2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012-2014 Ecole Normale Superieure. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials provided
15 * with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as
31 * representing official policies, either expressed or implied, of
39 #include <llvm/Support/raw_ostream.h>
40 #include <clang/AST/ASTContext.h>
41 #include <clang/AST/ASTDiagnostic.h>
42 #include <clang/AST/Expr.h>
43 #include <clang/AST/RecursiveASTVisitor.h>
46 #include <isl/space.h>
56 #include "scop_plus.h"
61 using namespace clang
;
63 #if defined(DECLREFEXPR_CREATE_REQUIRES_BOOL)
64 static DeclRefExpr
*create_DeclRefExpr(VarDecl
*var
)
66 return DeclRefExpr::Create(var
->getASTContext(), var
->getQualifierLoc(),
67 SourceLocation(), var
, false, var
->getInnerLocStart(),
68 var
->getType(), VK_LValue
);
70 #elif defined(DECLREFEXPR_CREATE_REQUIRES_SOURCELOCATION)
71 static DeclRefExpr
*create_DeclRefExpr(VarDecl
*var
)
73 return DeclRefExpr::Create(var
->getASTContext(), var
->getQualifierLoc(),
74 SourceLocation(), var
, var
->getInnerLocStart(), var
->getType(),
78 static DeclRefExpr
*create_DeclRefExpr(VarDecl
*var
)
80 return DeclRefExpr::Create(var
->getASTContext(), var
->getQualifierLoc(),
81 var
, var
->getInnerLocStart(), var
->getType(), VK_LValue
);
85 /* Check if the element type corresponding to the given array type
86 * has a const qualifier.
88 static bool const_base(QualType qt
)
90 const Type
*type
= qt
.getTypePtr();
92 if (type
->isPointerType())
93 return const_base(type
->getPointeeType());
94 if (type
->isArrayType()) {
95 const ArrayType
*atype
;
96 type
= type
->getCanonicalTypeInternal().getTypePtr();
97 atype
= cast
<ArrayType
>(type
);
98 return const_base(atype
->getElementType());
101 return qt
.isConstQualified();
104 /* Mark "decl" as having an unknown value in "assigned_value".
106 * If no (known or unknown) value was assigned to "decl" before,
107 * then it may have been treated as a parameter before and may
108 * therefore appear in a value assigned to another variable.
109 * If so, this assignment needs to be turned into an unknown value too.
111 static void clear_assignment(map
<ValueDecl
*, isl_pw_aff
*> &assigned_value
,
114 map
<ValueDecl
*, isl_pw_aff
*>::iterator it
;
116 it
= assigned_value
.find(decl
);
118 assigned_value
[decl
] = NULL
;
120 if (it
!= assigned_value
.end())
123 for (it
= assigned_value
.begin(); it
!= assigned_value
.end(); ++it
) {
124 isl_pw_aff
*pa
= it
->second
;
125 int nparam
= isl_pw_aff_dim(pa
, isl_dim_param
);
127 for (int i
= 0; i
< nparam
; ++i
) {
130 if (!isl_pw_aff_has_dim_id(pa
, isl_dim_param
, i
))
132 id
= isl_pw_aff_get_dim_id(pa
, isl_dim_param
, i
);
133 if (isl_id_get_user(id
) == decl
)
140 /* Look for any assignments to scalar variables in part of the parse
141 * tree and set assigned_value to NULL for each of them.
142 * Also reset assigned_value if the address of a scalar variable
143 * is being taken. As an exception, if the address is passed to a function
144 * that is declared to receive a const pointer, then assigned_value is
147 * This ensures that we won't use any previously stored value
148 * in the current subtree and its parents.
150 struct clear_assignments
: RecursiveASTVisitor
<clear_assignments
> {
151 map
<ValueDecl
*, isl_pw_aff
*> &assigned_value
;
152 set
<UnaryOperator
*> skip
;
154 clear_assignments(map
<ValueDecl
*, isl_pw_aff
*> &assigned_value
) :
155 assigned_value(assigned_value
) {}
157 /* Check for "address of" operators whose value is passed
158 * to a const pointer argument and add them to "skip", so that
159 * we can skip them in VisitUnaryOperator.
161 bool VisitCallExpr(CallExpr
*expr
) {
163 fd
= expr
->getDirectCallee();
166 for (int i
= 0; i
< expr
->getNumArgs(); ++i
) {
167 Expr
*arg
= expr
->getArg(i
);
169 if (arg
->getStmtClass() == Stmt::ImplicitCastExprClass
) {
170 ImplicitCastExpr
*ice
;
171 ice
= cast
<ImplicitCastExpr
>(arg
);
172 arg
= ice
->getSubExpr();
174 if (arg
->getStmtClass() != Stmt::UnaryOperatorClass
)
176 op
= cast
<UnaryOperator
>(arg
);
177 if (op
->getOpcode() != UO_AddrOf
)
179 if (const_base(fd
->getParamDecl(i
)->getType()))
185 bool VisitUnaryOperator(UnaryOperator
*expr
) {
190 switch (expr
->getOpcode()) {
200 if (skip
.find(expr
) != skip
.end())
203 arg
= expr
->getSubExpr();
204 if (arg
->getStmtClass() != Stmt::DeclRefExprClass
)
206 ref
= cast
<DeclRefExpr
>(arg
);
207 decl
= ref
->getDecl();
208 clear_assignment(assigned_value
, decl
);
212 bool VisitBinaryOperator(BinaryOperator
*expr
) {
217 if (!expr
->isAssignmentOp())
219 lhs
= expr
->getLHS();
220 if (lhs
->getStmtClass() != Stmt::DeclRefExprClass
)
222 ref
= cast
<DeclRefExpr
>(lhs
);
223 decl
= ref
->getDecl();
224 clear_assignment(assigned_value
, decl
);
229 /* Keep a copy of the currently assigned values.
231 * Any variable that is assigned a value inside the current scope
232 * is removed again when we leave the scope (either because it wasn't
233 * stored in the cache or because it has a different value in the cache).
235 struct assigned_value_cache
{
236 map
<ValueDecl
*, isl_pw_aff
*> &assigned_value
;
237 map
<ValueDecl
*, isl_pw_aff
*> cache
;
239 assigned_value_cache(map
<ValueDecl
*, isl_pw_aff
*> &assigned_value
) :
240 assigned_value(assigned_value
), cache(assigned_value
) {}
241 ~assigned_value_cache() {
242 map
<ValueDecl
*, isl_pw_aff
*>::iterator it
= cache
.begin();
243 for (it
= assigned_value
.begin(); it
!= assigned_value
.end();
246 (cache
.find(it
->first
) != cache
.end() &&
247 cache
[it
->first
] != it
->second
))
248 cache
[it
->first
] = NULL
;
250 assigned_value
= cache
;
254 /* Insert an expression into the collection of expressions,
255 * provided it is not already in there.
256 * The isl_pw_affs are freed in the destructor.
258 void PetScan::insert_expression(__isl_take isl_pw_aff
*expr
)
260 std::set
<isl_pw_aff
*>::iterator it
;
262 if (expressions
.find(expr
) == expressions
.end())
263 expressions
.insert(expr
);
265 isl_pw_aff_free(expr
);
270 std::set
<isl_pw_aff
*>::iterator it
;
272 for (it
= expressions
.begin(); it
!= expressions
.end(); ++it
)
273 isl_pw_aff_free(*it
);
275 isl_union_map_free(value_bounds
);
278 /* Report a diagnostic, unless autodetect is set.
280 void PetScan::report(Stmt
*stmt
, unsigned id
)
282 if (options
->autodetect
)
285 SourceLocation loc
= stmt
->getLocStart();
286 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
287 DiagnosticBuilder B
= diag
.Report(loc
, id
) << stmt
->getSourceRange();
290 /* Called if we found something we (currently) cannot handle.
291 * We'll provide more informative warnings later.
293 * We only actually complain if autodetect is false.
295 void PetScan::unsupported(Stmt
*stmt
)
297 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
298 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
303 /* Report a missing prototype, unless autodetect is set.
305 void PetScan::report_prototype_required(Stmt
*stmt
)
307 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
308 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
309 "prototype required");
313 /* Report a missing increment, unless autodetect is set.
315 void PetScan::report_missing_increment(Stmt
*stmt
)
317 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
318 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
319 "missing increment");
323 /* Extract an integer from "expr".
325 __isl_give isl_val
*PetScan::extract_int(isl_ctx
*ctx
, IntegerLiteral
*expr
)
327 const Type
*type
= expr
->getType().getTypePtr();
328 int is_signed
= type
->hasSignedIntegerRepresentation();
329 llvm::APInt val
= expr
->getValue();
330 int is_negative
= is_signed
&& val
.isNegative();
336 v
= extract_unsigned(ctx
, val
);
343 /* Extract an integer from "val", which is assumed to be non-negative.
345 __isl_give isl_val
*PetScan::extract_unsigned(isl_ctx
*ctx
,
346 const llvm::APInt
&val
)
349 const uint64_t *data
;
351 data
= val
.getRawData();
352 n
= val
.getNumWords();
353 return isl_val_int_from_chunks(ctx
, n
, sizeof(uint64_t), data
);
356 /* Extract an integer from "expr".
357 * Return NULL if "expr" does not (obviously) represent an integer.
359 __isl_give isl_val
*PetScan::extract_int(clang::ParenExpr
*expr
)
361 return extract_int(expr
->getSubExpr());
364 /* Extract an integer from "expr".
365 * Return NULL if "expr" does not (obviously) represent an integer.
367 __isl_give isl_val
*PetScan::extract_int(clang::Expr
*expr
)
369 if (expr
->getStmtClass() == Stmt::IntegerLiteralClass
)
370 return extract_int(ctx
, cast
<IntegerLiteral
>(expr
));
371 if (expr
->getStmtClass() == Stmt::ParenExprClass
)
372 return extract_int(cast
<ParenExpr
>(expr
));
378 /* Extract an affine expression from the IntegerLiteral "expr".
380 __isl_give isl_pw_aff
*PetScan::extract_affine(IntegerLiteral
*expr
)
382 isl_space
*dim
= isl_space_params_alloc(ctx
, 0);
383 isl_local_space
*ls
= isl_local_space_from_space(isl_space_copy(dim
));
384 isl_aff
*aff
= isl_aff_zero_on_domain(ls
);
385 isl_set
*dom
= isl_set_universe(dim
);
388 v
= extract_int(expr
);
389 aff
= isl_aff_add_constant_val(aff
, v
);
391 return isl_pw_aff_alloc(dom
, aff
);
394 /* Extract an affine expression from the APInt "val", which is assumed
395 * to be non-negative.
397 __isl_give isl_pw_aff
*PetScan::extract_affine(const llvm::APInt
&val
)
399 isl_space
*dim
= isl_space_params_alloc(ctx
, 0);
400 isl_local_space
*ls
= isl_local_space_from_space(isl_space_copy(dim
));
401 isl_aff
*aff
= isl_aff_zero_on_domain(ls
);
402 isl_set
*dom
= isl_set_universe(dim
);
405 v
= extract_unsigned(ctx
, val
);
406 aff
= isl_aff_add_constant_val(aff
, v
);
408 return isl_pw_aff_alloc(dom
, aff
);
411 __isl_give isl_pw_aff
*PetScan::extract_affine(ImplicitCastExpr
*expr
)
413 return extract_affine(expr
->getSubExpr());
416 static unsigned get_type_size(ValueDecl
*decl
)
418 return decl
->getASTContext().getIntWidth(decl
->getType());
421 /* Bound parameter "pos" of "set" to the possible values of "decl".
423 static __isl_give isl_set
*set_parameter_bounds(__isl_take isl_set
*set
,
424 unsigned pos
, ValueDecl
*decl
)
430 ctx
= isl_set_get_ctx(set
);
431 width
= get_type_size(decl
);
432 if (decl
->getType()->isUnsignedIntegerType()) {
433 set
= isl_set_lower_bound_si(set
, isl_dim_param
, pos
, 0);
434 bound
= isl_val_int_from_ui(ctx
, width
);
435 bound
= isl_val_2exp(bound
);
436 bound
= isl_val_sub_ui(bound
, 1);
437 set
= isl_set_upper_bound_val(set
, isl_dim_param
, pos
, bound
);
439 bound
= isl_val_int_from_ui(ctx
, width
- 1);
440 bound
= isl_val_2exp(bound
);
441 bound
= isl_val_sub_ui(bound
, 1);
442 set
= isl_set_upper_bound_val(set
, isl_dim_param
, pos
,
443 isl_val_copy(bound
));
444 bound
= isl_val_neg(bound
);
445 bound
= isl_val_sub_ui(bound
, 1);
446 set
= isl_set_lower_bound_val(set
, isl_dim_param
, pos
, bound
);
452 /* Extract an affine expression from the DeclRefExpr "expr".
454 * If the variable has been assigned a value, then we check whether
455 * we know what (affine) value was assigned.
456 * If so, we return this value. Otherwise we convert "expr"
457 * to an extra parameter (provided nesting_enabled is set).
459 * Otherwise, we simply return an expression that is equal
460 * to a parameter corresponding to the referenced variable.
462 __isl_give isl_pw_aff
*PetScan::extract_affine(DeclRefExpr
*expr
)
464 ValueDecl
*decl
= expr
->getDecl();
465 const Type
*type
= decl
->getType().getTypePtr();
471 if (!type
->isIntegerType()) {
476 if (assigned_value
.find(decl
) != assigned_value
.end()) {
477 if (assigned_value
[decl
])
478 return isl_pw_aff_copy(assigned_value
[decl
]);
480 return nested_access(expr
);
483 id
= isl_id_alloc(ctx
, decl
->getName().str().c_str(), decl
);
484 dim
= isl_space_params_alloc(ctx
, 1);
486 dim
= isl_space_set_dim_id(dim
, isl_dim_param
, 0, id
);
488 dom
= isl_set_universe(isl_space_copy(dim
));
489 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(dim
));
490 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_param
, 0, 1);
492 return isl_pw_aff_alloc(dom
, aff
);
495 /* Extract an affine expression from an integer division operation.
496 * In particular, if "expr" is lhs/rhs, then return
498 * lhs >= 0 ? floor(lhs/rhs) : ceil(lhs/rhs)
500 * The second argument (rhs) is required to be a (positive) integer constant.
502 __isl_give isl_pw_aff
*PetScan::extract_affine_div(BinaryOperator
*expr
)
505 isl_pw_aff
*rhs
, *lhs
;
507 rhs
= extract_affine(expr
->getRHS());
508 is_cst
= isl_pw_aff_is_cst(rhs
);
509 if (is_cst
< 0 || !is_cst
) {
510 isl_pw_aff_free(rhs
);
516 lhs
= extract_affine(expr
->getLHS());
518 return isl_pw_aff_tdiv_q(lhs
, rhs
);
521 /* Extract an affine expression from a modulo operation.
522 * In particular, if "expr" is lhs/rhs, then return
524 * lhs - rhs * (lhs >= 0 ? floor(lhs/rhs) : ceil(lhs/rhs))
526 * The second argument (rhs) is required to be a (positive) integer constant.
528 __isl_give isl_pw_aff
*PetScan::extract_affine_mod(BinaryOperator
*expr
)
531 isl_pw_aff
*rhs
, *lhs
;
533 rhs
= extract_affine(expr
->getRHS());
534 is_cst
= isl_pw_aff_is_cst(rhs
);
535 if (is_cst
< 0 || !is_cst
) {
536 isl_pw_aff_free(rhs
);
542 lhs
= extract_affine(expr
->getLHS());
544 return isl_pw_aff_tdiv_r(lhs
, rhs
);
547 /* Extract an affine expression from a multiplication operation.
548 * This is only allowed if at least one of the two arguments
549 * is a (piecewise) constant.
551 __isl_give isl_pw_aff
*PetScan::extract_affine_mul(BinaryOperator
*expr
)
556 lhs
= extract_affine(expr
->getLHS());
557 rhs
= extract_affine(expr
->getRHS());
559 if (!isl_pw_aff_is_cst(lhs
) && !isl_pw_aff_is_cst(rhs
)) {
560 isl_pw_aff_free(lhs
);
561 isl_pw_aff_free(rhs
);
566 return isl_pw_aff_mul(lhs
, rhs
);
569 /* Extract an affine expression from an addition or subtraction operation.
571 __isl_give isl_pw_aff
*PetScan::extract_affine_add(BinaryOperator
*expr
)
576 lhs
= extract_affine(expr
->getLHS());
577 rhs
= extract_affine(expr
->getRHS());
579 switch (expr
->getOpcode()) {
581 return isl_pw_aff_add(lhs
, rhs
);
583 return isl_pw_aff_sub(lhs
, rhs
);
585 isl_pw_aff_free(lhs
);
586 isl_pw_aff_free(rhs
);
596 static __isl_give isl_pw_aff
*wrap(__isl_take isl_pw_aff
*pwaff
,
602 ctx
= isl_pw_aff_get_ctx(pwaff
);
603 mod
= isl_val_int_from_ui(ctx
, width
);
604 mod
= isl_val_2exp(mod
);
606 pwaff
= isl_pw_aff_mod_val(pwaff
, mod
);
611 /* Limit the domain of "pwaff" to those elements where the function
614 * 2^{width-1} <= pwaff < 2^{width-1}
616 static __isl_give isl_pw_aff
*avoid_overflow(__isl_take isl_pw_aff
*pwaff
,
621 isl_space
*space
= isl_pw_aff_get_domain_space(pwaff
);
622 isl_local_space
*ls
= isl_local_space_from_space(space
);
627 ctx
= isl_pw_aff_get_ctx(pwaff
);
628 v
= isl_val_int_from_ui(ctx
, width
- 1);
631 bound
= isl_aff_zero_on_domain(ls
);
632 bound
= isl_aff_add_constant_val(bound
, v
);
633 b
= isl_pw_aff_from_aff(bound
);
635 dom
= isl_pw_aff_lt_set(isl_pw_aff_copy(pwaff
), isl_pw_aff_copy(b
));
636 pwaff
= isl_pw_aff_intersect_domain(pwaff
, dom
);
638 b
= isl_pw_aff_neg(b
);
639 dom
= isl_pw_aff_ge_set(isl_pw_aff_copy(pwaff
), b
);
640 pwaff
= isl_pw_aff_intersect_domain(pwaff
, dom
);
645 /* Handle potential overflows on signed computations.
647 * If options->signed_overflow is set to PET_OVERFLOW_AVOID,
648 * the we adjust the domain of "pa" to avoid overflows.
650 __isl_give isl_pw_aff
*PetScan::signed_overflow(__isl_take isl_pw_aff
*pa
,
653 if (options
->signed_overflow
== PET_OVERFLOW_AVOID
)
654 pa
= avoid_overflow(pa
, width
);
659 /* Return the piecewise affine expression "set ? 1 : 0" defined on "dom".
661 static __isl_give isl_pw_aff
*indicator_function(__isl_take isl_set
*set
,
662 __isl_take isl_set
*dom
)
665 pa
= isl_set_indicator_function(set
);
666 pa
= isl_pw_aff_intersect_domain(pa
, isl_set_coalesce(dom
));
670 /* Extract an affine expression from some binary operations.
671 * If the result of the expression is unsigned, then we wrap it
672 * based on the size of the type. Otherwise, we ensure that
673 * no overflow occurs.
675 __isl_give isl_pw_aff
*PetScan::extract_affine(BinaryOperator
*expr
)
680 switch (expr
->getOpcode()) {
683 res
= extract_affine_add(expr
);
686 res
= extract_affine_div(expr
);
689 res
= extract_affine_mod(expr
);
692 res
= extract_affine_mul(expr
);
702 return extract_condition(expr
);
708 width
= ast_context
.getIntWidth(expr
->getType());
709 if (expr
->getType()->isUnsignedIntegerType())
710 res
= wrap(res
, width
);
712 res
= signed_overflow(res
, width
);
717 /* Extract an affine expression from a negation operation.
719 __isl_give isl_pw_aff
*PetScan::extract_affine(UnaryOperator
*expr
)
721 if (expr
->getOpcode() == UO_Minus
)
722 return isl_pw_aff_neg(extract_affine(expr
->getSubExpr()));
723 if (expr
->getOpcode() == UO_LNot
)
724 return extract_condition(expr
);
730 __isl_give isl_pw_aff
*PetScan::extract_affine(ParenExpr
*expr
)
732 return extract_affine(expr
->getSubExpr());
735 /* Extract an affine expression from some special function calls.
736 * In particular, we handle "min", "max", "ceild", "floord",
737 * "intMod", "intFloor" and "intCeil".
738 * In case of the latter five, the second argument needs to be
739 * a (positive) integer constant.
741 __isl_give isl_pw_aff
*PetScan::extract_affine(CallExpr
*expr
)
745 isl_pw_aff
*aff1
, *aff2
;
747 fd
= expr
->getDirectCallee();
753 name
= fd
->getDeclName().getAsString();
754 if (!(expr
->getNumArgs() == 2 && name
== "min") &&
755 !(expr
->getNumArgs() == 2 && name
== "max") &&
756 !(expr
->getNumArgs() == 2 && name
== "intMod") &&
757 !(expr
->getNumArgs() == 2 && name
== "intFloor") &&
758 !(expr
->getNumArgs() == 2 && name
== "intCeil") &&
759 !(expr
->getNumArgs() == 2 && name
== "floord") &&
760 !(expr
->getNumArgs() == 2 && name
== "ceild")) {
765 if (name
== "min" || name
== "max") {
766 aff1
= extract_affine(expr
->getArg(0));
767 aff2
= extract_affine(expr
->getArg(1));
770 aff1
= isl_pw_aff_min(aff1
, aff2
);
772 aff1
= isl_pw_aff_max(aff1
, aff2
);
773 } else if (name
== "intMod") {
775 Expr
*arg2
= expr
->getArg(1);
777 if (arg2
->getStmtClass() != Stmt::IntegerLiteralClass
) {
781 aff1
= extract_affine(expr
->getArg(0));
782 v
= extract_int(cast
<IntegerLiteral
>(arg2
));
783 aff1
= isl_pw_aff_mod_val(aff1
, v
);
784 } else if (name
== "floord" || name
== "ceild" ||
785 name
== "intFloor" || name
== "intCeil") {
787 Expr
*arg2
= expr
->getArg(1);
789 if (arg2
->getStmtClass() != Stmt::IntegerLiteralClass
) {
793 aff1
= extract_affine(expr
->getArg(0));
794 v
= extract_int(cast
<IntegerLiteral
>(arg2
));
795 aff1
= isl_pw_aff_scale_down_val(aff1
, v
);
796 if (name
== "floord" || name
== "intFloor")
797 aff1
= isl_pw_aff_floor(aff1
);
799 aff1
= isl_pw_aff_ceil(aff1
);
808 /* This method is called when we come across an access that is
809 * nested in what is supposed to be an affine expression.
810 * If nesting is allowed, we return a new parameter that corresponds
811 * to this nested access. Otherwise, we simply complain.
813 * Note that we currently don't allow nested accesses themselves
814 * to contain any nested accesses, so we check if we can extract
815 * the access without any nesting and complain if we can't.
817 * The new parameter is resolved in resolve_nested.
819 isl_pw_aff
*PetScan::nested_access(Expr
*expr
)
825 isl_multi_pw_aff
*index
;
827 if (!nesting_enabled
) {
832 allow_nested
= false;
833 index
= extract_index(expr
);
839 isl_multi_pw_aff_free(index
);
841 id
= pet_nested_clang_expr(ctx
, expr
);
842 dim
= isl_space_params_alloc(ctx
, 1);
844 dim
= isl_space_set_dim_id(dim
, isl_dim_param
, 0, id
);
846 dom
= isl_set_universe(isl_space_copy(dim
));
847 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(dim
));
848 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_param
, 0, 1);
850 return isl_pw_aff_alloc(dom
, aff
);
853 /* Affine expressions are not supposed to contain array accesses,
854 * but if nesting is allowed, we return a parameter corresponding
855 * to the array access.
857 __isl_give isl_pw_aff
*PetScan::extract_affine(ArraySubscriptExpr
*expr
)
859 return nested_access(expr
);
862 /* Affine expressions are not supposed to contain member accesses,
863 * but if nesting is allowed, we return a parameter corresponding
864 * to the member access.
866 __isl_give isl_pw_aff
*PetScan::extract_affine(MemberExpr
*expr
)
868 return nested_access(expr
);
871 /* Extract an affine expression from a conditional operation.
873 __isl_give isl_pw_aff
*PetScan::extract_affine(ConditionalOperator
*expr
)
875 isl_pw_aff
*cond
, *lhs
, *rhs
;
877 cond
= extract_condition(expr
->getCond());
878 lhs
= extract_affine(expr
->getTrueExpr());
879 rhs
= extract_affine(expr
->getFalseExpr());
881 return isl_pw_aff_cond(cond
, lhs
, rhs
);
884 /* Extract an affine expression, if possible, from "expr".
885 * Otherwise return NULL.
887 __isl_give isl_pw_aff
*PetScan::extract_affine(Expr
*expr
)
889 switch (expr
->getStmtClass()) {
890 case Stmt::ImplicitCastExprClass
:
891 return extract_affine(cast
<ImplicitCastExpr
>(expr
));
892 case Stmt::IntegerLiteralClass
:
893 return extract_affine(cast
<IntegerLiteral
>(expr
));
894 case Stmt::DeclRefExprClass
:
895 return extract_affine(cast
<DeclRefExpr
>(expr
));
896 case Stmt::BinaryOperatorClass
:
897 return extract_affine(cast
<BinaryOperator
>(expr
));
898 case Stmt::UnaryOperatorClass
:
899 return extract_affine(cast
<UnaryOperator
>(expr
));
900 case Stmt::ParenExprClass
:
901 return extract_affine(cast
<ParenExpr
>(expr
));
902 case Stmt::CallExprClass
:
903 return extract_affine(cast
<CallExpr
>(expr
));
904 case Stmt::ArraySubscriptExprClass
:
905 return extract_affine(cast
<ArraySubscriptExpr
>(expr
));
906 case Stmt::MemberExprClass
:
907 return extract_affine(cast
<MemberExpr
>(expr
));
908 case Stmt::ConditionalOperatorClass
:
909 return extract_affine(cast
<ConditionalOperator
>(expr
));
916 __isl_give isl_multi_pw_aff
*PetScan::extract_index(ImplicitCastExpr
*expr
)
918 return extract_index(expr
->getSubExpr());
921 /* Return the depth of an array of the given type.
923 static int array_depth(const Type
*type
)
925 if (type
->isPointerType())
926 return 1 + array_depth(type
->getPointeeType().getTypePtr());
927 if (type
->isArrayType()) {
928 const ArrayType
*atype
;
929 type
= type
->getCanonicalTypeInternal().getTypePtr();
930 atype
= cast
<ArrayType
>(type
);
931 return 1 + array_depth(atype
->getElementType().getTypePtr());
936 /* Return the depth of the array accessed by the index expression "index".
937 * If "index" is an affine expression, i.e., if it does not access
938 * any array, then return 1.
939 * If "index" represent a member access, i.e., if its range is a wrapped
940 * relation, then return the sum of the depth of the array of structures
941 * and that of the member inside the structure.
943 static int extract_depth(__isl_keep isl_multi_pw_aff
*index
)
951 if (isl_multi_pw_aff_range_is_wrapping(index
)) {
952 int domain_depth
, range_depth
;
953 isl_multi_pw_aff
*domain
, *range
;
955 domain
= isl_multi_pw_aff_copy(index
);
956 domain
= isl_multi_pw_aff_range_factor_domain(domain
);
957 domain_depth
= extract_depth(domain
);
958 isl_multi_pw_aff_free(domain
);
959 range
= isl_multi_pw_aff_copy(index
);
960 range
= isl_multi_pw_aff_range_factor_range(range
);
961 range_depth
= extract_depth(range
);
962 isl_multi_pw_aff_free(range
);
964 return domain_depth
+ range_depth
;
967 if (!isl_multi_pw_aff_has_tuple_id(index
, isl_dim_out
))
970 id
= isl_multi_pw_aff_get_tuple_id(index
, isl_dim_out
);
973 decl
= (ValueDecl
*) isl_id_get_user(id
);
976 return array_depth(decl
->getType().getTypePtr());
979 /* Extract an index expression from a reference to a variable.
980 * If the variable has name "A", then the returned index expression
985 __isl_give isl_multi_pw_aff
*PetScan::extract_index(DeclRefExpr
*expr
)
987 return extract_index(expr
->getDecl());
990 /* Extract an index expression from a variable.
991 * If the variable has name "A", then the returned index expression
996 __isl_give isl_multi_pw_aff
*PetScan::extract_index(ValueDecl
*decl
)
998 isl_id
*id
= isl_id_alloc(ctx
, decl
->getName().str().c_str(), decl
);
999 isl_space
*space
= isl_space_alloc(ctx
, 0, 0, 0);
1001 space
= isl_space_set_tuple_id(space
, isl_dim_out
, id
);
1003 return isl_multi_pw_aff_zero(space
);
1006 /* Extract an index expression from an integer contant.
1007 * If the value of the constant is "v", then the returned access relation
1012 __isl_give isl_multi_pw_aff
*PetScan::extract_index(IntegerLiteral
*expr
)
1014 isl_multi_pw_aff
*mpa
;
1016 mpa
= isl_multi_pw_aff_from_pw_aff(extract_affine(expr
));
1017 mpa
= isl_multi_pw_aff_from_range(mpa
);
1021 /* Try and extract an index expression from the given Expr.
1022 * Return NULL if it doesn't work out.
1024 __isl_give isl_multi_pw_aff
*PetScan::extract_index(Expr
*expr
)
1026 switch (expr
->getStmtClass()) {
1027 case Stmt::ImplicitCastExprClass
:
1028 return extract_index(cast
<ImplicitCastExpr
>(expr
));
1029 case Stmt::DeclRefExprClass
:
1030 return extract_index(cast
<DeclRefExpr
>(expr
));
1031 case Stmt::ArraySubscriptExprClass
:
1032 return extract_index(cast
<ArraySubscriptExpr
>(expr
));
1033 case Stmt::IntegerLiteralClass
:
1034 return extract_index(cast
<IntegerLiteral
>(expr
));
1035 case Stmt::MemberExprClass
:
1036 return extract_index(cast
<MemberExpr
>(expr
));
1043 /* Given a partial index expression "base" and an extra index "index",
1044 * append the extra index to "base" and return the result.
1045 * Additionally, add the constraints that the extra index is non-negative.
1046 * If "index" represent a member access, i.e., if its range is a wrapped
1047 * relation, then we recursively extend the range of this nested relation.
1049 static __isl_give isl_multi_pw_aff
*subscript(__isl_take isl_multi_pw_aff
*base
,
1050 __isl_take isl_pw_aff
*index
)
1054 isl_multi_pw_aff
*access
;
1057 member_access
= isl_multi_pw_aff_range_is_wrapping(base
);
1058 if (member_access
< 0)
1060 if (member_access
) {
1061 isl_multi_pw_aff
*domain
, *range
;
1064 id
= isl_multi_pw_aff_get_tuple_id(base
, isl_dim_out
);
1065 domain
= isl_multi_pw_aff_copy(base
);
1066 domain
= isl_multi_pw_aff_range_factor_domain(domain
);
1067 range
= isl_multi_pw_aff_range_factor_range(base
);
1068 range
= subscript(range
, index
);
1069 access
= isl_multi_pw_aff_range_product(domain
, range
);
1070 access
= isl_multi_pw_aff_set_tuple_id(access
, isl_dim_out
, id
);
1074 id
= isl_multi_pw_aff_get_tuple_id(base
, isl_dim_set
);
1075 index
= isl_pw_aff_from_range(index
);
1076 domain
= isl_pw_aff_nonneg_set(isl_pw_aff_copy(index
));
1077 index
= isl_pw_aff_intersect_domain(index
, domain
);
1078 access
= isl_multi_pw_aff_from_pw_aff(index
);
1079 access
= isl_multi_pw_aff_flat_range_product(base
, access
);
1080 access
= isl_multi_pw_aff_set_tuple_id(access
, isl_dim_set
, id
);
1084 isl_multi_pw_aff_free(base
);
1085 isl_pw_aff_free(index
);
1089 /* Extract an index expression from the given array subscript expression.
1090 * If nesting is allowed in general, then we turn it on while
1091 * examining the index expression.
1093 * We first extract an index expression from the base.
1094 * This will result in an index expression with a range that corresponds
1095 * to the earlier indices.
1096 * We then extract the current index, restrict its domain
1097 * to those values that result in a non-negative index and
1098 * append the index to the base index expression.
1100 __isl_give isl_multi_pw_aff
*PetScan::extract_index(ArraySubscriptExpr
*expr
)
1102 Expr
*base
= expr
->getBase();
1103 Expr
*idx
= expr
->getIdx();
1105 isl_multi_pw_aff
*base_access
;
1106 isl_multi_pw_aff
*access
;
1107 bool save_nesting
= nesting_enabled
;
1109 nesting_enabled
= allow_nested
;
1111 base_access
= extract_index(base
);
1112 index
= extract_affine(idx
);
1114 nesting_enabled
= save_nesting
;
1116 access
= subscript(base_access
, index
);
1121 /* Construct a name for a member access by concatenating the name
1122 * of the array of structures and the member, separated by an underscore.
1124 * The caller is responsible for freeing the result.
1126 static char *member_access_name(isl_ctx
*ctx
, const char *base
,
1132 len
= strlen(base
) + 1 + strlen(field
);
1133 name
= isl_alloc_array(ctx
, char, len
+ 1);
1136 snprintf(name
, len
+ 1, "%s_%s", base
, field
);
1141 /* Given an index expression "base" for an element of an array of structures
1142 * and an expression "field" for the field member being accessed, construct
1143 * an index expression for an access to that member of the given structure.
1144 * In particular, take the range product of "base" and "field" and
1145 * attach a name to the result.
1147 static __isl_give isl_multi_pw_aff
*member(__isl_take isl_multi_pw_aff
*base
,
1148 __isl_take isl_multi_pw_aff
*field
)
1151 isl_multi_pw_aff
*access
;
1152 const char *base_name
, *field_name
;
1155 ctx
= isl_multi_pw_aff_get_ctx(base
);
1157 base_name
= isl_multi_pw_aff_get_tuple_name(base
, isl_dim_out
);
1158 field_name
= isl_multi_pw_aff_get_tuple_name(field
, isl_dim_out
);
1159 name
= member_access_name(ctx
, base_name
, field_name
);
1161 access
= isl_multi_pw_aff_range_product(base
, field
);
1163 access
= isl_multi_pw_aff_set_tuple_name(access
, isl_dim_out
, name
);
1169 /* Extract an index expression from a member expression.
1171 * If the base access (to the structure containing the member)
1176 * and the member is called "f", then the member access is of
1179 * [] -> A_f[A[..] -> f[]]
1181 * If the member access is to an anonymous struct, then simply return
1185 * If the member access in the source code is of the form
1189 * then it is treated as
1193 __isl_give isl_multi_pw_aff
*PetScan::extract_index(MemberExpr
*expr
)
1195 Expr
*base
= expr
->getBase();
1196 FieldDecl
*field
= cast
<FieldDecl
>(expr
->getMemberDecl());
1197 isl_multi_pw_aff
*base_access
, *field_access
;
1201 base_access
= extract_index(base
);
1203 if (expr
->isArrow()) {
1204 isl_space
*space
= isl_space_params_alloc(ctx
, 0);
1205 isl_local_space
*ls
= isl_local_space_from_space(space
);
1206 isl_aff
*aff
= isl_aff_zero_on_domain(ls
);
1207 isl_pw_aff
*index
= isl_pw_aff_from_aff(aff
);
1208 base_access
= subscript(base_access
, index
);
1211 if (field
->isAnonymousStructOrUnion())
1214 id
= isl_id_alloc(ctx
, field
->getName().str().c_str(), field
);
1215 space
= isl_multi_pw_aff_get_domain_space(base_access
);
1216 space
= isl_space_from_domain(space
);
1217 space
= isl_space_set_tuple_id(space
, isl_dim_out
, id
);
1218 field_access
= isl_multi_pw_aff_zero(space
);
1220 return member(base_access
, field_access
);
1223 /* Check if "expr" calls function "minmax" with two arguments and if so
1224 * make lhs and rhs refer to these two arguments.
1226 static bool is_minmax(Expr
*expr
, const char *minmax
, Expr
*&lhs
, Expr
*&rhs
)
1232 if (expr
->getStmtClass() != Stmt::CallExprClass
)
1235 call
= cast
<CallExpr
>(expr
);
1236 fd
= call
->getDirectCallee();
1240 if (call
->getNumArgs() != 2)
1243 name
= fd
->getDeclName().getAsString();
1247 lhs
= call
->getArg(0);
1248 rhs
= call
->getArg(1);
1253 /* Check if "expr" is of the form min(lhs, rhs) and if so make
1254 * lhs and rhs refer to the two arguments.
1256 static bool is_min(Expr
*expr
, Expr
*&lhs
, Expr
*&rhs
)
1258 return is_minmax(expr
, "min", lhs
, rhs
);
1261 /* Check if "expr" is of the form max(lhs, rhs) and if so make
1262 * lhs and rhs refer to the two arguments.
1264 static bool is_max(Expr
*expr
, Expr
*&lhs
, Expr
*&rhs
)
1266 return is_minmax(expr
, "max", lhs
, rhs
);
1269 /* Return "lhs && rhs", defined on the shared definition domain.
1271 static __isl_give isl_pw_aff
*pw_aff_and(__isl_take isl_pw_aff
*lhs
,
1272 __isl_take isl_pw_aff
*rhs
)
1277 dom
= isl_set_intersect(isl_pw_aff_domain(isl_pw_aff_copy(lhs
)),
1278 isl_pw_aff_domain(isl_pw_aff_copy(rhs
)));
1279 cond
= isl_set_intersect(isl_pw_aff_non_zero_set(lhs
),
1280 isl_pw_aff_non_zero_set(rhs
));
1281 return indicator_function(cond
, dom
);
1284 /* Return "lhs && rhs", with shortcut semantics.
1285 * That is, if lhs is false, then the result is defined even if rhs is not.
1286 * In practice, we compute lhs ? rhs : lhs.
1288 static __isl_give isl_pw_aff
*pw_aff_and_then(__isl_take isl_pw_aff
*lhs
,
1289 __isl_take isl_pw_aff
*rhs
)
1291 return isl_pw_aff_cond(isl_pw_aff_copy(lhs
), rhs
, lhs
);
1294 /* Return "lhs || rhs", with shortcut semantics.
1295 * That is, if lhs is true, then the result is defined even if rhs is not.
1296 * In practice, we compute lhs ? lhs : rhs.
1298 static __isl_give isl_pw_aff
*pw_aff_or_else(__isl_take isl_pw_aff
*lhs
,
1299 __isl_take isl_pw_aff
*rhs
)
1301 return isl_pw_aff_cond(isl_pw_aff_copy(lhs
), lhs
, rhs
);
1304 /* Extract an affine expressions representing the comparison "LHS op RHS"
1305 * "comp" is the original statement that "LHS op RHS" is derived from
1306 * and is used for diagnostics.
1308 * If the comparison is of the form
1312 * then the expression is constructed as the conjunction of
1317 * A similar optimization is performed for max(a,b) <= c.
1318 * We do this because that will lead to simpler representations
1319 * of the expression.
1320 * If isl is ever enhanced to explicitly deal with min and max expressions,
1321 * this optimization can be removed.
1323 __isl_give isl_pw_aff
*PetScan::extract_comparison(BinaryOperatorKind op
,
1324 Expr
*LHS
, Expr
*RHS
, Stmt
*comp
)
1333 return extract_comparison(BO_LT
, RHS
, LHS
, comp
);
1335 return extract_comparison(BO_LE
, RHS
, LHS
, comp
);
1337 if (op
== BO_LT
|| op
== BO_LE
) {
1338 Expr
*expr1
, *expr2
;
1339 if (is_min(RHS
, expr1
, expr2
)) {
1340 lhs
= extract_comparison(op
, LHS
, expr1
, comp
);
1341 rhs
= extract_comparison(op
, LHS
, expr2
, comp
);
1342 return pw_aff_and(lhs
, rhs
);
1344 if (is_max(LHS
, expr1
, expr2
)) {
1345 lhs
= extract_comparison(op
, expr1
, RHS
, comp
);
1346 rhs
= extract_comparison(op
, expr2
, RHS
, comp
);
1347 return pw_aff_and(lhs
, rhs
);
1351 lhs
= extract_affine(LHS
);
1352 rhs
= extract_affine(RHS
);
1354 dom
= isl_pw_aff_domain(isl_pw_aff_copy(lhs
));
1355 dom
= isl_set_intersect(dom
, isl_pw_aff_domain(isl_pw_aff_copy(rhs
)));
1359 cond
= isl_pw_aff_lt_set(lhs
, rhs
);
1362 cond
= isl_pw_aff_le_set(lhs
, rhs
);
1365 cond
= isl_pw_aff_eq_set(lhs
, rhs
);
1368 cond
= isl_pw_aff_ne_set(lhs
, rhs
);
1371 isl_pw_aff_free(lhs
);
1372 isl_pw_aff_free(rhs
);
1378 cond
= isl_set_coalesce(cond
);
1379 res
= indicator_function(cond
, dom
);
1384 __isl_give isl_pw_aff
*PetScan::extract_comparison(BinaryOperator
*comp
)
1386 return extract_comparison(comp
->getOpcode(), comp
->getLHS(),
1387 comp
->getRHS(), comp
);
1390 /* Extract an affine expression representing the negation (logical not)
1391 * of a subexpression.
1393 __isl_give isl_pw_aff
*PetScan::extract_boolean(UnaryOperator
*op
)
1395 isl_set
*set_cond
, *dom
;
1396 isl_pw_aff
*cond
, *res
;
1398 cond
= extract_condition(op
->getSubExpr());
1400 dom
= isl_pw_aff_domain(isl_pw_aff_copy(cond
));
1402 set_cond
= isl_pw_aff_zero_set(cond
);
1404 res
= indicator_function(set_cond
, dom
);
1409 /* Extract an affine expression representing the disjunction (logical or)
1410 * or conjunction (logical and) of two subexpressions.
1412 __isl_give isl_pw_aff
*PetScan::extract_boolean(BinaryOperator
*comp
)
1414 isl_pw_aff
*lhs
, *rhs
;
1416 lhs
= extract_condition(comp
->getLHS());
1417 rhs
= extract_condition(comp
->getRHS());
1419 switch (comp
->getOpcode()) {
1421 return pw_aff_and_then(lhs
, rhs
);
1423 return pw_aff_or_else(lhs
, rhs
);
1425 isl_pw_aff_free(lhs
);
1426 isl_pw_aff_free(rhs
);
1433 __isl_give isl_pw_aff
*PetScan::extract_condition(UnaryOperator
*expr
)
1435 switch (expr
->getOpcode()) {
1437 return extract_boolean(expr
);
1444 /* Extract the affine expression "expr != 0 ? 1 : 0".
1446 __isl_give isl_pw_aff
*PetScan::extract_implicit_condition(Expr
*expr
)
1451 res
= extract_affine(expr
);
1453 dom
= isl_pw_aff_domain(isl_pw_aff_copy(res
));
1454 set
= isl_pw_aff_non_zero_set(res
);
1456 res
= indicator_function(set
, dom
);
1461 /* Extract an affine expression from a boolean expression.
1462 * In particular, return the expression "expr ? 1 : 0".
1464 * If the expression doesn't look like a condition, we assume it
1465 * is an affine expression and return the condition "expr != 0 ? 1 : 0".
1467 __isl_give isl_pw_aff
*PetScan::extract_condition(Expr
*expr
)
1469 BinaryOperator
*comp
;
1472 isl_set
*u
= isl_set_universe(isl_space_params_alloc(ctx
, 0));
1473 return indicator_function(u
, isl_set_copy(u
));
1476 if (expr
->getStmtClass() == Stmt::ParenExprClass
)
1477 return extract_condition(cast
<ParenExpr
>(expr
)->getSubExpr());
1479 if (expr
->getStmtClass() == Stmt::UnaryOperatorClass
)
1480 return extract_condition(cast
<UnaryOperator
>(expr
));
1482 if (expr
->getStmtClass() != Stmt::BinaryOperatorClass
)
1483 return extract_implicit_condition(expr
);
1485 comp
= cast
<BinaryOperator
>(expr
);
1486 switch (comp
->getOpcode()) {
1493 return extract_comparison(comp
);
1496 return extract_boolean(comp
);
1498 return extract_implicit_condition(expr
);
1502 static enum pet_op_type
UnaryOperatorKind2pet_op_type(UnaryOperatorKind kind
)
1506 return pet_op_minus
;
1512 return pet_op_post_inc
;
1514 return pet_op_post_dec
;
1516 return pet_op_pre_inc
;
1518 return pet_op_pre_dec
;
1524 static enum pet_op_type
BinaryOperatorKind2pet_op_type(BinaryOperatorKind kind
)
1528 return pet_op_add_assign
;
1530 return pet_op_sub_assign
;
1532 return pet_op_mul_assign
;
1534 return pet_op_div_assign
;
1536 return pet_op_assign
;
1578 /* Construct a pet_expr representing a unary operator expression.
1580 struct pet_expr
*PetScan::extract_expr(UnaryOperator
*expr
)
1582 struct pet_expr
*arg
;
1583 enum pet_op_type op
;
1585 op
= UnaryOperatorKind2pet_op_type(expr
->getOpcode());
1586 if (op
== pet_op_last
) {
1591 arg
= extract_expr(expr
->getSubExpr());
1593 if (expr
->isIncrementDecrementOp() &&
1594 arg
&& arg
->type
== pet_expr_access
) {
1599 return pet_expr_new_unary(ctx
, op
, arg
);
1602 /* Mark the given access pet_expr as a write.
1603 * If a scalar is being accessed, then mark its value
1604 * as unknown in assigned_value.
1606 void PetScan::mark_write(struct pet_expr
*access
)
1614 access
->acc
.write
= 1;
1615 access
->acc
.read
= 0;
1617 if (!pet_expr_is_scalar_access(access
))
1620 id
= pet_expr_access_get_id(access
);
1621 decl
= (ValueDecl
*) isl_id_get_user(id
);
1622 clear_assignment(assigned_value
, decl
);
1626 /* Assign "rhs" to "lhs".
1628 * In particular, if "lhs" is a scalar variable, then mark
1629 * the variable as having been assigned. If, furthermore, "rhs"
1630 * is an affine expression, then keep track of this value in assigned_value
1631 * so that we can plug it in when we later come across the same variable.
1633 void PetScan::assign(struct pet_expr
*lhs
, Expr
*rhs
)
1641 if (!pet_expr_is_scalar_access(lhs
))
1644 id
= pet_expr_access_get_id(lhs
);
1645 decl
= (ValueDecl
*) isl_id_get_user(id
);
1648 pa
= try_extract_affine(rhs
);
1649 clear_assignment(assigned_value
, decl
);
1652 assigned_value
[decl
] = pa
;
1653 insert_expression(pa
);
1656 /* Construct a pet_expr representing a binary operator expression.
1658 * If the top level operator is an assignment and the LHS is an access,
1659 * then we mark that access as a write. If the operator is a compound
1660 * assignment, the access is marked as both a read and a write.
1662 * If "expr" assigns something to a scalar variable, then we mark
1663 * the variable as having been assigned. If, furthermore, the expression
1664 * is affine, then keep track of this value in assigned_value
1665 * so that we can plug it in when we later come across the same variable.
1667 struct pet_expr
*PetScan::extract_expr(BinaryOperator
*expr
)
1669 struct pet_expr
*lhs
, *rhs
;
1670 enum pet_op_type op
;
1672 op
= BinaryOperatorKind2pet_op_type(expr
->getOpcode());
1673 if (op
== pet_op_last
) {
1678 lhs
= extract_expr(expr
->getLHS());
1679 rhs
= extract_expr(expr
->getRHS());
1681 if (expr
->isAssignmentOp() && lhs
&& lhs
->type
== pet_expr_access
) {
1683 if (expr
->isCompoundAssignmentOp())
1687 if (expr
->getOpcode() == BO_Assign
)
1688 assign(lhs
, expr
->getRHS());
1690 return pet_expr_new_binary(ctx
, op
, lhs
, rhs
);
1693 /* Construct a pet_scop with a single statement killing the entire
1696 struct pet_scop
*PetScan::kill(Stmt
*stmt
, struct pet_array
*array
)
1700 isl_multi_pw_aff
*index
;
1702 struct pet_expr
*expr
;
1706 access
= isl_map_from_range(isl_set_copy(array
->extent
));
1707 id
= isl_set_get_tuple_id(array
->extent
);
1708 space
= isl_space_alloc(ctx
, 0, 0, 0);
1709 space
= isl_space_set_tuple_id(space
, isl_dim_out
, id
);
1710 index
= isl_multi_pw_aff_zero(space
);
1711 expr
= pet_expr_kill_from_access_and_index(access
, index
);
1712 return extract(stmt
, expr
);
1715 /* Construct a pet_scop for a (single) variable declaration.
1717 * The scop contains the variable being declared (as an array)
1718 * and a statement killing the array.
1720 * If the variable is initialized in the AST, then the scop
1721 * also contains an assignment to the variable.
1723 struct pet_scop
*PetScan::extract(DeclStmt
*stmt
)
1727 struct pet_expr
*lhs
, *rhs
, *pe
;
1728 struct pet_scop
*scop_decl
, *scop
;
1729 struct pet_array
*array
;
1731 if (!stmt
->isSingleDecl()) {
1736 decl
= stmt
->getSingleDecl();
1737 vd
= cast
<VarDecl
>(decl
);
1739 array
= extract_array(ctx
, vd
, NULL
);
1741 array
->declared
= 1;
1742 scop_decl
= kill(stmt
, array
);
1743 scop_decl
= pet_scop_add_array(scop_decl
, array
);
1748 lhs
= extract_access_expr(vd
);
1749 rhs
= extract_expr(vd
->getInit());
1752 assign(lhs
, vd
->getInit());
1754 pe
= pet_expr_new_binary(ctx
, pet_op_assign
, lhs
, rhs
);
1755 scop
= extract(stmt
, pe
);
1757 scop_decl
= pet_scop_prefix(scop_decl
, 0);
1758 scop
= pet_scop_prefix(scop
, 1);
1760 scop
= pet_scop_add_seq(ctx
, scop_decl
, scop
);
1765 /* Construct a pet_expr representing a conditional operation.
1767 * We first try to extract the condition as an affine expression.
1768 * If that fails, we construct a pet_expr tree representing the condition.
1770 struct pet_expr
*PetScan::extract_expr(ConditionalOperator
*expr
)
1772 struct pet_expr
*cond
, *lhs
, *rhs
;
1775 pa
= try_extract_affine(expr
->getCond());
1777 isl_multi_pw_aff
*test
= isl_multi_pw_aff_from_pw_aff(pa
);
1778 test
= isl_multi_pw_aff_from_range(test
);
1779 cond
= pet_expr_from_index(test
);
1781 cond
= extract_expr(expr
->getCond());
1782 lhs
= extract_expr(expr
->getTrueExpr());
1783 rhs
= extract_expr(expr
->getFalseExpr());
1785 return pet_expr_new_ternary(ctx
, cond
, lhs
, rhs
);
1788 struct pet_expr
*PetScan::extract_expr(ImplicitCastExpr
*expr
)
1790 return extract_expr(expr
->getSubExpr());
1793 /* Construct a pet_expr representing a floating point value.
1795 * If the floating point literal does not appear in a macro,
1796 * then we use the original representation in the source code
1797 * as the string representation. Otherwise, we use the pretty
1798 * printer to produce a string representation.
1800 struct pet_expr
*PetScan::extract_expr(FloatingLiteral
*expr
)
1804 const LangOptions
&LO
= PP
.getLangOpts();
1805 SourceLocation loc
= expr
->getLocation();
1807 if (!loc
.isMacroID()) {
1808 SourceManager
&SM
= PP
.getSourceManager();
1809 unsigned len
= Lexer::MeasureTokenLength(loc
, SM
, LO
);
1810 s
= string(SM
.getCharacterData(loc
), len
);
1812 llvm::raw_string_ostream
S(s
);
1813 expr
->printPretty(S
, 0, PrintingPolicy(LO
));
1816 d
= expr
->getValueAsApproximateDouble();
1817 return pet_expr_new_double(ctx
, d
, s
.c_str());
1820 /* Extract an index expression from "expr" and then convert it into
1821 * an access pet_expr.
1823 struct pet_expr
*PetScan::extract_access_expr(Expr
*expr
)
1825 isl_multi_pw_aff
*index
;
1826 struct pet_expr
*pe
;
1829 index
= extract_index(expr
);
1830 depth
= extract_depth(index
);
1832 pe
= pet_expr_from_index_and_depth(index
, depth
);
1837 /* Extract an index expression from "decl" and then convert it into
1838 * an access pet_expr.
1840 struct pet_expr
*PetScan::extract_access_expr(ValueDecl
*decl
)
1842 isl_multi_pw_aff
*index
;
1843 struct pet_expr
*pe
;
1846 index
= extract_index(decl
);
1847 depth
= extract_depth(index
);
1849 pe
= pet_expr_from_index_and_depth(index
, depth
);
1854 struct pet_expr
*PetScan::extract_expr(ParenExpr
*expr
)
1856 return extract_expr(expr
->getSubExpr());
1859 /* Extract an assume statement from the argument "expr"
1860 * of a __pencil_assume statement.
1862 struct pet_expr
*PetScan::extract_assume(Expr
*expr
)
1865 struct pet_expr
*res
;
1867 cond
= try_extract_affine_condition(expr
);
1869 res
= extract_expr(expr
);
1871 isl_multi_pw_aff
*index
;
1872 index
= isl_multi_pw_aff_from_pw_aff(cond
);
1873 index
= isl_multi_pw_aff_from_range(index
);
1874 res
= pet_expr_from_index(index
);
1876 return pet_expr_new_unary(ctx
, pet_op_assume
, res
);
1879 /* Construct a pet_expr corresponding to the function call argument "expr".
1880 * The argument appears in position "pos" of a call to function "fd".
1882 * If we are passing along a pointer to an array element
1883 * or an entire row or even higher dimensional slice of an array,
1884 * then the function being called may write into the array.
1886 * We assume here that if the function is declared to take a pointer
1887 * to a const type, then the function will perform a read
1888 * and that otherwise, it will perform a write.
1890 struct pet_expr
*PetScan::extract_argument(FunctionDecl
*fd
, int pos
,
1893 struct pet_expr
*res
;
1894 int is_addr
= 0, is_partial
= 0;
1897 if (expr
->getStmtClass() == Stmt::ImplicitCastExprClass
) {
1898 ImplicitCastExpr
*ice
= cast
<ImplicitCastExpr
>(expr
);
1899 expr
= ice
->getSubExpr();
1901 if (expr
->getStmtClass() == Stmt::UnaryOperatorClass
) {
1902 UnaryOperator
*op
= cast
<UnaryOperator
>(expr
);
1903 if (op
->getOpcode() == UO_AddrOf
) {
1905 expr
= op
->getSubExpr();
1908 res
= extract_expr(expr
);
1911 sc
= expr
->getStmtClass();
1912 if ((sc
== Stmt::ArraySubscriptExprClass
||
1913 sc
== Stmt::MemberExprClass
) &&
1914 array_depth(expr
->getType().getTypePtr()) > 0)
1916 if ((is_addr
|| is_partial
) && res
->type
== pet_expr_access
) {
1918 if (!fd
->hasPrototype()) {
1919 report_prototype_required(expr
);
1920 return pet_expr_free(res
);
1922 parm
= fd
->getParamDecl(pos
);
1923 if (!const_base(parm
->getType()))
1928 res
= pet_expr_new_unary(ctx
, pet_op_address_of
, res
);
1932 /* Construct a pet_expr representing a function call.
1934 * In the special case of a "call" to __pencil_assume,
1935 * construct an assume expression instead.
1937 struct pet_expr
*PetScan::extract_expr(CallExpr
*expr
)
1939 struct pet_expr
*res
= NULL
;
1944 fd
= expr
->getDirectCallee();
1950 name
= fd
->getDeclName().getAsString();
1951 n_arg
= expr
->getNumArgs();
1953 if (n_arg
== 1 && name
== "__pencil_assume")
1954 return extract_assume(expr
->getArg(0));
1956 res
= pet_expr_new_call(ctx
, name
.c_str(), n_arg
);
1960 for (int i
= 0; i
< n_arg
; ++i
) {
1961 Expr
*arg
= expr
->getArg(i
);
1962 res
->args
[i
] = PetScan::extract_argument(fd
, i
, arg
);
1973 /* Construct a pet_expr representing a (C style) cast.
1975 struct pet_expr
*PetScan::extract_expr(CStyleCastExpr
*expr
)
1977 struct pet_expr
*arg
;
1980 arg
= extract_expr(expr
->getSubExpr());
1984 type
= expr
->getTypeAsWritten();
1985 return pet_expr_new_cast(ctx
, type
.getAsString().c_str(), arg
);
1988 /* Construct a pet_expr representing an integer.
1990 struct pet_expr
*PetScan::extract_expr(IntegerLiteral
*expr
)
1992 return pet_expr_new_int(extract_int(expr
));
1995 /* Try and construct a pet_expr representing "expr".
1997 struct pet_expr
*PetScan::extract_expr(Expr
*expr
)
1999 switch (expr
->getStmtClass()) {
2000 case Stmt::UnaryOperatorClass
:
2001 return extract_expr(cast
<UnaryOperator
>(expr
));
2002 case Stmt::CompoundAssignOperatorClass
:
2003 case Stmt::BinaryOperatorClass
:
2004 return extract_expr(cast
<BinaryOperator
>(expr
));
2005 case Stmt::ImplicitCastExprClass
:
2006 return extract_expr(cast
<ImplicitCastExpr
>(expr
));
2007 case Stmt::ArraySubscriptExprClass
:
2008 case Stmt::DeclRefExprClass
:
2009 case Stmt::MemberExprClass
:
2010 return extract_access_expr(expr
);
2011 case Stmt::IntegerLiteralClass
:
2012 return extract_expr(cast
<IntegerLiteral
>(expr
));
2013 case Stmt::FloatingLiteralClass
:
2014 return extract_expr(cast
<FloatingLiteral
>(expr
));
2015 case Stmt::ParenExprClass
:
2016 return extract_expr(cast
<ParenExpr
>(expr
));
2017 case Stmt::ConditionalOperatorClass
:
2018 return extract_expr(cast
<ConditionalOperator
>(expr
));
2019 case Stmt::CallExprClass
:
2020 return extract_expr(cast
<CallExpr
>(expr
));
2021 case Stmt::CStyleCastExprClass
:
2022 return extract_expr(cast
<CStyleCastExpr
>(expr
));
2029 /* Check if the given initialization statement is an assignment.
2030 * If so, return that assignment. Otherwise return NULL.
2032 BinaryOperator
*PetScan::initialization_assignment(Stmt
*init
)
2034 BinaryOperator
*ass
;
2036 if (init
->getStmtClass() != Stmt::BinaryOperatorClass
)
2039 ass
= cast
<BinaryOperator
>(init
);
2040 if (ass
->getOpcode() != BO_Assign
)
2046 /* Check if the given initialization statement is a declaration
2047 * of a single variable.
2048 * If so, return that declaration. Otherwise return NULL.
2050 Decl
*PetScan::initialization_declaration(Stmt
*init
)
2054 if (init
->getStmtClass() != Stmt::DeclStmtClass
)
2057 decl
= cast
<DeclStmt
>(init
);
2059 if (!decl
->isSingleDecl())
2062 return decl
->getSingleDecl();
2065 /* Given the assignment operator in the initialization of a for loop,
2066 * extract the induction variable, i.e., the (integer)variable being
2069 ValueDecl
*PetScan::extract_induction_variable(BinaryOperator
*init
)
2076 lhs
= init
->getLHS();
2077 if (lhs
->getStmtClass() != Stmt::DeclRefExprClass
) {
2082 ref
= cast
<DeclRefExpr
>(lhs
);
2083 decl
= ref
->getDecl();
2084 type
= decl
->getType().getTypePtr();
2086 if (!type
->isIntegerType()) {
2094 /* Given the initialization statement of a for loop and the single
2095 * declaration in this initialization statement,
2096 * extract the induction variable, i.e., the (integer) variable being
2099 VarDecl
*PetScan::extract_induction_variable(Stmt
*init
, Decl
*decl
)
2103 vd
= cast
<VarDecl
>(decl
);
2105 const QualType type
= vd
->getType();
2106 if (!type
->isIntegerType()) {
2111 if (!vd
->getInit()) {
2119 /* Check that op is of the form iv++ or iv--.
2120 * Return an affine expression "1" or "-1" accordingly.
2122 __isl_give isl_pw_aff
*PetScan::extract_unary_increment(
2123 clang::UnaryOperator
*op
, clang::ValueDecl
*iv
)
2130 if (!op
->isIncrementDecrementOp()) {
2135 sub
= op
->getSubExpr();
2136 if (sub
->getStmtClass() != Stmt::DeclRefExprClass
) {
2141 ref
= cast
<DeclRefExpr
>(sub
);
2142 if (ref
->getDecl() != iv
) {
2147 space
= isl_space_params_alloc(ctx
, 0);
2148 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(space
));
2150 if (op
->isIncrementOp())
2151 aff
= isl_aff_add_constant_si(aff
, 1);
2153 aff
= isl_aff_add_constant_si(aff
, -1);
2155 return isl_pw_aff_from_aff(aff
);
2158 /* If the isl_pw_aff on which isl_pw_aff_foreach_piece is called
2159 * has a single constant expression, then put this constant in *user.
2160 * The caller is assumed to have checked that this function will
2161 * be called exactly once.
2163 static int extract_cst(__isl_take isl_set
*set
, __isl_take isl_aff
*aff
,
2166 isl_val
**inc
= (isl_val
**)user
;
2169 if (isl_aff_is_cst(aff
))
2170 *inc
= isl_aff_get_constant_val(aff
);
2180 /* Check if op is of the form
2184 * and return inc as an affine expression.
2186 * We extract an affine expression from the RHS, subtract iv and return
2189 __isl_give isl_pw_aff
*PetScan::extract_binary_increment(BinaryOperator
*op
,
2190 clang::ValueDecl
*iv
)
2199 if (op
->getOpcode() != BO_Assign
) {
2205 if (lhs
->getStmtClass() != Stmt::DeclRefExprClass
) {
2210 ref
= cast
<DeclRefExpr
>(lhs
);
2211 if (ref
->getDecl() != iv
) {
2216 val
= extract_affine(op
->getRHS());
2218 id
= isl_id_alloc(ctx
, iv
->getName().str().c_str(), iv
);
2220 dim
= isl_space_params_alloc(ctx
, 1);
2221 dim
= isl_space_set_dim_id(dim
, isl_dim_param
, 0, id
);
2222 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(dim
));
2223 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_param
, 0, 1);
2225 val
= isl_pw_aff_sub(val
, isl_pw_aff_from_aff(aff
));
2230 /* Check that op is of the form iv += cst or iv -= cst
2231 * and return an affine expression corresponding oto cst or -cst accordingly.
2233 __isl_give isl_pw_aff
*PetScan::extract_compound_increment(
2234 CompoundAssignOperator
*op
, clang::ValueDecl
*iv
)
2240 BinaryOperatorKind opcode
;
2242 opcode
= op
->getOpcode();
2243 if (opcode
!= BO_AddAssign
&& opcode
!= BO_SubAssign
) {
2247 if (opcode
== BO_SubAssign
)
2251 if (lhs
->getStmtClass() != Stmt::DeclRefExprClass
) {
2256 ref
= cast
<DeclRefExpr
>(lhs
);
2257 if (ref
->getDecl() != iv
) {
2262 val
= extract_affine(op
->getRHS());
2264 val
= isl_pw_aff_neg(val
);
2269 /* Check that the increment of the given for loop increments
2270 * (or decrements) the induction variable "iv" and return
2271 * the increment as an affine expression if successful.
2273 __isl_give isl_pw_aff
*PetScan::extract_increment(clang::ForStmt
*stmt
,
2276 Stmt
*inc
= stmt
->getInc();
2279 report_missing_increment(stmt
);
2283 if (inc
->getStmtClass() == Stmt::UnaryOperatorClass
)
2284 return extract_unary_increment(cast
<UnaryOperator
>(inc
), iv
);
2285 if (inc
->getStmtClass() == Stmt::CompoundAssignOperatorClass
)
2286 return extract_compound_increment(
2287 cast
<CompoundAssignOperator
>(inc
), iv
);
2288 if (inc
->getStmtClass() == Stmt::BinaryOperatorClass
)
2289 return extract_binary_increment(cast
<BinaryOperator
>(inc
), iv
);
2295 /* Embed the given iteration domain in an extra outer loop
2296 * with induction variable "var".
2297 * If this variable appeared as a parameter in the constraints,
2298 * it is replaced by the new outermost dimension.
2300 static __isl_give isl_set
*embed(__isl_take isl_set
*set
,
2301 __isl_take isl_id
*var
)
2305 set
= isl_set_insert_dims(set
, isl_dim_set
, 0, 1);
2306 pos
= isl_set_find_dim_by_id(set
, isl_dim_param
, var
);
2308 set
= isl_set_equate(set
, isl_dim_param
, pos
, isl_dim_set
, 0);
2309 set
= isl_set_project_out(set
, isl_dim_param
, pos
, 1);
2316 /* Return those elements in the space of "cond" that come after
2317 * (based on "sign") an element in "cond".
2319 static __isl_give isl_set
*after(__isl_take isl_set
*cond
, int sign
)
2321 isl_map
*previous_to_this
;
2324 previous_to_this
= isl_map_lex_lt(isl_set_get_space(cond
));
2326 previous_to_this
= isl_map_lex_gt(isl_set_get_space(cond
));
2328 cond
= isl_set_apply(cond
, previous_to_this
);
2333 /* Create the infinite iteration domain
2335 * { [id] : id >= 0 }
2337 * If "scop" has an affine skip of type pet_skip_later,
2338 * then remove those iterations i that have an earlier iteration
2339 * where the skip condition is satisfied, meaning that iteration i
2341 * Since we are dealing with a loop without loop iterator,
2342 * the skip condition cannot refer to the current loop iterator and
2343 * so effectively, the returned set is of the form
2345 * { [0]; [id] : id >= 1 and not skip }
2347 static __isl_give isl_set
*infinite_domain(__isl_take isl_id
*id
,
2348 struct pet_scop
*scop
)
2350 isl_ctx
*ctx
= isl_id_get_ctx(id
);
2354 domain
= isl_set_nat_universe(isl_space_set_alloc(ctx
, 0, 1));
2355 domain
= isl_set_set_dim_id(domain
, isl_dim_set
, 0, id
);
2357 if (!pet_scop_has_affine_skip(scop
, pet_skip_later
))
2360 skip
= pet_scop_get_affine_skip_domain(scop
, pet_skip_later
);
2361 skip
= embed(skip
, isl_id_copy(id
));
2362 skip
= isl_set_intersect(skip
, isl_set_copy(domain
));
2363 domain
= isl_set_subtract(domain
, after(skip
, 1));
2368 /* Create an identity affine expression on the space containing "domain",
2369 * which is assumed to be one-dimensional.
2371 static __isl_give isl_aff
*identity_aff(__isl_keep isl_set
*domain
)
2373 isl_local_space
*ls
;
2375 ls
= isl_local_space_from_space(isl_set_get_space(domain
));
2376 return isl_aff_var_on_domain(ls
, isl_dim_set
, 0);
2379 /* Create an affine expression that maps elements
2380 * of a single-dimensional array "id_test" to the previous element
2381 * (according to "inc"), provided this element belongs to "domain".
2382 * That is, create the affine expression
2384 * { id[x] -> id[x - inc] : x - inc in domain }
2386 static __isl_give isl_multi_pw_aff
*map_to_previous(__isl_take isl_id
*id_test
,
2387 __isl_take isl_set
*domain
, __isl_take isl_val
*inc
)
2390 isl_local_space
*ls
;
2392 isl_multi_pw_aff
*prev
;
2394 space
= isl_set_get_space(domain
);
2395 ls
= isl_local_space_from_space(space
);
2396 aff
= isl_aff_var_on_domain(ls
, isl_dim_set
, 0);
2397 aff
= isl_aff_add_constant_val(aff
, isl_val_neg(inc
));
2398 prev
= isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff
));
2399 domain
= isl_set_preimage_multi_pw_aff(domain
,
2400 isl_multi_pw_aff_copy(prev
));
2401 prev
= isl_multi_pw_aff_intersect_domain(prev
, domain
);
2402 prev
= isl_multi_pw_aff_set_tuple_id(prev
, isl_dim_out
, id_test
);
2407 /* Add an implication to "scop" expressing that if an element of
2408 * virtual array "id_test" has value "satisfied" then all previous elements
2409 * of this array also have that value. The set of previous elements
2410 * is bounded by "domain". If "sign" is negative then the iterator
2411 * is decreasing and we express that all subsequent array elements
2412 * (but still defined previously) have the same value.
2414 static struct pet_scop
*add_implication(struct pet_scop
*scop
,
2415 __isl_take isl_id
*id_test
, __isl_take isl_set
*domain
, int sign
,
2421 domain
= isl_set_set_tuple_id(domain
, id_test
);
2422 space
= isl_set_get_space(domain
);
2424 map
= isl_map_lex_ge(space
);
2426 map
= isl_map_lex_le(space
);
2427 map
= isl_map_intersect_range(map
, domain
);
2428 scop
= pet_scop_add_implication(scop
, map
, satisfied
);
2433 /* Add a filter to "scop" that imposes that it is only executed
2434 * when the variable identified by "id_test" has a zero value
2435 * for all previous iterations of "domain".
2437 * In particular, add a filter that imposes that the array
2438 * has a zero value at the previous iteration of domain and
2439 * add an implication that implies that it then has that
2440 * value for all previous iterations.
2442 static struct pet_scop
*scop_add_break(struct pet_scop
*scop
,
2443 __isl_take isl_id
*id_test
, __isl_take isl_set
*domain
,
2444 __isl_take isl_val
*inc
)
2446 isl_multi_pw_aff
*prev
;
2447 int sign
= isl_val_sgn(inc
);
2449 prev
= map_to_previous(isl_id_copy(id_test
), isl_set_copy(domain
), inc
);
2450 scop
= add_implication(scop
, id_test
, domain
, sign
, 0);
2451 scop
= pet_scop_filter(scop
, prev
, 0);
2456 /* Construct a pet_scop for an infinite loop around the given body.
2458 * We extract a pet_scop for the body and then embed it in a loop with
2467 * If the body contains any break, then it is taken into
2468 * account in infinite_domain (if the skip condition is affine)
2469 * or in scop_add_break (if the skip condition is not affine).
2471 * If we were only able to extract part of the body, then simply
2474 struct pet_scop
*PetScan::extract_infinite_loop(Stmt
*body
)
2476 isl_id
*id
, *id_test
;
2479 struct pet_scop
*scop
;
2482 scop
= extract(body
);
2488 id
= isl_id_alloc(ctx
, "t", NULL
);
2489 domain
= infinite_domain(isl_id_copy(id
), scop
);
2490 ident
= identity_aff(domain
);
2492 has_var_break
= pet_scop_has_var_skip(scop
, pet_skip_later
);
2494 id_test
= pet_scop_get_skip_id(scop
, pet_skip_later
);
2496 scop
= pet_scop_embed(scop
, isl_set_copy(domain
),
2497 isl_aff_copy(ident
), ident
, id
);
2499 scop
= scop_add_break(scop
, id_test
, domain
, isl_val_one(ctx
));
2501 isl_set_free(domain
);
2506 /* Construct a pet_scop for an infinite loop, i.e., a loop of the form
2512 struct pet_scop
*PetScan::extract_infinite_for(ForStmt
*stmt
)
2514 clear_assignments
clear(assigned_value
);
2515 clear
.TraverseStmt(stmt
->getBody());
2517 return extract_infinite_loop(stmt
->getBody());
2520 /* Create an index expression for an access to a virtual array
2521 * representing the result of a condition.
2522 * Unlike other accessed data, the id of the array is NULL as
2523 * there is no ValueDecl in the program corresponding to the virtual
2525 * The array starts out as a scalar, but grows along with the
2526 * statement writing to the array in pet_scop_embed.
2528 static __isl_give isl_multi_pw_aff
*create_test_index(isl_ctx
*ctx
, int test_nr
)
2530 isl_space
*dim
= isl_space_alloc(ctx
, 0, 0, 0);
2534 snprintf(name
, sizeof(name
), "__pet_test_%d", test_nr
);
2535 id
= isl_id_alloc(ctx
, name
, NULL
);
2536 dim
= isl_space_set_tuple_id(dim
, isl_dim_out
, id
);
2537 return isl_multi_pw_aff_zero(dim
);
2540 /* Add an array with the given extent (range of "index") to the list
2541 * of arrays in "scop" and return the extended pet_scop.
2542 * The array is marked as attaining values 0 and 1 only and
2543 * as each element being assigned at most once.
2545 static struct pet_scop
*scop_add_array(struct pet_scop
*scop
,
2546 __isl_keep isl_multi_pw_aff
*index
, clang::ASTContext
&ast_ctx
)
2548 isl_ctx
*ctx
= isl_multi_pw_aff_get_ctx(index
);
2550 struct pet_array
*array
;
2558 array
= isl_calloc_type(ctx
, struct pet_array
);
2562 access
= isl_map_from_multi_pw_aff(isl_multi_pw_aff_copy(index
));
2563 array
->extent
= isl_map_range(access
);
2564 dim
= isl_space_params_alloc(ctx
, 0);
2565 array
->context
= isl_set_universe(dim
);
2566 dim
= isl_space_set_alloc(ctx
, 0, 1);
2567 array
->value_bounds
= isl_set_universe(dim
);
2568 array
->value_bounds
= isl_set_lower_bound_si(array
->value_bounds
,
2570 array
->value_bounds
= isl_set_upper_bound_si(array
->value_bounds
,
2572 array
->element_type
= strdup("int");
2573 array
->element_size
= ast_ctx
.getTypeInfo(ast_ctx
.IntTy
).first
/ 8;
2574 array
->uniquely_defined
= 1;
2576 if (!array
->extent
|| !array
->context
)
2577 array
= pet_array_free(array
);
2579 scop
= pet_scop_add_array(scop
, array
);
2583 pet_scop_free(scop
);
2587 /* Construct a pet_scop for a while loop of the form
2592 * In particular, construct a scop for an infinite loop around body and
2593 * intersect the domain with the affine expression.
2594 * Note that this intersection may result in an empty loop.
2596 struct pet_scop
*PetScan::extract_affine_while(__isl_take isl_pw_aff
*pa
,
2599 struct pet_scop
*scop
;
2603 valid
= isl_pw_aff_domain(isl_pw_aff_copy(pa
));
2604 dom
= isl_pw_aff_non_zero_set(pa
);
2605 scop
= extract_infinite_loop(body
);
2606 scop
= pet_scop_restrict(scop
, dom
);
2607 scop
= pet_scop_restrict_context(scop
, valid
);
2612 /* Construct a scop for a while, given the scops for the condition
2613 * and the body, the filter identifier and the iteration domain of
2616 * In particular, the scop for the condition is filtered to depend
2617 * on "id_test" evaluating to true for all previous iterations
2618 * of the loop, while the scop for the body is filtered to depend
2619 * on "id_test" evaluating to true for all iterations up to the
2620 * current iteration.
2621 * The actual filter only imposes that this virtual array has
2622 * value one on the previous or the current iteration.
2623 * The fact that this condition also applies to the previous
2624 * iterations is enforced by an implication.
2626 * These filtered scops are then combined into a single scop.
2628 * "sign" is positive if the iterator increases and negative
2631 static struct pet_scop
*scop_add_while(struct pet_scop
*scop_cond
,
2632 struct pet_scop
*scop_body
, __isl_take isl_id
*id_test
,
2633 __isl_take isl_set
*domain
, __isl_take isl_val
*inc
)
2635 isl_ctx
*ctx
= isl_set_get_ctx(domain
);
2637 isl_multi_pw_aff
*test_index
;
2638 isl_multi_pw_aff
*prev
;
2639 int sign
= isl_val_sgn(inc
);
2640 struct pet_scop
*scop
;
2642 prev
= map_to_previous(isl_id_copy(id_test
), isl_set_copy(domain
), inc
);
2643 scop_cond
= pet_scop_filter(scop_cond
, prev
, 1);
2645 space
= isl_space_map_from_set(isl_set_get_space(domain
));
2646 test_index
= isl_multi_pw_aff_identity(space
);
2647 test_index
= isl_multi_pw_aff_set_tuple_id(test_index
, isl_dim_out
,
2648 isl_id_copy(id_test
));
2649 scop_body
= pet_scop_filter(scop_body
, test_index
, 1);
2651 scop
= pet_scop_add_seq(ctx
, scop_cond
, scop_body
);
2652 scop
= add_implication(scop
, id_test
, domain
, sign
, 1);
2657 /* Check if the while loop is of the form
2659 * while (affine expression)
2662 * If so, call extract_affine_while to construct a scop.
2664 * Otherwise, construct a generic while scop, with iteration domain
2665 * { [t] : t >= 0 }. The scop consists of two parts, one for
2666 * evaluating the condition and one for the body.
2667 * The schedule is adjusted to reflect that the condition is evaluated
2668 * before the body is executed and the body is filtered to depend
2669 * on the result of the condition evaluating to true on all iterations
2670 * up to the current iteration, while the evaluation of the condition itself
2671 * is filtered to depend on the result of the condition evaluating to true
2672 * on all previous iterations.
2673 * The context of the scop representing the body is dropped
2674 * because we don't know how many times the body will be executed,
2677 * If the body contains any break, then it is taken into
2678 * account in infinite_domain (if the skip condition is affine)
2679 * or in scop_add_break (if the skip condition is not affine).
2681 * If we were only able to extract part of the body, then simply
2684 struct pet_scop
*PetScan::extract(WhileStmt
*stmt
)
2687 int test_nr
, stmt_nr
;
2688 isl_id
*id
, *id_test
, *id_break_test
;
2689 isl_multi_pw_aff
*test_index
;
2693 struct pet_scop
*scop
, *scop_body
;
2696 cond
= stmt
->getCond();
2702 clear_assignments
clear(assigned_value
);
2703 clear
.TraverseStmt(stmt
->getBody());
2705 pa
= try_extract_affine_condition(cond
);
2707 return extract_affine_while(pa
, stmt
->getBody());
2709 if (!allow_nested
) {
2716 scop_body
= extract(stmt
->getBody());
2720 test_index
= create_test_index(ctx
, test_nr
);
2721 scop
= extract_non_affine_condition(cond
, stmt_nr
,
2722 isl_multi_pw_aff_copy(test_index
));
2723 scop
= scop_add_array(scop
, test_index
, ast_context
);
2724 id_test
= isl_multi_pw_aff_get_tuple_id(test_index
, isl_dim_out
);
2725 isl_multi_pw_aff_free(test_index
);
2727 id
= isl_id_alloc(ctx
, "t", NULL
);
2728 domain
= infinite_domain(isl_id_copy(id
), scop_body
);
2729 ident
= identity_aff(domain
);
2731 has_var_break
= pet_scop_has_var_skip(scop_body
, pet_skip_later
);
2733 id_break_test
= pet_scop_get_skip_id(scop_body
, pet_skip_later
);
2735 scop
= pet_scop_prefix(scop
, 0);
2736 scop
= pet_scop_embed(scop
, isl_set_copy(domain
), isl_aff_copy(ident
),
2737 isl_aff_copy(ident
), isl_id_copy(id
));
2738 scop_body
= pet_scop_reset_context(scop_body
);
2739 scop_body
= pet_scop_prefix(scop_body
, 1);
2740 scop_body
= pet_scop_embed(scop_body
, isl_set_copy(domain
),
2741 isl_aff_copy(ident
), ident
, id
);
2743 if (has_var_break
) {
2744 scop
= scop_add_break(scop
, isl_id_copy(id_break_test
),
2745 isl_set_copy(domain
), isl_val_one(ctx
));
2746 scop_body
= scop_add_break(scop_body
, id_break_test
,
2747 isl_set_copy(domain
), isl_val_one(ctx
));
2749 scop
= scop_add_while(scop
, scop_body
, id_test
, domain
,
2755 /* Check whether "cond" expresses a simple loop bound
2756 * on the only set dimension.
2757 * In particular, if "up" is set then "cond" should contain only
2758 * upper bounds on the set dimension.
2759 * Otherwise, it should contain only lower bounds.
2761 static bool is_simple_bound(__isl_keep isl_set
*cond
, __isl_keep isl_val
*inc
)
2763 if (isl_val_is_pos(inc
))
2764 return !isl_set_dim_has_any_lower_bound(cond
, isl_dim_set
, 0);
2766 return !isl_set_dim_has_any_upper_bound(cond
, isl_dim_set
, 0);
2769 /* Extend a condition on a given iteration of a loop to one that
2770 * imposes the same condition on all previous iterations.
2771 * "domain" expresses the lower [upper] bound on the iterations
2772 * when inc is positive [negative].
2774 * In particular, we construct the condition (when inc is positive)
2776 * forall i' : (domain(i') and i' <= i) => cond(i')
2778 * which is equivalent to
2780 * not exists i' : domain(i') and i' <= i and not cond(i')
2782 * We construct this set by negating cond, applying a map
2784 * { [i'] -> [i] : domain(i') and i' <= i }
2786 * and then negating the result again.
2788 static __isl_give isl_set
*valid_for_each_iteration(__isl_take isl_set
*cond
,
2789 __isl_take isl_set
*domain
, __isl_take isl_val
*inc
)
2791 isl_map
*previous_to_this
;
2793 if (isl_val_is_pos(inc
))
2794 previous_to_this
= isl_map_lex_le(isl_set_get_space(domain
));
2796 previous_to_this
= isl_map_lex_ge(isl_set_get_space(domain
));
2798 previous_to_this
= isl_map_intersect_domain(previous_to_this
, domain
);
2800 cond
= isl_set_complement(cond
);
2801 cond
= isl_set_apply(cond
, previous_to_this
);
2802 cond
= isl_set_complement(cond
);
2809 /* Construct a domain of the form
2811 * [id] -> { : exists a: id = init + a * inc and a >= 0 }
2813 static __isl_give isl_set
*strided_domain(__isl_take isl_id
*id
,
2814 __isl_take isl_pw_aff
*init
, __isl_take isl_val
*inc
)
2820 init
= isl_pw_aff_insert_dims(init
, isl_dim_in
, 0, 1);
2821 dim
= isl_pw_aff_get_domain_space(init
);
2822 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(dim
));
2823 aff
= isl_aff_add_coefficient_val(aff
, isl_dim_in
, 0, inc
);
2824 init
= isl_pw_aff_add(init
, isl_pw_aff_from_aff(aff
));
2826 dim
= isl_space_set_alloc(isl_pw_aff_get_ctx(init
), 1, 1);
2827 dim
= isl_space_set_dim_id(dim
, isl_dim_param
, 0, id
);
2828 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(dim
));
2829 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_param
, 0, 1);
2831 set
= isl_pw_aff_eq_set(isl_pw_aff_from_aff(aff
), init
);
2833 set
= isl_set_lower_bound_si(set
, isl_dim_set
, 0, 0);
2835 return isl_set_params(set
);
2838 /* Assuming "cond" represents a bound on a loop where the loop
2839 * iterator "iv" is incremented (or decremented) by one, check if wrapping
2842 * Under the given assumptions, wrapping is only possible if "cond" allows
2843 * for the last value before wrapping, i.e., 2^width - 1 in case of an
2844 * increasing iterator and 0 in case of a decreasing iterator.
2846 static bool can_wrap(__isl_keep isl_set
*cond
, ValueDecl
*iv
,
2847 __isl_keep isl_val
*inc
)
2854 test
= isl_set_copy(cond
);
2856 ctx
= isl_set_get_ctx(test
);
2857 if (isl_val_is_neg(inc
))
2858 limit
= isl_val_zero(ctx
);
2860 limit
= isl_val_int_from_ui(ctx
, get_type_size(iv
));
2861 limit
= isl_val_2exp(limit
);
2862 limit
= isl_val_sub_ui(limit
, 1);
2865 test
= isl_set_fix_val(cond
, isl_dim_set
, 0, limit
);
2866 cw
= !isl_set_is_empty(test
);
2872 /* Given a one-dimensional space, construct the following affine expression
2875 * { [v] -> [v mod 2^width] }
2877 * where width is the number of bits used to represent the values
2878 * of the unsigned variable "iv".
2880 static __isl_give isl_aff
*compute_wrapping(__isl_take isl_space
*dim
,
2887 ctx
= isl_space_get_ctx(dim
);
2888 mod
= isl_val_int_from_ui(ctx
, get_type_size(iv
));
2889 mod
= isl_val_2exp(mod
);
2891 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(dim
));
2892 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_in
, 0, 1);
2893 aff
= isl_aff_mod_val(aff
, mod
);
2898 /* Project out the parameter "id" from "set".
2900 static __isl_give isl_set
*set_project_out_by_id(__isl_take isl_set
*set
,
2901 __isl_keep isl_id
*id
)
2905 pos
= isl_set_find_dim_by_id(set
, isl_dim_param
, id
);
2907 set
= isl_set_project_out(set
, isl_dim_param
, pos
, 1);
2912 /* Compute the set of parameters for which "set1" is a subset of "set2".
2914 * set1 is a subset of set2 if
2916 * forall i in set1 : i in set2
2920 * not exists i in set1 and i not in set2
2924 * not exists i in set1 \ set2
2926 static __isl_give isl_set
*enforce_subset(__isl_take isl_set
*set1
,
2927 __isl_take isl_set
*set2
)
2929 return isl_set_complement(isl_set_params(isl_set_subtract(set1
, set2
)));
2932 /* Compute the set of parameter values for which "cond" holds
2933 * on the next iteration for each element of "dom".
2935 * We first construct mapping { [i] -> [i + inc] }, apply that to "dom"
2936 * and then compute the set of parameters for which the result is a subset
2939 static __isl_give isl_set
*valid_on_next(__isl_take isl_set
*cond
,
2940 __isl_take isl_set
*dom
, __isl_take isl_val
*inc
)
2946 space
= isl_set_get_space(dom
);
2947 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(space
));
2948 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_in
, 0, 1);
2949 aff
= isl_aff_add_constant_val(aff
, inc
);
2950 next
= isl_map_from_basic_map(isl_basic_map_from_aff(aff
));
2952 dom
= isl_set_apply(dom
, next
);
2954 return enforce_subset(dom
, cond
);
2957 /* Construct a pet_scop for a for statement.
2958 * The for loop is required to be of the form
2960 * for (i = init; condition; ++i)
2964 * for (i = init; condition; --i)
2966 * The initialization of the for loop should either be an assignment
2967 * to an integer variable, or a declaration of such a variable with
2970 * The condition is allowed to contain nested accesses, provided
2971 * they are not being written to inside the body of the loop.
2972 * Otherwise, or if the condition is otherwise non-affine, the for loop is
2973 * essentially treated as a while loop, with iteration domain
2974 * { [i] : i >= init }.
2976 * We extract a pet_scop for the body and then embed it in a loop with
2977 * iteration domain and schedule
2979 * { [i] : i >= init and condition' }
2984 * { [i] : i <= init and condition' }
2987 * Where condition' is equal to condition if the latter is
2988 * a simple upper [lower] bound and a condition that is extended
2989 * to apply to all previous iterations otherwise.
2991 * If the condition is non-affine, then we drop the condition from the
2992 * iteration domain and instead create a separate statement
2993 * for evaluating the condition. The body is then filtered to depend
2994 * on the result of the condition evaluating to true on all iterations
2995 * up to the current iteration, while the evaluation the condition itself
2996 * is filtered to depend on the result of the condition evaluating to true
2997 * on all previous iterations.
2998 * The context of the scop representing the body is dropped
2999 * because we don't know how many times the body will be executed,
3002 * If the stride of the loop is not 1, then "i >= init" is replaced by
3004 * (exists a: i = init + stride * a and a >= 0)
3006 * If the loop iterator i is unsigned, then wrapping may occur.
3007 * We therefore use a virtual iterator instead that does not wrap.
3008 * However, the condition in the code applies
3009 * to the wrapped value, so we need to change condition(i)
3010 * into condition([i % 2^width]). Similarly, we replace all accesses
3011 * to the original iterator by the wrapping of the virtual iterator.
3012 * Note that there may be no need to perform this final wrapping
3013 * if the loop condition (after wrapping) satisfies certain conditions.
3014 * However, the is_simple_bound condition is not enough since it doesn't
3015 * check if there even is an upper bound.
3017 * Wrapping on unsigned iterators can be avoided entirely if
3018 * loop condition is simple, the loop iterator is incremented
3019 * [decremented] by one and the last value before wrapping cannot
3020 * possibly satisfy the loop condition.
3022 * Before extracting a pet_scop from the body we remove all
3023 * assignments in assigned_value to variables that are assigned
3024 * somewhere in the body of the loop.
3026 * Valid parameters for a for loop are those for which the initial
3027 * value itself, the increment on each domain iteration and
3028 * the condition on both the initial value and
3029 * the result of incrementing the iterator for each iteration of the domain
3031 * If the loop condition is non-affine, then we only consider validity
3032 * of the initial value.
3034 * If the body contains any break, then we keep track of it in "skip"
3035 * (if the skip condition is affine) or it is handled in scop_add_break
3036 * (if the skip condition is not affine).
3037 * Note that the affine break condition needs to be considered with
3038 * respect to previous iterations in the virtual domain (if any).
3040 * If we were only able to extract part of the body, then simply
3043 struct pet_scop
*PetScan::extract_for(ForStmt
*stmt
)
3045 BinaryOperator
*ass
;
3050 isl_local_space
*ls
;
3053 isl_set
*cond
= NULL
;
3054 isl_set
*skip
= NULL
;
3055 isl_id
*id
, *id_test
= NULL
, *id_break_test
;
3056 struct pet_scop
*scop
, *scop_cond
= NULL
;
3057 assigned_value_cache
cache(assigned_value
);
3064 bool has_affine_break
;
3066 isl_aff
*wrap
= NULL
;
3067 isl_pw_aff
*pa
, *pa_inc
, *init_val
;
3068 isl_set
*valid_init
;
3069 isl_set
*valid_cond
;
3070 isl_set
*valid_cond_init
;
3071 isl_set
*valid_cond_next
;
3075 if (!stmt
->getInit() && !stmt
->getCond() && !stmt
->getInc())
3076 return extract_infinite_for(stmt
);
3078 init
= stmt
->getInit();
3083 if ((ass
= initialization_assignment(init
)) != NULL
) {
3084 iv
= extract_induction_variable(ass
);
3087 lhs
= ass
->getLHS();
3088 rhs
= ass
->getRHS();
3089 } else if ((decl
= initialization_declaration(init
)) != NULL
) {
3090 VarDecl
*var
= extract_induction_variable(init
, decl
);
3094 rhs
= var
->getInit();
3095 lhs
= create_DeclRefExpr(var
);
3097 unsupported(stmt
->getInit());
3101 assigned_value
.erase(iv
);
3102 clear_assignments
clear(assigned_value
);
3103 clear
.TraverseStmt(stmt
->getBody());
3105 was_assigned
= assigned_value
.find(iv
) != assigned_value
.end();
3106 clear_assignment(assigned_value
, iv
);
3107 init_val
= extract_affine(rhs
);
3109 assigned_value
.erase(iv
);
3113 pa_inc
= extract_increment(stmt
, iv
);
3115 isl_pw_aff_free(init_val
);
3120 if (isl_pw_aff_n_piece(pa_inc
) != 1 ||
3121 isl_pw_aff_foreach_piece(pa_inc
, &extract_cst
, &inc
) < 0) {
3122 isl_pw_aff_free(init_val
);
3123 isl_pw_aff_free(pa_inc
);
3124 unsupported(stmt
->getInc());
3129 pa
= try_extract_nested_condition(stmt
->getCond());
3130 if (allow_nested
&& (!pa
|| pet_nested_any_in_pw_aff(pa
)))
3133 scop
= extract(stmt
->getBody());
3135 isl_pw_aff_free(init_val
);
3136 isl_pw_aff_free(pa_inc
);
3137 isl_pw_aff_free(pa
);
3142 valid_inc
= isl_pw_aff_domain(pa_inc
);
3144 is_unsigned
= iv
->getType()->isUnsignedIntegerType();
3146 id
= isl_id_alloc(ctx
, iv
->getName().str().c_str(), iv
);
3148 has_affine_break
= scop
&&
3149 pet_scop_has_affine_skip(scop
, pet_skip_later
);
3150 if (has_affine_break
)
3151 skip
= pet_scop_get_affine_skip_domain(scop
, pet_skip_later
);
3152 has_var_break
= scop
&& pet_scop_has_var_skip(scop
, pet_skip_later
);
3154 id_break_test
= pet_scop_get_skip_id(scop
, pet_skip_later
);
3156 if (pa
&& !is_nested_allowed(pa
, scop
)) {
3157 isl_pw_aff_free(pa
);
3161 if (!allow_nested
&& !pa
)
3162 pa
= try_extract_affine_condition(stmt
->getCond());
3163 valid_cond
= isl_pw_aff_domain(isl_pw_aff_copy(pa
));
3164 cond
= isl_pw_aff_non_zero_set(pa
);
3165 if (allow_nested
&& !cond
) {
3166 isl_multi_pw_aff
*test_index
;
3167 int save_n_stmt
= n_stmt
;
3168 test_index
= create_test_index(ctx
, n_test
++);
3170 scop_cond
= extract_non_affine_condition(stmt
->getCond(),
3171 n_stmt
++, isl_multi_pw_aff_copy(test_index
));
3172 n_stmt
= save_n_stmt
;
3173 scop_cond
= scop_add_array(scop_cond
, test_index
, ast_context
);
3174 id_test
= isl_multi_pw_aff_get_tuple_id(test_index
,
3176 isl_multi_pw_aff_free(test_index
);
3177 scop_cond
= pet_scop_prefix(scop_cond
, 0);
3178 scop
= pet_scop_reset_context(scop
);
3179 scop
= pet_scop_prefix(scop
, 1);
3180 cond
= isl_set_universe(isl_space_set_alloc(ctx
, 0, 0));
3183 cond
= embed(cond
, isl_id_copy(id
));
3184 skip
= embed(skip
, isl_id_copy(id
));
3185 valid_cond
= isl_set_coalesce(valid_cond
);
3186 valid_cond
= embed(valid_cond
, isl_id_copy(id
));
3187 valid_inc
= embed(valid_inc
, isl_id_copy(id
));
3188 is_one
= isl_val_is_one(inc
) || isl_val_is_negone(inc
);
3189 is_virtual
= is_unsigned
&& (!is_one
|| can_wrap(cond
, iv
, inc
));
3191 valid_cond_init
= enforce_subset(
3192 isl_set_from_pw_aff(isl_pw_aff_copy(init_val
)),
3193 isl_set_copy(valid_cond
));
3194 if (is_one
&& !is_virtual
) {
3195 isl_pw_aff_free(init_val
);
3196 pa
= extract_comparison(isl_val_is_pos(inc
) ? BO_GE
: BO_LE
,
3198 valid_init
= isl_pw_aff_domain(isl_pw_aff_copy(pa
));
3199 valid_init
= set_project_out_by_id(valid_init
, id
);
3200 domain
= isl_pw_aff_non_zero_set(pa
);
3202 valid_init
= isl_pw_aff_domain(isl_pw_aff_copy(init_val
));
3203 domain
= strided_domain(isl_id_copy(id
), init_val
,
3207 domain
= embed(domain
, isl_id_copy(id
));
3210 wrap
= compute_wrapping(isl_set_get_space(cond
), iv
);
3211 rev_wrap
= isl_map_from_aff(isl_aff_copy(wrap
));
3212 rev_wrap
= isl_map_reverse(rev_wrap
);
3213 cond
= isl_set_apply(cond
, isl_map_copy(rev_wrap
));
3214 skip
= isl_set_apply(skip
, isl_map_copy(rev_wrap
));
3215 valid_cond
= isl_set_apply(valid_cond
, isl_map_copy(rev_wrap
));
3216 valid_inc
= isl_set_apply(valid_inc
, rev_wrap
);
3218 is_simple
= is_simple_bound(cond
, inc
);
3220 cond
= isl_set_gist(cond
, isl_set_copy(domain
));
3221 is_simple
= is_simple_bound(cond
, inc
);
3224 cond
= valid_for_each_iteration(cond
,
3225 isl_set_copy(domain
), isl_val_copy(inc
));
3226 domain
= isl_set_intersect(domain
, cond
);
3227 if (has_affine_break
) {
3228 skip
= isl_set_intersect(skip
, isl_set_copy(domain
));
3229 skip
= after(skip
, isl_val_sgn(inc
));
3230 domain
= isl_set_subtract(domain
, skip
);
3232 domain
= isl_set_set_dim_id(domain
, isl_dim_set
, 0, isl_id_copy(id
));
3233 ls
= isl_local_space_from_space(isl_set_get_space(domain
));
3234 sched
= isl_aff_var_on_domain(ls
, isl_dim_set
, 0);
3235 if (isl_val_is_neg(inc
))
3236 sched
= isl_aff_neg(sched
);
3238 valid_cond_next
= valid_on_next(valid_cond
, isl_set_copy(domain
),
3240 valid_inc
= enforce_subset(isl_set_copy(domain
), valid_inc
);
3243 wrap
= identity_aff(domain
);
3245 scop_cond
= pet_scop_embed(scop_cond
, isl_set_copy(domain
),
3246 isl_aff_copy(sched
), isl_aff_copy(wrap
), isl_id_copy(id
));
3247 scop
= pet_scop_embed(scop
, isl_set_copy(domain
), sched
, wrap
, id
);
3248 scop
= resolve_nested(scop
);
3250 scop
= scop_add_break(scop
, id_break_test
, isl_set_copy(domain
),
3253 scop
= scop_add_while(scop_cond
, scop
, id_test
, domain
,
3255 isl_set_free(valid_inc
);
3257 scop
= pet_scop_restrict_context(scop
, valid_inc
);
3258 scop
= pet_scop_restrict_context(scop
, valid_cond_next
);
3259 scop
= pet_scop_restrict_context(scop
, valid_cond_init
);
3260 isl_set_free(domain
);
3262 clear_assignment(assigned_value
, iv
);
3266 scop
= pet_scop_restrict_context(scop
, valid_init
);
3271 /* Try and construct a pet_scop corresponding to a compound statement.
3273 * "skip_declarations" is set if we should skip initial declarations
3274 * in the children of the compound statements. This then implies
3275 * that this sequence of children should not be treated as a block
3276 * since the initial statements may be skipped.
3278 struct pet_scop
*PetScan::extract(CompoundStmt
*stmt
, bool skip_declarations
)
3280 return extract(stmt
->children(), !skip_declarations
, skip_declarations
);
3283 /* For each nested access parameter in "space",
3284 * construct a corresponding pet_expr, place it in args and
3285 * record its position in "param2pos".
3286 * "n_arg" is the number of elements that are already in args.
3287 * The position recorded in "param2pos" takes this number into account.
3288 * If the pet_expr corresponding to a parameter is identical to
3289 * the pet_expr corresponding to an earlier parameter, then these two
3290 * parameters are made to refer to the same element in args.
3292 * Return the final number of elements in args or -1 if an error has occurred.
3294 int PetScan::extract_nested(__isl_keep isl_space
*space
,
3295 int n_arg
, struct pet_expr
**args
, std::map
<int,int> ¶m2pos
)
3299 nparam
= isl_space_dim(space
, isl_dim_param
);
3300 for (int i
= 0; i
< nparam
; ++i
) {
3302 isl_id
*id
= isl_space_get_dim_id(space
, isl_dim_param
, i
);
3305 if (!pet_nested_in_id(id
)) {
3310 nested
= (Expr
*) isl_id_get_user(id
);
3311 args
[n_arg
] = extract_expr(nested
);
3316 for (j
= 0; j
< n_arg
; ++j
)
3317 if (pet_expr_is_equal(args
[j
], args
[n_arg
]))
3321 pet_expr_free(args
[n_arg
]);
3325 param2pos
[i
] = n_arg
++;
3331 /* For each nested access parameter in the access relations in "expr",
3332 * construct a corresponding pet_expr, place it in expr->args and
3333 * record its position in "param2pos".
3334 * n is the number of nested access parameters.
3336 struct pet_expr
*PetScan::extract_nested(struct pet_expr
*expr
, int n
,
3337 std::map
<int,int> ¶m2pos
)
3341 expr
->args
= isl_calloc_array(ctx
, struct pet_expr
*, n
);
3346 space
= pet_expr_access_get_parameter_space(expr
);
3347 n
= extract_nested(space
, 0, expr
->args
, param2pos
);
3348 isl_space_free(space
);
3356 pet_expr_free(expr
);
3360 /* Look for parameters in any access relation in "expr" that
3361 * refer to nested accesses. In particular, these are
3362 * parameters with no name.
3364 * If there are any such parameters, then the domain of the index
3365 * expression and the access relation, which is still [] at this point,
3366 * is replaced by [[] -> [t_1,...,t_n]], with n the number of these parameters
3367 * (after identifying identical nested accesses).
3369 * This transformation is performed in several steps.
3370 * We first extract the arguments in extract_nested.
3371 * param2pos maps the original parameter position to the position
3373 * Then we move these parameters to input dimensions.
3374 * t2pos maps the positions of these temporary input dimensions
3375 * to the positions of the corresponding arguments.
3376 * Finally, we express these temporary dimensions in terms of the domain
3377 * [[] -> [t_1,...,t_n]] and precompose index expression and access
3378 * relations with this function.
3380 struct pet_expr
*PetScan::resolve_nested(struct pet_expr
*expr
)
3385 isl_local_space
*ls
;
3388 std::map
<int,int> param2pos
;
3389 std::map
<int,int> t2pos
;
3394 for (int i
= 0; i
< expr
->n_arg
; ++i
) {
3395 expr
->args
[i
] = resolve_nested(expr
->args
[i
]);
3396 if (!expr
->args
[i
]) {
3397 pet_expr_free(expr
);
3402 if (expr
->type
!= pet_expr_access
)
3405 space
= pet_expr_access_get_parameter_space(expr
);
3406 n
= pet_nested_n_in_space(space
);
3407 isl_space_free(space
);
3411 expr
= extract_nested(expr
, n
, param2pos
);
3415 expr
= pet_expr_access_align_params(expr
);
3420 space
= pet_expr_access_get_parameter_space(expr
);
3421 nparam
= isl_space_dim(space
, isl_dim_param
);
3422 for (int i
= nparam
- 1; i
>= 0; --i
) {
3423 isl_id
*id
= isl_space_get_dim_id(space
, isl_dim_param
, i
);
3424 if (!pet_nested_in_id(id
)) {
3429 expr
= pet_expr_access_move_dims(expr
,
3430 isl_dim_in
, n
, isl_dim_param
, i
, 1);
3431 t2pos
[n
] = param2pos
[i
];
3436 isl_space_free(space
);
3438 space
= pet_expr_access_get_parameter_space(expr
);
3439 space
= isl_space_set_from_params(space
);
3440 space
= isl_space_add_dims(space
, isl_dim_set
, expr
->n_arg
);
3441 space
= isl_space_wrap(isl_space_from_range(space
));
3442 ls
= isl_local_space_from_space(isl_space_copy(space
));
3443 space
= isl_space_from_domain(space
);
3444 space
= isl_space_add_dims(space
, isl_dim_out
, n
);
3445 ma
= isl_multi_aff_zero(space
);
3447 for (int i
= 0; i
< n
; ++i
) {
3448 aff
= isl_aff_var_on_domain(isl_local_space_copy(ls
),
3449 isl_dim_set
, t2pos
[i
]);
3450 ma
= isl_multi_aff_set_aff(ma
, i
, aff
);
3452 isl_local_space_free(ls
);
3454 expr
= pet_expr_access_pullback_multi_aff(expr
, ma
);
3459 /* Return the file offset of the expansion location of "Loc".
3461 static unsigned getExpansionOffset(SourceManager
&SM
, SourceLocation Loc
)
3463 return SM
.getFileOffset(SM
.getExpansionLoc(Loc
));
3466 #ifdef HAVE_FINDLOCATIONAFTERTOKEN
3468 /* Return a SourceLocation for the location after the first semicolon
3469 * after "loc". If Lexer::findLocationAfterToken is available, we simply
3470 * call it and also skip trailing spaces and newline.
3472 static SourceLocation
location_after_semi(SourceLocation loc
, SourceManager
&SM
,
3473 const LangOptions
&LO
)
3475 return Lexer::findLocationAfterToken(loc
, tok::semi
, SM
, LO
, true);
3480 /* Return a SourceLocation for the location after the first semicolon
3481 * after "loc". If Lexer::findLocationAfterToken is not available,
3482 * we look in the underlying character data for the first semicolon.
3484 static SourceLocation
location_after_semi(SourceLocation loc
, SourceManager
&SM
,
3485 const LangOptions
&LO
)
3488 const char *s
= SM
.getCharacterData(loc
);
3490 semi
= strchr(s
, ';');
3492 return SourceLocation();
3493 return loc
.getFileLocWithOffset(semi
+ 1 - s
);
3498 /* If the token at "loc" is the first token on the line, then return
3499 * a location referring to the start of the line.
3500 * Otherwise, return "loc".
3502 * This function is used to extend a scop to the start of the line
3503 * if the first token of the scop is also the first token on the line.
3505 * We look for the first token on the line. If its location is equal to "loc",
3506 * then the latter is the location of the first token on the line.
3508 static SourceLocation
move_to_start_of_line_if_first_token(SourceLocation loc
,
3509 SourceManager
&SM
, const LangOptions
&LO
)
3511 std::pair
<FileID
, unsigned> file_offset_pair
;
3512 llvm::StringRef file
;
3515 SourceLocation token_loc
, line_loc
;
3518 loc
= SM
.getExpansionLoc(loc
);
3519 col
= SM
.getExpansionColumnNumber(loc
);
3520 line_loc
= loc
.getLocWithOffset(1 - col
);
3521 file_offset_pair
= SM
.getDecomposedLoc(line_loc
);
3522 file
= SM
.getBufferData(file_offset_pair
.first
, NULL
);
3523 pos
= file
.data() + file_offset_pair
.second
;
3525 Lexer
lexer(SM
.getLocForStartOfFile(file_offset_pair
.first
), LO
,
3526 file
.begin(), pos
, file
.end());
3527 lexer
.LexFromRawLexer(tok
);
3528 token_loc
= tok
.getLocation();
3530 if (token_loc
== loc
)
3536 /* Update start and end of "scop" to include the region covered by "range".
3537 * If "skip_semi" is set, then we assume "range" is followed by
3538 * a semicolon and also include this semicolon.
3540 struct pet_scop
*PetScan::update_scop_start_end(struct pet_scop
*scop
,
3541 SourceRange range
, bool skip_semi
)
3543 SourceLocation loc
= range
.getBegin();
3544 SourceManager
&SM
= PP
.getSourceManager();
3545 const LangOptions
&LO
= PP
.getLangOpts();
3546 unsigned start
, end
;
3548 loc
= move_to_start_of_line_if_first_token(loc
, SM
, LO
);
3549 start
= getExpansionOffset(SM
, loc
);
3550 loc
= range
.getEnd();
3552 loc
= location_after_semi(loc
, SM
, LO
);
3554 loc
= PP
.getLocForEndOfToken(loc
);
3555 end
= getExpansionOffset(SM
, loc
);
3557 scop
= pet_scop_update_start_end(scop
, start
, end
);
3561 /* Convert a top-level pet_expr to a pet_scop with one statement.
3562 * This mainly involves resolving nested expression parameters
3563 * and setting the name of the iteration space.
3564 * The name is given by "label" if it is non-NULL. Otherwise,
3565 * it is of the form S_<n_stmt>.
3566 * start and end of the pet_scop are derived from those of "stmt".
3567 * If "stmt" is an expression statement, then its range does not
3568 * include the semicolon, while it should be included in the pet_scop.
3570 struct pet_scop
*PetScan::extract(Stmt
*stmt
, struct pet_expr
*expr
,
3571 __isl_take isl_id
*label
)
3573 struct pet_stmt
*ps
;
3574 struct pet_scop
*scop
;
3575 SourceLocation loc
= stmt
->getLocStart();
3576 int line
= PP
.getSourceManager().getExpansionLineNumber(loc
);
3579 expr
= resolve_nested(expr
);
3580 ps
= pet_stmt_from_pet_expr(ctx
, line
, label
, n_stmt
++, expr
);
3581 scop
= pet_scop_from_pet_stmt(ctx
, ps
);
3583 skip_semi
= isa
<Expr
>(stmt
);
3584 scop
= update_scop_start_end(scop
, stmt
->getSourceRange(), skip_semi
);
3588 /* Check if we can extract an affine expression from "expr".
3589 * Return the expressions as an isl_pw_aff if we can and NULL otherwise.
3590 * We turn on autodetection so that we won't generate any warnings
3591 * and turn off nesting, so that we won't accept any non-affine constructs.
3593 __isl_give isl_pw_aff
*PetScan::try_extract_affine(Expr
*expr
)
3596 int save_autodetect
= options
->autodetect
;
3597 bool save_nesting
= nesting_enabled
;
3599 options
->autodetect
= 1;
3600 nesting_enabled
= false;
3602 pwaff
= extract_affine(expr
);
3604 options
->autodetect
= save_autodetect
;
3605 nesting_enabled
= save_nesting
;
3610 /* Check if we can extract an affine constraint from "expr".
3611 * Return the constraint as an isl_set if we can and NULL otherwise.
3612 * We turn on autodetection so that we won't generate any warnings
3613 * and turn off nesting, so that we won't accept any non-affine constructs.
3615 __isl_give isl_pw_aff
*PetScan::try_extract_affine_condition(Expr
*expr
)
3618 int save_autodetect
= options
->autodetect
;
3619 bool save_nesting
= nesting_enabled
;
3621 options
->autodetect
= 1;
3622 nesting_enabled
= false;
3624 cond
= extract_condition(expr
);
3626 options
->autodetect
= save_autodetect
;
3627 nesting_enabled
= save_nesting
;
3632 /* Check whether "expr" is an affine constraint.
3634 bool PetScan::is_affine_condition(Expr
*expr
)
3638 cond
= try_extract_affine_condition(expr
);
3639 isl_pw_aff_free(cond
);
3641 return cond
!= NULL
;
3644 /* Check if we can extract a condition from "expr".
3645 * Return the condition as an isl_pw_aff if we can and NULL otherwise.
3646 * If allow_nested is set, then the condition may involve parameters
3647 * corresponding to nested accesses.
3648 * We turn on autodetection so that we won't generate any warnings.
3650 __isl_give isl_pw_aff
*PetScan::try_extract_nested_condition(Expr
*expr
)
3653 int save_autodetect
= options
->autodetect
;
3654 bool save_nesting
= nesting_enabled
;
3656 options
->autodetect
= 1;
3657 nesting_enabled
= allow_nested
;
3658 cond
= extract_condition(expr
);
3660 options
->autodetect
= save_autodetect
;
3661 nesting_enabled
= save_nesting
;
3666 /* If the top-level expression of "stmt" is an assignment, then
3667 * return that assignment as a BinaryOperator.
3668 * Otherwise return NULL.
3670 static BinaryOperator
*top_assignment_or_null(Stmt
*stmt
)
3672 BinaryOperator
*ass
;
3676 if (stmt
->getStmtClass() != Stmt::BinaryOperatorClass
)
3679 ass
= cast
<BinaryOperator
>(stmt
);
3680 if(ass
->getOpcode() != BO_Assign
)
3686 /* Check if the given if statement is a conditional assignement
3687 * with a non-affine condition. If so, construct a pet_scop
3688 * corresponding to this conditional assignment. Otherwise return NULL.
3690 * In particular we check if "stmt" is of the form
3697 * where a is some array or scalar access.
3698 * The constructed pet_scop then corresponds to the expression
3700 * a = condition ? f(...) : g(...)
3702 * All access relations in f(...) are intersected with condition
3703 * while all access relation in g(...) are intersected with the complement.
3705 struct pet_scop
*PetScan::extract_conditional_assignment(IfStmt
*stmt
)
3707 BinaryOperator
*ass_then
, *ass_else
;
3708 isl_multi_pw_aff
*write_then
, *write_else
;
3709 isl_set
*cond
, *comp
;
3710 isl_multi_pw_aff
*index
;
3713 struct pet_expr
*pe_cond
, *pe_then
, *pe_else
, *pe
, *pe_write
;
3714 bool save_nesting
= nesting_enabled
;
3716 if (!options
->detect_conditional_assignment
)
3719 ass_then
= top_assignment_or_null(stmt
->getThen());
3720 ass_else
= top_assignment_or_null(stmt
->getElse());
3722 if (!ass_then
|| !ass_else
)
3725 if (is_affine_condition(stmt
->getCond()))
3728 write_then
= extract_index(ass_then
->getLHS());
3729 write_else
= extract_index(ass_else
->getLHS());
3731 equal
= isl_multi_pw_aff_plain_is_equal(write_then
, write_else
);
3732 isl_multi_pw_aff_free(write_else
);
3733 if (equal
< 0 || !equal
) {
3734 isl_multi_pw_aff_free(write_then
);
3738 nesting_enabled
= allow_nested
;
3739 pa
= extract_condition(stmt
->getCond());
3740 nesting_enabled
= save_nesting
;
3741 cond
= isl_pw_aff_non_zero_set(isl_pw_aff_copy(pa
));
3742 comp
= isl_pw_aff_zero_set(isl_pw_aff_copy(pa
));
3743 index
= isl_multi_pw_aff_from_range(isl_multi_pw_aff_from_pw_aff(pa
));
3745 pe_cond
= pet_expr_from_index(index
);
3747 pe_then
= extract_expr(ass_then
->getRHS());
3748 pe_then
= pet_expr_restrict(pe_then
, cond
);
3749 pe_else
= extract_expr(ass_else
->getRHS());
3750 pe_else
= pet_expr_restrict(pe_else
, comp
);
3752 pe
= pet_expr_new_ternary(ctx
, pe_cond
, pe_then
, pe_else
);
3753 pe_write
= pet_expr_from_index_and_depth(write_then
,
3754 extract_depth(write_then
));
3756 pe_write
->acc
.write
= 1;
3757 pe_write
->acc
.read
= 0;
3759 pe
= pet_expr_new_binary(ctx
, pet_op_assign
, pe_write
, pe
);
3760 return extract(stmt
, pe
);
3763 /* Create a pet_scop with a single statement with name S_<stmt_nr>,
3764 * evaluating "cond" and writing the result to a virtual scalar,
3765 * as expressed by "index".
3767 struct pet_scop
*PetScan::extract_non_affine_condition(Expr
*cond
, int stmt_nr
,
3768 __isl_take isl_multi_pw_aff
*index
)
3770 struct pet_expr
*expr
, *write
;
3771 struct pet_stmt
*ps
;
3772 SourceLocation loc
= cond
->getLocStart();
3773 int line
= PP
.getSourceManager().getExpansionLineNumber(loc
);
3775 write
= pet_expr_from_index(index
);
3777 write
->acc
.write
= 1;
3778 write
->acc
.read
= 0;
3780 expr
= extract_expr(cond
);
3781 expr
= resolve_nested(expr
);
3782 expr
= pet_expr_new_binary(ctx
, pet_op_assign
, write
, expr
);
3783 ps
= pet_stmt_from_pet_expr(ctx
, line
, NULL
, stmt_nr
, expr
);
3784 return pet_scop_from_pet_stmt(ctx
, ps
);
3788 static struct pet_expr
*embed_access(struct pet_expr
*expr
, void *user
);
3791 /* Precompose the access relation and the index expression associated
3792 * to "expr" with the function pointed to by "user",
3793 * thereby embedding the access relation in the domain of this function.
3794 * The initial domain of the access relation and the index expression
3795 * is the zero-dimensional domain.
3797 static struct pet_expr
*embed_access(struct pet_expr
*expr
, void *user
)
3799 isl_multi_aff
*ma
= (isl_multi_aff
*) user
;
3801 return pet_expr_access_pullback_multi_aff(expr
, isl_multi_aff_copy(ma
));
3804 /* Precompose all access relations in "expr" with "ma", thereby
3805 * embedding them in the domain of "ma".
3807 static struct pet_expr
*embed(struct pet_expr
*expr
,
3808 __isl_keep isl_multi_aff
*ma
)
3810 return pet_expr_map_access(expr
, &embed_access
, ma
);
3813 /* For each nested access parameter in the domain of "stmt",
3814 * construct a corresponding pet_expr, place it before the original
3815 * elements in stmt->args and record its position in "param2pos".
3816 * n is the number of nested access parameters.
3818 struct pet_stmt
*PetScan::extract_nested(struct pet_stmt
*stmt
, int n
,
3819 std::map
<int,int> ¶m2pos
)
3824 struct pet_expr
**args
;
3826 n_arg
= stmt
->n_arg
;
3827 args
= isl_calloc_array(ctx
, struct pet_expr
*, n
+ n_arg
);
3831 space
= isl_set_get_space(stmt
->domain
);
3832 n_arg
= extract_nested(space
, 0, args
, param2pos
);
3833 isl_space_free(space
);
3838 for (i
= 0; i
< stmt
->n_arg
; ++i
)
3839 args
[n_arg
+ i
] = stmt
->args
[i
];
3842 stmt
->n_arg
+= n_arg
;
3847 for (i
= 0; i
< n
; ++i
)
3848 pet_expr_free(args
[i
]);
3851 pet_stmt_free(stmt
);
3855 /* Check whether any of the arguments i of "stmt" starting at position "n"
3856 * is equal to one of the first "n" arguments j.
3857 * If so, combine the constraints on arguments i and j and remove
3860 static struct pet_stmt
*remove_duplicate_arguments(struct pet_stmt
*stmt
, int n
)
3869 if (n
== stmt
->n_arg
)
3872 map
= isl_set_unwrap(stmt
->domain
);
3874 for (i
= stmt
->n_arg
- 1; i
>= n
; --i
) {
3875 for (j
= 0; j
< n
; ++j
)
3876 if (pet_expr_is_equal(stmt
->args
[i
], stmt
->args
[j
]))
3881 map
= isl_map_equate(map
, isl_dim_out
, i
, isl_dim_out
, j
);
3882 map
= isl_map_project_out(map
, isl_dim_out
, i
, 1);
3884 pet_expr_free(stmt
->args
[i
]);
3885 for (j
= i
; j
+ 1 < stmt
->n_arg
; ++j
)
3886 stmt
->args
[j
] = stmt
->args
[j
+ 1];
3890 stmt
->domain
= isl_map_wrap(map
);
3895 pet_stmt_free(stmt
);
3899 /* Look for parameters in the iteration domain of "stmt" that
3900 * refer to nested accesses. In particular, these are
3901 * parameters with no name.
3903 * If there are any such parameters, then as many extra variables
3904 * (after identifying identical nested accesses) are inserted in the
3905 * range of the map wrapped inside the domain, before the original variables.
3906 * If the original domain is not a wrapped map, then a new wrapped
3907 * map is created with zero output dimensions.
3908 * The parameters are then equated to the corresponding output dimensions
3909 * and subsequently projected out, from the iteration domain,
3910 * the schedule and the access relations.
3911 * For each of the output dimensions, a corresponding argument
3912 * expression is inserted. Initially they are created with
3913 * a zero-dimensional domain, so they have to be embedded
3914 * in the current iteration domain.
3915 * param2pos maps the position of the parameter to the position
3916 * of the corresponding output dimension in the wrapped map.
3918 struct pet_stmt
*PetScan::resolve_nested(struct pet_stmt
*stmt
)
3926 std::map
<int,int> param2pos
;
3931 n
= pet_nested_n_in_set(stmt
->domain
);
3935 n_arg
= stmt
->n_arg
;
3936 stmt
= extract_nested(stmt
, n
, param2pos
);
3940 n
= stmt
->n_arg
- n_arg
;
3941 nparam
= isl_set_dim(stmt
->domain
, isl_dim_param
);
3942 if (isl_set_is_wrapping(stmt
->domain
))
3943 map
= isl_set_unwrap(stmt
->domain
);
3945 map
= isl_map_from_domain(stmt
->domain
);
3946 map
= isl_map_insert_dims(map
, isl_dim_out
, 0, n
);
3948 for (int i
= nparam
- 1; i
>= 0; --i
) {
3951 if (!pet_nested_in_map(map
, i
))
3954 id
= pet_expr_access_get_id(stmt
->args
[param2pos
[i
]]);
3955 map
= isl_map_set_dim_id(map
, isl_dim_out
, param2pos
[i
], id
);
3956 map
= isl_map_equate(map
, isl_dim_param
, i
, isl_dim_out
,
3958 map
= isl_map_project_out(map
, isl_dim_param
, i
, 1);
3961 stmt
->domain
= isl_map_wrap(map
);
3963 space
= isl_space_unwrap(isl_set_get_space(stmt
->domain
));
3964 space
= isl_space_from_domain(isl_space_domain(space
));
3965 ma
= isl_multi_aff_zero(space
);
3966 for (int pos
= 0; pos
< n
; ++pos
)
3967 stmt
->args
[pos
] = embed(stmt
->args
[pos
], ma
);
3968 isl_multi_aff_free(ma
);
3970 stmt
= pet_stmt_remove_nested_parameters(stmt
);
3971 stmt
= remove_duplicate_arguments(stmt
, n
);
3976 /* For each statement in "scop", move the parameters that correspond
3977 * to nested access into the ranges of the domains and create
3978 * corresponding argument expressions.
3980 struct pet_scop
*PetScan::resolve_nested(struct pet_scop
*scop
)
3985 for (int i
= 0; i
< scop
->n_stmt
; ++i
) {
3986 scop
->stmts
[i
] = resolve_nested(scop
->stmts
[i
]);
3987 if (!scop
->stmts
[i
])
3993 pet_scop_free(scop
);
3997 /* Given an access expression "expr", is the variable accessed by
3998 * "expr" assigned anywhere inside "scop"?
4000 static bool is_assigned(pet_expr
*expr
, pet_scop
*scop
)
4002 bool assigned
= false;
4005 id
= pet_expr_access_get_id(expr
);
4006 assigned
= pet_scop_writes(scop
, id
);
4012 /* Are all nested access parameters in "pa" allowed given "scop".
4013 * In particular, is none of them written by anywhere inside "scop".
4015 * If "scop" has any skip conditions, then no nested access parameters
4016 * are allowed. In particular, if there is any nested access in a guard
4017 * for a piece of code containing a "continue", then we want to introduce
4018 * a separate statement for evaluating this guard so that we can express
4019 * that the result is false for all previous iterations.
4021 bool PetScan::is_nested_allowed(__isl_keep isl_pw_aff
*pa
, pet_scop
*scop
)
4028 if (!pet_nested_any_in_pw_aff(pa
))
4031 if (pet_scop_has_skip(scop
, pet_skip_now
))
4034 nparam
= isl_pw_aff_dim(pa
, isl_dim_param
);
4035 for (int i
= 0; i
< nparam
; ++i
) {
4037 isl_id
*id
= isl_pw_aff_get_dim_id(pa
, isl_dim_param
, i
);
4041 if (!pet_nested_in_id(id
)) {
4046 nested
= (Expr
*) isl_id_get_user(id
);
4047 expr
= extract_expr(nested
);
4048 allowed
= expr
&& expr
->type
== pet_expr_access
&&
4049 !is_assigned(expr
, scop
);
4051 pet_expr_free(expr
);
4061 /* Do we need to construct a skip condition of the given type
4062 * on an if statement, given that the if condition is non-affine?
4064 * pet_scop_filter_skip can only handle the case where the if condition
4065 * holds (the then branch) and the skip condition is universal.
4066 * In any other case, we need to construct a new skip condition.
4068 static bool need_skip(struct pet_scop
*scop_then
, struct pet_scop
*scop_else
,
4069 bool have_else
, enum pet_skip type
)
4071 if (have_else
&& scop_else
&& pet_scop_has_skip(scop_else
, type
))
4073 if (scop_then
&& pet_scop_has_skip(scop_then
, type
) &&
4074 !pet_scop_has_universal_skip(scop_then
, type
))
4079 /* Do we need to construct a skip condition of the given type
4080 * on an if statement, given that the if condition is affine?
4082 * There is no need to construct a new skip condition if all
4083 * the skip conditions are affine.
4085 static bool need_skip_aff(struct pet_scop
*scop_then
,
4086 struct pet_scop
*scop_else
, bool have_else
, enum pet_skip type
)
4088 if (scop_then
&& pet_scop_has_var_skip(scop_then
, type
))
4090 if (have_else
&& scop_else
&& pet_scop_has_var_skip(scop_else
, type
))
4095 /* Do we need to construct a skip condition of the given type
4096 * on an if statement?
4098 static bool need_skip(struct pet_scop
*scop_then
, struct pet_scop
*scop_else
,
4099 bool have_else
, enum pet_skip type
, bool affine
)
4102 return need_skip_aff(scop_then
, scop_else
, have_else
, type
);
4104 return need_skip(scop_then
, scop_else
, have_else
, type
);
4107 /* Construct an affine expression pet_expr that evaluates
4108 * to the constant "val".
4110 static struct pet_expr
*universally(isl_ctx
*ctx
, int val
)
4112 isl_local_space
*ls
;
4114 isl_multi_pw_aff
*mpa
;
4116 ls
= isl_local_space_from_space(isl_space_set_alloc(ctx
, 0, 0));
4117 aff
= isl_aff_val_on_domain(ls
, isl_val_int_from_si(ctx
, val
));
4118 mpa
= isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff
));
4120 return pet_expr_from_index(mpa
);
4123 /* Construct an affine expression pet_expr that evaluates
4124 * to the constant 1.
4126 static struct pet_expr
*universally_true(isl_ctx
*ctx
)
4128 return universally(ctx
, 1);
4131 /* Construct an affine expression pet_expr that evaluates
4132 * to the constant 0.
4134 static struct pet_expr
*universally_false(isl_ctx
*ctx
)
4136 return universally(ctx
, 0);
4139 /* Given an index expression "test_index" for the if condition,
4140 * an index expression "skip_index" for the skip condition and
4141 * scops for the then and else branches, construct a scop for
4142 * computing "skip_index".
4144 * The computed scop contains a single statement that essentially does
4146 * skip_index = test_cond ? skip_cond_then : skip_cond_else
4148 * If the skip conditions of the then and/or else branch are not affine,
4149 * then they need to be filtered by test_index.
4150 * If they are missing, then this means the skip condition is false.
4152 * Since we are constructing a skip condition for the if statement,
4153 * the skip conditions on the then and else branches are removed.
4155 static struct pet_scop
*extract_skip(PetScan
*scan
,
4156 __isl_take isl_multi_pw_aff
*test_index
,
4157 __isl_take isl_multi_pw_aff
*skip_index
,
4158 struct pet_scop
*scop_then
, struct pet_scop
*scop_else
, bool have_else
,
4161 struct pet_expr
*expr_then
, *expr_else
, *expr
, *expr_skip
;
4162 struct pet_stmt
*stmt
;
4163 struct pet_scop
*scop
;
4164 isl_ctx
*ctx
= scan
->ctx
;
4168 if (have_else
&& !scop_else
)
4171 if (pet_scop_has_skip(scop_then
, type
)) {
4172 expr_then
= pet_scop_get_skip_expr(scop_then
, type
);
4173 pet_scop_reset_skip(scop_then
, type
);
4174 if (!pet_expr_is_affine(expr_then
))
4175 expr_then
= pet_expr_filter(expr_then
,
4176 isl_multi_pw_aff_copy(test_index
), 1);
4178 expr_then
= universally_false(ctx
);
4180 if (have_else
&& pet_scop_has_skip(scop_else
, type
)) {
4181 expr_else
= pet_scop_get_skip_expr(scop_else
, type
);
4182 pet_scop_reset_skip(scop_else
, type
);
4183 if (!pet_expr_is_affine(expr_else
))
4184 expr_else
= pet_expr_filter(expr_else
,
4185 isl_multi_pw_aff_copy(test_index
), 0);
4187 expr_else
= universally_false(ctx
);
4189 expr
= pet_expr_from_index(test_index
);
4190 expr
= pet_expr_new_ternary(ctx
, expr
, expr_then
, expr_else
);
4191 expr_skip
= pet_expr_from_index(isl_multi_pw_aff_copy(skip_index
));
4193 expr_skip
->acc
.write
= 1;
4194 expr_skip
->acc
.read
= 0;
4196 expr
= pet_expr_new_binary(ctx
, pet_op_assign
, expr_skip
, expr
);
4197 stmt
= pet_stmt_from_pet_expr(ctx
, -1, NULL
, scan
->n_stmt
++, expr
);
4199 scop
= pet_scop_from_pet_stmt(ctx
, stmt
);
4200 scop
= scop_add_array(scop
, skip_index
, scan
->ast_context
);
4201 isl_multi_pw_aff_free(skip_index
);
4205 isl_multi_pw_aff_free(test_index
);
4206 isl_multi_pw_aff_free(skip_index
);
4210 /* Is scop's skip_now condition equal to its skip_later condition?
4211 * In particular, this means that it either has no skip_now condition
4212 * or both a skip_now and a skip_later condition (that are equal to each other).
4214 static bool skip_equals_skip_later(struct pet_scop
*scop
)
4216 int has_skip_now
, has_skip_later
;
4218 isl_multi_pw_aff
*skip_now
, *skip_later
;
4222 has_skip_now
= pet_scop_has_skip(scop
, pet_skip_now
);
4223 has_skip_later
= pet_scop_has_skip(scop
, pet_skip_later
);
4224 if (has_skip_now
!= has_skip_later
)
4229 skip_now
= pet_scop_get_skip(scop
, pet_skip_now
);
4230 skip_later
= pet_scop_get_skip(scop
, pet_skip_later
);
4231 equal
= isl_multi_pw_aff_is_equal(skip_now
, skip_later
);
4232 isl_multi_pw_aff_free(skip_now
);
4233 isl_multi_pw_aff_free(skip_later
);
4238 /* Drop the skip conditions of type pet_skip_later from scop1 and scop2.
4240 static void drop_skip_later(struct pet_scop
*scop1
, struct pet_scop
*scop2
)
4242 pet_scop_reset_skip(scop1
, pet_skip_later
);
4243 pet_scop_reset_skip(scop2
, pet_skip_later
);
4246 /* Structure that handles the construction of skip conditions.
4248 * scop_then and scop_else represent the then and else branches
4249 * of the if statement
4251 * skip[type] is true if we need to construct a skip condition of that type
4252 * equal is set if the skip conditions of types pet_skip_now and pet_skip_later
4253 * are equal to each other
4254 * index[type] is an index expression from a zero-dimension domain
4255 * to the virtual array representing the skip condition
4256 * scop[type] is a scop for computing the skip condition
4258 struct pet_skip_info
{
4263 isl_multi_pw_aff
*index
[2];
4264 struct pet_scop
*scop
[2];
4266 pet_skip_info(isl_ctx
*ctx
) : ctx(ctx
) {}
4268 operator bool() { return skip
[pet_skip_now
] || skip
[pet_skip_later
]; }
4271 /* Structure that handles the construction of skip conditions on if statements.
4273 * scop_then and scop_else represent the then and else branches
4274 * of the if statement
4276 struct pet_skip_info_if
: public pet_skip_info
{
4277 struct pet_scop
*scop_then
, *scop_else
;
4280 pet_skip_info_if(isl_ctx
*ctx
, struct pet_scop
*scop_then
,
4281 struct pet_scop
*scop_else
, bool have_else
, bool affine
);
4282 void extract(PetScan
*scan
, __isl_keep isl_multi_pw_aff
*index
,
4283 enum pet_skip type
);
4284 void extract(PetScan
*scan
, __isl_keep isl_multi_pw_aff
*index
);
4285 void extract(PetScan
*scan
, __isl_keep isl_pw_aff
*cond
);
4286 struct pet_scop
*add(struct pet_scop
*scop
, enum pet_skip type
,
4288 struct pet_scop
*add(struct pet_scop
*scop
, int offset
);
4291 /* Initialize a pet_skip_info_if structure based on the then and else branches
4292 * and based on whether the if condition is affine or not.
4294 pet_skip_info_if::pet_skip_info_if(isl_ctx
*ctx
, struct pet_scop
*scop_then
,
4295 struct pet_scop
*scop_else
, bool have_else
, bool affine
) :
4296 pet_skip_info(ctx
), scop_then(scop_then
), scop_else(scop_else
),
4297 have_else(have_else
)
4299 skip
[pet_skip_now
] =
4300 need_skip(scop_then
, scop_else
, have_else
, pet_skip_now
, affine
);
4301 equal
= skip
[pet_skip_now
] && skip_equals_skip_later(scop_then
) &&
4302 (!have_else
|| skip_equals_skip_later(scop_else
));
4303 skip
[pet_skip_later
] = skip
[pet_skip_now
] && !equal
&&
4304 need_skip(scop_then
, scop_else
, have_else
, pet_skip_later
, affine
);
4307 /* If we need to construct a skip condition of the given type,
4310 * "mpa" represents the if condition.
4312 void pet_skip_info_if::extract(PetScan
*scan
,
4313 __isl_keep isl_multi_pw_aff
*mpa
, enum pet_skip type
)
4320 ctx
= isl_multi_pw_aff_get_ctx(mpa
);
4321 index
[type
] = create_test_index(ctx
, scan
->n_test
++);
4322 scop
[type
] = extract_skip(scan
, isl_multi_pw_aff_copy(mpa
),
4323 isl_multi_pw_aff_copy(index
[type
]),
4324 scop_then
, scop_else
, have_else
, type
);
4327 /* Construct the required skip conditions, given the if condition "index".
4329 void pet_skip_info_if::extract(PetScan
*scan
,
4330 __isl_keep isl_multi_pw_aff
*index
)
4332 extract(scan
, index
, pet_skip_now
);
4333 extract(scan
, index
, pet_skip_later
);
4335 drop_skip_later(scop_then
, scop_else
);
4338 /* Construct the required skip conditions, given the if condition "cond".
4340 void pet_skip_info_if::extract(PetScan
*scan
, __isl_keep isl_pw_aff
*cond
)
4342 isl_multi_pw_aff
*test
;
4344 if (!skip
[pet_skip_now
] && !skip
[pet_skip_later
])
4347 test
= isl_multi_pw_aff_from_pw_aff(isl_pw_aff_copy(cond
));
4348 test
= isl_multi_pw_aff_from_range(test
);
4349 extract(scan
, test
);
4350 isl_multi_pw_aff_free(test
);
4353 /* Add the computed skip condition of the give type to "main" and
4354 * add the scop for computing the condition at the given offset.
4356 * If equal is set, then we only computed a skip condition for pet_skip_now,
4357 * but we also need to set it as main's pet_skip_later.
4359 struct pet_scop
*pet_skip_info_if::add(struct pet_scop
*main
,
4360 enum pet_skip type
, int offset
)
4365 scop
[type
] = pet_scop_prefix(scop
[type
], offset
);
4366 main
= pet_scop_add_par(ctx
, main
, scop
[type
]);
4370 main
= pet_scop_set_skip(main
, pet_skip_later
,
4371 isl_multi_pw_aff_copy(index
[type
]));
4373 main
= pet_scop_set_skip(main
, type
, index
[type
]);
4379 /* Add the computed skip conditions to "main" and
4380 * add the scops for computing the conditions at the given offset.
4382 struct pet_scop
*pet_skip_info_if::add(struct pet_scop
*scop
, int offset
)
4384 scop
= add(scop
, pet_skip_now
, offset
);
4385 scop
= add(scop
, pet_skip_later
, offset
);
4390 /* Construct a pet_scop for a non-affine if statement.
4392 * We create a separate statement that writes the result
4393 * of the non-affine condition to a virtual scalar.
4394 * A constraint requiring the value of this virtual scalar to be one
4395 * is added to the iteration domains of the then branch.
4396 * Similarly, a constraint requiring the value of this virtual scalar
4397 * to be zero is added to the iteration domains of the else branch, if any.
4398 * We adjust the schedules to ensure that the virtual scalar is written
4399 * before it is read.
4401 * If there are any breaks or continues in the then and/or else
4402 * branches, then we may have to compute a new skip condition.
4403 * This is handled using a pet_skip_info_if object.
4404 * On initialization, the object checks if skip conditions need
4405 * to be computed. If so, it does so in "extract" and adds them in "add".
4407 struct pet_scop
*PetScan::extract_non_affine_if(Expr
*cond
,
4408 struct pet_scop
*scop_then
, struct pet_scop
*scop_else
,
4409 bool have_else
, int stmt_id
)
4411 struct pet_scop
*scop
;
4412 isl_multi_pw_aff
*test_index
;
4413 int save_n_stmt
= n_stmt
;
4415 test_index
= create_test_index(ctx
, n_test
++);
4417 scop
= extract_non_affine_condition(cond
, n_stmt
++,
4418 isl_multi_pw_aff_copy(test_index
));
4419 n_stmt
= save_n_stmt
;
4420 scop
= scop_add_array(scop
, test_index
, ast_context
);
4422 pet_skip_info_if
skip(ctx
, scop_then
, scop_else
, have_else
, false);
4423 skip
.extract(this, test_index
);
4425 scop
= pet_scop_prefix(scop
, 0);
4426 scop_then
= pet_scop_prefix(scop_then
, 1);
4427 scop_then
= pet_scop_filter(scop_then
,
4428 isl_multi_pw_aff_copy(test_index
), 1);
4430 scop_else
= pet_scop_prefix(scop_else
, 1);
4431 scop_else
= pet_scop_filter(scop_else
, test_index
, 0);
4432 scop_then
= pet_scop_add_par(ctx
, scop_then
, scop_else
);
4434 isl_multi_pw_aff_free(test_index
);
4436 scop
= pet_scop_add_seq(ctx
, scop
, scop_then
);
4438 scop
= skip
.add(scop
, 2);
4443 /* Construct a pet_scop for an if statement.
4445 * If the condition fits the pattern of a conditional assignment,
4446 * then it is handled by extract_conditional_assignment.
4447 * Otherwise, we do the following.
4449 * If the condition is affine, then the condition is added
4450 * to the iteration domains of the then branch, while the
4451 * opposite of the condition in added to the iteration domains
4452 * of the else branch, if any.
4453 * We allow the condition to be dynamic, i.e., to refer to
4454 * scalars or array elements that may be written to outside
4455 * of the given if statement. These nested accesses are then represented
4456 * as output dimensions in the wrapping iteration domain.
4457 * If it is also written _inside_ the then or else branch, then
4458 * we treat the condition as non-affine.
4459 * As explained in extract_non_affine_if, this will introduce
4460 * an extra statement.
4461 * For aesthetic reasons, we want this statement to have a statement
4462 * number that is lower than those of the then and else branches.
4463 * In order to evaluate if we will need such a statement, however, we
4464 * first construct scops for the then and else branches.
4465 * We therefore reserve a statement number if we might have to
4466 * introduce such an extra statement.
4468 * If the condition is not affine, then the scop is created in
4469 * extract_non_affine_if.
4471 * If there are any breaks or continues in the then and/or else
4472 * branches, then we may have to compute a new skip condition.
4473 * This is handled using a pet_skip_info_if object.
4474 * On initialization, the object checks if skip conditions need
4475 * to be computed. If so, it does so in "extract" and adds them in "add".
4477 struct pet_scop
*PetScan::extract(IfStmt
*stmt
)
4479 struct pet_scop
*scop_then
, *scop_else
= NULL
, *scop
;
4485 clear_assignments
clear(assigned_value
);
4486 clear
.TraverseStmt(stmt
->getThen());
4487 if (stmt
->getElse())
4488 clear
.TraverseStmt(stmt
->getElse());
4490 scop
= extract_conditional_assignment(stmt
);
4494 cond
= try_extract_nested_condition(stmt
->getCond());
4495 if (allow_nested
&& (!cond
|| pet_nested_any_in_pw_aff(cond
)))
4499 assigned_value_cache
cache(assigned_value
);
4500 scop_then
= extract(stmt
->getThen());
4503 if (stmt
->getElse()) {
4504 assigned_value_cache
cache(assigned_value
);
4505 scop_else
= extract(stmt
->getElse());
4506 if (options
->autodetect
) {
4507 if (scop_then
&& !scop_else
) {
4509 isl_pw_aff_free(cond
);
4512 if (!scop_then
&& scop_else
) {
4514 isl_pw_aff_free(cond
);
4521 (!is_nested_allowed(cond
, scop_then
) ||
4522 (stmt
->getElse() && !is_nested_allowed(cond
, scop_else
)))) {
4523 isl_pw_aff_free(cond
);
4526 if (allow_nested
&& !cond
)
4527 return extract_non_affine_if(stmt
->getCond(), scop_then
,
4528 scop_else
, stmt
->getElse(), stmt_id
);
4531 cond
= extract_condition(stmt
->getCond());
4533 pet_skip_info_if
skip(ctx
, scop_then
, scop_else
, stmt
->getElse(), true);
4534 skip
.extract(this, cond
);
4536 valid
= isl_pw_aff_domain(isl_pw_aff_copy(cond
));
4537 set
= isl_pw_aff_non_zero_set(cond
);
4538 scop
= pet_scop_restrict(scop_then
, isl_set_copy(set
));
4540 if (stmt
->getElse()) {
4541 set
= isl_set_subtract(isl_set_copy(valid
), set
);
4542 scop_else
= pet_scop_restrict(scop_else
, set
);
4543 scop
= pet_scop_add_par(ctx
, scop
, scop_else
);
4546 scop
= resolve_nested(scop
);
4547 scop
= pet_scop_restrict_context(scop
, valid
);
4550 scop
= pet_scop_prefix(scop
, 0);
4551 scop
= skip
.add(scop
, 1);
4556 /* Try and construct a pet_scop for a label statement.
4557 * We currently only allow labels on expression statements.
4559 struct pet_scop
*PetScan::extract(LabelStmt
*stmt
)
4564 sub
= stmt
->getSubStmt();
4565 if (!isa
<Expr
>(sub
)) {
4570 label
= isl_id_alloc(ctx
, stmt
->getName(), NULL
);
4572 return extract(sub
, extract_expr(cast
<Expr
>(sub
)), label
);
4575 /* Return a one-dimensional multi piecewise affine expression that is equal
4576 * to the constant 1 and is defined over a zero-dimensional domain.
4578 static __isl_give isl_multi_pw_aff
*one_mpa(isl_ctx
*ctx
)
4581 isl_local_space
*ls
;
4584 space
= isl_space_set_alloc(ctx
, 0, 0);
4585 ls
= isl_local_space_from_space(space
);
4586 aff
= isl_aff_zero_on_domain(ls
);
4587 aff
= isl_aff_set_constant_si(aff
, 1);
4589 return isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff
));
4592 /* Construct a pet_scop for a continue statement.
4594 * We simply create an empty scop with a universal pet_skip_now
4595 * skip condition. This skip condition will then be taken into
4596 * account by the enclosing loop construct, possibly after
4597 * being incorporated into outer skip conditions.
4599 struct pet_scop
*PetScan::extract(ContinueStmt
*stmt
)
4603 scop
= pet_scop_empty(ctx
);
4607 scop
= pet_scop_set_skip(scop
, pet_skip_now
, one_mpa(ctx
));
4612 /* Construct a pet_scop for a break statement.
4614 * We simply create an empty scop with both a universal pet_skip_now
4615 * skip condition and a universal pet_skip_later skip condition.
4616 * These skip conditions will then be taken into
4617 * account by the enclosing loop construct, possibly after
4618 * being incorporated into outer skip conditions.
4620 struct pet_scop
*PetScan::extract(BreakStmt
*stmt
)
4623 isl_multi_pw_aff
*skip
;
4625 scop
= pet_scop_empty(ctx
);
4629 skip
= one_mpa(ctx
);
4630 scop
= pet_scop_set_skip(scop
, pet_skip_now
,
4631 isl_multi_pw_aff_copy(skip
));
4632 scop
= pet_scop_set_skip(scop
, pet_skip_later
, skip
);
4637 /* Try and construct a pet_scop corresponding to "stmt".
4639 * If "stmt" is a compound statement, then "skip_declarations"
4640 * indicates whether we should skip initial declarations in the
4641 * compound statement.
4643 * If the constructed pet_scop is not a (possibly) partial representation
4644 * of "stmt", we update start and end of the pet_scop to those of "stmt".
4645 * In particular, if skip_declarations is set, then we may have skipped
4646 * declarations inside "stmt" and so the pet_scop may not represent
4647 * the entire "stmt".
4648 * Note that this function may be called with "stmt" referring to the entire
4649 * body of the function, including the outer braces. In such cases,
4650 * skip_declarations will be set and the braces will not be taken into
4651 * account in scop->start and scop->end.
4653 struct pet_scop
*PetScan::extract(Stmt
*stmt
, bool skip_declarations
)
4655 struct pet_scop
*scop
;
4657 if (isa
<Expr
>(stmt
))
4658 return extract(stmt
, extract_expr(cast
<Expr
>(stmt
)));
4660 switch (stmt
->getStmtClass()) {
4661 case Stmt::WhileStmtClass
:
4662 scop
= extract(cast
<WhileStmt
>(stmt
));
4664 case Stmt::ForStmtClass
:
4665 scop
= extract_for(cast
<ForStmt
>(stmt
));
4667 case Stmt::IfStmtClass
:
4668 scop
= extract(cast
<IfStmt
>(stmt
));
4670 case Stmt::CompoundStmtClass
:
4671 scop
= extract(cast
<CompoundStmt
>(stmt
), skip_declarations
);
4673 case Stmt::LabelStmtClass
:
4674 scop
= extract(cast
<LabelStmt
>(stmt
));
4676 case Stmt::ContinueStmtClass
:
4677 scop
= extract(cast
<ContinueStmt
>(stmt
));
4679 case Stmt::BreakStmtClass
:
4680 scop
= extract(cast
<BreakStmt
>(stmt
));
4682 case Stmt::DeclStmtClass
:
4683 scop
= extract(cast
<DeclStmt
>(stmt
));
4690 if (partial
|| skip_declarations
)
4693 scop
= update_scop_start_end(scop
, stmt
->getSourceRange(), false);
4698 /* Do we need to construct a skip condition of the given type
4699 * on a sequence of statements?
4701 * There is no need to construct a new skip condition if only
4702 * only of the two statements has a skip condition or if both
4703 * of their skip conditions are affine.
4705 * In principle we also don't need a new continuation variable if
4706 * the continuation of scop2 is affine, but then we would need
4707 * to allow more complicated forms of continuations.
4709 static bool need_skip_seq(struct pet_scop
*scop1
, struct pet_scop
*scop2
,
4712 if (!scop1
|| !pet_scop_has_skip(scop1
, type
))
4714 if (!scop2
|| !pet_scop_has_skip(scop2
, type
))
4716 if (pet_scop_has_affine_skip(scop1
, type
) &&
4717 pet_scop_has_affine_skip(scop2
, type
))
4722 /* Construct a scop for computing the skip condition of the given type and
4723 * with index expression "skip_index" for a sequence of two scops "scop1"
4726 * The computed scop contains a single statement that essentially does
4728 * skip_index = skip_cond_1 ? 1 : skip_cond_2
4730 * or, in other words, skip_cond1 || skip_cond2.
4731 * In this expression, skip_cond_2 is filtered to reflect that it is
4732 * only evaluated when skip_cond_1 is false.
4734 * The skip condition on scop1 is not removed because it still needs
4735 * to be applied to scop2 when these two scops are combined.
4737 static struct pet_scop
*extract_skip_seq(PetScan
*ps
,
4738 __isl_take isl_multi_pw_aff
*skip_index
,
4739 struct pet_scop
*scop1
, struct pet_scop
*scop2
, enum pet_skip type
)
4741 struct pet_expr
*expr1
, *expr2
, *expr
, *expr_skip
;
4742 struct pet_stmt
*stmt
;
4743 struct pet_scop
*scop
;
4744 isl_ctx
*ctx
= ps
->ctx
;
4746 if (!scop1
|| !scop2
)
4749 expr1
= pet_scop_get_skip_expr(scop1
, type
);
4750 expr2
= pet_scop_get_skip_expr(scop2
, type
);
4751 pet_scop_reset_skip(scop2
, type
);
4753 expr2
= pet_expr_filter(expr2
,
4754 isl_multi_pw_aff_copy(expr1
->acc
.index
), 0);
4756 expr
= universally_true(ctx
);
4757 expr
= pet_expr_new_ternary(ctx
, expr1
, expr
, expr2
);
4758 expr_skip
= pet_expr_from_index(isl_multi_pw_aff_copy(skip_index
));
4760 expr_skip
->acc
.write
= 1;
4761 expr_skip
->acc
.read
= 0;
4763 expr
= pet_expr_new_binary(ctx
, pet_op_assign
, expr_skip
, expr
);
4764 stmt
= pet_stmt_from_pet_expr(ctx
, -1, NULL
, ps
->n_stmt
++, expr
);
4766 scop
= pet_scop_from_pet_stmt(ctx
, stmt
);
4767 scop
= scop_add_array(scop
, skip_index
, ps
->ast_context
);
4768 isl_multi_pw_aff_free(skip_index
);
4772 isl_multi_pw_aff_free(skip_index
);
4776 /* Structure that handles the construction of skip conditions
4777 * on sequences of statements.
4779 * scop1 and scop2 represent the two statements that are combined
4781 struct pet_skip_info_seq
: public pet_skip_info
{
4782 struct pet_scop
*scop1
, *scop2
;
4784 pet_skip_info_seq(isl_ctx
*ctx
, struct pet_scop
*scop1
,
4785 struct pet_scop
*scop2
);
4786 void extract(PetScan
*scan
, enum pet_skip type
);
4787 void extract(PetScan
*scan
);
4788 struct pet_scop
*add(struct pet_scop
*scop
, enum pet_skip type
,
4790 struct pet_scop
*add(struct pet_scop
*scop
, int offset
);
4793 /* Initialize a pet_skip_info_seq structure based on
4794 * on the two statements that are going to be combined.
4796 pet_skip_info_seq::pet_skip_info_seq(isl_ctx
*ctx
, struct pet_scop
*scop1
,
4797 struct pet_scop
*scop2
) : pet_skip_info(ctx
), scop1(scop1
), scop2(scop2
)
4799 skip
[pet_skip_now
] = need_skip_seq(scop1
, scop2
, pet_skip_now
);
4800 equal
= skip
[pet_skip_now
] && skip_equals_skip_later(scop1
) &&
4801 skip_equals_skip_later(scop2
);
4802 skip
[pet_skip_later
] = skip
[pet_skip_now
] && !equal
&&
4803 need_skip_seq(scop1
, scop2
, pet_skip_later
);
4806 /* If we need to construct a skip condition of the given type,
4809 void pet_skip_info_seq::extract(PetScan
*scan
, enum pet_skip type
)
4814 index
[type
] = create_test_index(ctx
, scan
->n_test
++);
4815 scop
[type
] = extract_skip_seq(scan
, isl_multi_pw_aff_copy(index
[type
]),
4816 scop1
, scop2
, type
);
4819 /* Construct the required skip conditions.
4821 void pet_skip_info_seq::extract(PetScan
*scan
)
4823 extract(scan
, pet_skip_now
);
4824 extract(scan
, pet_skip_later
);
4826 drop_skip_later(scop1
, scop2
);
4829 /* Add the computed skip condition of the given type to "main" and
4830 * add the scop for computing the condition at the given offset (the statement
4831 * number). Within this offset, the condition is computed at position 1
4832 * to ensure that it is computed after the corresponding statement.
4834 * If equal is set, then we only computed a skip condition for pet_skip_now,
4835 * but we also need to set it as main's pet_skip_later.
4837 struct pet_scop
*pet_skip_info_seq::add(struct pet_scop
*main
,
4838 enum pet_skip type
, int offset
)
4843 scop
[type
] = pet_scop_prefix(scop
[type
], 1);
4844 scop
[type
] = pet_scop_prefix(scop
[type
], offset
);
4845 main
= pet_scop_add_par(ctx
, main
, scop
[type
]);
4849 main
= pet_scop_set_skip(main
, pet_skip_later
,
4850 isl_multi_pw_aff_copy(index
[type
]));
4852 main
= pet_scop_set_skip(main
, type
, index
[type
]);
4858 /* Add the computed skip conditions to "main" and
4859 * add the scops for computing the conditions at the given offset.
4861 struct pet_scop
*pet_skip_info_seq::add(struct pet_scop
*scop
, int offset
)
4863 scop
= add(scop
, pet_skip_now
, offset
);
4864 scop
= add(scop
, pet_skip_later
, offset
);
4869 /* Extract a clone of the kill statement in "scop".
4870 * "scop" is expected to have been created from a DeclStmt
4871 * and should have the kill as its first statement.
4873 struct pet_stmt
*PetScan::extract_kill(struct pet_scop
*scop
)
4875 struct pet_expr
*kill
;
4876 struct pet_stmt
*stmt
;
4877 isl_multi_pw_aff
*index
;
4882 if (scop
->n_stmt
< 1)
4883 isl_die(ctx
, isl_error_internal
,
4884 "expecting at least one statement", return NULL
);
4885 stmt
= scop
->stmts
[0];
4886 if (!pet_stmt_is_kill(stmt
))
4887 isl_die(ctx
, isl_error_internal
,
4888 "expecting kill statement", return NULL
);
4890 index
= isl_multi_pw_aff_copy(stmt
->body
->args
[0]->acc
.index
);
4891 access
= isl_map_copy(stmt
->body
->args
[0]->acc
.access
);
4892 index
= isl_multi_pw_aff_reset_tuple_id(index
, isl_dim_in
);
4893 access
= isl_map_reset_tuple_id(access
, isl_dim_in
);
4894 kill
= pet_expr_kill_from_access_and_index(access
, index
);
4895 return pet_stmt_from_pet_expr(ctx
, stmt
->line
, NULL
, n_stmt
++, kill
);
4898 /* Mark all arrays in "scop" as being exposed.
4900 static struct pet_scop
*mark_exposed(struct pet_scop
*scop
)
4904 for (int i
= 0; i
< scop
->n_array
; ++i
)
4905 scop
->arrays
[i
]->exposed
= 1;
4909 /* Try and construct a pet_scop corresponding to (part of)
4910 * a sequence of statements.
4912 * "block" is set if the sequence respresents the children of
4913 * a compound statement.
4914 * "skip_declarations" is set if we should skip initial declarations
4915 * in the sequence of statements.
4917 * If there are any breaks or continues in the individual statements,
4918 * then we may have to compute a new skip condition.
4919 * This is handled using a pet_skip_info_seq object.
4920 * On initialization, the object checks if skip conditions need
4921 * to be computed. If so, it does so in "extract" and adds them in "add".
4923 * If "block" is set, then we need to insert kill statements at
4924 * the end of the block for any array that has been declared by
4925 * one of the statements in the sequence. Each of these declarations
4926 * results in the construction of a kill statement at the place
4927 * of the declaration, so we simply collect duplicates of
4928 * those kill statements and append these duplicates to the constructed scop.
4930 * If "block" is not set, then any array declared by one of the statements
4931 * in the sequence is marked as being exposed.
4933 * If autodetect is set, then we allow the extraction of only a subrange
4934 * of the sequence of statements. However, if there is at least one statement
4935 * for which we could not construct a scop and the final range contains
4936 * either no statements or at least one kill, then we discard the entire
4939 struct pet_scop
*PetScan::extract(StmtRange stmt_range
, bool block
,
4940 bool skip_declarations
)
4945 bool partial_range
= false;
4946 set
<struct pet_stmt
*> kills
;
4947 set
<struct pet_stmt
*>::iterator it
;
4949 scop
= pet_scop_empty(ctx
);
4950 for (i
= stmt_range
.first
, j
= 0; i
!= stmt_range
.second
; ++i
, ++j
) {
4952 struct pet_scop
*scop_i
;
4954 if (scop
->n_stmt
== 0 && skip_declarations
&&
4955 child
->getStmtClass() == Stmt::DeclStmtClass
)
4958 scop_i
= extract(child
);
4959 if (scop
->n_stmt
!= 0 && partial
) {
4960 pet_scop_free(scop_i
);
4963 pet_skip_info_seq
skip(ctx
, scop
, scop_i
);
4966 scop_i
= pet_scop_prefix(scop_i
, 0);
4967 if (scop_i
&& child
->getStmtClass() == Stmt::DeclStmtClass
) {
4969 kills
.insert(extract_kill(scop_i
));
4971 scop_i
= mark_exposed(scop_i
);
4973 scop_i
= pet_scop_prefix(scop_i
, j
);
4974 if (options
->autodetect
) {
4976 scop
= pet_scop_add_seq(ctx
, scop
, scop_i
);
4978 partial_range
= true;
4979 if (scop
->n_stmt
!= 0 && !scop_i
)
4982 scop
= pet_scop_add_seq(ctx
, scop
, scop_i
);
4985 scop
= skip
.add(scop
, j
);
4987 if (partial
|| !scop
)
4991 for (it
= kills
.begin(); it
!= kills
.end(); ++it
) {
4993 scop_j
= pet_scop_from_pet_stmt(ctx
, *it
);
4994 scop_j
= pet_scop_prefix(scop_j
, j
);
4995 scop
= pet_scop_add_seq(ctx
, scop
, scop_j
);
4998 if (scop
&& partial_range
) {
4999 if (scop
->n_stmt
== 0 || kills
.size() != 0) {
5000 pet_scop_free(scop
);
5009 /* Check if the scop marked by the user is exactly this Stmt
5010 * or part of this Stmt.
5011 * If so, return a pet_scop corresponding to the marked region.
5012 * Otherwise, return NULL.
5014 struct pet_scop
*PetScan::scan(Stmt
*stmt
)
5016 SourceManager
&SM
= PP
.getSourceManager();
5017 unsigned start_off
, end_off
;
5019 start_off
= getExpansionOffset(SM
, stmt
->getLocStart());
5020 end_off
= getExpansionOffset(SM
, stmt
->getLocEnd());
5022 if (start_off
> loc
.end
)
5024 if (end_off
< loc
.start
)
5026 if (start_off
>= loc
.start
&& end_off
<= loc
.end
) {
5027 return extract(stmt
);
5031 for (start
= stmt
->child_begin(); start
!= stmt
->child_end(); ++start
) {
5032 Stmt
*child
= *start
;
5035 start_off
= getExpansionOffset(SM
, child
->getLocStart());
5036 end_off
= getExpansionOffset(SM
, child
->getLocEnd());
5037 if (start_off
< loc
.start
&& end_off
>= loc
.end
)
5039 if (start_off
>= loc
.start
)
5044 for (end
= start
; end
!= stmt
->child_end(); ++end
) {
5046 start_off
= SM
.getFileOffset(child
->getLocStart());
5047 if (start_off
>= loc
.end
)
5051 return extract(StmtRange(start
, end
), false, false);
5054 /* Set the size of index "pos" of "array" to "size".
5055 * In particular, add a constraint of the form
5059 * to array->extent and a constraint of the form
5063 * to array->context.
5065 static struct pet_array
*update_size(struct pet_array
*array
, int pos
,
5066 __isl_take isl_pw_aff
*size
)
5076 valid
= isl_pw_aff_nonneg_set(isl_pw_aff_copy(size
));
5077 array
->context
= isl_set_intersect(array
->context
, valid
);
5079 dim
= isl_set_get_space(array
->extent
);
5080 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(dim
));
5081 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_in
, pos
, 1);
5082 univ
= isl_set_universe(isl_aff_get_domain_space(aff
));
5083 index
= isl_pw_aff_alloc(univ
, aff
);
5085 size
= isl_pw_aff_add_dims(size
, isl_dim_in
,
5086 isl_set_dim(array
->extent
, isl_dim_set
));
5087 id
= isl_set_get_tuple_id(array
->extent
);
5088 size
= isl_pw_aff_set_tuple_id(size
, isl_dim_in
, id
);
5089 bound
= isl_pw_aff_lt_set(index
, size
);
5091 array
->extent
= isl_set_intersect(array
->extent
, bound
);
5093 if (!array
->context
|| !array
->extent
)
5098 pet_array_free(array
);
5102 /* Figure out the size of the array at position "pos" and all
5103 * subsequent positions from "type" and update "array" accordingly.
5105 struct pet_array
*PetScan::set_upper_bounds(struct pet_array
*array
,
5106 const Type
*type
, int pos
)
5108 const ArrayType
*atype
;
5114 if (type
->isPointerType()) {
5115 type
= type
->getPointeeType().getTypePtr();
5116 return set_upper_bounds(array
, type
, pos
+ 1);
5118 if (!type
->isArrayType())
5121 type
= type
->getCanonicalTypeInternal().getTypePtr();
5122 atype
= cast
<ArrayType
>(type
);
5124 if (type
->isConstantArrayType()) {
5125 const ConstantArrayType
*ca
= cast
<ConstantArrayType
>(atype
);
5126 size
= extract_affine(ca
->getSize());
5127 array
= update_size(array
, pos
, size
);
5128 } else if (type
->isVariableArrayType()) {
5129 const VariableArrayType
*vla
= cast
<VariableArrayType
>(atype
);
5130 size
= extract_affine(vla
->getSizeExpr());
5131 array
= update_size(array
, pos
, size
);
5134 type
= atype
->getElementType().getTypePtr();
5136 return set_upper_bounds(array
, type
, pos
+ 1);
5139 /* Is "T" the type of a variable length array with static size?
5141 static bool is_vla_with_static_size(QualType T
)
5143 const VariableArrayType
*vlatype
;
5145 if (!T
->isVariableArrayType())
5147 vlatype
= cast
<VariableArrayType
>(T
);
5148 return vlatype
->getSizeModifier() == VariableArrayType::Static
;
5151 /* Return the type of "decl" as an array.
5153 * In particular, if "decl" is a parameter declaration that
5154 * is a variable length array with a static size, then
5155 * return the original type (i.e., the variable length array).
5156 * Otherwise, return the type of decl.
5158 static QualType
get_array_type(ValueDecl
*decl
)
5163 parm
= dyn_cast
<ParmVarDecl
>(decl
);
5165 return decl
->getType();
5167 T
= parm
->getOriginalType();
5168 if (!is_vla_with_static_size(T
))
5169 return decl
->getType();
5173 /* Does "decl" have definition that we can keep track of in a pet_type?
5175 static bool has_printable_definition(RecordDecl
*decl
)
5177 if (!decl
->getDeclName())
5179 return decl
->getLexicalDeclContext() == decl
->getDeclContext();
5182 /* Construct and return a pet_array corresponding to the variable "decl".
5183 * In particular, initialize array->extent to
5185 * { name[i_1,...,i_d] : i_1,...,i_d >= 0 }
5187 * and then call set_upper_bounds to set the upper bounds on the indices
5188 * based on the type of the variable.
5190 * If the base type is that of a record with a top-level definition and
5191 * if "types" is not null, then the RecordDecl corresponding to the type
5192 * is added to "types".
5194 * If the base type is that of a record with no top-level definition,
5195 * then we replace it by "<subfield>".
5197 struct pet_array
*PetScan::extract_array(isl_ctx
*ctx
, ValueDecl
*decl
,
5198 lex_recorddecl_set
*types
)
5200 struct pet_array
*array
;
5201 QualType qt
= get_array_type(decl
);
5202 const Type
*type
= qt
.getTypePtr();
5203 int depth
= array_depth(type
);
5204 QualType base
= pet_clang_base_type(qt
);
5209 array
= isl_calloc_type(ctx
, struct pet_array
);
5213 id
= isl_id_alloc(ctx
, decl
->getName().str().c_str(), decl
);
5214 dim
= isl_space_set_alloc(ctx
, 0, depth
);
5215 dim
= isl_space_set_tuple_id(dim
, isl_dim_set
, id
);
5217 array
->extent
= isl_set_nat_universe(dim
);
5219 dim
= isl_space_params_alloc(ctx
, 0);
5220 array
->context
= isl_set_universe(dim
);
5222 array
= set_upper_bounds(array
, type
, 0);
5226 name
= base
.getAsString();
5228 if (types
&& base
->isRecordType()) {
5229 RecordDecl
*decl
= pet_clang_record_decl(base
);
5230 if (has_printable_definition(decl
))
5231 types
->insert(decl
);
5233 name
= "<subfield>";
5236 array
->element_type
= strdup(name
.c_str());
5237 array
->element_is_record
= base
->isRecordType();
5238 array
->element_size
= decl
->getASTContext().getTypeInfo(base
).first
/ 8;
5243 /* Construct and return a pet_array corresponding to the sequence
5244 * of declarations "decls".
5245 * If the sequence contains a single declaration, then it corresponds
5246 * to a simple array access. Otherwise, it corresponds to a member access,
5247 * with the declaration for the substructure following that of the containing
5248 * structure in the sequence of declarations.
5249 * We start with the outermost substructure and then combine it with
5250 * information from the inner structures.
5252 * Additionally, keep track of all required types in "types".
5254 struct pet_array
*PetScan::extract_array(isl_ctx
*ctx
,
5255 vector
<ValueDecl
*> decls
, lex_recorddecl_set
*types
)
5257 struct pet_array
*array
;
5258 vector
<ValueDecl
*>::iterator it
;
5262 array
= extract_array(ctx
, *it
, types
);
5264 for (++it
; it
!= decls
.end(); ++it
) {
5265 struct pet_array
*parent
;
5266 const char *base_name
, *field_name
;
5270 array
= extract_array(ctx
, *it
, types
);
5272 return pet_array_free(parent
);
5274 base_name
= isl_set_get_tuple_name(parent
->extent
);
5275 field_name
= isl_set_get_tuple_name(array
->extent
);
5276 product_name
= member_access_name(ctx
, base_name
, field_name
);
5278 array
->extent
= isl_set_product(isl_set_copy(parent
->extent
),
5281 array
->extent
= isl_set_set_tuple_name(array
->extent
,
5283 array
->context
= isl_set_intersect(array
->context
,
5284 isl_set_copy(parent
->context
));
5286 pet_array_free(parent
);
5289 if (!array
->extent
|| !array
->context
|| !product_name
)
5290 return pet_array_free(array
);
5296 /* Add a pet_type corresponding to "decl" to "scop, provided
5297 * it is a member of "types" and it has not been added before
5298 * (i.e., it is not a member of "types_done".
5300 * Since we want the user to be able to print the types
5301 * in the order in which they appear in the scop, we need to
5302 * make sure that types of fields in a structure appear before
5303 * that structure. We therefore call ourselves recursively
5304 * on the types of all record subfields.
5306 static struct pet_scop
*add_type(isl_ctx
*ctx
, struct pet_scop
*scop
,
5307 RecordDecl
*decl
, Preprocessor
&PP
, lex_recorddecl_set
&types
,
5308 lex_recorddecl_set
&types_done
)
5311 llvm::raw_string_ostream
S(s
);
5312 RecordDecl::field_iterator it
;
5314 if (types
.find(decl
) == types
.end())
5316 if (types_done
.find(decl
) != types_done
.end())
5319 for (it
= decl
->field_begin(); it
!= decl
->field_end(); ++it
) {
5321 QualType type
= it
->getType();
5323 if (!type
->isRecordType())
5325 record
= pet_clang_record_decl(type
);
5326 scop
= add_type(ctx
, scop
, record
, PP
, types
, types_done
);
5329 if (strlen(decl
->getName().str().c_str()) == 0)
5332 decl
->print(S
, PrintingPolicy(PP
.getLangOpts()));
5335 scop
->types
[scop
->n_type
] = pet_type_alloc(ctx
,
5336 decl
->getName().str().c_str(), s
.c_str());
5337 if (!scop
->types
[scop
->n_type
])
5338 return pet_scop_free(scop
);
5340 types_done
.insert(decl
);
5347 /* Construct a list of pet_arrays, one for each array (or scalar)
5348 * accessed inside "scop", add this list to "scop" and return the result.
5350 * The context of "scop" is updated with the intersection of
5351 * the contexts of all arrays, i.e., constraints on the parameters
5352 * that ensure that the arrays have a valid (non-negative) size.
5354 * If the any of the extracted arrays refers to a member access,
5355 * then also add the required types to "scop".
5357 struct pet_scop
*PetScan::scan_arrays(struct pet_scop
*scop
)
5360 set
<vector
<ValueDecl
*> > arrays
;
5361 set
<vector
<ValueDecl
*> >::iterator it
;
5362 lex_recorddecl_set types
;
5363 lex_recorddecl_set types_done
;
5364 lex_recorddecl_set::iterator types_it
;
5366 struct pet_array
**scop_arrays
;
5371 pet_scop_collect_arrays(scop
, arrays
);
5372 if (arrays
.size() == 0)
5375 n_array
= scop
->n_array
;
5377 scop_arrays
= isl_realloc_array(ctx
, scop
->arrays
, struct pet_array
*,
5378 n_array
+ arrays
.size());
5381 scop
->arrays
= scop_arrays
;
5383 for (it
= arrays
.begin(), i
= 0; it
!= arrays
.end(); ++it
, ++i
) {
5384 struct pet_array
*array
;
5385 array
= extract_array(ctx
, *it
, &types
);
5386 scop
->arrays
[n_array
+ i
] = array
;
5387 if (!scop
->arrays
[n_array
+ i
])
5390 scop
->context
= isl_set_intersect(scop
->context
,
5391 isl_set_copy(array
->context
));
5396 if (types
.size() == 0)
5399 scop
->types
= isl_alloc_array(ctx
, struct pet_type
*, types
.size());
5403 for (types_it
= types
.begin(); types_it
!= types
.end(); ++types_it
)
5404 scop
= add_type(ctx
, scop
, *types_it
, PP
, types
, types_done
);
5408 pet_scop_free(scop
);
5412 /* Bound all parameters in scop->context to the possible values
5413 * of the corresponding C variable.
5415 static struct pet_scop
*add_parameter_bounds(struct pet_scop
*scop
)
5422 n
= isl_set_dim(scop
->context
, isl_dim_param
);
5423 for (int i
= 0; i
< n
; ++i
) {
5427 id
= isl_set_get_dim_id(scop
->context
, isl_dim_param
, i
);
5428 if (pet_nested_in_id(id
)) {
5430 isl_die(isl_set_get_ctx(scop
->context
),
5432 "unresolved nested parameter", goto error
);
5434 decl
= (ValueDecl
*) isl_id_get_user(id
);
5437 scop
->context
= set_parameter_bounds(scop
->context
, i
, decl
);
5445 pet_scop_free(scop
);
5449 /* Construct a pet_scop from the given function.
5451 * If the scop was delimited by scop and endscop pragmas, then we override
5452 * the file offsets by those derived from the pragmas.
5454 struct pet_scop
*PetScan::scan(FunctionDecl
*fd
)
5459 stmt
= fd
->getBody();
5461 if (options
->autodetect
)
5462 scop
= extract(stmt
, true);
5465 scop
= pet_scop_update_start_end(scop
, loc
.start
, loc
.end
);
5467 scop
= pet_scop_detect_parameter_accesses(scop
);
5468 scop
= scan_arrays(scop
);
5469 scop
= add_parameter_bounds(scop
);
5470 scop
= pet_scop_gist(scop
, value_bounds
);