 * In particular, if the statement has any arguments, then if "must" is
3535 * set we currently skip the statement completely. If "must" is not set,
3536 * we project out the values of the statement arguments.
3538 static __isl_give isl_union_map
*stmt_collect_accesses(struct pet_stmt
*stmt
,
3539 int read
, int write
, int kill
, int must
, int tag
,
3540 __isl_take isl_space
*dim
)
3542 isl_union_map
*accesses
;
3548 accesses
= isl_union_map_empty(dim
);
3550 if (must
&& stmt
->n_arg
> 0)
3553 domain
= isl_set_copy(stmt
->domain
);
3554 if (isl_set_is_wrapping(domain
))
3555 domain
= isl_map_domain(isl_set_unwrap(domain
));
3558 accesses
= expr_collect_access(stmt
->body
->args
[0], tag
,
3561 accesses
= expr_collect_accesses(stmt
->body
, read
, write
,
3562 must
, tag
, accesses
, domain
);
3563 isl_set_free(domain
);
3568 /* Is "stmt" a kill statement?
3570 static int is_kill(struct pet_stmt
*stmt
)
3572 if (stmt
->body
->type
!= pet_expr_unary
)
3574 return stmt
->body
->op
== pet_op_kill
;
3577 /* Is "stmt" an assume statement?
3579 int pet_stmt_is_assume(struct pet_stmt
*stmt
)
3581 if (stmt
->body
->type
!= pet_expr_unary
)
3583 return stmt
->body
->op
== pet_op_assume
;
3586 /* Compute a mapping from all arrays (of structs) in scop
3587 * to their innermost arrays.
3589 * In particular, for each array of a primitive type, the result
3590 * contains the identity mapping on that array.
3591 * For each array involving member accesses, the result
3592 * contains a mapping from the elements of any intermediate array of structs
3593 * to all corresponding elements of the innermost nested arrays.
3595 static __isl_give isl_union_map
*compute_to_inner(struct pet_scop
*scop
)
3598 isl_union_map
*to_inner
;
3600 to_inner
= isl_union_map_empty(isl_set_get_space(scop
->context
));
3602 for (i
= 0; i
< scop
->n_array
; ++i
) {
3603 struct pet_array
*array
= scop
->arrays
[i
];
3605 isl_map
*map
, *gist
;
3607 if (array
->element_is_record
)
3610 map
= isl_set_identity(isl_set_copy(array
->extent
));
3612 set
= isl_map_domain(isl_map_copy(map
));
3613 gist
= isl_map_copy(map
);
3614 gist
= isl_map_gist_domain(gist
, isl_set_copy(set
));
3615 to_inner
= isl_union_map_add_map(to_inner
, gist
);
3617 while (set
&& isl_set_is_wrapping(set
)) {
3621 id
= isl_set_get_tuple_id(set
);
3622 wrapped
= isl_set_unwrap(set
);
3623 wrapped
= isl_map_domain_map(wrapped
);
3624 wrapped
= isl_map_set_tuple_id(wrapped
, isl_dim_in
, id
);
3625 map
= isl_map_apply_domain(map
, wrapped
);
3626 set
= isl_map_domain(isl_map_copy(map
));
3627 gist
= isl_map_copy(map
);
3628 gist
= isl_map_gist_domain(gist
, isl_set_copy(set
));
3629 to_inner
= isl_union_map_add_map(to_inner
, gist
);
3639 /* Collect and return all read access relations (if "read" is set)
3640 * and/or all write access relations (if "write" is set) in "scop".
3641 * If "kill" is set, then we only add the arguments of kill operations.
3642 * If "must" is set, then we only add the accesses that are definitely
3643 * performed. Otherwise, we add all potential accesses.
3644 * If "tag" is set, then the access relations are tagged with
3645 * the corresponding reference identifiers.
3646 * For accesses to structures, the returned access relation accesses
3647 * all individual fields in the structures.
3649 static __isl_give isl_union_map
*scop_collect_accesses(struct pet_scop
*scop
,
3650 int read
, int write
, int kill
, int must
, int tag
)
3653 isl_union_map
*accesses
;
3654 isl_union_set
*arrays
;
3655 isl_union_map
*to_inner
;
3660 accesses
= isl_union_map_empty(isl_set_get_space(scop
->context
));
3662 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
3663 struct pet_stmt
*stmt
= scop
->stmts
[i
];
3664 isl_union_map
*accesses_i
;
3667 if (kill
&& !is_kill(stmt
))
3670 space
= isl_set_get_space(scop
->context
);
3671 accesses_i
= stmt_collect_accesses(stmt
, read
, write
, kill
,
3673 accesses
= isl_union_map_union(accesses
, accesses_i
);
3676 arrays
= isl_union_set_empty(isl_union_map_get_space(accesses
));
3677 for (i
= 0; i
< scop
->n_array
; ++i
) {
3678 isl_set
*extent
= isl_set_copy(scop
->arrays
[i
]->extent
);
3679 arrays
= isl_union_set_add_set(arrays
, extent
);
3681 accesses
= isl_union_map_intersect_range(accesses
, arrays
);
3683 to_inner
= compute_to_inner(scop
);
3684 accesses
= isl_union_map_apply_range(accesses
, to_inner
);
3689 /* Collect all potential read access relations.
3691 __isl_give isl_union_map
*pet_scop_collect_may_reads(struct pet_scop
*scop
)
3693 return scop_collect_accesses(scop
, 1, 0, 0, 0, 0);
3696 /* Collect all potential write access relations.
3698 __isl_give isl_union_map
*pet_scop_collect_may_writes(struct pet_scop
*scop
)
3700 return scop_collect_accesses(scop
, 0, 1, 0, 0, 0);
3703 /* Collect all definite write access relations.
3705 __isl_give isl_union_map
*pet_scop_collect_must_writes(struct pet_scop
*scop
)
3707 return scop_collect_accesses(scop
, 0, 1, 0, 1, 0);
3710 /* Collect all definite kill access relations.
3712 __isl_give isl_union_map
*pet_scop_collect_must_kills(struct pet_scop
*scop
)
3714 return scop_collect_accesses(scop
, 0, 0, 1, 1, 0);
3717 /* Collect all tagged potential read access relations.
3719 __isl_give isl_union_map
*pet_scop_collect_tagged_may_reads(
3720 struct pet_scop
*scop
)
3722 return scop_collect_accesses(scop
, 1, 0, 0, 0, 1);
3725 /* Collect all tagged potential write access relations.
3727 __isl_give isl_union_map
*pet_scop_collect_tagged_may_writes(
3728 struct pet_scop
*scop
)
3730 return scop_collect_accesses(scop
, 0, 1, 0, 0, 1);
3733 /* Collect all tagged definite write access relations.
3735 __isl_give isl_union_map
*pet_scop_collect_tagged_must_writes(
3736 struct pet_scop
*scop
)
3738 return scop_collect_accesses(scop
, 0, 1, 0, 1, 1);
3741 /* Collect all tagged definite kill access relations.
3743 __isl_give isl_union_map
*pet_scop_collect_tagged_must_kills(
3744 struct pet_scop
*scop
)
3746 return scop_collect_accesses(scop
, 0, 0, 1, 1, 1);
3749 /* Collect and return the union of iteration domains in "scop".
3751 __isl_give isl_union_set
*pet_scop_collect_domains(struct pet_scop
*scop
)
3755 isl_union_set
*domain
;
3760 domain
= isl_union_set_empty(isl_set_get_space(scop
->context
));
3762 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
3763 domain_i
= isl_set_copy(scop
->stmts
[i
]->domain
);
3764 domain
= isl_union_set_add_set(domain
, domain_i
);
3770 /* Collect and return the schedules of the statements in "scop".
3771 * The range is normalized to the maximal number of scheduling
3774 __isl_give isl_union_map
*pet_scop_collect_schedule(struct pet_scop
*scop
)
3777 isl_map
*schedule_i
;
3778 isl_union_map
*schedule
;
3779 int depth
, max_depth
= 0;
3784 schedule
= isl_union_map_empty(isl_set_get_space(scop
->context
));
3786 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
3787 depth
= isl_map_dim(scop
->stmts
[i
]->schedule
, isl_dim_out
);
3788 if (depth
> max_depth
)
3792 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
3793 schedule_i
= isl_map_copy(scop
->stmts
[i
]->schedule
);
3794 depth
= isl_map_dim(schedule_i
, isl_dim_out
);
3795 schedule_i
= isl_map_add_dims(schedule_i
, isl_dim_out
,
3797 for (j
= depth
; j
< max_depth
; ++j
)
3798 schedule_i
= isl_map_fix_si(schedule_i
,
3800 schedule
= isl_union_map_add_map(schedule
, schedule_i
);
3806 /* Does expression "expr" write to "id"?
3808 static int expr_writes(struct pet_expr
*expr
, __isl_keep isl_id
*id
)
3813 for (i
= 0; i
< expr
->n_arg
; ++i
) {
3814 int writes
= expr_writes(expr
->args
[i
], id
);
3815 if (writes
< 0 || writes
)
3819 if (expr
->type
!= pet_expr_access
)
3821 if (!expr
->acc
.write
)
3823 if (pet_expr_is_affine(expr
))
3826 write_id
= pet_expr_access_get_id(expr
);
3827 isl_id_free(write_id
);
3832 return write_id
== id
;
3835 /* Does statement "stmt" write to "id"?
3837 static int stmt_writes(struct pet_stmt
*stmt
, __isl_keep isl_id
*id
)
3839 return expr_writes(stmt
->body
, id
);
3842 /* Is there any write access in "scop" that accesses "id"?
3844 int pet_scop_writes(struct pet_scop
*scop
, __isl_keep isl_id
*id
)
3851 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
3852 int writes
= stmt_writes(scop
->stmts
[i
], id
);
3853 if (writes
< 0 || writes
)
3860 /* Add a reference identifier to access expression "expr".
3861 * "user" points to an integer that contains the sequence number
3862 * of the next reference.
3864 static struct pet_expr
*access_add_ref_id(struct pet_expr
*expr
, void *user
)
3873 ctx
= isl_map_get_ctx(expr
->acc
.access
);
3874 snprintf(name
, sizeof(name
), "__pet_ref_%d", (*n_ref
)++);
3875 expr
->acc
.ref_id
= isl_id_alloc(ctx
, name
, NULL
);
3876 if (!expr
->acc
.ref_id
)
3877 return pet_expr_free(expr
);
3882 /* Add a reference identifier to all access expressions in "stmt".
3883 * "n_ref" points to an integer that contains the sequence number
3884 * of the next reference.
3886 static struct pet_stmt
*stmt_add_ref_ids(struct pet_stmt
*stmt
, int *n_ref
)
3893 for (i
= 0; i
< stmt
->n_arg
; ++i
) {
3894 stmt
->args
[i
] = pet_expr_map_access(stmt
->args
[i
],
3895 &access_add_ref_id
, n_ref
);
3897 return pet_stmt_free(stmt
);
3900 stmt
->body
= pet_expr_map_access(stmt
->body
, &access_add_ref_id
, n_ref
);
3902 return pet_stmt_free(stmt
);
3907 /* Add a reference identifier to all access expressions in "scop".
3909 struct pet_scop
*pet_scop_add_ref_ids(struct pet_scop
*scop
)
3918 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
3919 scop
->stmts
[i
] = stmt_add_ref_ids(scop
->stmts
[i
], &n_ref
);
3920 if (!scop
->stmts
[i
])
3921 return pet_scop_free(scop
);
3927 /* Reset the user pointer on all parameter ids in "array".
3929 static struct pet_array
*array_anonymize(struct pet_array
*array
)
3934 array
->context
= isl_set_reset_user(array
->context
);
3935 array
->extent
= isl_set_reset_user(array
->extent
);
3936 if (!array
->context
|| !array
->extent
)
3937 return pet_array_free(array
);
3942 /* Reset the user pointer on all parameter and tuple ids in
3943 * the access relation and the index expressions
3944 * of the access expression "expr".
3946 static struct pet_expr
*access_anonymize(struct pet_expr
*expr
, void *user
)
3948 expr
->acc
.access
= isl_map_reset_user(expr
->acc
.access
);
3949 expr
->acc
.index
= isl_multi_pw_aff_reset_user(expr
->acc
.index
);
3950 if (!expr
->acc
.access
|| !expr
->acc
.index
)
3951 return pet_expr_free(expr
);
3956 /* Reset the user pointer on all parameter and tuple ids in "stmt".
3958 static struct pet_stmt
*stmt_anonymize(struct pet_stmt
*stmt
)
3967 stmt
->domain
= isl_set_reset_user(stmt
->domain
);
3968 stmt
->schedule
= isl_map_reset_user(stmt
->schedule
);
3969 if (!stmt
->domain
|| !stmt
->schedule
)
3970 return pet_stmt_free(stmt
);
3972 for (i
= 0; i
< stmt
->n_arg
; ++i
) {
3973 stmt
->args
[i
] = pet_expr_map_access(stmt
->args
[i
],
3974 &access_anonymize
, NULL
);
3976 return pet_stmt_free(stmt
);
3979 stmt
->body
= pet_expr_map_access(stmt
->body
,
3980 &access_anonymize
, NULL
);
3982 return pet_stmt_free(stmt
);
3987 /* Reset the user pointer on the tuple ids and all parameter ids
3990 static struct pet_implication
*implication_anonymize(
3991 struct pet_implication
*implication
)
3996 implication
->extension
= isl_map_reset_user(implication
->extension
);
3997 if (!implication
->extension
)
3998 return pet_implication_free(implication
);
4003 /* Reset the user pointer on all parameter and tuple ids in "scop".
4005 struct pet_scop
*pet_scop_anonymize(struct pet_scop
*scop
)
4012 scop
->context
= isl_set_reset_user(scop
->context
);
4013 scop
->context_value
= isl_set_reset_user(scop
->context_value
);
4014 if (!scop
->context
|| !scop
->context_value
)
4015 return pet_scop_free(scop
);
4017 for (i
= 0; i
< scop
->n_array
; ++i
) {
4018 scop
->arrays
[i
] = array_anonymize(scop
->arrays
[i
]);
4019 if (!scop
->arrays
[i
])
4020 return pet_scop_free(scop
);
4023 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
4024 scop
->stmts
[i
] = stmt_anonymize(scop
->stmts
[i
]);
4025 if (!scop
->stmts
[i
])
4026 return pet_scop_free(scop
);
4029 for (i
= 0; i
< scop
->n_implication
; ++i
) {
4030 scop
->implications
[i
] =
4031 implication_anonymize(scop
->implications
[i
]);
4032 if (!scop
->implications
[i
])
4033 return pet_scop_free(scop
);
4039 /* If "value_bounds" contains any bounds on the variable accessed by "arg",
4040 * then intersect the range of "map" with the valid set of values.
4042 static __isl_give isl_map
*access_apply_value_bounds(__isl_take isl_map
*map
,
4043 struct pet_expr
*arg
, __isl_keep isl_union_map
*value_bounds
)
4048 isl_ctx
*ctx
= isl_map_get_ctx(map
);
4050 id
= pet_expr_access_get_id(arg
);
4051 space
= isl_space_alloc(ctx
, 0, 0, 1);
4052 space
= isl_space_set_tuple_id(space
, isl_dim_in
, id
);
4053 vb
= isl_union_map_extract_map(value_bounds
, space
);
4054 if (!isl_map_plain_is_empty(vb
))
4055 map
= isl_map_intersect_range(map
, isl_map_range(vb
));
4062 /* Given a set "domain", return a wrapped relation with the given set
4063 * as domain and a range of dimension "n_arg", where each coordinate
4064 * is either unbounded or, if the corresponding element of args is of
4065 * type pet_expr_access, bounded by the bounds specified by "value_bounds".
4067 static __isl_give isl_set
*apply_value_bounds(__isl_take isl_set
*domain
,
4068 unsigned n_arg
, struct pet_expr
**args
,
4069 __isl_keep isl_union_map
*value_bounds
)
4075 map
= isl_map_from_domain(domain
);
4076 space
= isl_map_get_space(map
);
4077 space
= isl_space_add_dims(space
, isl_dim_out
, 1);
4079 for (i
= 0; i
< n_arg
; ++i
) {
4081 struct pet_expr
*arg
= args
[i
];
4083 map_i
= isl_map_universe(isl_space_copy(space
));
4084 if (arg
->type
== pet_expr_access
)
4085 map_i
= access_apply_value_bounds(map_i
, arg
,
4087 map
= isl_map_flat_range_product(map
, map_i
);
4089 isl_space_free(space
);
4091 return isl_map_wrap(map
);
4094 /* Data used in access_gist() callback.
4096 struct pet_access_gist_data
{
4098 isl_union_map
*value_bounds
;
4101 /* Given an expression "expr" of type pet_expr_access, compute
4102 * the gist of the associated access relation and index expression
4103 * with respect to data->domain and the bounds on the values of the arguments
4104 * of the expression.
4106 static struct pet_expr
*access_gist(struct pet_expr
*expr
, void *user
)
4108 struct pet_access_gist_data
*data
= user
;
4111 domain
= isl_set_copy(data
->domain
);
4112 if (expr
->n_arg
> 0)
4113 domain
= apply_value_bounds(domain
, expr
->n_arg
, expr
->args
,
4114 data
->value_bounds
);
4116 expr
->acc
.access
= isl_map_gist_domain(expr
->acc
.access
,
4117 isl_set_copy(domain
));
4118 expr
->acc
.index
= isl_multi_pw_aff_gist(expr
->acc
.index
, domain
);
4119 if (!expr
->acc
.access
|| !expr
->acc
.index
)
4120 return pet_expr_free(expr
);
4125 /* Compute the gist of the iteration domain and all access relations
4126 * of "stmt" based on the constraints on the parameters specified by "context"
4127 * and the constraints on the values of nested accesses specified
4128 * by "value_bounds".
4130 static struct pet_stmt
*stmt_gist(struct pet_stmt
*stmt
,
4131 __isl_keep isl_set
*context
, __isl_keep isl_union_map
*value_bounds
)
4136 struct pet_access_gist_data data
;
4141 data
.domain
= isl_set_copy(stmt
->domain
);
4142 data
.value_bounds
= value_bounds
;
4143 if (stmt
->n_arg
> 0)
4144 data
.domain
= isl_map_domain(isl_set_unwrap(data
.domain
));
4146 data
.domain
= isl_set_intersect_params(data
.domain
,
4147 isl_set_copy(context
));
4149 for (i
= 0; i
< stmt
->n_arg
; ++i
) {
4150 stmt
->args
[i
] = pet_expr_map_access(stmt
->args
[i
],
4151 &access_gist
, &data
);
4156 stmt
->body
= pet_expr_map_access(stmt
->body
, &access_gist
, &data
);
4160 isl_set_free(data
.domain
);
4162 space
= isl_set_get_space(stmt
->domain
);
4163 if (isl_space_is_wrapping(space
))
4164 space
= isl_space_domain(isl_space_unwrap(space
));
4165 domain
= isl_set_universe(space
);
4166 domain
= isl_set_intersect_params(domain
, isl_set_copy(context
));
4167 if (stmt
->n_arg
> 0)
4168 domain
= apply_value_bounds(domain
, stmt
->n_arg
, stmt
->args
,
4170 stmt
->domain
= isl_set_gist(stmt
->domain
, domain
);
4172 return pet_stmt_free(stmt
);
4176 isl_set_free(data
.domain
);
4177 return pet_stmt_free(stmt
);
4180 /* Compute the gist of the extent of the array
4181 * based on the constraints on the parameters specified by "context".
4183 static struct pet_array
*array_gist(struct pet_array
*array
,
4184 __isl_keep isl_set
*context
)
4189 array
->extent
= isl_set_gist_params(array
->extent
,
4190 isl_set_copy(context
));
4192 return pet_array_free(array
);
4197 /* Compute the gist of all sets and relations in "scop"
4198 * based on the constraints on the parameters specified by "scop->context"
4199 * and the constraints on the values of nested accesses specified
4200 * by "value_bounds".
4202 struct pet_scop
*pet_scop_gist(struct pet_scop
*scop
,
4203 __isl_keep isl_union_map
*value_bounds
)
4210 scop
->context
= isl_set_coalesce(scop
->context
);
4212 return pet_scop_free(scop
);
4214 for (i
= 0; i
< scop
->n_array
; ++i
) {
4215 scop
->arrays
[i
] = array_gist(scop
->arrays
[i
], scop
->context
);
4216 if (!scop
->arrays
[i
])
4217 return pet_scop_free(scop
);
4220 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
4221 scop
->stmts
[i
] = stmt_gist(scop
->stmts
[i
], scop
->context
,
4223 if (!scop
->stmts
[i
])
4224 return pet_scop_free(scop
);
4230 /* Intersect the context of "scop" with "context".
4231 * To ensure that we don't introduce any unnamed parameters in
4232 * the context of "scop", we first remove the unnamed parameters
4235 struct pet_scop
*pet_scop_restrict_context(struct pet_scop
*scop
,
4236 __isl_take isl_set
*context
)
4241 context
= set_project_out_unnamed_params(context
);
4242 scop
->context
= isl_set_intersect(scop
->context
, context
);
4244 return pet_scop_free(scop
);
4248 isl_set_free(context
);
4249 return pet_scop_free(scop
);
4252 /* Drop the current context of "scop". That is, replace the context
4253 * by a universal set.
4255 struct pet_scop
*pet_scop_reset_context(struct pet_scop
*scop
)
4262 space
= isl_set_get_space(scop
->context
);
4263 isl_set_free(scop
->context
);
4264 scop
->context
= isl_set_universe(space
);
4266 return pet_scop_free(scop
);
4271 /* Append "array" to the arrays of "scop".
4273 struct pet_scop
*pet_scop_add_array(struct pet_scop
*scop
,
4274 struct pet_array
*array
)
4277 struct pet_array
**arrays
;
4279 if (!array
|| !scop
)
4282 ctx
= isl_set_get_ctx(scop
->context
);
4283 arrays
= isl_realloc_array(ctx
, scop
->arrays
, struct pet_array
*,
4287 scop
->arrays
= arrays
;
4288 scop
->arrays
[scop
->n_array
] = array
;
4293 pet_array_free(array
);
4294 return pet_scop_free(scop
);
4297 /* Create and return an implication on filter values equal to "satisfied"
4298 * with extension "map".
4300 static struct pet_implication
*new_implication(__isl_take isl_map
*map
,
4304 struct pet_implication
*implication
;
4308 ctx
= isl_map_get_ctx(map
);
4309 implication
= isl_alloc_type(ctx
, struct pet_implication
);
4313 implication
->extension
= map
;
4314 implication
->satisfied
= satisfied
;
4322 /* Add an implication on filter values equal to "satisfied"
4323 * with extension "map" to "scop".
4325 struct pet_scop
*pet_scop_add_implication(struct pet_scop
*scop
,
4326 __isl_take isl_map
*map
, int satisfied
)
4329 struct pet_implication
*implication
;
4330 struct pet_implication
**implications
;
4332 implication
= new_implication(map
, satisfied
);
4333 if (!scop
|| !implication
)
4336 ctx
= isl_set_get_ctx(scop
->context
);
4337 implications
= isl_realloc_array(ctx
, scop
->implications
,
4338 struct pet_implication
*,
4339 scop
->n_implication
+ 1);
4342 scop
->implications
= implications
;
4343 scop
->implications
[scop
->n_implication
] = implication
;
4344 scop
->n_implication
++;
4348 pet_implication_free(implication
);
4349 return pet_scop_free(scop
);
4352 /* Given an access expression, check if it is data dependent.
4353 * If so, set *found and abort the search.
4355 static int is_data_dependent(struct pet_expr
*expr
, void *user
)
4367 /* Does "scop" contain any data dependent accesses?
4369 * Check the body of each statement for such accesses.
4371 int pet_scop_has_data_dependent_accesses(struct pet_scop
*scop
)
4379 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
4380 int r
= pet_expr_foreach_access_expr(scop
->stmts
[i
]->body
,
4381 &is_data_dependent
, &found
);
4382 if (r
< 0 && !found
)
4391 /* Does "scop" contain and data dependent conditions?
4393 int pet_scop_has_data_dependent_conditions(struct pet_scop
*scop
)
4400 for (i
= 0; i
< scop
->n_stmt
; ++i
)
4401 if (scop
->stmts
[i
]->n_arg
> 0)
4407 /* Keep track of the "input" file inside the (extended) "scop".
4409 struct pet_scop
*pet_scop_set_input_file(struct pet_scop
*scop
, FILE *input
)
4411 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
4421 /* Print the original code corresponding to "scop" to printer "p".
4423 * pet_scop_print_original can only be called from
4424 * a pet_transform_C_source callback. This means that the input
4425 * file is stored in the extended scop and that the printer prints
4428 __isl_give isl_printer
*pet_scop_print_original(struct pet_scop
*scop
,
4429 __isl_take isl_printer
*p
)
4431 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
4435 return isl_printer_free(p
);
4438 isl_die(isl_printer_get_ctx(p
), isl_error_invalid
,
4439 "no input file stored in scop",
4440 return isl_printer_free(p
));
4442 output
= isl_printer_get_file(p
);
4444 return isl_printer_free(p
);
4446 if (copy(ext
->input
, output
, scop
->start
, scop
->end
) < 0)
4447 return isl_printer_free(p
);