2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012-2014 Ecole Normale Superieure. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials provided
15 * with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as
31 * representing official policies, either expressed or implied, of
39 #include <llvm/Support/raw_ostream.h>
40 #include <clang/AST/ASTContext.h>
41 #include <clang/AST/ASTDiagnostic.h>
42 #include <clang/AST/Expr.h>
43 #include <clang/AST/RecursiveASTVisitor.h>
46 #include <isl/space.h>
57 #include "scop_plus.h"
62 using namespace clang
;
64 static enum pet_op_type
UnaryOperatorKind2pet_op_type(UnaryOperatorKind kind
)
74 return pet_op_post_inc
;
76 return pet_op_post_dec
;
78 return pet_op_pre_inc
;
80 return pet_op_pre_dec
;
86 static enum pet_op_type
BinaryOperatorKind2pet_op_type(BinaryOperatorKind kind
)
90 return pet_op_add_assign
;
92 return pet_op_sub_assign
;
94 return pet_op_mul_assign
;
96 return pet_op_div_assign
;
140 #if defined(DECLREFEXPR_CREATE_REQUIRES_BOOL)
141 static DeclRefExpr
*create_DeclRefExpr(VarDecl
*var
)
143 return DeclRefExpr::Create(var
->getASTContext(), var
->getQualifierLoc(),
144 SourceLocation(), var
, false, var
->getInnerLocStart(),
145 var
->getType(), VK_LValue
);
147 #elif defined(DECLREFEXPR_CREATE_REQUIRES_SOURCELOCATION)
148 static DeclRefExpr
*create_DeclRefExpr(VarDecl
*var
)
150 return DeclRefExpr::Create(var
->getASTContext(), var
->getQualifierLoc(),
151 SourceLocation(), var
, var
->getInnerLocStart(), var
->getType(),
155 static DeclRefExpr
*create_DeclRefExpr(VarDecl
*var
)
157 return DeclRefExpr::Create(var
->getASTContext(), var
->getQualifierLoc(),
158 var
, var
->getInnerLocStart(), var
->getType(), VK_LValue
);
162 /* Check if the element type corresponding to the given array type
163 * has a const qualifier.
165 static bool const_base(QualType qt
)
167 const Type
*type
= qt
.getTypePtr();
169 if (type
->isPointerType())
170 return const_base(type
->getPointeeType());
171 if (type
->isArrayType()) {
172 const ArrayType
*atype
;
173 type
= type
->getCanonicalTypeInternal().getTypePtr();
174 atype
= cast
<ArrayType
>(type
);
175 return const_base(atype
->getElementType());
178 return qt
.isConstQualified();
181 /* Mark "decl" as having an unknown value in "assigned_value".
183 * If no (known or unknown) value was assigned to "decl" before,
184 * then it may have been treated as a parameter before and may
185 * therefore appear in a value assigned to another variable.
186 * If so, this assignment needs to be turned into an unknown value too.
188 static void clear_assignment(map
<ValueDecl
*, isl_pw_aff
*> &assigned_value
,
191 map
<ValueDecl
*, isl_pw_aff
*>::iterator it
;
193 it
= assigned_value
.find(decl
);
195 assigned_value
[decl
] = NULL
;
197 if (it
!= assigned_value
.end())
200 for (it
= assigned_value
.begin(); it
!= assigned_value
.end(); ++it
) {
201 isl_pw_aff
*pa
= it
->second
;
202 int nparam
= isl_pw_aff_dim(pa
, isl_dim_param
);
204 for (int i
= 0; i
< nparam
; ++i
) {
207 if (!isl_pw_aff_has_dim_id(pa
, isl_dim_param
, i
))
209 id
= isl_pw_aff_get_dim_id(pa
, isl_dim_param
, i
);
210 if (isl_id_get_user(id
) == decl
)
217 /* Look for any assignments to scalar variables in part of the parse
218 * tree and set assigned_value to NULL for each of them.
219 * Also reset assigned_value if the address of a scalar variable
220 * is being taken. As an exception, if the address is passed to a function
221 * that is declared to receive a const pointer, then assigned_value is
224 * This ensures that we won't use any previously stored value
225 * in the current subtree and its parents.
227 struct clear_assignments
: RecursiveASTVisitor
<clear_assignments
> {
228 map
<ValueDecl
*, isl_pw_aff
*> &assigned_value
;
229 set
<UnaryOperator
*> skip
;
231 clear_assignments(map
<ValueDecl
*, isl_pw_aff
*> &assigned_value
) :
232 assigned_value(assigned_value
) {}
234 /* Check for "address of" operators whose value is passed
235 * to a const pointer argument and add them to "skip", so that
236 * we can skip them in VisitUnaryOperator.
238 bool VisitCallExpr(CallExpr
*expr
) {
240 fd
= expr
->getDirectCallee();
243 for (int i
= 0; i
< expr
->getNumArgs(); ++i
) {
244 Expr
*arg
= expr
->getArg(i
);
246 if (arg
->getStmtClass() == Stmt::ImplicitCastExprClass
) {
247 ImplicitCastExpr
*ice
;
248 ice
= cast
<ImplicitCastExpr
>(arg
);
249 arg
= ice
->getSubExpr();
251 if (arg
->getStmtClass() != Stmt::UnaryOperatorClass
)
253 op
= cast
<UnaryOperator
>(arg
);
254 if (op
->getOpcode() != UO_AddrOf
)
256 if (const_base(fd
->getParamDecl(i
)->getType()))
262 bool VisitUnaryOperator(UnaryOperator
*expr
) {
267 switch (expr
->getOpcode()) {
277 if (skip
.find(expr
) != skip
.end())
280 arg
= expr
->getSubExpr();
281 if (arg
->getStmtClass() != Stmt::DeclRefExprClass
)
283 ref
= cast
<DeclRefExpr
>(arg
);
284 decl
= ref
->getDecl();
285 clear_assignment(assigned_value
, decl
);
289 bool VisitBinaryOperator(BinaryOperator
*expr
) {
294 if (!expr
->isAssignmentOp())
296 lhs
= expr
->getLHS();
297 if (lhs
->getStmtClass() != Stmt::DeclRefExprClass
)
299 ref
= cast
<DeclRefExpr
>(lhs
);
300 decl
= ref
->getDecl();
301 clear_assignment(assigned_value
, decl
);
306 /* Keep a copy of the currently assigned values.
308 * Any variable that is assigned a value inside the current scope
309 * is removed again when we leave the scope (either because it wasn't
310 * stored in the cache or because it has a different value in the cache).
312 struct assigned_value_cache
{
313 map
<ValueDecl
*, isl_pw_aff
*> &assigned_value
;
314 map
<ValueDecl
*, isl_pw_aff
*> cache
;
316 assigned_value_cache(map
<ValueDecl
*, isl_pw_aff
*> &assigned_value
) :
317 assigned_value(assigned_value
), cache(assigned_value
) {}
318 ~assigned_value_cache() {
319 map
<ValueDecl
*, isl_pw_aff
*>::iterator it
= cache
.begin();
320 for (it
= assigned_value
.begin(); it
!= assigned_value
.end();
323 (cache
.find(it
->first
) != cache
.end() &&
324 cache
[it
->first
] != it
->second
))
325 cache
[it
->first
] = NULL
;
327 assigned_value
= cache
;
331 /* Insert an expression into the collection of expressions,
332 * provided it is not already in there.
333 * The isl_pw_affs are freed in the destructor.
335 void PetScan::insert_expression(__isl_take isl_pw_aff
*expr
)
337 std::set
<isl_pw_aff
*>::iterator it
;
339 if (expressions
.find(expr
) == expressions
.end())
340 expressions
.insert(expr
);
342 isl_pw_aff_free(expr
);
347 std::set
<isl_pw_aff
*>::iterator it
;
349 for (it
= expressions
.begin(); it
!= expressions
.end(); ++it
)
350 isl_pw_aff_free(*it
);
352 isl_union_map_free(value_bounds
);
355 /* Report a diagnostic, unless autodetect is set.
357 void PetScan::report(Stmt
*stmt
, unsigned id
)
359 if (options
->autodetect
)
362 SourceLocation loc
= stmt
->getLocStart();
363 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
364 DiagnosticBuilder B
= diag
.Report(loc
, id
) << stmt
->getSourceRange();
367 /* Called if we found something we (currently) cannot handle.
368 * We'll provide more informative warnings later.
370 * We only actually complain if autodetect is false.
372 void PetScan::unsupported(Stmt
*stmt
)
374 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
375 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
380 /* Report a missing prototype, unless autodetect is set.
382 void PetScan::report_prototype_required(Stmt
*stmt
)
384 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
385 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
386 "prototype required");
390 /* Report a missing increment, unless autodetect is set.
392 void PetScan::report_missing_increment(Stmt
*stmt
)
394 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
395 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
396 "missing increment");
400 /* Extract an integer from "expr".
402 __isl_give isl_val
*PetScan::extract_int(isl_ctx
*ctx
, IntegerLiteral
*expr
)
404 const Type
*type
= expr
->getType().getTypePtr();
405 int is_signed
= type
->hasSignedIntegerRepresentation();
406 llvm::APInt val
= expr
->getValue();
407 int is_negative
= is_signed
&& val
.isNegative();
413 v
= extract_unsigned(ctx
, val
);
420 /* Extract an integer from "val", which is assumed to be non-negative.
422 __isl_give isl_val
*PetScan::extract_unsigned(isl_ctx
*ctx
,
423 const llvm::APInt
&val
)
426 const uint64_t *data
;
428 data
= val
.getRawData();
429 n
= val
.getNumWords();
430 return isl_val_int_from_chunks(ctx
, n
, sizeof(uint64_t), data
);
433 /* Extract an integer from "expr".
434 * Return NULL if "expr" does not (obviously) represent an integer.
436 __isl_give isl_val
*PetScan::extract_int(clang::ParenExpr
*expr
)
438 return extract_int(expr
->getSubExpr());
441 /* Extract an integer from "expr".
442 * Return NULL if "expr" does not (obviously) represent an integer.
444 __isl_give isl_val
*PetScan::extract_int(clang::Expr
*expr
)
446 if (expr
->getStmtClass() == Stmt::IntegerLiteralClass
)
447 return extract_int(ctx
, cast
<IntegerLiteral
>(expr
));
448 if (expr
->getStmtClass() == Stmt::ParenExprClass
)
449 return extract_int(cast
<ParenExpr
>(expr
));
455 /* Extract an affine expression from the IntegerLiteral "expr".
457 __isl_give isl_pw_aff
*PetScan::extract_affine(IntegerLiteral
*expr
)
459 isl_space
*dim
= isl_space_params_alloc(ctx
, 0);
460 isl_local_space
*ls
= isl_local_space_from_space(isl_space_copy(dim
));
461 isl_aff
*aff
= isl_aff_zero_on_domain(ls
);
462 isl_set
*dom
= isl_set_universe(dim
);
465 v
= extract_int(expr
);
466 aff
= isl_aff_add_constant_val(aff
, v
);
468 return isl_pw_aff_alloc(dom
, aff
);
471 /* Extract an affine expression from the APInt "val", which is assumed
472 * to be non-negative.
474 __isl_give isl_pw_aff
*PetScan::extract_affine(const llvm::APInt
&val
)
476 isl_space
*dim
= isl_space_params_alloc(ctx
, 0);
477 isl_local_space
*ls
= isl_local_space_from_space(isl_space_copy(dim
));
478 isl_aff
*aff
= isl_aff_zero_on_domain(ls
);
479 isl_set
*dom
= isl_set_universe(dim
);
482 v
= extract_unsigned(ctx
, val
);
483 aff
= isl_aff_add_constant_val(aff
, v
);
485 return isl_pw_aff_alloc(dom
, aff
);
488 __isl_give isl_pw_aff
*PetScan::extract_affine(ImplicitCastExpr
*expr
)
490 return extract_affine(expr
->getSubExpr());
493 /* Return the number of bits needed to represent the type "qt",
494 * if it is an integer type. Otherwise return 0.
495 * If qt is signed then return the opposite of the number of bits.
497 static int get_type_size(QualType qt
, ASTContext
&ast_context
)
501 if (!qt
->isIntegerType())
504 size
= ast_context
.getIntWidth(qt
);
505 if (!qt
->isUnsignedIntegerType())
511 /* Return the number of bits needed to represent the type of "decl",
512 * if it is an integer type. Otherwise return 0.
513 * If qt is signed then return the opposite of the number of bits.
515 static int get_type_size(ValueDecl
*decl
)
517 return get_type_size(decl
->getType(), decl
->getASTContext());
520 /* Bound parameter "pos" of "set" to the possible values of "decl".
522 static __isl_give isl_set
*set_parameter_bounds(__isl_take isl_set
*set
,
523 unsigned pos
, ValueDecl
*decl
)
529 ctx
= isl_set_get_ctx(set
);
530 type_size
= get_type_size(decl
);
532 isl_die(ctx
, isl_error_invalid
, "not an integer type",
533 return isl_set_free(set
));
535 set
= isl_set_lower_bound_si(set
, isl_dim_param
, pos
, 0);
536 bound
= isl_val_int_from_ui(ctx
, type_size
);
537 bound
= isl_val_2exp(bound
);
538 bound
= isl_val_sub_ui(bound
, 1);
539 set
= isl_set_upper_bound_val(set
, isl_dim_param
, pos
, bound
);
541 bound
= isl_val_int_from_ui(ctx
, -type_size
- 1);
542 bound
= isl_val_2exp(bound
);
543 bound
= isl_val_sub_ui(bound
, 1);
544 set
= isl_set_upper_bound_val(set
, isl_dim_param
, pos
,
545 isl_val_copy(bound
));
546 bound
= isl_val_neg(bound
);
547 bound
= isl_val_sub_ui(bound
, 1);
548 set
= isl_set_lower_bound_val(set
, isl_dim_param
, pos
, bound
);
554 /* Extract an affine expression from the DeclRefExpr "expr".
556 * If the variable has been assigned a value, then we check whether
557 * we know what (affine) value was assigned.
558 * If so, we return this value. Otherwise we convert "expr"
559 * to an extra parameter (provided nesting_enabled is set).
561 * Otherwise, we simply return an expression that is equal
562 * to a parameter corresponding to the referenced variable.
564 __isl_give isl_pw_aff
*PetScan::extract_affine(DeclRefExpr
*expr
)
566 ValueDecl
*decl
= expr
->getDecl();
567 const Type
*type
= decl
->getType().getTypePtr();
573 if (!type
->isIntegerType()) {
578 if (assigned_value
.find(decl
) != assigned_value
.end()) {
579 if (assigned_value
[decl
])
580 return isl_pw_aff_copy(assigned_value
[decl
]);
582 return nested_access(expr
);
585 id
= isl_id_alloc(ctx
, decl
->getName().str().c_str(), decl
);
586 dim
= isl_space_params_alloc(ctx
, 1);
588 dim
= isl_space_set_dim_id(dim
, isl_dim_param
, 0, id
);
590 dom
= isl_set_universe(isl_space_copy(dim
));
591 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(dim
));
592 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_param
, 0, 1);
594 return isl_pw_aff_alloc(dom
, aff
);
597 /* Extract an affine expression from an integer division operation.
598 * In particular, if "expr" is lhs/rhs, then return
600 * lhs >= 0 ? floor(lhs/rhs) : ceil(lhs/rhs)
602 * The second argument (rhs) is required to be a (positive) integer constant.
604 __isl_give isl_pw_aff
*PetScan::extract_affine_div(BinaryOperator
*expr
)
607 isl_pw_aff
*rhs
, *lhs
;
609 rhs
= extract_affine(expr
->getRHS());
610 is_cst
= isl_pw_aff_is_cst(rhs
);
611 if (is_cst
< 0 || !is_cst
) {
612 isl_pw_aff_free(rhs
);
618 lhs
= extract_affine(expr
->getLHS());
620 return isl_pw_aff_tdiv_q(lhs
, rhs
);
623 /* Extract an affine expression from a modulo operation.
624 * In particular, if "expr" is lhs/rhs, then return
626 * lhs - rhs * (lhs >= 0 ? floor(lhs/rhs) : ceil(lhs/rhs))
628 * The second argument (rhs) is required to be a (positive) integer constant.
630 __isl_give isl_pw_aff
*PetScan::extract_affine_mod(BinaryOperator
*expr
)
633 isl_pw_aff
*rhs
, *lhs
;
635 rhs
= extract_affine(expr
->getRHS());
636 is_cst
= isl_pw_aff_is_cst(rhs
);
637 if (is_cst
< 0 || !is_cst
) {
638 isl_pw_aff_free(rhs
);
644 lhs
= extract_affine(expr
->getLHS());
646 return isl_pw_aff_tdiv_r(lhs
, rhs
);
649 /* Extract an affine expression from a multiplication operation.
650 * This is only allowed if at least one of the two arguments
651 * is a (piecewise) constant.
653 __isl_give isl_pw_aff
*PetScan::extract_affine_mul(BinaryOperator
*expr
)
658 lhs
= extract_affine(expr
->getLHS());
659 rhs
= extract_affine(expr
->getRHS());
661 if (!isl_pw_aff_is_cst(lhs
) && !isl_pw_aff_is_cst(rhs
)) {
662 isl_pw_aff_free(lhs
);
663 isl_pw_aff_free(rhs
);
668 return isl_pw_aff_mul(lhs
, rhs
);
671 /* Extract an affine expression from an addition or subtraction operation.
673 __isl_give isl_pw_aff
*PetScan::extract_affine_add(BinaryOperator
*expr
)
678 lhs
= extract_affine(expr
->getLHS());
679 rhs
= extract_affine(expr
->getRHS());
681 switch (expr
->getOpcode()) {
683 return isl_pw_aff_add(lhs
, rhs
);
685 return isl_pw_aff_sub(lhs
, rhs
);
687 isl_pw_aff_free(lhs
);
688 isl_pw_aff_free(rhs
);
698 static __isl_give isl_pw_aff
*wrap(__isl_take isl_pw_aff
*pwaff
,
704 ctx
= isl_pw_aff_get_ctx(pwaff
);
705 mod
= isl_val_int_from_ui(ctx
, width
);
706 mod
= isl_val_2exp(mod
);
708 pwaff
= isl_pw_aff_mod_val(pwaff
, mod
);
713 /* Limit the domain of "pwaff" to those elements where the function
716 * 2^{width-1} <= pwaff < 2^{width-1}
718 static __isl_give isl_pw_aff
*avoid_overflow(__isl_take isl_pw_aff
*pwaff
,
723 isl_space
*space
= isl_pw_aff_get_domain_space(pwaff
);
724 isl_local_space
*ls
= isl_local_space_from_space(space
);
729 ctx
= isl_pw_aff_get_ctx(pwaff
);
730 v
= isl_val_int_from_ui(ctx
, width
- 1);
733 bound
= isl_aff_zero_on_domain(ls
);
734 bound
= isl_aff_add_constant_val(bound
, v
);
735 b
= isl_pw_aff_from_aff(bound
);
737 dom
= isl_pw_aff_lt_set(isl_pw_aff_copy(pwaff
), isl_pw_aff_copy(b
));
738 pwaff
= isl_pw_aff_intersect_domain(pwaff
, dom
);
740 b
= isl_pw_aff_neg(b
);
741 dom
= isl_pw_aff_ge_set(isl_pw_aff_copy(pwaff
), b
);
742 pwaff
= isl_pw_aff_intersect_domain(pwaff
, dom
);
747 /* Handle potential overflows on signed computations.
749 * If options->signed_overflow is set to PET_OVERFLOW_AVOID,
750 * the we adjust the domain of "pa" to avoid overflows.
752 __isl_give isl_pw_aff
*PetScan::signed_overflow(__isl_take isl_pw_aff
*pa
,
755 if (options
->signed_overflow
== PET_OVERFLOW_AVOID
)
756 pa
= avoid_overflow(pa
, width
);
761 /* Return the piecewise affine expression "set ? 1 : 0" defined on "dom".
763 static __isl_give isl_pw_aff
*indicator_function(__isl_take isl_set
*set
,
764 __isl_take isl_set
*dom
)
767 pa
= isl_set_indicator_function(set
);
768 pa
= isl_pw_aff_intersect_domain(pa
, isl_set_coalesce(dom
));
772 /* Extract an affine expression from some binary operations.
773 * If the result of the expression is unsigned, then we wrap it
774 * based on the size of the type. Otherwise, we ensure that
775 * no overflow occurs.
777 __isl_give isl_pw_aff
*PetScan::extract_affine(BinaryOperator
*expr
)
782 switch (expr
->getOpcode()) {
785 res
= extract_affine_add(expr
);
788 res
= extract_affine_div(expr
);
791 res
= extract_affine_mod(expr
);
794 res
= extract_affine_mul(expr
);
804 return extract_condition(expr
);
810 width
= ast_context
.getIntWidth(expr
->getType());
811 if (expr
->getType()->isUnsignedIntegerType())
812 res
= wrap(res
, width
);
814 res
= signed_overflow(res
, width
);
819 /* Extract an affine expression from a negation operation.
821 __isl_give isl_pw_aff
*PetScan::extract_affine(UnaryOperator
*expr
)
823 if (expr
->getOpcode() == UO_Minus
)
824 return isl_pw_aff_neg(extract_affine(expr
->getSubExpr()));
825 if (expr
->getOpcode() == UO_LNot
)
826 return extract_condition(expr
);
832 __isl_give isl_pw_aff
*PetScan::extract_affine(ParenExpr
*expr
)
834 return extract_affine(expr
->getSubExpr());
837 /* Extract an affine expression from some special function calls.
838 * In particular, we handle "min", "max", "ceild", "floord",
839 * "intMod", "intFloor" and "intCeil".
840 * In case of the latter five, the second argument needs to be
841 * a (positive) integer constant.
843 __isl_give isl_pw_aff
*PetScan::extract_affine(CallExpr
*expr
)
847 isl_pw_aff
*aff1
, *aff2
;
849 fd
= expr
->getDirectCallee();
855 name
= fd
->getDeclName().getAsString();
856 if (!(expr
->getNumArgs() == 2 && name
== "min") &&
857 !(expr
->getNumArgs() == 2 && name
== "max") &&
858 !(expr
->getNumArgs() == 2 && name
== "intMod") &&
859 !(expr
->getNumArgs() == 2 && name
== "intFloor") &&
860 !(expr
->getNumArgs() == 2 && name
== "intCeil") &&
861 !(expr
->getNumArgs() == 2 && name
== "floord") &&
862 !(expr
->getNumArgs() == 2 && name
== "ceild")) {
867 if (name
== "min" || name
== "max") {
868 aff1
= extract_affine(expr
->getArg(0));
869 aff2
= extract_affine(expr
->getArg(1));
872 aff1
= isl_pw_aff_min(aff1
, aff2
);
874 aff1
= isl_pw_aff_max(aff1
, aff2
);
875 } else if (name
== "intMod") {
877 Expr
*arg2
= expr
->getArg(1);
879 if (arg2
->getStmtClass() != Stmt::IntegerLiteralClass
) {
883 aff1
= extract_affine(expr
->getArg(0));
884 v
= extract_int(cast
<IntegerLiteral
>(arg2
));
885 aff1
= isl_pw_aff_mod_val(aff1
, v
);
886 } else if (name
== "floord" || name
== "ceild" ||
887 name
== "intFloor" || name
== "intCeil") {
889 Expr
*arg2
= expr
->getArg(1);
891 if (arg2
->getStmtClass() != Stmt::IntegerLiteralClass
) {
895 aff1
= extract_affine(expr
->getArg(0));
896 v
= extract_int(cast
<IntegerLiteral
>(arg2
));
897 aff1
= isl_pw_aff_scale_down_val(aff1
, v
);
898 if (name
== "floord" || name
== "intFloor")
899 aff1
= isl_pw_aff_floor(aff1
);
901 aff1
= isl_pw_aff_ceil(aff1
);
910 /* This method is called when we come across an access that is
911 * nested in what is supposed to be an affine expression.
912 * If nesting is allowed, we return a new parameter that corresponds
913 * to this nested access. Otherwise, we simply complain.
915 * Note that we currently don't allow nested accesses themselves
916 * to contain any nested accesses, so we check if we can extract
917 * the access without any nesting and complain if we can't.
919 * The new parameter is resolved in resolve_nested.
921 isl_pw_aff
*PetScan::nested_access(Expr
*expr
)
927 isl_multi_pw_aff
*index
;
929 if (!nesting_enabled
) {
934 allow_nested
= false;
935 index
= extract_index(expr
);
941 isl_multi_pw_aff_free(index
);
943 id
= pet_nested_clang_expr(ctx
, expr
);
944 dim
= isl_space_params_alloc(ctx
, 1);
946 dim
= isl_space_set_dim_id(dim
, isl_dim_param
, 0, id
);
948 dom
= isl_set_universe(isl_space_copy(dim
));
949 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(dim
));
950 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_param
, 0, 1);
952 return isl_pw_aff_alloc(dom
, aff
);
955 /* Affine expressions are not supposed to contain array accesses,
956 * but if nesting is allowed, we return a parameter corresponding
957 * to the array access.
959 __isl_give isl_pw_aff
*PetScan::extract_affine(ArraySubscriptExpr
*expr
)
961 return nested_access(expr
);
964 /* Affine expressions are not supposed to contain member accesses,
965 * but if nesting is allowed, we return a parameter corresponding
966 * to the member access.
968 __isl_give isl_pw_aff
*PetScan::extract_affine(MemberExpr
*expr
)
970 return nested_access(expr
);
973 /* Extract an affine expression from a conditional operation.
975 __isl_give isl_pw_aff
*PetScan::extract_affine(ConditionalOperator
*expr
)
977 isl_pw_aff
*cond
, *lhs
, *rhs
;
979 cond
= extract_condition(expr
->getCond());
980 lhs
= extract_affine(expr
->getTrueExpr());
981 rhs
= extract_affine(expr
->getFalseExpr());
983 return isl_pw_aff_cond(cond
, lhs
, rhs
);
986 /* Extract an affine expression, if possible, from "expr".
987 * Otherwise return NULL.
989 __isl_give isl_pw_aff
*PetScan::extract_affine(Expr
*expr
)
991 switch (expr
->getStmtClass()) {
992 case Stmt::ImplicitCastExprClass
:
993 return extract_affine(cast
<ImplicitCastExpr
>(expr
));
994 case Stmt::IntegerLiteralClass
:
995 return extract_affine(cast
<IntegerLiteral
>(expr
));
996 case Stmt::DeclRefExprClass
:
997 return extract_affine(cast
<DeclRefExpr
>(expr
));
998 case Stmt::BinaryOperatorClass
:
999 return extract_affine(cast
<BinaryOperator
>(expr
));
1000 case Stmt::UnaryOperatorClass
:
1001 return extract_affine(cast
<UnaryOperator
>(expr
));
1002 case Stmt::ParenExprClass
:
1003 return extract_affine(cast
<ParenExpr
>(expr
));
1004 case Stmt::CallExprClass
:
1005 return extract_affine(cast
<CallExpr
>(expr
));
1006 case Stmt::ArraySubscriptExprClass
:
1007 return extract_affine(cast
<ArraySubscriptExpr
>(expr
));
1008 case Stmt::MemberExprClass
:
1009 return extract_affine(cast
<MemberExpr
>(expr
));
1010 case Stmt::ConditionalOperatorClass
:
1011 return extract_affine(cast
<ConditionalOperator
>(expr
));
1018 __isl_give isl_multi_pw_aff
*PetScan::extract_index(ImplicitCastExpr
*expr
)
1020 return extract_index(expr
->getSubExpr());
1023 /* Return the depth of an array of the given type.
1025 static int array_depth(const Type
*type
)
1027 if (type
->isPointerType())
1028 return 1 + array_depth(type
->getPointeeType().getTypePtr());
1029 if (type
->isArrayType()) {
1030 const ArrayType
*atype
;
1031 type
= type
->getCanonicalTypeInternal().getTypePtr();
1032 atype
= cast
<ArrayType
>(type
);
1033 return 1 + array_depth(atype
->getElementType().getTypePtr());
1038 /* Return the depth of the array accessed by the index expression "index".
1039 * If "index" is an affine expression, i.e., if it does not access
1040 * any array, then return 1.
1041 * If "index" represent a member access, i.e., if its range is a wrapped
1042 * relation, then return the sum of the depth of the array of structures
1043 * and that of the member inside the structure.
1045 static int extract_depth(__isl_keep isl_multi_pw_aff
*index
)
1053 if (isl_multi_pw_aff_range_is_wrapping(index
)) {
1054 int domain_depth
, range_depth
;
1055 isl_multi_pw_aff
*domain
, *range
;
1057 domain
= isl_multi_pw_aff_copy(index
);
1058 domain
= isl_multi_pw_aff_range_factor_domain(domain
);
1059 domain_depth
= extract_depth(domain
);
1060 isl_multi_pw_aff_free(domain
);
1061 range
= isl_multi_pw_aff_copy(index
);
1062 range
= isl_multi_pw_aff_range_factor_range(range
);
1063 range_depth
= extract_depth(range
);
1064 isl_multi_pw_aff_free(range
);
1066 return domain_depth
+ range_depth
;
1069 if (!isl_multi_pw_aff_has_tuple_id(index
, isl_dim_out
))
1072 id
= isl_multi_pw_aff_get_tuple_id(index
, isl_dim_out
);
1075 decl
= (ValueDecl
*) isl_id_get_user(id
);
1078 return array_depth(decl
->getType().getTypePtr());
1081 /* Extract an index expression from a reference to a variable.
1082 * If the variable has name "A", then the returned index expression
1087 __isl_give isl_multi_pw_aff
*PetScan::extract_index(DeclRefExpr
*expr
)
1089 return extract_index(expr
->getDecl());
1092 /* Extract an index expression from a variable.
1093 * If the variable has name "A", then the returned index expression
1098 __isl_give isl_multi_pw_aff
*PetScan::extract_index(ValueDecl
*decl
)
1100 isl_id
*id
= isl_id_alloc(ctx
, decl
->getName().str().c_str(), decl
);
1101 isl_space
*space
= isl_space_alloc(ctx
, 0, 0, 0);
1103 space
= isl_space_set_tuple_id(space
, isl_dim_out
, id
);
1105 return isl_multi_pw_aff_zero(space
);
1108 /* Extract an index expression from an integer contant.
1109 * If the value of the constant is "v", then the returned access relation
1114 __isl_give isl_multi_pw_aff
*PetScan::extract_index(IntegerLiteral
*expr
)
1116 isl_multi_pw_aff
*mpa
;
1118 mpa
= isl_multi_pw_aff_from_pw_aff(extract_affine(expr
));
1119 mpa
= isl_multi_pw_aff_from_range(mpa
);
1123 /* Try and extract an index expression from the given Expr.
1124 * Return NULL if it doesn't work out.
1126 __isl_give isl_multi_pw_aff
*PetScan::extract_index(Expr
*expr
)
1128 switch (expr
->getStmtClass()) {
1129 case Stmt::ImplicitCastExprClass
:
1130 return extract_index(cast
<ImplicitCastExpr
>(expr
));
1131 case Stmt::DeclRefExprClass
:
1132 return extract_index(cast
<DeclRefExpr
>(expr
));
1133 case Stmt::ArraySubscriptExprClass
:
1134 return extract_index(cast
<ArraySubscriptExpr
>(expr
));
1135 case Stmt::IntegerLiteralClass
:
1136 return extract_index(cast
<IntegerLiteral
>(expr
));
1137 case Stmt::MemberExprClass
:
1138 return extract_index(cast
<MemberExpr
>(expr
));
1145 /* Given a partial index expression "base" and an extra index "index",
1146 * append the extra index to "base" and return the result.
1147 * Additionally, add the constraints that the extra index is non-negative.
1148 * If "index" represent a member access, i.e., if its range is a wrapped
1149 * relation, then we recursively extend the range of this nested relation.
1151 static __isl_give isl_multi_pw_aff
*subscript(__isl_take isl_multi_pw_aff
*base
,
1152 __isl_take isl_pw_aff
*index
)
1156 isl_multi_pw_aff
*access
;
1159 member_access
= isl_multi_pw_aff_range_is_wrapping(base
);
1160 if (member_access
< 0)
1162 if (member_access
) {
1163 isl_multi_pw_aff
*domain
, *range
;
1166 id
= isl_multi_pw_aff_get_tuple_id(base
, isl_dim_out
);
1167 domain
= isl_multi_pw_aff_copy(base
);
1168 domain
= isl_multi_pw_aff_range_factor_domain(domain
);
1169 range
= isl_multi_pw_aff_range_factor_range(base
);
1170 range
= subscript(range
, index
);
1171 access
= isl_multi_pw_aff_range_product(domain
, range
);
1172 access
= isl_multi_pw_aff_set_tuple_id(access
, isl_dim_out
, id
);
1176 id
= isl_multi_pw_aff_get_tuple_id(base
, isl_dim_set
);
1177 index
= isl_pw_aff_from_range(index
);
1178 domain
= isl_pw_aff_nonneg_set(isl_pw_aff_copy(index
));
1179 index
= isl_pw_aff_intersect_domain(index
, domain
);
1180 access
= isl_multi_pw_aff_from_pw_aff(index
);
1181 access
= isl_multi_pw_aff_flat_range_product(base
, access
);
1182 access
= isl_multi_pw_aff_set_tuple_id(access
, isl_dim_set
, id
);
1186 isl_multi_pw_aff_free(base
);
1187 isl_pw_aff_free(index
);
1191 /* Extract an index expression from the given array subscript expression.
1192 * If nesting is allowed in general, then we turn it on while
1193 * examining the index expression.
1195 * We first extract an index expression from the base.
1196 * This will result in an index expression with a range that corresponds
1197 * to the earlier indices.
1198 * We then extract the current index, restrict its domain
1199 * to those values that result in a non-negative index and
1200 * append the index to the base index expression.
1202 __isl_give isl_multi_pw_aff
*PetScan::extract_index(ArraySubscriptExpr
*expr
)
1204 Expr
*base
= expr
->getBase();
1205 Expr
*idx
= expr
->getIdx();
1207 isl_multi_pw_aff
*base_access
;
1208 isl_multi_pw_aff
*access
;
1209 bool save_nesting
= nesting_enabled
;
1211 nesting_enabled
= allow_nested
;
1213 base_access
= extract_index(base
);
1214 index
= extract_affine(idx
);
1216 nesting_enabled
= save_nesting
;
1218 access
= subscript(base_access
, index
);
1223 /* Construct a name for a member access by concatenating the name
1224 * of the array of structures and the member, separated by an underscore.
1226 * The caller is responsible for freeing the result.
1228 static char *member_access_name(isl_ctx
*ctx
, const char *base
,
1234 len
= strlen(base
) + 1 + strlen(field
);
1235 name
= isl_alloc_array(ctx
, char, len
+ 1);
1238 snprintf(name
, len
+ 1, "%s_%s", base
, field
);
1243 /* Given an index expression "base" for an element of an array of structures
1244 * and an expression "field" for the field member being accessed, construct
1245 * an index expression for an access to that member of the given structure.
1246 * In particular, take the range product of "base" and "field" and
1247 * attach a name to the result.
1249 static __isl_give isl_multi_pw_aff
*member(__isl_take isl_multi_pw_aff
*base
,
1250 __isl_take isl_multi_pw_aff
*field
)
1253 isl_multi_pw_aff
*access
;
1254 const char *base_name
, *field_name
;
1257 ctx
= isl_multi_pw_aff_get_ctx(base
);
1259 base_name
= isl_multi_pw_aff_get_tuple_name(base
, isl_dim_out
);
1260 field_name
= isl_multi_pw_aff_get_tuple_name(field
, isl_dim_out
);
1261 name
= member_access_name(ctx
, base_name
, field_name
);
1263 access
= isl_multi_pw_aff_range_product(base
, field
);
1265 access
= isl_multi_pw_aff_set_tuple_name(access
, isl_dim_out
, name
);
1271 /* Extract an index expression from a member expression.
1273 * If the base access (to the structure containing the member)
1278 * and the member is called "f", then the member access is of
1281 * [] -> A_f[A[..] -> f[]]
1283 * If the member access is to an anonymous struct, then simply return
1287 * If the member access in the source code is of the form
1291 * then it is treated as
1295 __isl_give isl_multi_pw_aff
*PetScan::extract_index(MemberExpr
*expr
)
1297 Expr
*base
= expr
->getBase();
1298 FieldDecl
*field
= cast
<FieldDecl
>(expr
->getMemberDecl());
1299 isl_multi_pw_aff
*base_access
, *field_access
;
1303 base_access
= extract_index(base
);
1305 if (expr
->isArrow()) {
1306 isl_space
*space
= isl_space_params_alloc(ctx
, 0);
1307 isl_local_space
*ls
= isl_local_space_from_space(space
);
1308 isl_aff
*aff
= isl_aff_zero_on_domain(ls
);
1309 isl_pw_aff
*index
= isl_pw_aff_from_aff(aff
);
1310 base_access
= subscript(base_access
, index
);
1313 if (field
->isAnonymousStructOrUnion())
1316 id
= isl_id_alloc(ctx
, field
->getName().str().c_str(), field
);
1317 space
= isl_multi_pw_aff_get_domain_space(base_access
);
1318 space
= isl_space_from_domain(space
);
1319 space
= isl_space_set_tuple_id(space
, isl_dim_out
, id
);
1320 field_access
= isl_multi_pw_aff_zero(space
);
1322 return member(base_access
, field_access
);
1325 /* Check if "expr" calls function "minmax" with two arguments and if so
1326 * make lhs and rhs refer to these two arguments.
1328 static bool is_minmax(Expr
*expr
, const char *minmax
, Expr
*&lhs
, Expr
*&rhs
)
1334 if (expr
->getStmtClass() != Stmt::CallExprClass
)
1337 call
= cast
<CallExpr
>(expr
);
1338 fd
= call
->getDirectCallee();
1342 if (call
->getNumArgs() != 2)
1345 name
= fd
->getDeclName().getAsString();
1349 lhs
= call
->getArg(0);
1350 rhs
= call
->getArg(1);
1355 /* Check if "expr" is of the form min(lhs, rhs) and if so make
1356 * lhs and rhs refer to the two arguments.
1358 static bool is_min(Expr
*expr
, Expr
*&lhs
, Expr
*&rhs
)
1360 return is_minmax(expr
, "min", lhs
, rhs
);
1363 /* Check if "expr" is of the form max(lhs, rhs) and if so make
1364 * lhs and rhs refer to the two arguments.
1366 static bool is_max(Expr
*expr
, Expr
*&lhs
, Expr
*&rhs
)
1368 return is_minmax(expr
, "max", lhs
, rhs
);
1371 /* Return "lhs && rhs", defined on the shared definition domain.
1373 static __isl_give isl_pw_aff
*pw_aff_and(__isl_take isl_pw_aff
*lhs
,
1374 __isl_take isl_pw_aff
*rhs
)
1379 dom
= isl_set_intersect(isl_pw_aff_domain(isl_pw_aff_copy(lhs
)),
1380 isl_pw_aff_domain(isl_pw_aff_copy(rhs
)));
1381 cond
= isl_set_intersect(isl_pw_aff_non_zero_set(lhs
),
1382 isl_pw_aff_non_zero_set(rhs
));
1383 return indicator_function(cond
, dom
);
1386 /* Return "lhs && rhs", with shortcut semantics.
1387 * That is, if lhs is false, then the result is defined even if rhs is not.
1388 * In practice, we compute lhs ? rhs : lhs.
1390 static __isl_give isl_pw_aff
*pw_aff_and_then(__isl_take isl_pw_aff
*lhs
,
1391 __isl_take isl_pw_aff
*rhs
)
1393 return isl_pw_aff_cond(isl_pw_aff_copy(lhs
), rhs
, lhs
);
1396 /* Return "lhs || rhs", with shortcut semantics.
1397 * That is, if lhs is true, then the result is defined even if rhs is not.
1398 * In practice, we compute lhs ? lhs : rhs.
1400 static __isl_give isl_pw_aff
*pw_aff_or_else(__isl_take isl_pw_aff
*lhs
,
1401 __isl_take isl_pw_aff
*rhs
)
1403 return isl_pw_aff_cond(isl_pw_aff_copy(lhs
), lhs
, rhs
);
1406 /* Extract an affine expressions representing the comparison "LHS op RHS"
1407 * "comp" is the original statement that "LHS op RHS" is derived from
1408 * and is used for diagnostics.
1410 * If the comparison is of the form
1414 * then the expression is constructed as the conjunction of
1419 * A similar optimization is performed for max(a,b) <= c.
1420 * We do this because that will lead to simpler representations
1421 * of the expression.
1422 * If isl is ever enhanced to explicitly deal with min and max expressions,
1423 * this optimization can be removed.
1425 __isl_give isl_pw_aff
*PetScan::extract_comparison(BinaryOperatorKind op
,
1426 Expr
*LHS
, Expr
*RHS
, Stmt
*comp
)
1433 enum pet_op_type type
;
1436 return extract_comparison(BO_LT
, RHS
, LHS
, comp
);
1438 return extract_comparison(BO_LE
, RHS
, LHS
, comp
);
1440 if (op
== BO_LT
|| op
== BO_LE
) {
1441 Expr
*expr1
, *expr2
;
1442 if (is_min(RHS
, expr1
, expr2
)) {
1443 lhs
= extract_comparison(op
, LHS
, expr1
, comp
);
1444 rhs
= extract_comparison(op
, LHS
, expr2
, comp
);
1445 return pw_aff_and(lhs
, rhs
);
1447 if (is_max(LHS
, expr1
, expr2
)) {
1448 lhs
= extract_comparison(op
, expr1
, RHS
, comp
);
1449 rhs
= extract_comparison(op
, expr2
, RHS
, comp
);
1450 return pw_aff_and(lhs
, rhs
);
1454 lhs
= extract_affine(LHS
);
1455 rhs
= extract_affine(RHS
);
1457 type
= BinaryOperatorKind2pet_op_type(op
);
1458 return pet_comparison(type
, lhs
, rhs
);
1461 __isl_give isl_pw_aff
*PetScan::extract_comparison(BinaryOperator
*comp
)
1463 return extract_comparison(comp
->getOpcode(), comp
->getLHS(),
1464 comp
->getRHS(), comp
);
1467 /* Extract an affine expression representing the negation (logical not)
1468 * of a subexpression.
1470 __isl_give isl_pw_aff
*PetScan::extract_boolean(UnaryOperator
*op
)
1472 isl_set
*set_cond
, *dom
;
1473 isl_pw_aff
*cond
, *res
;
1475 cond
= extract_condition(op
->getSubExpr());
1477 dom
= isl_pw_aff_domain(isl_pw_aff_copy(cond
));
1479 set_cond
= isl_pw_aff_zero_set(cond
);
1481 res
= indicator_function(set_cond
, dom
);
1486 /* Extract an affine expression representing the disjunction (logical or)
1487 * or conjunction (logical and) of two subexpressions.
1489 __isl_give isl_pw_aff
*PetScan::extract_boolean(BinaryOperator
*comp
)
1491 isl_pw_aff
*lhs
, *rhs
;
1493 lhs
= extract_condition(comp
->getLHS());
1494 rhs
= extract_condition(comp
->getRHS());
1496 switch (comp
->getOpcode()) {
1498 return pw_aff_and_then(lhs
, rhs
);
1500 return pw_aff_or_else(lhs
, rhs
);
1502 isl_pw_aff_free(lhs
);
1503 isl_pw_aff_free(rhs
);
1510 __isl_give isl_pw_aff
*PetScan::extract_condition(UnaryOperator
*expr
)
1512 switch (expr
->getOpcode()) {
1514 return extract_boolean(expr
);
1521 /* Extract the affine expression "expr != 0 ? 1 : 0".
1523 __isl_give isl_pw_aff
*PetScan::extract_implicit_condition(Expr
*expr
)
1528 res
= extract_affine(expr
);
1530 dom
= isl_pw_aff_domain(isl_pw_aff_copy(res
));
1531 set
= isl_pw_aff_non_zero_set(res
);
1533 res
= indicator_function(set
, dom
);
1538 /* Extract an affine expression from a boolean expression.
1539 * In particular, return the expression "expr ? 1 : 0".
1541 * If the expression doesn't look like a condition, we assume it
1542 * is an affine expression and return the condition "expr != 0 ? 1 : 0".
1544 __isl_give isl_pw_aff
*PetScan::extract_condition(Expr
*expr
)
1546 BinaryOperator
*comp
;
1549 isl_set
*u
= isl_set_universe(isl_space_params_alloc(ctx
, 0));
1550 return indicator_function(u
, isl_set_copy(u
));
1553 if (expr
->getStmtClass() == Stmt::ParenExprClass
)
1554 return extract_condition(cast
<ParenExpr
>(expr
)->getSubExpr());
1556 if (expr
->getStmtClass() == Stmt::UnaryOperatorClass
)
1557 return extract_condition(cast
<UnaryOperator
>(expr
));
1559 if (expr
->getStmtClass() != Stmt::BinaryOperatorClass
)
1560 return extract_implicit_condition(expr
);
1562 comp
= cast
<BinaryOperator
>(expr
);
1563 switch (comp
->getOpcode()) {
1570 return extract_comparison(comp
);
1573 return extract_boolean(comp
);
1575 return extract_implicit_condition(expr
);
1579 /* Construct a pet_expr representing a unary operator expression.
1581 __isl_give pet_expr
*PetScan::extract_expr(UnaryOperator
*expr
)
1584 enum pet_op_type op
;
1586 op
= UnaryOperatorKind2pet_op_type(expr
->getOpcode());
1587 if (op
== pet_op_last
) {
1592 arg
= extract_expr(expr
->getSubExpr());
1594 if (expr
->isIncrementDecrementOp() &&
1595 pet_expr_get_type(arg
) == pet_expr_access
) {
1596 arg
= mark_write(arg
);
1597 arg
= pet_expr_access_set_read(arg
, 1);
1600 return pet_expr_new_unary(op
, arg
);
1603 /* Mark the given access pet_expr as a write.
1604 * If a scalar is being accessed, then mark its value
1605 * as unknown in assigned_value.
1607 __isl_give pet_expr
*PetScan::mark_write(__isl_take pet_expr
*access
)
1612 access
= pet_expr_access_set_write(access
, 1);
1613 access
= pet_expr_access_set_read(access
, 0);
1615 if (!access
|| !pet_expr_is_scalar_access(access
))
1618 id
= pet_expr_access_get_id(access
);
1619 decl
= (ValueDecl
*) isl_id_get_user(id
);
1620 clear_assignment(assigned_value
, decl
);
1626 /* Assign "rhs" to "lhs".
1628 * In particular, if "lhs" is a scalar variable, then mark
1629 * the variable as having been assigned. If, furthermore, "rhs"
1630 * is an affine expression, then keep track of this value in assigned_value
1631 * so that we can plug it in when we later come across the same variable.
1633 void PetScan::assign(__isl_keep pet_expr
*lhs
, Expr
*rhs
)
1641 if (!pet_expr_is_scalar_access(lhs
))
1644 id
= pet_expr_access_get_id(lhs
);
1645 decl
= (ValueDecl
*) isl_id_get_user(id
);
1648 pa
= try_extract_affine(rhs
);
1649 clear_assignment(assigned_value
, decl
);
1652 assigned_value
[decl
] = pa
;
1653 insert_expression(pa
);
1656 /* Construct a pet_expr representing a binary operator expression.
1658 * If the top level operator is an assignment and the LHS is an access,
1659 * then we mark that access as a write. If the operator is a compound
1660 * assignment, the access is marked as both a read and a write.
1662 * If "expr" assigns something to a scalar variable, then we mark
1663 * the variable as having been assigned. If, furthermore, the expression
1664 * is affine, then keep track of this value in assigned_value
1665 * so that we can plug it in when we later come across the same variable.
1667 __isl_give pet_expr
*PetScan::extract_expr(BinaryOperator
*expr
)
1670 pet_expr
*lhs
, *rhs
;
1671 enum pet_op_type op
;
1673 op
= BinaryOperatorKind2pet_op_type(expr
->getOpcode());
1674 if (op
== pet_op_last
) {
1679 lhs
= extract_expr(expr
->getLHS());
1680 rhs
= extract_expr(expr
->getRHS());
1682 if (expr
->isAssignmentOp() &&
1683 pet_expr_get_type(lhs
) == pet_expr_access
) {
1684 lhs
= mark_write(lhs
);
1685 if (expr
->isCompoundAssignmentOp())
1686 lhs
= pet_expr_access_set_read(lhs
, 1);
1689 if (expr
->getOpcode() == BO_Assign
)
1690 assign(lhs
, expr
->getRHS());
1692 type_size
= get_type_size(expr
->getType(), ast_context
);
1693 return pet_expr_new_binary(type_size
, op
, lhs
, rhs
);
1696 /* Construct a pet_scop with a single statement killing the entire
1699 struct pet_scop
*PetScan::kill(Stmt
*stmt
, struct pet_array
*array
)
1703 isl_multi_pw_aff
*index
;
1709 access
= isl_map_from_range(isl_set_copy(array
->extent
));
1710 id
= isl_set_get_tuple_id(array
->extent
);
1711 space
= isl_space_alloc(ctx
, 0, 0, 0);
1712 space
= isl_space_set_tuple_id(space
, isl_dim_out
, id
);
1713 index
= isl_multi_pw_aff_zero(space
);
1714 expr
= pet_expr_kill_from_access_and_index(access
, index
);
1715 return extract(stmt
, expr
);
1718 /* Construct a pet_scop for a (single) variable declaration.
1720 * The scop contains the variable being declared (as an array)
1721 * and a statement killing the array.
1723 * If the variable is initialized in the AST, then the scop
1724 * also contains an assignment to the variable.
1726 struct pet_scop
*PetScan::extract(DeclStmt
*stmt
)
1731 pet_expr
*lhs
, *rhs
, *pe
;
1732 struct pet_scop
*scop_decl
, *scop
;
1733 struct pet_array
*array
;
1735 if (!stmt
->isSingleDecl()) {
1740 decl
= stmt
->getSingleDecl();
1741 vd
= cast
<VarDecl
>(decl
);
1743 array
= extract_array(ctx
, vd
, NULL
);
1745 array
->declared
= 1;
1746 scop_decl
= kill(stmt
, array
);
1747 scop_decl
= pet_scop_add_array(scop_decl
, array
);
1752 lhs
= extract_access_expr(vd
);
1753 rhs
= extract_expr(vd
->getInit());
1755 lhs
= mark_write(lhs
);
1756 assign(lhs
, vd
->getInit());
1758 type_size
= get_type_size(vd
->getType(), ast_context
);
1759 pe
= pet_expr_new_binary(type_size
, pet_op_assign
, lhs
, rhs
);
1760 scop
= extract(stmt
, pe
);
1762 scop_decl
= pet_scop_prefix(scop_decl
, 0);
1763 scop
= pet_scop_prefix(scop
, 1);
1765 scop
= pet_scop_add_seq(ctx
, scop_decl
, scop
);
1770 /* Construct a pet_expr representing a conditional operation.
1772 * We first try to extract the condition as an affine expression.
1773 * If that fails, we construct a pet_expr tree representing the condition.
1775 __isl_give pet_expr
*PetScan::extract_expr(ConditionalOperator
*expr
)
1777 pet_expr
*cond
, *lhs
, *rhs
;
1780 pa
= try_extract_affine(expr
->getCond());
1782 isl_multi_pw_aff
*test
= isl_multi_pw_aff_from_pw_aff(pa
);
1783 test
= isl_multi_pw_aff_from_range(test
);
1784 cond
= pet_expr_from_index(test
);
1786 cond
= extract_expr(expr
->getCond());
1787 lhs
= extract_expr(expr
->getTrueExpr());
1788 rhs
= extract_expr(expr
->getFalseExpr());
1790 return pet_expr_new_ternary(cond
, lhs
, rhs
);
1793 __isl_give pet_expr
*PetScan::extract_expr(ImplicitCastExpr
*expr
)
1795 return extract_expr(expr
->getSubExpr());
1798 /* Construct a pet_expr representing a floating point value.
1800 * If the floating point literal does not appear in a macro,
1801 * then we use the original representation in the source code
1802 * as the string representation. Otherwise, we use the pretty
1803 * printer to produce a string representation.
1805 __isl_give pet_expr
*PetScan::extract_expr(FloatingLiteral
*expr
)
1809 const LangOptions
&LO
= PP
.getLangOpts();
1810 SourceLocation loc
= expr
->getLocation();
1812 if (!loc
.isMacroID()) {
1813 SourceManager
&SM
= PP
.getSourceManager();
1814 unsigned len
= Lexer::MeasureTokenLength(loc
, SM
, LO
);
1815 s
= string(SM
.getCharacterData(loc
), len
);
1817 llvm::raw_string_ostream
S(s
);
1818 expr
->printPretty(S
, 0, PrintingPolicy(LO
));
1821 d
= expr
->getValueAsApproximateDouble();
1822 return pet_expr_new_double(ctx
, d
, s
.c_str());
1825 /* Convert the index expression "index" into an access pet_expr of type "qt".
1827 __isl_give pet_expr
*PetScan::extract_access_expr(QualType qt
,
1828 __isl_take isl_multi_pw_aff
*index
)
1834 depth
= extract_depth(index
);
1835 type_size
= get_type_size(qt
, ast_context
);
1837 pe
= pet_expr_from_index_and_depth(type_size
, index
, depth
);
1842 /* Extract an index expression from "expr" and then convert it into
1843 * an access pet_expr.
1845 __isl_give pet_expr
*PetScan::extract_access_expr(Expr
*expr
)
1847 return extract_access_expr(expr
->getType(), extract_index(expr
));
1850 /* Extract an index expression from "decl" and then convert it into
1851 * an access pet_expr.
1853 __isl_give pet_expr
*PetScan::extract_access_expr(ValueDecl
*decl
)
1855 return extract_access_expr(decl
->getType(), extract_index(decl
));
1858 __isl_give pet_expr
*PetScan::extract_expr(ParenExpr
*expr
)
1860 return extract_expr(expr
->getSubExpr());
1863 /* Extract an assume statement from the argument "expr"
1864 * of a __pencil_assume statement.
1866 __isl_give pet_expr
*PetScan::extract_assume(Expr
*expr
)
1871 cond
= try_extract_affine_condition(expr
);
1873 res
= extract_expr(expr
);
1875 isl_multi_pw_aff
*index
;
1876 index
= isl_multi_pw_aff_from_pw_aff(cond
);
1877 index
= isl_multi_pw_aff_from_range(index
);
1878 res
= pet_expr_from_index(index
);
1880 return pet_expr_new_unary(pet_op_assume
, res
);
1883 /* Construct a pet_expr corresponding to the function call argument "expr".
1884 * The argument appears in position "pos" of a call to function "fd".
1886 * If we are passing along a pointer to an array element
1887 * or an entire row or even higher dimensional slice of an array,
1888 * then the function being called may write into the array.
1890 * We assume here that if the function is declared to take a pointer
1891 * to a const type, then the function will perform a read
1892 * and that otherwise, it will perform a write.
1894 __isl_give pet_expr
*PetScan::extract_argument(FunctionDecl
*fd
, int pos
,
1898 int is_addr
= 0, is_partial
= 0;
1901 if (expr
->getStmtClass() == Stmt::ImplicitCastExprClass
) {
1902 ImplicitCastExpr
*ice
= cast
<ImplicitCastExpr
>(expr
);
1903 expr
= ice
->getSubExpr();
1905 if (expr
->getStmtClass() == Stmt::UnaryOperatorClass
) {
1906 UnaryOperator
*op
= cast
<UnaryOperator
>(expr
);
1907 if (op
->getOpcode() == UO_AddrOf
) {
1909 expr
= op
->getSubExpr();
1912 res
= extract_expr(expr
);
1915 sc
= expr
->getStmtClass();
1916 if ((sc
== Stmt::ArraySubscriptExprClass
||
1917 sc
== Stmt::MemberExprClass
) &&
1918 array_depth(expr
->getType().getTypePtr()) > 0)
1920 if ((is_addr
|| is_partial
) &&
1921 pet_expr_get_type(res
) == pet_expr_access
) {
1923 if (!fd
->hasPrototype()) {
1924 report_prototype_required(expr
);
1925 return pet_expr_free(res
);
1927 parm
= fd
->getParamDecl(pos
);
1928 if (!const_base(parm
->getType()))
1929 res
= mark_write(res
);
1933 res
= pet_expr_new_unary(pet_op_address_of
, res
);
1937 /* Construct a pet_expr representing a function call.
1939 * In the special case of a "call" to __pencil_assume,
1940 * construct an assume expression instead.
1942 __isl_give pet_expr
*PetScan::extract_expr(CallExpr
*expr
)
1944 pet_expr
*res
= NULL
;
1949 fd
= expr
->getDirectCallee();
1955 name
= fd
->getDeclName().getAsString();
1956 n_arg
= expr
->getNumArgs();
1958 if (n_arg
== 1 && name
== "__pencil_assume")
1959 return extract_assume(expr
->getArg(0));
1961 res
= pet_expr_new_call(ctx
, name
.c_str(), n_arg
);
1965 for (int i
= 0; i
< n_arg
; ++i
) {
1966 Expr
*arg
= expr
->getArg(i
);
1967 res
= pet_expr_set_arg(res
, i
,
1968 PetScan::extract_argument(fd
, i
, arg
));
1974 /* Construct a pet_expr representing a (C style) cast.
1976 __isl_give pet_expr
*PetScan::extract_expr(CStyleCastExpr
*expr
)
1981 arg
= extract_expr(expr
->getSubExpr());
1985 type
= expr
->getTypeAsWritten();
1986 return pet_expr_new_cast(type
.getAsString().c_str(), arg
);
1989 /* Construct a pet_expr representing an integer.
1991 __isl_give pet_expr
*PetScan::extract_expr(IntegerLiteral
*expr
)
1993 return pet_expr_new_int(extract_int(expr
));
1996 /* Try and construct a pet_expr representing "expr".
1998 __isl_give pet_expr
*PetScan::extract_expr(Expr
*expr
)
2000 switch (expr
->getStmtClass()) {
2001 case Stmt::UnaryOperatorClass
:
2002 return extract_expr(cast
<UnaryOperator
>(expr
));
2003 case Stmt::CompoundAssignOperatorClass
:
2004 case Stmt::BinaryOperatorClass
:
2005 return extract_expr(cast
<BinaryOperator
>(expr
));
2006 case Stmt::ImplicitCastExprClass
:
2007 return extract_expr(cast
<ImplicitCastExpr
>(expr
));
2008 case Stmt::ArraySubscriptExprClass
:
2009 case Stmt::DeclRefExprClass
:
2010 case Stmt::MemberExprClass
:
2011 return extract_access_expr(expr
);
2012 case Stmt::IntegerLiteralClass
:
2013 return extract_expr(cast
<IntegerLiteral
>(expr
));
2014 case Stmt::FloatingLiteralClass
:
2015 return extract_expr(cast
<FloatingLiteral
>(expr
));
2016 case Stmt::ParenExprClass
:
2017 return extract_expr(cast
<ParenExpr
>(expr
));
2018 case Stmt::ConditionalOperatorClass
:
2019 return extract_expr(cast
<ConditionalOperator
>(expr
));
2020 case Stmt::CallExprClass
:
2021 return extract_expr(cast
<CallExpr
>(expr
));
2022 case Stmt::CStyleCastExprClass
:
2023 return extract_expr(cast
<CStyleCastExpr
>(expr
));
2030 /* Check if the given initialization statement is an assignment.
2031 * If so, return that assignment. Otherwise return NULL.
2033 BinaryOperator
*PetScan::initialization_assignment(Stmt
*init
)
2035 BinaryOperator
*ass
;
2037 if (init
->getStmtClass() != Stmt::BinaryOperatorClass
)
2040 ass
= cast
<BinaryOperator
>(init
);
2041 if (ass
->getOpcode() != BO_Assign
)
2047 /* Check if the given initialization statement is a declaration
2048 * of a single variable.
2049 * If so, return that declaration. Otherwise return NULL.
2051 Decl
*PetScan::initialization_declaration(Stmt
*init
)
2055 if (init
->getStmtClass() != Stmt::DeclStmtClass
)
2058 decl
= cast
<DeclStmt
>(init
);
2060 if (!decl
->isSingleDecl())
2063 return decl
->getSingleDecl();
2066 /* Given the assignment operator in the initialization of a for loop,
2067 * extract the induction variable, i.e., the (integer)variable being
2070 ValueDecl
*PetScan::extract_induction_variable(BinaryOperator
*init
)
2077 lhs
= init
->getLHS();
2078 if (lhs
->getStmtClass() != Stmt::DeclRefExprClass
) {
2083 ref
= cast
<DeclRefExpr
>(lhs
);
2084 decl
= ref
->getDecl();
2085 type
= decl
->getType().getTypePtr();
2087 if (!type
->isIntegerType()) {
2095 /* Given the initialization statement of a for loop and the single
2096 * declaration in this initialization statement,
2097 * extract the induction variable, i.e., the (integer) variable being
2100 VarDecl
*PetScan::extract_induction_variable(Stmt
*init
, Decl
*decl
)
2104 vd
= cast
<VarDecl
>(decl
);
2106 const QualType type
= vd
->getType();
2107 if (!type
->isIntegerType()) {
2112 if (!vd
->getInit()) {
2120 /* Check that op is of the form iv++ or iv--.
2121 * Return an affine expression "1" or "-1" accordingly.
2123 __isl_give isl_pw_aff
*PetScan::extract_unary_increment(
2124 clang::UnaryOperator
*op
, clang::ValueDecl
*iv
)
2131 if (!op
->isIncrementDecrementOp()) {
2136 sub
= op
->getSubExpr();
2137 if (sub
->getStmtClass() != Stmt::DeclRefExprClass
) {
2142 ref
= cast
<DeclRefExpr
>(sub
);
2143 if (ref
->getDecl() != iv
) {
2148 space
= isl_space_params_alloc(ctx
, 0);
2149 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(space
));
2151 if (op
->isIncrementOp())
2152 aff
= isl_aff_add_constant_si(aff
, 1);
2154 aff
= isl_aff_add_constant_si(aff
, -1);
2156 return isl_pw_aff_from_aff(aff
);
2159 /* If the isl_pw_aff on which isl_pw_aff_foreach_piece is called
2160 * has a single constant expression, then put this constant in *user.
2161 * The caller is assumed to have checked that this function will
2162 * be called exactly once.
2164 static int extract_cst(__isl_take isl_set
*set
, __isl_take isl_aff
*aff
,
2167 isl_val
**inc
= (isl_val
**)user
;
2170 if (isl_aff_is_cst(aff
))
2171 *inc
= isl_aff_get_constant_val(aff
);
2181 /* Check if op is of the form
2185 * and return inc as an affine expression.
2187 * We extract an affine expression from the RHS, subtract iv and return
2190 __isl_give isl_pw_aff
*PetScan::extract_binary_increment(BinaryOperator
*op
,
2191 clang::ValueDecl
*iv
)
2200 if (op
->getOpcode() != BO_Assign
) {
2206 if (lhs
->getStmtClass() != Stmt::DeclRefExprClass
) {
2211 ref
= cast
<DeclRefExpr
>(lhs
);
2212 if (ref
->getDecl() != iv
) {
2217 val
= extract_affine(op
->getRHS());
2219 id
= isl_id_alloc(ctx
, iv
->getName().str().c_str(), iv
);
2221 dim
= isl_space_params_alloc(ctx
, 1);
2222 dim
= isl_space_set_dim_id(dim
, isl_dim_param
, 0, id
);
2223 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(dim
));
2224 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_param
, 0, 1);
2226 val
= isl_pw_aff_sub(val
, isl_pw_aff_from_aff(aff
));
2231 /* Check that op is of the form iv += cst or iv -= cst
2232 * and return an affine expression corresponding oto cst or -cst accordingly.
2234 __isl_give isl_pw_aff
*PetScan::extract_compound_increment(
2235 CompoundAssignOperator
*op
, clang::ValueDecl
*iv
)
2241 BinaryOperatorKind opcode
;
2243 opcode
= op
->getOpcode();
2244 if (opcode
!= BO_AddAssign
&& opcode
!= BO_SubAssign
) {
2248 if (opcode
== BO_SubAssign
)
2252 if (lhs
->getStmtClass() != Stmt::DeclRefExprClass
) {
2257 ref
= cast
<DeclRefExpr
>(lhs
);
2258 if (ref
->getDecl() != iv
) {
2263 val
= extract_affine(op
->getRHS());
2265 val
= isl_pw_aff_neg(val
);
2270 /* Check that the increment of the given for loop increments
2271 * (or decrements) the induction variable "iv" and return
2272 * the increment as an affine expression if successful.
2274 __isl_give isl_pw_aff
*PetScan::extract_increment(clang::ForStmt
*stmt
,
2277 Stmt
*inc
= stmt
->getInc();
2280 report_missing_increment(stmt
);
2284 if (inc
->getStmtClass() == Stmt::UnaryOperatorClass
)
2285 return extract_unary_increment(cast
<UnaryOperator
>(inc
), iv
);
2286 if (inc
->getStmtClass() == Stmt::CompoundAssignOperatorClass
)
2287 return extract_compound_increment(
2288 cast
<CompoundAssignOperator
>(inc
), iv
);
2289 if (inc
->getStmtClass() == Stmt::BinaryOperatorClass
)
2290 return extract_binary_increment(cast
<BinaryOperator
>(inc
), iv
);
2296 /* Embed the given iteration domain in an extra outer loop
2297 * with induction variable "var".
2298 * If this variable appeared as a parameter in the constraints,
2299 * it is replaced by the new outermost dimension.
2301 static __isl_give isl_set
*embed(__isl_take isl_set
*set
,
2302 __isl_take isl_id
*var
)
2306 set
= isl_set_insert_dims(set
, isl_dim_set
, 0, 1);
2307 pos
= isl_set_find_dim_by_id(set
, isl_dim_param
, var
);
2309 set
= isl_set_equate(set
, isl_dim_param
, pos
, isl_dim_set
, 0);
2310 set
= isl_set_project_out(set
, isl_dim_param
, pos
, 1);
2317 /* Return those elements in the space of "cond" that come after
2318 * (based on "sign") an element in "cond".
2320 static __isl_give isl_set
*after(__isl_take isl_set
*cond
, int sign
)
2322 isl_map
*previous_to_this
;
2325 previous_to_this
= isl_map_lex_lt(isl_set_get_space(cond
));
2327 previous_to_this
= isl_map_lex_gt(isl_set_get_space(cond
));
2329 cond
= isl_set_apply(cond
, previous_to_this
);
2334 /* Create the infinite iteration domain
2336 * { [id] : id >= 0 }
2338 * If "scop" has an affine skip of type pet_skip_later,
2339 * then remove those iterations i that have an earlier iteration
2340 * where the skip condition is satisfied, meaning that iteration i
2342 * Since we are dealing with a loop without loop iterator,
2343 * the skip condition cannot refer to the current loop iterator and
2344 * so effectively, the returned set is of the form
2346 * { [0]; [id] : id >= 1 and not skip }
2348 static __isl_give isl_set
*infinite_domain(__isl_take isl_id
*id
,
2349 struct pet_scop
*scop
)
2351 isl_ctx
*ctx
= isl_id_get_ctx(id
);
2355 domain
= isl_set_nat_universe(isl_space_set_alloc(ctx
, 0, 1));
2356 domain
= isl_set_set_dim_id(domain
, isl_dim_set
, 0, id
);
2358 if (!pet_scop_has_affine_skip(scop
, pet_skip_later
))
2361 skip
= pet_scop_get_affine_skip_domain(scop
, pet_skip_later
);
2362 skip
= embed(skip
, isl_id_copy(id
));
2363 skip
= isl_set_intersect(skip
, isl_set_copy(domain
));
2364 domain
= isl_set_subtract(domain
, after(skip
, 1));
2369 /* Create an identity affine expression on the space containing "domain",
2370 * which is assumed to be one-dimensional.
2372 static __isl_give isl_aff
*identity_aff(__isl_keep isl_set
*domain
)
2374 isl_local_space
*ls
;
2376 ls
= isl_local_space_from_space(isl_set_get_space(domain
));
2377 return isl_aff_var_on_domain(ls
, isl_dim_set
, 0);
2380 /* Create an affine expression that maps elements
2381 * of a single-dimensional array "id_test" to the previous element
2382 * (according to "inc"), provided this element belongs to "domain".
2383 * That is, create the affine expression
2385 * { id[x] -> id[x - inc] : x - inc in domain }
2387 static __isl_give isl_multi_pw_aff
*map_to_previous(__isl_take isl_id
*id_test
,
2388 __isl_take isl_set
*domain
, __isl_take isl_val
*inc
)
2391 isl_local_space
*ls
;
2393 isl_multi_pw_aff
*prev
;
2395 space
= isl_set_get_space(domain
);
2396 ls
= isl_local_space_from_space(space
);
2397 aff
= isl_aff_var_on_domain(ls
, isl_dim_set
, 0);
2398 aff
= isl_aff_add_constant_val(aff
, isl_val_neg(inc
));
2399 prev
= isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff
));
2400 domain
= isl_set_preimage_multi_pw_aff(domain
,
2401 isl_multi_pw_aff_copy(prev
));
2402 prev
= isl_multi_pw_aff_intersect_domain(prev
, domain
);
2403 prev
= isl_multi_pw_aff_set_tuple_id(prev
, isl_dim_out
, id_test
);
2408 /* Add an implication to "scop" expressing that if an element of
2409 * virtual array "id_test" has value "satisfied" then all previous elements
2410 * of this array also have that value. The set of previous elements
2411 * is bounded by "domain". If "sign" is negative then the iterator
2412 * is decreasing and we express that all subsequent array elements
2413 * (but still defined previously) have the same value.
2415 static struct pet_scop
*add_implication(struct pet_scop
*scop
,
2416 __isl_take isl_id
*id_test
, __isl_take isl_set
*domain
, int sign
,
2422 domain
= isl_set_set_tuple_id(domain
, id_test
);
2423 space
= isl_set_get_space(domain
);
2425 map
= isl_map_lex_ge(space
);
2427 map
= isl_map_lex_le(space
);
2428 map
= isl_map_intersect_range(map
, domain
);
2429 scop
= pet_scop_add_implication(scop
, map
, satisfied
);
2434 /* Add a filter to "scop" that imposes that it is only executed
2435 * when the variable identified by "id_test" has a zero value
2436 * for all previous iterations of "domain".
2438 * In particular, add a filter that imposes that the array
2439 * has a zero value at the previous iteration of domain and
2440 * add an implication that implies that it then has that
2441 * value for all previous iterations.
2443 static struct pet_scop
*scop_add_break(struct pet_scop
*scop
,
2444 __isl_take isl_id
*id_test
, __isl_take isl_set
*domain
,
2445 __isl_take isl_val
*inc
)
2447 isl_multi_pw_aff
*prev
;
2448 int sign
= isl_val_sgn(inc
);
2450 prev
= map_to_previous(isl_id_copy(id_test
), isl_set_copy(domain
), inc
);
2451 scop
= add_implication(scop
, id_test
, domain
, sign
, 0);
2452 scop
= pet_scop_filter(scop
, prev
, 0);
2457 /* Construct a pet_scop for an infinite loop around the given body.
2459 * We extract a pet_scop for the body and then embed it in a loop with
2468 * If the body contains any break, then it is taken into
2469 * account in infinite_domain (if the skip condition is affine)
2470 * or in scop_add_break (if the skip condition is not affine).
2472 * If we were only able to extract part of the body, then simply
2475 struct pet_scop
*PetScan::extract_infinite_loop(Stmt
*body
)
2477 isl_id
*id
, *id_test
;
2480 struct pet_scop
*scop
;
2483 scop
= extract(body
);
2489 id
= isl_id_alloc(ctx
, "t", NULL
);
2490 domain
= infinite_domain(isl_id_copy(id
), scop
);
2491 ident
= identity_aff(domain
);
2493 has_var_break
= pet_scop_has_var_skip(scop
, pet_skip_later
);
2495 id_test
= pet_scop_get_skip_id(scop
, pet_skip_later
);
2497 scop
= pet_scop_embed(scop
, isl_set_copy(domain
),
2498 isl_aff_copy(ident
), ident
, id
);
2500 scop
= scop_add_break(scop
, id_test
, domain
, isl_val_one(ctx
));
2502 isl_set_free(domain
);
2507 /* Construct a pet_scop for an infinite loop, i.e., a loop of the form
2513 struct pet_scop
*PetScan::extract_infinite_for(ForStmt
*stmt
)
2515 clear_assignments
clear(assigned_value
);
2516 clear
.TraverseStmt(stmt
->getBody());
2518 return extract_infinite_loop(stmt
->getBody());
2521 /* Create an index expression for an access to a virtual array
2522 * representing the result of a condition.
2523 * Unlike other accessed data, the id of the array is NULL as
2524 * there is no ValueDecl in the program corresponding to the virtual
2526 * The array starts out as a scalar, but grows along with the
2527 * statement writing to the array in pet_scop_embed.
2529 static __isl_give isl_multi_pw_aff
*create_test_index(isl_ctx
*ctx
, int test_nr
)
2531 isl_space
*dim
= isl_space_alloc(ctx
, 0, 0, 0);
2535 snprintf(name
, sizeof(name
), "__pet_test_%d", test_nr
);
2536 id
= isl_id_alloc(ctx
, name
, NULL
);
2537 dim
= isl_space_set_tuple_id(dim
, isl_dim_out
, id
);
2538 return isl_multi_pw_aff_zero(dim
);
2541 /* Add an array with the given extent (range of "index") to the list
2542 * of arrays in "scop" and return the extended pet_scop.
2543 * The array is marked as attaining values 0 and 1 only and
2544 * as each element being assigned at most once.
2546 static struct pet_scop
*scop_add_array(struct pet_scop
*scop
,
2547 __isl_keep isl_multi_pw_aff
*index
, clang::ASTContext
&ast_ctx
)
2549 int int_size
= ast_ctx
.getTypeInfo(ast_ctx
.IntTy
).first
/ 8;
2551 return pet_scop_add_boolean_array(scop
, isl_multi_pw_aff_copy(index
),
2555 /* Construct a pet_scop for a while loop of the form
2560 * In particular, construct a scop for an infinite loop around body and
2561 * intersect the domain with the affine expression.
2562 * Note that this intersection may result in an empty loop.
2564 struct pet_scop
*PetScan::extract_affine_while(__isl_take isl_pw_aff
*pa
,
2567 struct pet_scop
*scop
;
2571 valid
= isl_pw_aff_domain(isl_pw_aff_copy(pa
));
2572 dom
= isl_pw_aff_non_zero_set(pa
);
2573 scop
= extract_infinite_loop(body
);
2574 scop
= pet_scop_restrict(scop
, dom
);
2575 scop
= pet_scop_restrict_context(scop
, valid
);
2580 /* Construct a scop for a while, given the scops for the condition
2581 * and the body, the filter identifier and the iteration domain of
2584 * In particular, the scop for the condition is filtered to depend
2585 * on "id_test" evaluating to true for all previous iterations
2586 * of the loop, while the scop for the body is filtered to depend
2587 * on "id_test" evaluating to true for all iterations up to the
2588 * current iteration.
2589 * The actual filter only imposes that this virtual array has
2590 * value one on the previous or the current iteration.
2591 * The fact that this condition also applies to the previous
2592 * iterations is enforced by an implication.
2594 * These filtered scops are then combined into a single scop.
2596 * "sign" is positive if the iterator increases and negative
2599 static struct pet_scop
*scop_add_while(struct pet_scop
*scop_cond
,
2600 struct pet_scop
*scop_body
, __isl_take isl_id
*id_test
,
2601 __isl_take isl_set
*domain
, __isl_take isl_val
*inc
)
2603 isl_ctx
*ctx
= isl_set_get_ctx(domain
);
2605 isl_multi_pw_aff
*test_index
;
2606 isl_multi_pw_aff
*prev
;
2607 int sign
= isl_val_sgn(inc
);
2608 struct pet_scop
*scop
;
2610 prev
= map_to_previous(isl_id_copy(id_test
), isl_set_copy(domain
), inc
);
2611 scop_cond
= pet_scop_filter(scop_cond
, prev
, 1);
2613 space
= isl_space_map_from_set(isl_set_get_space(domain
));
2614 test_index
= isl_multi_pw_aff_identity(space
);
2615 test_index
= isl_multi_pw_aff_set_tuple_id(test_index
, isl_dim_out
,
2616 isl_id_copy(id_test
));
2617 scop_body
= pet_scop_filter(scop_body
, test_index
, 1);
2619 scop
= pet_scop_add_seq(ctx
, scop_cond
, scop_body
);
2620 scop
= add_implication(scop
, id_test
, domain
, sign
, 1);
2625 /* Check if the while loop is of the form
2627 * while (affine expression)
2630 * If so, call extract_affine_while to construct a scop.
2632 * Otherwise, construct a generic while scop, with iteration domain
2633 * { [t] : t >= 0 }. The scop consists of two parts, one for
2634 * evaluating the condition and one for the body.
2635 * The schedule is adjusted to reflect that the condition is evaluated
2636 * before the body is executed and the body is filtered to depend
2637 * on the result of the condition evaluating to true on all iterations
2638 * up to the current iteration, while the evaluation of the condition itself
2639 * is filtered to depend on the result of the condition evaluating to true
2640 * on all previous iterations.
2641 * The context of the scop representing the body is dropped
2642 * because we don't know how many times the body will be executed,
2645 * If the body contains any break, then it is taken into
2646 * account in infinite_domain (if the skip condition is affine)
2647 * or in scop_add_break (if the skip condition is not affine).
2649 * If we were only able to extract part of the body, then simply
2652 struct pet_scop
*PetScan::extract(WhileStmt
*stmt
)
2655 int test_nr
, stmt_nr
;
2656 isl_id
*id
, *id_test
, *id_break_test
;
2657 isl_multi_pw_aff
*test_index
;
2661 struct pet_scop
*scop
, *scop_body
;
2664 cond
= stmt
->getCond();
2670 clear_assignments
clear(assigned_value
);
2671 clear
.TraverseStmt(stmt
->getBody());
2673 pa
= try_extract_affine_condition(cond
);
2675 return extract_affine_while(pa
, stmt
->getBody());
2677 if (!allow_nested
) {
2684 scop_body
= extract(stmt
->getBody());
2688 test_index
= create_test_index(ctx
, test_nr
);
2689 scop
= extract_non_affine_condition(cond
, stmt_nr
,
2690 isl_multi_pw_aff_copy(test_index
));
2691 scop
= scop_add_array(scop
, test_index
, ast_context
);
2692 id_test
= isl_multi_pw_aff_get_tuple_id(test_index
, isl_dim_out
);
2693 isl_multi_pw_aff_free(test_index
);
2695 id
= isl_id_alloc(ctx
, "t", NULL
);
2696 domain
= infinite_domain(isl_id_copy(id
), scop_body
);
2697 ident
= identity_aff(domain
);
2699 has_var_break
= pet_scop_has_var_skip(scop_body
, pet_skip_later
);
2701 id_break_test
= pet_scop_get_skip_id(scop_body
, pet_skip_later
);
2703 scop
= pet_scop_prefix(scop
, 0);
2704 scop
= pet_scop_embed(scop
, isl_set_copy(domain
), isl_aff_copy(ident
),
2705 isl_aff_copy(ident
), isl_id_copy(id
));
2706 scop_body
= pet_scop_reset_context(scop_body
);
2707 scop_body
= pet_scop_prefix(scop_body
, 1);
2708 scop_body
= pet_scop_embed(scop_body
, isl_set_copy(domain
),
2709 isl_aff_copy(ident
), ident
, id
);
2711 if (has_var_break
) {
2712 scop
= scop_add_break(scop
, isl_id_copy(id_break_test
),
2713 isl_set_copy(domain
), isl_val_one(ctx
));
2714 scop_body
= scop_add_break(scop_body
, id_break_test
,
2715 isl_set_copy(domain
), isl_val_one(ctx
));
2717 scop
= scop_add_while(scop
, scop_body
, id_test
, domain
,
2723 /* Check whether "cond" expresses a simple loop bound
2724 * on the only set dimension.
2725 * In particular, if "up" is set then "cond" should contain only
2726 * upper bounds on the set dimension.
2727 * Otherwise, it should contain only lower bounds.
2729 static bool is_simple_bound(__isl_keep isl_set
*cond
, __isl_keep isl_val
*inc
)
2731 if (isl_val_is_pos(inc
))
2732 return !isl_set_dim_has_any_lower_bound(cond
, isl_dim_set
, 0);
2734 return !isl_set_dim_has_any_upper_bound(cond
, isl_dim_set
, 0);
2737 /* Extend a condition on a given iteration of a loop to one that
2738 * imposes the same condition on all previous iterations.
2739 * "domain" expresses the lower [upper] bound on the iterations
2740 * when inc is positive [negative].
2742 * In particular, we construct the condition (when inc is positive)
2744 * forall i' : (domain(i') and i' <= i) => cond(i')
2746 * which is equivalent to
2748 * not exists i' : domain(i') and i' <= i and not cond(i')
2750 * We construct this set by negating cond, applying a map
2752 * { [i'] -> [i] : domain(i') and i' <= i }
2754 * and then negating the result again.
2756 static __isl_give isl_set
*valid_for_each_iteration(__isl_take isl_set
*cond
,
2757 __isl_take isl_set
*domain
, __isl_take isl_val
*inc
)
2759 isl_map
*previous_to_this
;
2761 if (isl_val_is_pos(inc
))
2762 previous_to_this
= isl_map_lex_le(isl_set_get_space(domain
));
2764 previous_to_this
= isl_map_lex_ge(isl_set_get_space(domain
));
2766 previous_to_this
= isl_map_intersect_domain(previous_to_this
, domain
);
2768 cond
= isl_set_complement(cond
);
2769 cond
= isl_set_apply(cond
, previous_to_this
);
2770 cond
= isl_set_complement(cond
);
2777 /* Construct a domain of the form
2779 * [id] -> { : exists a: id = init + a * inc and a >= 0 }
2781 static __isl_give isl_set
*strided_domain(__isl_take isl_id
*id
,
2782 __isl_take isl_pw_aff
*init
, __isl_take isl_val
*inc
)
2788 init
= isl_pw_aff_insert_dims(init
, isl_dim_in
, 0, 1);
2789 dim
= isl_pw_aff_get_domain_space(init
);
2790 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(dim
));
2791 aff
= isl_aff_add_coefficient_val(aff
, isl_dim_in
, 0, inc
);
2792 init
= isl_pw_aff_add(init
, isl_pw_aff_from_aff(aff
));
2794 dim
= isl_space_set_alloc(isl_pw_aff_get_ctx(init
), 1, 1);
2795 dim
= isl_space_set_dim_id(dim
, isl_dim_param
, 0, id
);
2796 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(dim
));
2797 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_param
, 0, 1);
2799 set
= isl_pw_aff_eq_set(isl_pw_aff_from_aff(aff
), init
);
2801 set
= isl_set_lower_bound_si(set
, isl_dim_set
, 0, 0);
2803 return isl_set_params(set
);
2806 /* Assuming "cond" represents a bound on a loop where the loop
2807 * iterator "iv" is incremented (or decremented) by one, check if wrapping
2810 * Under the given assumptions, wrapping is only possible if "cond" allows
2811 * for the last value before wrapping, i.e., 2^width - 1 in case of an
2812 * increasing iterator and 0 in case of a decreasing iterator.
2814 static bool can_wrap(__isl_keep isl_set
*cond
, ValueDecl
*iv
,
2815 __isl_keep isl_val
*inc
)
2822 test
= isl_set_copy(cond
);
2824 ctx
= isl_set_get_ctx(test
);
2825 if (isl_val_is_neg(inc
))
2826 limit
= isl_val_zero(ctx
);
2828 limit
= isl_val_int_from_ui(ctx
, get_type_size(iv
));
2829 limit
= isl_val_2exp(limit
);
2830 limit
= isl_val_sub_ui(limit
, 1);
2833 test
= isl_set_fix_val(cond
, isl_dim_set
, 0, limit
);
2834 cw
= !isl_set_is_empty(test
);
2840 /* Given a one-dimensional space, construct the following affine expression
2843 * { [v] -> [v mod 2^width] }
2845 * where width is the number of bits used to represent the values
2846 * of the unsigned variable "iv".
2848 static __isl_give isl_aff
*compute_wrapping(__isl_take isl_space
*dim
,
2855 ctx
= isl_space_get_ctx(dim
);
2856 mod
= isl_val_int_from_ui(ctx
, get_type_size(iv
));
2857 mod
= isl_val_2exp(mod
);
2859 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(dim
));
2860 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_in
, 0, 1);
2861 aff
= isl_aff_mod_val(aff
, mod
);
2866 /* Project out the parameter "id" from "set".
2868 static __isl_give isl_set
*set_project_out_by_id(__isl_take isl_set
*set
,
2869 __isl_keep isl_id
*id
)
2873 pos
= isl_set_find_dim_by_id(set
, isl_dim_param
, id
);
2875 set
= isl_set_project_out(set
, isl_dim_param
, pos
, 1);
2880 /* Compute the set of parameters for which "set1" is a subset of "set2".
2882 * set1 is a subset of set2 if
2884 * forall i in set1 : i in set2
2888 * not exists i in set1 and i not in set2
2892 * not exists i in set1 \ set2
2894 static __isl_give isl_set
*enforce_subset(__isl_take isl_set
*set1
,
2895 __isl_take isl_set
*set2
)
2897 return isl_set_complement(isl_set_params(isl_set_subtract(set1
, set2
)));
2900 /* Compute the set of parameter values for which "cond" holds
2901 * on the next iteration for each element of "dom".
2903 * We first construct mapping { [i] -> [i + inc] }, apply that to "dom"
2904 * and then compute the set of parameters for which the result is a subset
2907 static __isl_give isl_set
*valid_on_next(__isl_take isl_set
*cond
,
2908 __isl_take isl_set
*dom
, __isl_take isl_val
*inc
)
2914 space
= isl_set_get_space(dom
);
2915 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(space
));
2916 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_in
, 0, 1);
2917 aff
= isl_aff_add_constant_val(aff
, inc
);
2918 next
= isl_map_from_basic_map(isl_basic_map_from_aff(aff
));
2920 dom
= isl_set_apply(dom
, next
);
2922 return enforce_subset(dom
, cond
);
2925 /* Construct a pet_scop for a for statement.
2926 * The for loop is required to be of the form
2928 * for (i = init; condition; ++i)
2932 * for (i = init; condition; --i)
2934 * The initialization of the for loop should either be an assignment
2935 * to an integer variable, or a declaration of such a variable with
2938 * The condition is allowed to contain nested accesses, provided
2939 * they are not being written to inside the body of the loop.
2940 * Otherwise, or if the condition is otherwise non-affine, the for loop is
2941 * essentially treated as a while loop, with iteration domain
2942 * { [i] : i >= init }.
2944 * We extract a pet_scop for the body and then embed it in a loop with
2945 * iteration domain and schedule
2947 * { [i] : i >= init and condition' }
2952 * { [i] : i <= init and condition' }
2955 * Where condition' is equal to condition if the latter is
2956 * a simple upper [lower] bound and a condition that is extended
2957 * to apply to all previous iterations otherwise.
2959 * If the condition is non-affine, then we drop the condition from the
2960 * iteration domain and instead create a separate statement
2961 * for evaluating the condition. The body is then filtered to depend
2962 * on the result of the condition evaluating to true on all iterations
2963 * up to the current iteration, while the evaluation the condition itself
2964 * is filtered to depend on the result of the condition evaluating to true
2965 * on all previous iterations.
2966 * The context of the scop representing the body is dropped
2967 * because we don't know how many times the body will be executed,
2970 * If the stride of the loop is not 1, then "i >= init" is replaced by
2972 * (exists a: i = init + stride * a and a >= 0)
2974 * If the loop iterator i is unsigned, then wrapping may occur.
2975 * We therefore use a virtual iterator instead that does not wrap.
2976 * However, the condition in the code applies
2977 * to the wrapped value, so we need to change condition(i)
2978 * into condition([i % 2^width]). Similarly, we replace all accesses
2979 * to the original iterator by the wrapping of the virtual iterator.
2980 * Note that there may be no need to perform this final wrapping
2981 * if the loop condition (after wrapping) satisfies certain conditions.
2982 * However, the is_simple_bound condition is not enough since it doesn't
2983 * check if there even is an upper bound.
2985 * Wrapping on unsigned iterators can be avoided entirely if
2986 * loop condition is simple, the loop iterator is incremented
2987 * [decremented] by one and the last value before wrapping cannot
2988 * possibly satisfy the loop condition.
2990 * Before extracting a pet_scop from the body we remove all
2991 * assignments in assigned_value to variables that are assigned
2992 * somewhere in the body of the loop.
2994 * Valid parameters for a for loop are those for which the initial
2995 * value itself, the increment on each domain iteration and
2996 * the condition on both the initial value and
2997 * the result of incrementing the iterator for each iteration of the domain
2999 * If the loop condition is non-affine, then we only consider validity
3000 * of the initial value.
3002 * If the body contains any break, then we keep track of it in "skip"
3003 * (if the skip condition is affine) or it is handled in scop_add_break
3004 * (if the skip condition is not affine).
3005 * Note that the affine break condition needs to be considered with
3006 * respect to previous iterations in the virtual domain (if any).
3008 * If we were only able to extract part of the body, then simply
3011 struct pet_scop
*PetScan::extract_for(ForStmt
*stmt
)
3013 BinaryOperator
*ass
;
3018 isl_local_space
*ls
;
3021 isl_set
*cond
= NULL
;
3022 isl_set
*skip
= NULL
;
3023 isl_id
*id
, *id_test
= NULL
, *id_break_test
;
3024 struct pet_scop
*scop
, *scop_cond
= NULL
;
3025 assigned_value_cache
cache(assigned_value
);
3032 bool has_affine_break
;
3034 isl_aff
*wrap
= NULL
;
3035 isl_pw_aff
*pa
, *pa_inc
, *init_val
;
3036 isl_set
*valid_init
;
3037 isl_set
*valid_cond
;
3038 isl_set
*valid_cond_init
;
3039 isl_set
*valid_cond_next
;
3043 if (!stmt
->getInit() && !stmt
->getCond() && !stmt
->getInc())
3044 return extract_infinite_for(stmt
);
3046 init
= stmt
->getInit();
3051 if ((ass
= initialization_assignment(init
)) != NULL
) {
3052 iv
= extract_induction_variable(ass
);
3055 lhs
= ass
->getLHS();
3056 rhs
= ass
->getRHS();
3057 } else if ((decl
= initialization_declaration(init
)) != NULL
) {
3058 VarDecl
*var
= extract_induction_variable(init
, decl
);
3062 rhs
= var
->getInit();
3063 lhs
= create_DeclRefExpr(var
);
3065 unsupported(stmt
->getInit());
3069 assigned_value
.erase(iv
);
3070 clear_assignments
clear(assigned_value
);
3071 clear
.TraverseStmt(stmt
->getBody());
3073 was_assigned
= assigned_value
.find(iv
) != assigned_value
.end();
3074 clear_assignment(assigned_value
, iv
);
3075 init_val
= extract_affine(rhs
);
3077 assigned_value
.erase(iv
);
3081 pa_inc
= extract_increment(stmt
, iv
);
3083 isl_pw_aff_free(init_val
);
3088 if (isl_pw_aff_n_piece(pa_inc
) != 1 ||
3089 isl_pw_aff_foreach_piece(pa_inc
, &extract_cst
, &inc
) < 0) {
3090 isl_pw_aff_free(init_val
);
3091 isl_pw_aff_free(pa_inc
);
3092 unsupported(stmt
->getInc());
3097 pa
= try_extract_nested_condition(stmt
->getCond());
3098 if (allow_nested
&& (!pa
|| pet_nested_any_in_pw_aff(pa
)))
3101 scop
= extract(stmt
->getBody());
3103 isl_pw_aff_free(init_val
);
3104 isl_pw_aff_free(pa_inc
);
3105 isl_pw_aff_free(pa
);
3110 valid_inc
= isl_pw_aff_domain(pa_inc
);
3112 is_unsigned
= iv
->getType()->isUnsignedIntegerType();
3114 id
= isl_id_alloc(ctx
, iv
->getName().str().c_str(), iv
);
3116 has_affine_break
= scop
&&
3117 pet_scop_has_affine_skip(scop
, pet_skip_later
);
3118 if (has_affine_break
)
3119 skip
= pet_scop_get_affine_skip_domain(scop
, pet_skip_later
);
3120 has_var_break
= scop
&& pet_scop_has_var_skip(scop
, pet_skip_later
);
3122 id_break_test
= pet_scop_get_skip_id(scop
, pet_skip_later
);
3124 if (pa
&& !is_nested_allowed(pa
, scop
)) {
3125 isl_pw_aff_free(pa
);
3129 if (!allow_nested
&& !pa
)
3130 pa
= try_extract_affine_condition(stmt
->getCond());
3131 valid_cond
= isl_pw_aff_domain(isl_pw_aff_copy(pa
));
3132 cond
= isl_pw_aff_non_zero_set(pa
);
3133 if (allow_nested
&& !cond
) {
3134 isl_multi_pw_aff
*test_index
;
3135 int save_n_stmt
= n_stmt
;
3136 test_index
= create_test_index(ctx
, n_test
++);
3138 scop_cond
= extract_non_affine_condition(stmt
->getCond(),
3139 n_stmt
++, isl_multi_pw_aff_copy(test_index
));
3140 n_stmt
= save_n_stmt
;
3141 scop_cond
= scop_add_array(scop_cond
, test_index
, ast_context
);
3142 id_test
= isl_multi_pw_aff_get_tuple_id(test_index
,
3144 isl_multi_pw_aff_free(test_index
);
3145 scop_cond
= pet_scop_prefix(scop_cond
, 0);
3146 scop
= pet_scop_reset_context(scop
);
3147 scop
= pet_scop_prefix(scop
, 1);
3148 cond
= isl_set_universe(isl_space_set_alloc(ctx
, 0, 0));
3151 cond
= embed(cond
, isl_id_copy(id
));
3152 skip
= embed(skip
, isl_id_copy(id
));
3153 valid_cond
= isl_set_coalesce(valid_cond
);
3154 valid_cond
= embed(valid_cond
, isl_id_copy(id
));
3155 valid_inc
= embed(valid_inc
, isl_id_copy(id
));
3156 is_one
= isl_val_is_one(inc
) || isl_val_is_negone(inc
);
3157 is_virtual
= is_unsigned
&& (!is_one
|| can_wrap(cond
, iv
, inc
));
3159 valid_cond_init
= enforce_subset(
3160 isl_set_from_pw_aff(isl_pw_aff_copy(init_val
)),
3161 isl_set_copy(valid_cond
));
3162 if (is_one
&& !is_virtual
) {
3163 isl_pw_aff_free(init_val
);
3164 pa
= extract_comparison(isl_val_is_pos(inc
) ? BO_GE
: BO_LE
,
3166 valid_init
= isl_pw_aff_domain(isl_pw_aff_copy(pa
));
3167 valid_init
= set_project_out_by_id(valid_init
, id
);
3168 domain
= isl_pw_aff_non_zero_set(pa
);
3170 valid_init
= isl_pw_aff_domain(isl_pw_aff_copy(init_val
));
3171 domain
= strided_domain(isl_id_copy(id
), init_val
,
3175 domain
= embed(domain
, isl_id_copy(id
));
3178 wrap
= compute_wrapping(isl_set_get_space(cond
), iv
);
3179 rev_wrap
= isl_map_from_aff(isl_aff_copy(wrap
));
3180 rev_wrap
= isl_map_reverse(rev_wrap
);
3181 cond
= isl_set_apply(cond
, isl_map_copy(rev_wrap
));
3182 skip
= isl_set_apply(skip
, isl_map_copy(rev_wrap
));
3183 valid_cond
= isl_set_apply(valid_cond
, isl_map_copy(rev_wrap
));
3184 valid_inc
= isl_set_apply(valid_inc
, rev_wrap
);
3186 is_simple
= is_simple_bound(cond
, inc
);
3188 cond
= isl_set_gist(cond
, isl_set_copy(domain
));
3189 is_simple
= is_simple_bound(cond
, inc
);
3192 cond
= valid_for_each_iteration(cond
,
3193 isl_set_copy(domain
), isl_val_copy(inc
));
3194 domain
= isl_set_intersect(domain
, cond
);
3195 if (has_affine_break
) {
3196 skip
= isl_set_intersect(skip
, isl_set_copy(domain
));
3197 skip
= after(skip
, isl_val_sgn(inc
));
3198 domain
= isl_set_subtract(domain
, skip
);
3200 domain
= isl_set_set_dim_id(domain
, isl_dim_set
, 0, isl_id_copy(id
));
3201 ls
= isl_local_space_from_space(isl_set_get_space(domain
));
3202 sched
= isl_aff_var_on_domain(ls
, isl_dim_set
, 0);
3203 if (isl_val_is_neg(inc
))
3204 sched
= isl_aff_neg(sched
);
3206 valid_cond_next
= valid_on_next(valid_cond
, isl_set_copy(domain
),
3208 valid_inc
= enforce_subset(isl_set_copy(domain
), valid_inc
);
3211 wrap
= identity_aff(domain
);
3213 scop_cond
= pet_scop_embed(scop_cond
, isl_set_copy(domain
),
3214 isl_aff_copy(sched
), isl_aff_copy(wrap
), isl_id_copy(id
));
3215 scop
= pet_scop_embed(scop
, isl_set_copy(domain
), sched
, wrap
, id
);
3216 scop
= resolve_nested(scop
);
3218 scop
= scop_add_break(scop
, id_break_test
, isl_set_copy(domain
),
3221 scop
= scop_add_while(scop_cond
, scop
, id_test
, domain
,
3223 isl_set_free(valid_inc
);
3225 scop
= pet_scop_restrict_context(scop
, valid_inc
);
3226 scop
= pet_scop_restrict_context(scop
, valid_cond_next
);
3227 scop
= pet_scop_restrict_context(scop
, valid_cond_init
);
3228 isl_set_free(domain
);
3230 clear_assignment(assigned_value
, iv
);
3234 scop
= pet_scop_restrict_context(scop
, valid_init
);
3239 /* Try and construct a pet_scop corresponding to a compound statement.
3241 * "skip_declarations" is set if we should skip initial declarations
3242 * in the children of the compound statements. This then implies
3243 * that this sequence of children should not be treated as a block
3244 * since the initial statements may be skipped.
3246 struct pet_scop
*PetScan::extract(CompoundStmt
*stmt
, bool skip_declarations
)
3248 return extract(stmt
->children(), !skip_declarations
, skip_declarations
);
3251 /* For each nested access parameter in "space",
3252 * construct a corresponding pet_expr, place it in args and
3253 * record its position in "param2pos".
3254 * "n_arg" is the number of elements that are already in args.
3255 * The position recorded in "param2pos" takes this number into account.
3256 * If the pet_expr corresponding to a parameter is identical to
3257 * the pet_expr corresponding to an earlier parameter, then these two
3258 * parameters are made to refer to the same element in args.
3260 * Return the final number of elements in args or -1 if an error has occurred.
3262 int PetScan::extract_nested(__isl_keep isl_space
*space
,
3263 int n_arg
, pet_expr
**args
, std::map
<int,int> ¶m2pos
)
3267 nparam
= isl_space_dim(space
, isl_dim_param
);
3268 for (int i
= 0; i
< nparam
; ++i
) {
3270 isl_id
*id
= isl_space_get_dim_id(space
, isl_dim_param
, i
);
3273 if (!pet_nested_in_id(id
)) {
3278 nested
= (Expr
*) isl_id_get_user(id
);
3279 args
[n_arg
] = extract_expr(nested
);
3284 for (j
= 0; j
< n_arg
; ++j
)
3285 if (pet_expr_is_equal(args
[j
], args
[n_arg
]))
3289 pet_expr_free(args
[n_arg
]);
3293 param2pos
[i
] = n_arg
++;
3299 /* For each nested access parameter in the access relations in "expr",
3300 * construct a corresponding pet_expr, place it in the arguments of "expr"
3301 * and record its position in "param2pos".
3302 * n is the number of nested access parameters.
3304 __isl_give pet_expr
*PetScan::extract_nested(__isl_take pet_expr
*expr
, int n
,
3305 std::map
<int,int> ¶m2pos
)
3311 args
= isl_calloc_array(ctx
, pet_expr
*, n
);
3313 return pet_expr_free(expr
);
3315 space
= pet_expr_access_get_parameter_space(expr
);
3316 n
= extract_nested(space
, 0, args
, param2pos
);
3317 isl_space_free(space
);
3320 expr
= pet_expr_free(expr
);
3322 expr
= pet_expr_set_n_arg(expr
, n
);
3324 for (i
= 0; i
< n
; ++i
)
3325 expr
= pet_expr_set_arg(expr
, i
, args
[i
]);
3331 /* Look for parameters in any access relation in "expr" that
3332 * refer to nested accesses. In particular, these are
3333 * parameters with no name.
3335 * If there are any such parameters, then the domain of the index
3336 * expression and the access relation, which is still [] at this point,
3337 * is replaced by [[] -> [t_1,...,t_n]], with n the number of these parameters
3338 * (after identifying identical nested accesses).
3340 * This transformation is performed in several steps.
3341 * We first extract the arguments in extract_nested.
3342 * param2pos maps the original parameter position to the position
3344 * Then we move these parameters to input dimensions.
3345 * t2pos maps the positions of these temporary input dimensions
3346 * to the positions of the corresponding arguments.
3347 * Finally, we express these temporary dimensions in terms of the domain
3348 * [[] -> [t_1,...,t_n]] and precompose index expression and access
3349 * relations with this function.
3351 __isl_give pet_expr
*PetScan::resolve_nested(__isl_take pet_expr
*expr
)
3356 isl_local_space
*ls
;
3359 std::map
<int,int> param2pos
;
3360 std::map
<int,int> t2pos
;
3365 n
= pet_expr_get_n_arg(expr
);
3366 for (int i
= 0; i
< n
; ++i
) {
3368 arg
= pet_expr_get_arg(expr
, i
);
3369 arg
= resolve_nested(arg
);
3370 expr
= pet_expr_set_arg(expr
, i
, arg
);
3373 if (pet_expr_get_type(expr
) != pet_expr_access
)
3376 space
= pet_expr_access_get_parameter_space(expr
);
3377 n
= pet_nested_n_in_space(space
);
3378 isl_space_free(space
);
3382 expr
= extract_nested(expr
, n
, param2pos
);
3386 expr
= pet_expr_access_align_params(expr
);
3391 space
= pet_expr_access_get_parameter_space(expr
);
3392 nparam
= isl_space_dim(space
, isl_dim_param
);
3393 for (int i
= nparam
- 1; i
>= 0; --i
) {
3394 isl_id
*id
= isl_space_get_dim_id(space
, isl_dim_param
, i
);
3395 if (!pet_nested_in_id(id
)) {
3400 expr
= pet_expr_access_move_dims(expr
,
3401 isl_dim_in
, n
, isl_dim_param
, i
, 1);
3402 t2pos
[n
] = param2pos
[i
];
3407 isl_space_free(space
);
3409 space
= pet_expr_access_get_parameter_space(expr
);
3410 space
= isl_space_set_from_params(space
);
3411 space
= isl_space_add_dims(space
, isl_dim_set
,
3412 pet_expr_get_n_arg(expr
));
3413 space
= isl_space_wrap(isl_space_from_range(space
));
3414 ls
= isl_local_space_from_space(isl_space_copy(space
));
3415 space
= isl_space_from_domain(space
);
3416 space
= isl_space_add_dims(space
, isl_dim_out
, n
);
3417 ma
= isl_multi_aff_zero(space
);
3419 for (int i
= 0; i
< n
; ++i
) {
3420 aff
= isl_aff_var_on_domain(isl_local_space_copy(ls
),
3421 isl_dim_set
, t2pos
[i
]);
3422 ma
= isl_multi_aff_set_aff(ma
, i
, aff
);
3424 isl_local_space_free(ls
);
3426 expr
= pet_expr_access_pullback_multi_aff(expr
, ma
);
3431 /* Return the file offset of the expansion location of "Loc".
3433 static unsigned getExpansionOffset(SourceManager
&SM
, SourceLocation Loc
)
3435 return SM
.getFileOffset(SM
.getExpansionLoc(Loc
));
3438 #ifdef HAVE_FINDLOCATIONAFTERTOKEN
3440 /* Return a SourceLocation for the location after the first semicolon
3441 * after "loc". If Lexer::findLocationAfterToken is available, we simply
3442 * call it and also skip trailing spaces and newline.
3444 static SourceLocation
location_after_semi(SourceLocation loc
, SourceManager
&SM
,
3445 const LangOptions
&LO
)
3447 return Lexer::findLocationAfterToken(loc
, tok::semi
, SM
, LO
, true);
3452 /* Return a SourceLocation for the location after the first semicolon
3453 * after "loc". If Lexer::findLocationAfterToken is not available,
3454 * we look in the underlying character data for the first semicolon.
3456 static SourceLocation
location_after_semi(SourceLocation loc
, SourceManager
&SM
,
3457 const LangOptions
&LO
)
3460 const char *s
= SM
.getCharacterData(loc
);
3462 semi
= strchr(s
, ';');
3464 return SourceLocation();
3465 return loc
.getFileLocWithOffset(semi
+ 1 - s
);
3470 /* If the token at "loc" is the first token on the line, then return
3471 * a location referring to the start of the line.
3472 * Otherwise, return "loc".
3474 * This function is used to extend a scop to the start of the line
3475 * if the first token of the scop is also the first token on the line.
3477 * We look for the first token on the line. If its location is equal to "loc",
3478 * then the latter is the location of the first token on the line.
3480 static SourceLocation
move_to_start_of_line_if_first_token(SourceLocation loc
,
3481 SourceManager
&SM
, const LangOptions
&LO
)
3483 std::pair
<FileID
, unsigned> file_offset_pair
;
3484 llvm::StringRef file
;
3487 SourceLocation token_loc
, line_loc
;
3490 loc
= SM
.getExpansionLoc(loc
);
3491 col
= SM
.getExpansionColumnNumber(loc
);
3492 line_loc
= loc
.getLocWithOffset(1 - col
);
3493 file_offset_pair
= SM
.getDecomposedLoc(line_loc
);
3494 file
= SM
.getBufferData(file_offset_pair
.first
, NULL
);
3495 pos
= file
.data() + file_offset_pair
.second
;
3497 Lexer
lexer(SM
.getLocForStartOfFile(file_offset_pair
.first
), LO
,
3498 file
.begin(), pos
, file
.end());
3499 lexer
.LexFromRawLexer(tok
);
3500 token_loc
= tok
.getLocation();
3502 if (token_loc
== loc
)
3508 /* Update start and end of "scop" to include the region covered by "range".
3509 * If "skip_semi" is set, then we assume "range" is followed by
3510 * a semicolon and also include this semicolon.
3512 struct pet_scop
*PetScan::update_scop_start_end(struct pet_scop
*scop
,
3513 SourceRange range
, bool skip_semi
)
3515 SourceLocation loc
= range
.getBegin();
3516 SourceManager
&SM
= PP
.getSourceManager();
3517 const LangOptions
&LO
= PP
.getLangOpts();
3518 unsigned start
, end
;
3520 loc
= move_to_start_of_line_if_first_token(loc
, SM
, LO
);
3521 start
= getExpansionOffset(SM
, loc
);
3522 loc
= range
.getEnd();
3524 loc
= location_after_semi(loc
, SM
, LO
);
3526 loc
= PP
.getLocForEndOfToken(loc
);
3527 end
= getExpansionOffset(SM
, loc
);
3529 scop
= pet_scop_update_start_end(scop
, start
, end
);
3533 /* Convert a top-level pet_expr to a pet_scop with one statement.
3534 * This mainly involves resolving nested expression parameters
3535 * and setting the name of the iteration space.
3536 * The name is given by "label" if it is non-NULL. Otherwise,
3537 * it is of the form S_<n_stmt>.
3538 * start and end of the pet_scop are derived from those of "stmt".
3539 * If "stmt" is an expression statement, then its range does not
3540 * include the semicolon, while it should be included in the pet_scop.
3542 struct pet_scop
*PetScan::extract(Stmt
*stmt
, __isl_take pet_expr
*expr
,
3543 __isl_take isl_id
*label
)
3545 struct pet_stmt
*ps
;
3546 struct pet_scop
*scop
;
3547 SourceLocation loc
= stmt
->getLocStart();
3548 int line
= PP
.getSourceManager().getExpansionLineNumber(loc
);
3551 expr
= resolve_nested(expr
);
3552 ps
= pet_stmt_from_pet_expr(line
, label
, n_stmt
++, expr
);
3553 scop
= pet_scop_from_pet_stmt(ctx
, ps
);
3555 skip_semi
= isa
<Expr
>(stmt
);
3556 scop
= update_scop_start_end(scop
, stmt
->getSourceRange(), skip_semi
);
3560 /* Check if we can extract an affine expression from "expr".
3561 * Return the expressions as an isl_pw_aff if we can and NULL otherwise.
3562 * We turn on autodetection so that we won't generate any warnings
3563 * and turn off nesting, so that we won't accept any non-affine constructs.
3565 __isl_give isl_pw_aff
*PetScan::try_extract_affine(Expr
*expr
)
3568 int save_autodetect
= options
->autodetect
;
3569 bool save_nesting
= nesting_enabled
;
3571 options
->autodetect
= 1;
3572 nesting_enabled
= false;
3574 pwaff
= extract_affine(expr
);
3576 options
->autodetect
= save_autodetect
;
3577 nesting_enabled
= save_nesting
;
3582 /* Check if we can extract an affine constraint from "expr".
3583 * Return the constraint as an isl_set if we can and NULL otherwise.
3584 * We turn on autodetection so that we won't generate any warnings
3585 * and turn off nesting, so that we won't accept any non-affine constructs.
3587 __isl_give isl_pw_aff
*PetScan::try_extract_affine_condition(Expr
*expr
)
3590 int save_autodetect
= options
->autodetect
;
3591 bool save_nesting
= nesting_enabled
;
3593 options
->autodetect
= 1;
3594 nesting_enabled
= false;
3596 cond
= extract_condition(expr
);
3598 options
->autodetect
= save_autodetect
;
3599 nesting_enabled
= save_nesting
;
3604 /* Check whether "expr" is an affine constraint.
3606 bool PetScan::is_affine_condition(Expr
*expr
)
3610 cond
= try_extract_affine_condition(expr
);
3611 isl_pw_aff_free(cond
);
3613 return cond
!= NULL
;
3616 /* Check if we can extract a condition from "expr".
3617 * Return the condition as an isl_pw_aff if we can and NULL otherwise.
3618 * If allow_nested is set, then the condition may involve parameters
3619 * corresponding to nested accesses.
3620 * We turn on autodetection so that we won't generate any warnings.
3622 __isl_give isl_pw_aff
*PetScan::try_extract_nested_condition(Expr
*expr
)
3625 int save_autodetect
= options
->autodetect
;
3626 bool save_nesting
= nesting_enabled
;
3628 options
->autodetect
= 1;
3629 nesting_enabled
= allow_nested
;
3630 cond
= extract_condition(expr
);
3632 options
->autodetect
= save_autodetect
;
3633 nesting_enabled
= save_nesting
;
3638 /* If the top-level expression of "stmt" is an assignment, then
3639 * return that assignment as a BinaryOperator.
3640 * Otherwise return NULL.
3642 static BinaryOperator
*top_assignment_or_null(Stmt
*stmt
)
3644 BinaryOperator
*ass
;
3648 if (stmt
->getStmtClass() != Stmt::BinaryOperatorClass
)
3651 ass
= cast
<BinaryOperator
>(stmt
);
3652 if(ass
->getOpcode() != BO_Assign
)
3658 /* Check if the given if statement is a conditional assignement
3659 * with a non-affine condition. If so, construct a pet_scop
3660 * corresponding to this conditional assignment. Otherwise return NULL.
3662 * In particular we check if "stmt" is of the form
3669 * where a is some array or scalar access.
3670 * The constructed pet_scop then corresponds to the expression
3672 * a = condition ? f(...) : g(...)
3674 * All access relations in f(...) are intersected with condition
3675 * while all access relation in g(...) are intersected with the complement.
3677 struct pet_scop
*PetScan::extract_conditional_assignment(IfStmt
*stmt
)
3679 BinaryOperator
*ass_then
, *ass_else
;
3680 isl_multi_pw_aff
*write_then
, *write_else
;
3681 isl_set
*cond
, *comp
;
3682 isl_multi_pw_aff
*index
;
3686 pet_expr
*pe_cond
, *pe_then
, *pe_else
, *pe
, *pe_write
;
3687 bool save_nesting
= nesting_enabled
;
3689 if (!options
->detect_conditional_assignment
)
3692 ass_then
= top_assignment_or_null(stmt
->getThen());
3693 ass_else
= top_assignment_or_null(stmt
->getElse());
3695 if (!ass_then
|| !ass_else
)
3698 if (is_affine_condition(stmt
->getCond()))
3701 write_then
= extract_index(ass_then
->getLHS());
3702 write_else
= extract_index(ass_else
->getLHS());
3704 equal
= isl_multi_pw_aff_plain_is_equal(write_then
, write_else
);
3705 isl_multi_pw_aff_free(write_else
);
3706 if (equal
< 0 || !equal
) {
3707 isl_multi_pw_aff_free(write_then
);
3711 nesting_enabled
= allow_nested
;
3712 pa
= extract_condition(stmt
->getCond());
3713 nesting_enabled
= save_nesting
;
3714 cond
= isl_pw_aff_non_zero_set(isl_pw_aff_copy(pa
));
3715 comp
= isl_pw_aff_zero_set(isl_pw_aff_copy(pa
));
3716 index
= isl_multi_pw_aff_from_range(isl_multi_pw_aff_from_pw_aff(pa
));
3718 pe_cond
= pet_expr_from_index(index
);
3720 pe_then
= extract_expr(ass_then
->getRHS());
3721 pe_then
= pet_expr_restrict(pe_then
, cond
);
3722 pe_else
= extract_expr(ass_else
->getRHS());
3723 pe_else
= pet_expr_restrict(pe_else
, comp
);
3725 pe
= pet_expr_new_ternary(pe_cond
, pe_then
, pe_else
);
3726 type_size
= get_type_size(ass_then
->getType(), ast_context
);
3727 pe_write
= pet_expr_from_index_and_depth(type_size
, write_then
,
3728 extract_depth(write_then
));
3729 pe_write
= pet_expr_access_set_write(pe_write
, 1);
3730 pe_write
= pet_expr_access_set_read(pe_write
, 0);
3731 pe
= pet_expr_new_binary(type_size
, pet_op_assign
, pe_write
, pe
);
3732 return extract(stmt
, pe
);
3735 /* Create a pet_scop with a single statement with name S_<stmt_nr>,
3736 * evaluating "cond" and writing the result to a virtual scalar,
3737 * as expressed by "index".
3739 struct pet_scop
*PetScan::extract_non_affine_condition(Expr
*cond
, int stmt_nr
,
3740 __isl_take isl_multi_pw_aff
*index
)
3742 pet_expr
*expr
, *write
;
3743 struct pet_stmt
*ps
;
3744 SourceLocation loc
= cond
->getLocStart();
3745 int line
= PP
.getSourceManager().getExpansionLineNumber(loc
);
3747 write
= pet_expr_from_index(index
);
3748 write
= pet_expr_access_set_write(write
, 1);
3749 write
= pet_expr_access_set_read(write
, 0);
3750 expr
= extract_expr(cond
);
3751 expr
= resolve_nested(expr
);
3752 expr
= pet_expr_new_binary(1, pet_op_assign
, write
, expr
);
3753 ps
= pet_stmt_from_pet_expr(line
, NULL
, stmt_nr
, expr
);
3754 return pet_scop_from_pet_stmt(ctx
, ps
);
3758 static __isl_give pet_expr
*embed_access(__isl_take pet_expr
*expr
,
3762 /* Precompose the access relation and the index expression associated
3763 * to "expr" with the function pointed to by "user",
3764 * thereby embedding the access relation in the domain of this function.
3765 * The initial domain of the access relation and the index expression
3766 * is the zero-dimensional domain.
3768 static __isl_give pet_expr
*embed_access(__isl_take pet_expr
*expr
, void *user
)
3770 isl_multi_aff
*ma
= (isl_multi_aff
*) user
;
3772 return pet_expr_access_pullback_multi_aff(expr
, isl_multi_aff_copy(ma
));
3775 /* Precompose all access relations in "expr" with "ma", thereby
3776 * embedding them in the domain of "ma".
3778 static __isl_give pet_expr
*embed(__isl_take pet_expr
*expr
,
3779 __isl_keep isl_multi_aff
*ma
)
3781 return pet_expr_map_access(expr
, &embed_access
, ma
);
3784 /* For each nested access parameter in the domain of "stmt",
3785 * construct a corresponding pet_expr, place it before the original
3786 * elements in stmt->args and record its position in "param2pos".
3787 * n is the number of nested access parameters.
3789 struct pet_stmt
*PetScan::extract_nested(struct pet_stmt
*stmt
, int n
,
3790 std::map
<int,int> ¶m2pos
)
3797 n_arg
= stmt
->n_arg
;
3798 args
= isl_calloc_array(ctx
, pet_expr
*, n
+ n_arg
);
3802 space
= isl_set_get_space(stmt
->domain
);
3803 n_arg
= extract_nested(space
, 0, args
, param2pos
);
3804 isl_space_free(space
);
3809 for (i
= 0; i
< stmt
->n_arg
; ++i
)
3810 args
[n_arg
+ i
] = stmt
->args
[i
];
3813 stmt
->n_arg
+= n_arg
;
3818 for (i
= 0; i
< n
; ++i
)
3819 pet_expr_free(args
[i
]);
3822 pet_stmt_free(stmt
);
3826 /* Check whether any of the arguments i of "stmt" starting at position "n"
3827 * is equal to one of the first "n" arguments j.
3828 * If so, combine the constraints on arguments i and j and remove
3831 static struct pet_stmt
*remove_duplicate_arguments(struct pet_stmt
*stmt
, int n
)
3840 if (n
== stmt
->n_arg
)
3843 map
= isl_set_unwrap(stmt
->domain
);
3845 for (i
= stmt
->n_arg
- 1; i
>= n
; --i
) {
3846 for (j
= 0; j
< n
; ++j
)
3847 if (pet_expr_is_equal(stmt
->args
[i
], stmt
->args
[j
]))
3852 map
= isl_map_equate(map
, isl_dim_out
, i
, isl_dim_out
, j
);
3853 map
= isl_map_project_out(map
, isl_dim_out
, i
, 1);
3855 pet_expr_free(stmt
->args
[i
]);
3856 for (j
= i
; j
+ 1 < stmt
->n_arg
; ++j
)
3857 stmt
->args
[j
] = stmt
->args
[j
+ 1];
3861 stmt
->domain
= isl_map_wrap(map
);
3866 pet_stmt_free(stmt
);
3870 /* Look for parameters in the iteration domain of "stmt" that
3871 * refer to nested accesses. In particular, these are
3872 * parameters with no name.
3874 * If there are any such parameters, then as many extra variables
3875 * (after identifying identical nested accesses) are inserted in the
3876 * range of the map wrapped inside the domain, before the original variables.
3877 * If the original domain is not a wrapped map, then a new wrapped
3878 * map is created with zero output dimensions.
3879 * The parameters are then equated to the corresponding output dimensions
3880 * and subsequently projected out, from the iteration domain,
3881 * the schedule and the access relations.
3882 * For each of the output dimensions, a corresponding argument
3883 * expression is inserted. Initially they are created with
3884 * a zero-dimensional domain, so they have to be embedded
3885 * in the current iteration domain.
3886 * param2pos maps the position of the parameter to the position
3887 * of the corresponding output dimension in the wrapped map.
3889 struct pet_stmt
*PetScan::resolve_nested(struct pet_stmt
*stmt
)
3897 std::map
<int,int> param2pos
;
3902 n
= pet_nested_n_in_set(stmt
->domain
);
3906 n_arg
= stmt
->n_arg
;
3907 stmt
= extract_nested(stmt
, n
, param2pos
);
3911 n
= stmt
->n_arg
- n_arg
;
3912 nparam
= isl_set_dim(stmt
->domain
, isl_dim_param
);
3913 if (isl_set_is_wrapping(stmt
->domain
))
3914 map
= isl_set_unwrap(stmt
->domain
);
3916 map
= isl_map_from_domain(stmt
->domain
);
3917 map
= isl_map_insert_dims(map
, isl_dim_out
, 0, n
);
3919 for (int i
= nparam
- 1; i
>= 0; --i
) {
3922 if (!pet_nested_in_map(map
, i
))
3925 id
= pet_expr_access_get_id(stmt
->args
[param2pos
[i
]]);
3926 map
= isl_map_set_dim_id(map
, isl_dim_out
, param2pos
[i
], id
);
3927 map
= isl_map_equate(map
, isl_dim_param
, i
, isl_dim_out
,
3929 map
= isl_map_project_out(map
, isl_dim_param
, i
, 1);
3932 stmt
->domain
= isl_map_wrap(map
);
3934 space
= isl_space_unwrap(isl_set_get_space(stmt
->domain
));
3935 space
= isl_space_from_domain(isl_space_domain(space
));
3936 ma
= isl_multi_aff_zero(space
);
3937 for (int pos
= 0; pos
< n
; ++pos
)
3938 stmt
->args
[pos
] = embed(stmt
->args
[pos
], ma
);
3939 isl_multi_aff_free(ma
);
3941 stmt
= pet_stmt_remove_nested_parameters(stmt
);
3942 stmt
= remove_duplicate_arguments(stmt
, n
);
3947 /* For each statement in "scop", move the parameters that correspond
3948 * to nested access into the ranges of the domains and create
3949 * corresponding argument expressions.
3951 struct pet_scop
*PetScan::resolve_nested(struct pet_scop
*scop
)
3956 for (int i
= 0; i
< scop
->n_stmt
; ++i
) {
3957 scop
->stmts
[i
] = resolve_nested(scop
->stmts
[i
]);
3958 if (!scop
->stmts
[i
])
3964 pet_scop_free(scop
);
3968 /* Given an access expression "expr", is the variable accessed by
3969 * "expr" assigned anywhere inside "scop"?
3971 static bool is_assigned(__isl_keep pet_expr
*expr
, pet_scop
*scop
)
3973 bool assigned
= false;
3976 id
= pet_expr_access_get_id(expr
);
3977 assigned
= pet_scop_writes(scop
, id
);
3983 /* Are all nested access parameters in "pa" allowed given "scop".
3984 * In particular, is none of them written by anywhere inside "scop".
3986 * If "scop" has any skip conditions, then no nested access parameters
3987 * are allowed. In particular, if there is any nested access in a guard
3988 * for a piece of code containing a "continue", then we want to introduce
3989 * a separate statement for evaluating this guard so that we can express
3990 * that the result is false for all previous iterations.
3992 bool PetScan::is_nested_allowed(__isl_keep isl_pw_aff
*pa
, pet_scop
*scop
)
3999 if (!pet_nested_any_in_pw_aff(pa
))
4002 if (pet_scop_has_skip(scop
, pet_skip_now
))
4005 nparam
= isl_pw_aff_dim(pa
, isl_dim_param
);
4006 for (int i
= 0; i
< nparam
; ++i
) {
4008 isl_id
*id
= isl_pw_aff_get_dim_id(pa
, isl_dim_param
, i
);
4012 if (!pet_nested_in_id(id
)) {
4017 nested
= (Expr
*) isl_id_get_user(id
);
4018 expr
= extract_expr(nested
);
4019 allowed
= pet_expr_get_type(expr
) == pet_expr_access
&&
4020 !is_assigned(expr
, scop
);
4022 pet_expr_free(expr
);
4032 /* Do we need to construct a skip condition of the given type
4033 * on an if statement, given that the if condition is non-affine?
4035 * pet_scop_filter_skip can only handle the case where the if condition
4036 * holds (the then branch) and the skip condition is universal.
4037 * In any other case, we need to construct a new skip condition.
4039 static bool need_skip(struct pet_scop
*scop_then
, struct pet_scop
*scop_else
,
4040 bool have_else
, enum pet_skip type
)
4042 if (have_else
&& scop_else
&& pet_scop_has_skip(scop_else
, type
))
4044 if (scop_then
&& pet_scop_has_skip(scop_then
, type
) &&
4045 !pet_scop_has_universal_skip(scop_then
, type
))
4050 /* Do we need to construct a skip condition of the given type
4051 * on an if statement, given that the if condition is affine?
4053 * There is no need to construct a new skip condition if all
4054 * the skip conditions are affine.
4056 static bool need_skip_aff(struct pet_scop
*scop_then
,
4057 struct pet_scop
*scop_else
, bool have_else
, enum pet_skip type
)
4059 if (scop_then
&& pet_scop_has_var_skip(scop_then
, type
))
4061 if (have_else
&& scop_else
&& pet_scop_has_var_skip(scop_else
, type
))
4066 /* Do we need to construct a skip condition of the given type
4067 * on an if statement?
4069 static bool need_skip(struct pet_scop
*scop_then
, struct pet_scop
*scop_else
,
4070 bool have_else
, enum pet_skip type
, bool affine
)
4073 return need_skip_aff(scop_then
, scop_else
, have_else
, type
);
4075 return need_skip(scop_then
, scop_else
, have_else
, type
);
4078 /* Construct an affine expression pet_expr that evaluates
4079 * to the constant "val".
4081 static __isl_give pet_expr
*universally(isl_ctx
*ctx
, int val
)
4083 isl_local_space
*ls
;
4085 isl_multi_pw_aff
*mpa
;
4087 ls
= isl_local_space_from_space(isl_space_set_alloc(ctx
, 0, 0));
4088 aff
= isl_aff_val_on_domain(ls
, isl_val_int_from_si(ctx
, val
));
4089 mpa
= isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff
));
4091 return pet_expr_from_index(mpa
);
4094 /* Construct an affine expression pet_expr that evaluates
4095 * to the constant 1.
4097 static __isl_give pet_expr
*universally_true(isl_ctx
*ctx
)
4099 return universally(ctx
, 1);
4102 /* Construct an affine expression pet_expr that evaluates
4103 * to the constant 0.
4105 static __isl_give pet_expr
*universally_false(isl_ctx
*ctx
)
4107 return universally(ctx
, 0);
4110 /* Given an index expression "test_index" for the if condition,
4111 * an index expression "skip_index" for the skip condition and
4112 * scops for the then and else branches, construct a scop for
4113 * computing "skip_index".
4115 * The computed scop contains a single statement that essentially does
4117 * skip_index = test_cond ? skip_cond_then : skip_cond_else
4119 * If the skip conditions of the then and/or else branch are not affine,
4120 * then they need to be filtered by test_index.
4121 * If they are missing, then this means the skip condition is false.
4123 * Since we are constructing a skip condition for the if statement,
4124 * the skip conditions on the then and else branches are removed.
4126 static struct pet_scop
*extract_skip(PetScan
*scan
,
4127 __isl_take isl_multi_pw_aff
*test_index
,
4128 __isl_take isl_multi_pw_aff
*skip_index
,
4129 struct pet_scop
*scop_then
, struct pet_scop
*scop_else
, bool have_else
,
4132 pet_expr
*expr_then
, *expr_else
, *expr
, *expr_skip
;
4133 struct pet_stmt
*stmt
;
4134 struct pet_scop
*scop
;
4135 isl_ctx
*ctx
= scan
->ctx
;
4139 if (have_else
&& !scop_else
)
4142 if (pet_scop_has_skip(scop_then
, type
)) {
4143 expr_then
= pet_scop_get_skip_expr(scop_then
, type
);
4144 pet_scop_reset_skip(scop_then
, type
);
4145 if (!pet_expr_is_affine(expr_then
))
4146 expr_then
= pet_expr_filter(expr_then
,
4147 isl_multi_pw_aff_copy(test_index
), 1);
4149 expr_then
= universally_false(ctx
);
4151 if (have_else
&& pet_scop_has_skip(scop_else
, type
)) {
4152 expr_else
= pet_scop_get_skip_expr(scop_else
, type
);
4153 pet_scop_reset_skip(scop_else
, type
);
4154 if (!pet_expr_is_affine(expr_else
))
4155 expr_else
= pet_expr_filter(expr_else
,
4156 isl_multi_pw_aff_copy(test_index
), 0);
4158 expr_else
= universally_false(ctx
);
4160 expr
= pet_expr_from_index(test_index
);
4161 expr
= pet_expr_new_ternary(expr
, expr_then
, expr_else
);
4162 expr_skip
= pet_expr_from_index(isl_multi_pw_aff_copy(skip_index
));
4163 expr_skip
= pet_expr_access_set_write(expr_skip
, 1);
4164 expr_skip
= pet_expr_access_set_read(expr_skip
, 0);
4165 expr
= pet_expr_new_binary(1, pet_op_assign
, expr_skip
, expr
);
4166 stmt
= pet_stmt_from_pet_expr(-1, NULL
, scan
->n_stmt
++, expr
);
4168 scop
= pet_scop_from_pet_stmt(ctx
, stmt
);
4169 scop
= scop_add_array(scop
, skip_index
, scan
->ast_context
);
4170 isl_multi_pw_aff_free(skip_index
);
4174 isl_multi_pw_aff_free(test_index
);
4175 isl_multi_pw_aff_free(skip_index
);
4179 /* Is scop's skip_now condition equal to its skip_later condition?
4180 * In particular, this means that it either has no skip_now condition
4181 * or both a skip_now and a skip_later condition (that are equal to each other).
4183 static bool skip_equals_skip_later(struct pet_scop
*scop
)
4185 int has_skip_now
, has_skip_later
;
4187 isl_multi_pw_aff
*skip_now
, *skip_later
;
4191 has_skip_now
= pet_scop_has_skip(scop
, pet_skip_now
);
4192 has_skip_later
= pet_scop_has_skip(scop
, pet_skip_later
);
4193 if (has_skip_now
!= has_skip_later
)
4198 skip_now
= pet_scop_get_skip(scop
, pet_skip_now
);
4199 skip_later
= pet_scop_get_skip(scop
, pet_skip_later
);
4200 equal
= isl_multi_pw_aff_is_equal(skip_now
, skip_later
);
4201 isl_multi_pw_aff_free(skip_now
);
4202 isl_multi_pw_aff_free(skip_later
);
4207 /* Drop the skip conditions of type pet_skip_later from scop1 and scop2.
4209 static void drop_skip_later(struct pet_scop
*scop1
, struct pet_scop
*scop2
)
4211 pet_scop_reset_skip(scop1
, pet_skip_later
);
4212 pet_scop_reset_skip(scop2
, pet_skip_later
);
4215 /* Structure that handles the construction of skip conditions.
4217 * scop_then and scop_else represent the then and else branches
4218 * of the if statement
4220 * skip[type] is true if we need to construct a skip condition of that type
4221 * equal is set if the skip conditions of types pet_skip_now and pet_skip_later
4222 * are equal to each other
4223 * index[type] is an index expression from a zero-dimension domain
4224 * to the virtual array representing the skip condition
4225 * scop[type] is a scop for computing the skip condition
4227 struct pet_skip_info
{
4232 isl_multi_pw_aff
*index
[2];
4233 struct pet_scop
*scop
[2];
4235 pet_skip_info(isl_ctx
*ctx
) : ctx(ctx
) {}
4237 operator bool() { return skip
[pet_skip_now
] || skip
[pet_skip_later
]; }
4240 /* Structure that handles the construction of skip conditions on if statements.
4242 * scop_then and scop_else represent the then and else branches
4243 * of the if statement
4245 struct pet_skip_info_if
: public pet_skip_info
{
4246 struct pet_scop
*scop_then
, *scop_else
;
4249 pet_skip_info_if(isl_ctx
*ctx
, struct pet_scop
*scop_then
,
4250 struct pet_scop
*scop_else
, bool have_else
, bool affine
);
4251 void extract(PetScan
*scan
, __isl_keep isl_multi_pw_aff
*index
,
4252 enum pet_skip type
);
4253 void extract(PetScan
*scan
, __isl_keep isl_multi_pw_aff
*index
);
4254 void extract(PetScan
*scan
, __isl_keep isl_pw_aff
*cond
);
4255 struct pet_scop
*add(struct pet_scop
*scop
, enum pet_skip type
,
4257 struct pet_scop
*add(struct pet_scop
*scop
, int offset
);
4260 /* Initialize a pet_skip_info_if structure based on the then and else branches
4261 * and based on whether the if condition is affine or not.
4263 pet_skip_info_if::pet_skip_info_if(isl_ctx
*ctx
, struct pet_scop
*scop_then
,
4264 struct pet_scop
*scop_else
, bool have_else
, bool affine
) :
4265 pet_skip_info(ctx
), scop_then(scop_then
), scop_else(scop_else
),
4266 have_else(have_else
)
4268 skip
[pet_skip_now
] =
4269 need_skip(scop_then
, scop_else
, have_else
, pet_skip_now
, affine
);
4270 equal
= skip
[pet_skip_now
] && skip_equals_skip_later(scop_then
) &&
4271 (!have_else
|| skip_equals_skip_later(scop_else
));
4272 skip
[pet_skip_later
] = skip
[pet_skip_now
] && !equal
&&
4273 need_skip(scop_then
, scop_else
, have_else
, pet_skip_later
, affine
);
4276 /* If we need to construct a skip condition of the given type,
4279 * "mpa" represents the if condition.
4281 void pet_skip_info_if::extract(PetScan
*scan
,
4282 __isl_keep isl_multi_pw_aff
*mpa
, enum pet_skip type
)
4289 ctx
= isl_multi_pw_aff_get_ctx(mpa
);
4290 index
[type
] = create_test_index(ctx
, scan
->n_test
++);
4291 scop
[type
] = extract_skip(scan
, isl_multi_pw_aff_copy(mpa
),
4292 isl_multi_pw_aff_copy(index
[type
]),
4293 scop_then
, scop_else
, have_else
, type
);
4296 /* Construct the required skip conditions, given the if condition "index".
4298 void pet_skip_info_if::extract(PetScan
*scan
,
4299 __isl_keep isl_multi_pw_aff
*index
)
4301 extract(scan
, index
, pet_skip_now
);
4302 extract(scan
, index
, pet_skip_later
);
4304 drop_skip_later(scop_then
, scop_else
);
4307 /* Construct the required skip conditions, given the if condition "cond".
4309 void pet_skip_info_if::extract(PetScan
*scan
, __isl_keep isl_pw_aff
*cond
)
4311 isl_multi_pw_aff
*test
;
4313 if (!skip
[pet_skip_now
] && !skip
[pet_skip_later
])
4316 test
= isl_multi_pw_aff_from_pw_aff(isl_pw_aff_copy(cond
));
4317 test
= isl_multi_pw_aff_from_range(test
);
4318 extract(scan
, test
);
4319 isl_multi_pw_aff_free(test
);
4322 /* Add the computed skip condition of the give type to "main" and
4323 * add the scop for computing the condition at the given offset.
4325 * If equal is set, then we only computed a skip condition for pet_skip_now,
4326 * but we also need to set it as main's pet_skip_later.
4328 struct pet_scop
*pet_skip_info_if::add(struct pet_scop
*main
,
4329 enum pet_skip type
, int offset
)
4334 scop
[type
] = pet_scop_prefix(scop
[type
], offset
);
4335 main
= pet_scop_add_par(ctx
, main
, scop
[type
]);
4339 main
= pet_scop_set_skip(main
, pet_skip_later
,
4340 isl_multi_pw_aff_copy(index
[type
]));
4342 main
= pet_scop_set_skip(main
, type
, index
[type
]);
4348 /* Add the computed skip conditions to "main" and
4349 * add the scops for computing the conditions at the given offset.
4351 struct pet_scop
*pet_skip_info_if::add(struct pet_scop
*scop
, int offset
)
4353 scop
= add(scop
, pet_skip_now
, offset
);
4354 scop
= add(scop
, pet_skip_later
, offset
);
4359 /* Construct a pet_scop for a non-affine if statement.
4361 * We create a separate statement that writes the result
4362 * of the non-affine condition to a virtual scalar.
4363 * A constraint requiring the value of this virtual scalar to be one
4364 * is added to the iteration domains of the then branch.
4365 * Similarly, a constraint requiring the value of this virtual scalar
4366 * to be zero is added to the iteration domains of the else branch, if any.
4367 * We adjust the schedules to ensure that the virtual scalar is written
4368 * before it is read.
4370 * If there are any breaks or continues in the then and/or else
4371 * branches, then we may have to compute a new skip condition.
4372 * This is handled using a pet_skip_info_if object.
4373 * On initialization, the object checks if skip conditions need
4374 * to be computed. If so, it does so in "extract" and adds them in "add".
4376 struct pet_scop
*PetScan::extract_non_affine_if(Expr
*cond
,
4377 struct pet_scop
*scop_then
, struct pet_scop
*scop_else
,
4378 bool have_else
, int stmt_id
)
4380 struct pet_scop
*scop
;
4381 isl_multi_pw_aff
*test_index
;
4382 int save_n_stmt
= n_stmt
;
4384 test_index
= create_test_index(ctx
, n_test
++);
4386 scop
= extract_non_affine_condition(cond
, n_stmt
++,
4387 isl_multi_pw_aff_copy(test_index
));
4388 n_stmt
= save_n_stmt
;
4389 scop
= scop_add_array(scop
, test_index
, ast_context
);
4391 pet_skip_info_if
skip(ctx
, scop_then
, scop_else
, have_else
, false);
4392 skip
.extract(this, test_index
);
4394 scop
= pet_scop_prefix(scop
, 0);
4395 scop_then
= pet_scop_prefix(scop_then
, 1);
4396 scop_then
= pet_scop_filter(scop_then
,
4397 isl_multi_pw_aff_copy(test_index
), 1);
4399 scop_else
= pet_scop_prefix(scop_else
, 1);
4400 scop_else
= pet_scop_filter(scop_else
, test_index
, 0);
4401 scop_then
= pet_scop_add_par(ctx
, scop_then
, scop_else
);
4403 isl_multi_pw_aff_free(test_index
);
4405 scop
= pet_scop_add_seq(ctx
, scop
, scop_then
);
4407 scop
= skip
.add(scop
, 2);
4412 /* Construct a pet_scop for an if statement.
4414 * If the condition fits the pattern of a conditional assignment,
4415 * then it is handled by extract_conditional_assignment.
4416 * Otherwise, we do the following.
4418 * If the condition is affine, then the condition is added
4419 * to the iteration domains of the then branch, while the
4420 * opposite of the condition in added to the iteration domains
4421 * of the else branch, if any.
4422 * We allow the condition to be dynamic, i.e., to refer to
4423 * scalars or array elements that may be written to outside
4424 * of the given if statement. These nested accesses are then represented
4425 * as output dimensions in the wrapping iteration domain.
4426 * If it is also written _inside_ the then or else branch, then
4427 * we treat the condition as non-affine.
4428 * As explained in extract_non_affine_if, this will introduce
4429 * an extra statement.
4430 * For aesthetic reasons, we want this statement to have a statement
4431 * number that is lower than those of the then and else branches.
4432 * In order to evaluate if we will need such a statement, however, we
4433 * first construct scops for the then and else branches.
4434 * We therefore reserve a statement number if we might have to
4435 * introduce such an extra statement.
4437 * If the condition is not affine, then the scop is created in
4438 * extract_non_affine_if.
4440 * If there are any breaks or continues in the then and/or else
4441 * branches, then we may have to compute a new skip condition.
4442 * This is handled using a pet_skip_info_if object.
4443 * On initialization, the object checks if skip conditions need
4444 * to be computed. If so, it does so in "extract" and adds them in "add".
4446 struct pet_scop
*PetScan::extract(IfStmt
*stmt
)
4448 struct pet_scop
*scop_then
, *scop_else
= NULL
, *scop
;
4454 clear_assignments
clear(assigned_value
);
4455 clear
.TraverseStmt(stmt
->getThen());
4456 if (stmt
->getElse())
4457 clear
.TraverseStmt(stmt
->getElse());
4459 scop
= extract_conditional_assignment(stmt
);
4463 cond
= try_extract_nested_condition(stmt
->getCond());
4464 if (allow_nested
&& (!cond
|| pet_nested_any_in_pw_aff(cond
)))
4468 assigned_value_cache
cache(assigned_value
);
4469 scop_then
= extract(stmt
->getThen());
4472 if (stmt
->getElse()) {
4473 assigned_value_cache
cache(assigned_value
);
4474 scop_else
= extract(stmt
->getElse());
4475 if (options
->autodetect
) {
4476 if (scop_then
&& !scop_else
) {
4478 isl_pw_aff_free(cond
);
4481 if (!scop_then
&& scop_else
) {
4483 isl_pw_aff_free(cond
);
4490 (!is_nested_allowed(cond
, scop_then
) ||
4491 (stmt
->getElse() && !is_nested_allowed(cond
, scop_else
)))) {
4492 isl_pw_aff_free(cond
);
4495 if (allow_nested
&& !cond
)
4496 return extract_non_affine_if(stmt
->getCond(), scop_then
,
4497 scop_else
, stmt
->getElse(), stmt_id
);
4500 cond
= extract_condition(stmt
->getCond());
4502 pet_skip_info_if
skip(ctx
, scop_then
, scop_else
, stmt
->getElse(), true);
4503 skip
.extract(this, cond
);
4505 valid
= isl_pw_aff_domain(isl_pw_aff_copy(cond
));
4506 set
= isl_pw_aff_non_zero_set(cond
);
4507 scop
= pet_scop_restrict(scop_then
, isl_set_copy(set
));
4509 if (stmt
->getElse()) {
4510 set
= isl_set_subtract(isl_set_copy(valid
), set
);
4511 scop_else
= pet_scop_restrict(scop_else
, set
);
4512 scop
= pet_scop_add_par(ctx
, scop
, scop_else
);
4515 scop
= resolve_nested(scop
);
4516 scop
= pet_scop_restrict_context(scop
, valid
);
4519 scop
= pet_scop_prefix(scop
, 0);
4520 scop
= skip
.add(scop
, 1);
4525 /* Try and construct a pet_scop for a label statement.
4526 * We currently only allow labels on expression statements.
4528 struct pet_scop
*PetScan::extract(LabelStmt
*stmt
)
4533 sub
= stmt
->getSubStmt();
4534 if (!isa
<Expr
>(sub
)) {
4539 label
= isl_id_alloc(ctx
, stmt
->getName(), NULL
);
4541 return extract(sub
, extract_expr(cast
<Expr
>(sub
)), label
);
4544 /* Return a one-dimensional multi piecewise affine expression that is equal
4545 * to the constant 1 and is defined over a zero-dimensional domain.
4547 static __isl_give isl_multi_pw_aff
*one_mpa(isl_ctx
*ctx
)
4550 isl_local_space
*ls
;
4553 space
= isl_space_set_alloc(ctx
, 0, 0);
4554 ls
= isl_local_space_from_space(space
);
4555 aff
= isl_aff_zero_on_domain(ls
);
4556 aff
= isl_aff_set_constant_si(aff
, 1);
4558 return isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff
));
4561 /* Construct a pet_scop for a continue statement.
4563 * We simply create an empty scop with a universal pet_skip_now
4564 * skip condition. This skip condition will then be taken into
4565 * account by the enclosing loop construct, possibly after
4566 * being incorporated into outer skip conditions.
4568 struct pet_scop
*PetScan::extract(ContinueStmt
*stmt
)
4572 scop
= pet_scop_empty(ctx
);
4576 scop
= pet_scop_set_skip(scop
, pet_skip_now
, one_mpa(ctx
));
4581 /* Construct a pet_scop for a break statement.
4583 * We simply create an empty scop with both a universal pet_skip_now
4584 * skip condition and a universal pet_skip_later skip condition.
4585 * These skip conditions will then be taken into
4586 * account by the enclosing loop construct, possibly after
4587 * being incorporated into outer skip conditions.
4589 struct pet_scop
*PetScan::extract(BreakStmt
*stmt
)
4592 isl_multi_pw_aff
*skip
;
4594 scop
= pet_scop_empty(ctx
);
4598 skip
= one_mpa(ctx
);
4599 scop
= pet_scop_set_skip(scop
, pet_skip_now
,
4600 isl_multi_pw_aff_copy(skip
));
4601 scop
= pet_scop_set_skip(scop
, pet_skip_later
, skip
);
4606 /* Try and construct a pet_scop corresponding to "stmt".
4608 * If "stmt" is a compound statement, then "skip_declarations"
4609 * indicates whether we should skip initial declarations in the
4610 * compound statement.
4612 * If the constructed pet_scop is not a (possibly) partial representation
4613 * of "stmt", we update start and end of the pet_scop to those of "stmt".
4614 * In particular, if skip_declarations is set, then we may have skipped
4615 * declarations inside "stmt" and so the pet_scop may not represent
4616 * the entire "stmt".
4617 * Note that this function may be called with "stmt" referring to the entire
4618 * body of the function, including the outer braces. In such cases,
4619 * skip_declarations will be set and the braces will not be taken into
4620 * account in scop->start and scop->end.
4622 struct pet_scop
*PetScan::extract(Stmt
*stmt
, bool skip_declarations
)
4624 struct pet_scop
*scop
;
4626 if (isa
<Expr
>(stmt
))
4627 return extract(stmt
, extract_expr(cast
<Expr
>(stmt
)));
4629 switch (stmt
->getStmtClass()) {
4630 case Stmt::WhileStmtClass
:
4631 scop
= extract(cast
<WhileStmt
>(stmt
));
4633 case Stmt::ForStmtClass
:
4634 scop
= extract_for(cast
<ForStmt
>(stmt
));
4636 case Stmt::IfStmtClass
:
4637 scop
= extract(cast
<IfStmt
>(stmt
));
4639 case Stmt::CompoundStmtClass
:
4640 scop
= extract(cast
<CompoundStmt
>(stmt
), skip_declarations
);
4642 case Stmt::LabelStmtClass
:
4643 scop
= extract(cast
<LabelStmt
>(stmt
));
4645 case Stmt::ContinueStmtClass
:
4646 scop
= extract(cast
<ContinueStmt
>(stmt
));
4648 case Stmt::BreakStmtClass
:
4649 scop
= extract(cast
<BreakStmt
>(stmt
));
4651 case Stmt::DeclStmtClass
:
4652 scop
= extract(cast
<DeclStmt
>(stmt
));
4659 if (partial
|| skip_declarations
)
4662 scop
= update_scop_start_end(scop
, stmt
->getSourceRange(), false);
4667 /* Do we need to construct a skip condition of the given type
4668 * on a sequence of statements?
4670 * There is no need to construct a new skip condition if only
4671 * only of the two statements has a skip condition or if both
4672 * of their skip conditions are affine.
4674 * In principle we also don't need a new continuation variable if
4675 * the continuation of scop2 is affine, but then we would need
4676 * to allow more complicated forms of continuations.
4678 static bool need_skip_seq(struct pet_scop
*scop1
, struct pet_scop
*scop2
,
4681 if (!scop1
|| !pet_scop_has_skip(scop1
, type
))
4683 if (!scop2
|| !pet_scop_has_skip(scop2
, type
))
4685 if (pet_scop_has_affine_skip(scop1
, type
) &&
4686 pet_scop_has_affine_skip(scop2
, type
))
4691 /* Construct a scop for computing the skip condition of the given type and
4692 * with index expression "skip_index" for a sequence of two scops "scop1"
4695 * The computed scop contains a single statement that essentially does
4697 * skip_index = skip_cond_1 ? 1 : skip_cond_2
4699 * or, in other words, skip_cond1 || skip_cond2.
4700 * In this expression, skip_cond_2 is filtered to reflect that it is
4701 * only evaluated when skip_cond_1 is false.
4703 * The skip condition on scop1 is not removed because it still needs
4704 * to be applied to scop2 when these two scops are combined.
4706 static struct pet_scop
*extract_skip_seq(PetScan
*ps
,
4707 __isl_take isl_multi_pw_aff
*skip_index
,
4708 struct pet_scop
*scop1
, struct pet_scop
*scop2
, enum pet_skip type
)
4710 pet_expr
*expr1
, *expr2
, *expr
, *expr_skip
;
4711 struct pet_stmt
*stmt
;
4712 struct pet_scop
*scop
;
4713 isl_ctx
*ctx
= ps
->ctx
;
4715 if (!scop1
|| !scop2
)
4718 expr1
= pet_scop_get_skip_expr(scop1
, type
);
4719 expr2
= pet_scop_get_skip_expr(scop2
, type
);
4720 pet_scop_reset_skip(scop2
, type
);
4722 expr2
= pet_expr_filter(expr2
, pet_expr_access_get_index(expr1
), 0);
4724 expr
= universally_true(ctx
);
4725 expr
= pet_expr_new_ternary(expr1
, expr
, expr2
);
4726 expr_skip
= pet_expr_from_index(isl_multi_pw_aff_copy(skip_index
));
4727 expr_skip
= pet_expr_access_set_write(expr_skip
, 1);
4728 expr_skip
= pet_expr_access_set_read(expr_skip
, 0);
4729 expr
= pet_expr_new_binary(1, pet_op_assign
, expr_skip
, expr
);
4730 stmt
= pet_stmt_from_pet_expr(-1, NULL
, ps
->n_stmt
++, expr
);
4732 scop
= pet_scop_from_pet_stmt(ctx
, stmt
);
4733 scop
= scop_add_array(scop
, skip_index
, ps
->ast_context
);
4734 isl_multi_pw_aff_free(skip_index
);
4738 isl_multi_pw_aff_free(skip_index
);
4742 /* Structure that handles the construction of skip conditions
4743 * on sequences of statements.
4745 * scop1 and scop2 represent the two statements that are combined
4747 struct pet_skip_info_seq
: public pet_skip_info
{
4748 struct pet_scop
*scop1
, *scop2
;
4750 pet_skip_info_seq(isl_ctx
*ctx
, struct pet_scop
*scop1
,
4751 struct pet_scop
*scop2
);
4752 void extract(PetScan
*scan
, enum pet_skip type
);
4753 void extract(PetScan
*scan
);
4754 struct pet_scop
*add(struct pet_scop
*scop
, enum pet_skip type
,
4756 struct pet_scop
*add(struct pet_scop
*scop
, int offset
);
4759 /* Initialize a pet_skip_info_seq structure based on
4760 * on the two statements that are going to be combined.
4762 pet_skip_info_seq::pet_skip_info_seq(isl_ctx
*ctx
, struct pet_scop
*scop1
,
4763 struct pet_scop
*scop2
) : pet_skip_info(ctx
), scop1(scop1
), scop2(scop2
)
4765 skip
[pet_skip_now
] = need_skip_seq(scop1
, scop2
, pet_skip_now
);
4766 equal
= skip
[pet_skip_now
] && skip_equals_skip_later(scop1
) &&
4767 skip_equals_skip_later(scop2
);
4768 skip
[pet_skip_later
] = skip
[pet_skip_now
] && !equal
&&
4769 need_skip_seq(scop1
, scop2
, pet_skip_later
);
4772 /* If we need to construct a skip condition of the given type,
4775 void pet_skip_info_seq::extract(PetScan
*scan
, enum pet_skip type
)
4780 index
[type
] = create_test_index(ctx
, scan
->n_test
++);
4781 scop
[type
] = extract_skip_seq(scan
, isl_multi_pw_aff_copy(index
[type
]),
4782 scop1
, scop2
, type
);
4785 /* Construct the required skip conditions.
4787 void pet_skip_info_seq::extract(PetScan
*scan
)
4789 extract(scan
, pet_skip_now
);
4790 extract(scan
, pet_skip_later
);
4792 drop_skip_later(scop1
, scop2
);
4795 /* Add the computed skip condition of the given type to "main" and
4796 * add the scop for computing the condition at the given offset (the statement
4797 * number). Within this offset, the condition is computed at position 1
4798 * to ensure that it is computed after the corresponding statement.
4800 * If equal is set, then we only computed a skip condition for pet_skip_now,
4801 * but we also need to set it as main's pet_skip_later.
4803 struct pet_scop
*pet_skip_info_seq::add(struct pet_scop
*main
,
4804 enum pet_skip type
, int offset
)
4809 scop
[type
] = pet_scop_prefix(scop
[type
], 1);
4810 scop
[type
] = pet_scop_prefix(scop
[type
], offset
);
4811 main
= pet_scop_add_par(ctx
, main
, scop
[type
]);
4815 main
= pet_scop_set_skip(main
, pet_skip_later
,
4816 isl_multi_pw_aff_copy(index
[type
]));
4818 main
= pet_scop_set_skip(main
, type
, index
[type
]);
4824 /* Add the computed skip conditions to "main" and
4825 * add the scops for computing the conditions at the given offset.
4827 struct pet_scop
*pet_skip_info_seq::add(struct pet_scop
*scop
, int offset
)
4829 scop
= add(scop
, pet_skip_now
, offset
);
4830 scop
= add(scop
, pet_skip_later
, offset
);
4835 /* Extract a clone of the kill statement in "scop".
4836 * "scop" is expected to have been created from a DeclStmt
4837 * and should have the kill as its first statement.
4839 struct pet_stmt
*PetScan::extract_kill(struct pet_scop
*scop
)
4842 struct pet_stmt
*stmt
;
4843 isl_multi_pw_aff
*index
;
4849 if (scop
->n_stmt
< 1)
4850 isl_die(ctx
, isl_error_internal
,
4851 "expecting at least one statement", return NULL
);
4852 stmt
= scop
->stmts
[0];
4853 if (!pet_stmt_is_kill(stmt
))
4854 isl_die(ctx
, isl_error_internal
,
4855 "expecting kill statement", return NULL
);
4857 arg
= pet_expr_get_arg(stmt
->body
, 0);
4858 index
= pet_expr_access_get_index(arg
);
4859 access
= pet_expr_access_get_access(arg
);
4861 index
= isl_multi_pw_aff_reset_tuple_id(index
, isl_dim_in
);
4862 access
= isl_map_reset_tuple_id(access
, isl_dim_in
);
4863 kill
= pet_expr_kill_from_access_and_index(access
, index
);
4864 return pet_stmt_from_pet_expr(stmt
->line
, NULL
, n_stmt
++, kill
);
4867 /* Mark all arrays in "scop" as being exposed.
4869 static struct pet_scop
*mark_exposed(struct pet_scop
*scop
)
4873 for (int i
= 0; i
< scop
->n_array
; ++i
)
4874 scop
->arrays
[i
]->exposed
= 1;
4878 /* Try and construct a pet_scop corresponding to (part of)
4879 * a sequence of statements.
4881 * "block" is set if the sequence respresents the children of
4882 * a compound statement.
4883 * "skip_declarations" is set if we should skip initial declarations
4884 * in the sequence of statements.
4886 * If there are any breaks or continues in the individual statements,
4887 * then we may have to compute a new skip condition.
4888 * This is handled using a pet_skip_info_seq object.
4889 * On initialization, the object checks if skip conditions need
4890 * to be computed. If so, it does so in "extract" and adds them in "add".
4892 * If "block" is set, then we need to insert kill statements at
4893 * the end of the block for any array that has been declared by
4894 * one of the statements in the sequence. Each of these declarations
4895 * results in the construction of a kill statement at the place
4896 * of the declaration, so we simply collect duplicates of
4897 * those kill statements and append these duplicates to the constructed scop.
4899 * If "block" is not set, then any array declared by one of the statements
4900 * in the sequence is marked as being exposed.
4902 * If autodetect is set, then we allow the extraction of only a subrange
4903 * of the sequence of statements. However, if there is at least one statement
4904 * for which we could not construct a scop and the final range contains
4905 * either no statements or at least one kill, then we discard the entire
4908 struct pet_scop
*PetScan::extract(StmtRange stmt_range
, bool block
,
4909 bool skip_declarations
)
4914 bool partial_range
= false;
4915 set
<struct pet_stmt
*> kills
;
4916 set
<struct pet_stmt
*>::iterator it
;
4918 scop
= pet_scop_empty(ctx
);
4919 for (i
= stmt_range
.first
, j
= 0; i
!= stmt_range
.second
; ++i
, ++j
) {
4921 struct pet_scop
*scop_i
;
4923 if (scop
->n_stmt
== 0 && skip_declarations
&&
4924 child
->getStmtClass() == Stmt::DeclStmtClass
)
4927 scop_i
= extract(child
);
4928 if (scop
->n_stmt
!= 0 && partial
) {
4929 pet_scop_free(scop_i
);
4932 pet_skip_info_seq
skip(ctx
, scop
, scop_i
);
4935 scop_i
= pet_scop_prefix(scop_i
, 0);
4936 if (scop_i
&& child
->getStmtClass() == Stmt::DeclStmtClass
) {
4938 kills
.insert(extract_kill(scop_i
));
4940 scop_i
= mark_exposed(scop_i
);
4942 scop_i
= pet_scop_prefix(scop_i
, j
);
4943 if (options
->autodetect
) {
4945 scop
= pet_scop_add_seq(ctx
, scop
, scop_i
);
4947 partial_range
= true;
4948 if (scop
->n_stmt
!= 0 && !scop_i
)
4951 scop
= pet_scop_add_seq(ctx
, scop
, scop_i
);
4954 scop
= skip
.add(scop
, j
);
4956 if (partial
|| !scop
)
4960 for (it
= kills
.begin(); it
!= kills
.end(); ++it
) {
4962 scop_j
= pet_scop_from_pet_stmt(ctx
, *it
);
4963 scop_j
= pet_scop_prefix(scop_j
, j
);
4964 scop
= pet_scop_add_seq(ctx
, scop
, scop_j
);
4967 if (scop
&& partial_range
) {
4968 if (scop
->n_stmt
== 0 || kills
.size() != 0) {
4969 pet_scop_free(scop
);
4978 /* Check if the scop marked by the user is exactly this Stmt
4979 * or part of this Stmt.
4980 * If so, return a pet_scop corresponding to the marked region.
4981 * Otherwise, return NULL.
4983 struct pet_scop
*PetScan::scan(Stmt
*stmt
)
4985 SourceManager
&SM
= PP
.getSourceManager();
4986 unsigned start_off
, end_off
;
4988 start_off
= getExpansionOffset(SM
, stmt
->getLocStart());
4989 end_off
= getExpansionOffset(SM
, stmt
->getLocEnd());
4991 if (start_off
> loc
.end
)
4993 if (end_off
< loc
.start
)
4995 if (start_off
>= loc
.start
&& end_off
<= loc
.end
) {
4996 return extract(stmt
);
5000 for (start
= stmt
->child_begin(); start
!= stmt
->child_end(); ++start
) {
5001 Stmt
*child
= *start
;
5004 start_off
= getExpansionOffset(SM
, child
->getLocStart());
5005 end_off
= getExpansionOffset(SM
, child
->getLocEnd());
5006 if (start_off
< loc
.start
&& end_off
>= loc
.end
)
5008 if (start_off
>= loc
.start
)
5013 for (end
= start
; end
!= stmt
->child_end(); ++end
) {
5015 start_off
= SM
.getFileOffset(child
->getLocStart());
5016 if (start_off
>= loc
.end
)
5020 return extract(StmtRange(start
, end
), false, false);
5023 /* Set the size of index "pos" of "array" to "size".
5024 * In particular, add a constraint of the form
5028 * to array->extent and a constraint of the form
5032 * to array->context.
5034 static struct pet_array
*update_size(struct pet_array
*array
, int pos
,
5035 __isl_take isl_pw_aff
*size
)
5045 valid
= isl_pw_aff_nonneg_set(isl_pw_aff_copy(size
));
5046 array
->context
= isl_set_intersect(array
->context
, valid
);
5048 dim
= isl_set_get_space(array
->extent
);
5049 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(dim
));
5050 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_in
, pos
, 1);
5051 univ
= isl_set_universe(isl_aff_get_domain_space(aff
));
5052 index
= isl_pw_aff_alloc(univ
, aff
);
5054 size
= isl_pw_aff_add_dims(size
, isl_dim_in
,
5055 isl_set_dim(array
->extent
, isl_dim_set
));
5056 id
= isl_set_get_tuple_id(array
->extent
);
5057 size
= isl_pw_aff_set_tuple_id(size
, isl_dim_in
, id
);
5058 bound
= isl_pw_aff_lt_set(index
, size
);
5060 array
->extent
= isl_set_intersect(array
->extent
, bound
);
5062 if (!array
->context
|| !array
->extent
)
5067 pet_array_free(array
);
5071 /* Figure out the size of the array at position "pos" and all
5072 * subsequent positions from "type" and update "array" accordingly.
5074 struct pet_array
*PetScan::set_upper_bounds(struct pet_array
*array
,
5075 const Type
*type
, int pos
)
5077 const ArrayType
*atype
;
5083 if (type
->isPointerType()) {
5084 type
= type
->getPointeeType().getTypePtr();
5085 return set_upper_bounds(array
, type
, pos
+ 1);
5087 if (!type
->isArrayType())
5090 type
= type
->getCanonicalTypeInternal().getTypePtr();
5091 atype
= cast
<ArrayType
>(type
);
5093 if (type
->isConstantArrayType()) {
5094 const ConstantArrayType
*ca
= cast
<ConstantArrayType
>(atype
);
5095 size
= extract_affine(ca
->getSize());
5096 array
= update_size(array
, pos
, size
);
5097 } else if (type
->isVariableArrayType()) {
5098 const VariableArrayType
*vla
= cast
<VariableArrayType
>(atype
);
5099 size
= extract_affine(vla
->getSizeExpr());
5100 array
= update_size(array
, pos
, size
);
5103 type
= atype
->getElementType().getTypePtr();
5105 return set_upper_bounds(array
, type
, pos
+ 1);
5108 /* Is "T" the type of a variable length array with static size?
5110 static bool is_vla_with_static_size(QualType T
)
5112 const VariableArrayType
*vlatype
;
5114 if (!T
->isVariableArrayType())
5116 vlatype
= cast
<VariableArrayType
>(T
);
5117 return vlatype
->getSizeModifier() == VariableArrayType::Static
;
5120 /* Return the type of "decl" as an array.
5122 * In particular, if "decl" is a parameter declaration that
5123 * is a variable length array with a static size, then
5124 * return the original type (i.e., the variable length array).
5125 * Otherwise, return the type of decl.
5127 static QualType
get_array_type(ValueDecl
*decl
)
5132 parm
= dyn_cast
<ParmVarDecl
>(decl
);
5134 return decl
->getType();
5136 T
= parm
->getOriginalType();
5137 if (!is_vla_with_static_size(T
))
5138 return decl
->getType();
5142 /* Does "decl" have definition that we can keep track of in a pet_type?
5144 static bool has_printable_definition(RecordDecl
*decl
)
5146 if (!decl
->getDeclName())
5148 return decl
->getLexicalDeclContext() == decl
->getDeclContext();
5151 /* Construct and return a pet_array corresponding to the variable "decl".
5152 * In particular, initialize array->extent to
5154 * { name[i_1,...,i_d] : i_1,...,i_d >= 0 }
5156 * and then call set_upper_bounds to set the upper bounds on the indices
5157 * based on the type of the variable.
5159 * If the base type is that of a record with a top-level definition and
5160 * if "types" is not null, then the RecordDecl corresponding to the type
5161 * is added to "types".
5163 * If the base type is that of a record with no top-level definition,
5164 * then we replace it by "<subfield>".
5166 struct pet_array
*PetScan::extract_array(isl_ctx
*ctx
, ValueDecl
*decl
,
5167 lex_recorddecl_set
*types
)
5169 struct pet_array
*array
;
5170 QualType qt
= get_array_type(decl
);
5171 const Type
*type
= qt
.getTypePtr();
5172 int depth
= array_depth(type
);
5173 QualType base
= pet_clang_base_type(qt
);
5178 array
= isl_calloc_type(ctx
, struct pet_array
);
5182 id
= isl_id_alloc(ctx
, decl
->getName().str().c_str(), decl
);
5183 dim
= isl_space_set_alloc(ctx
, 0, depth
);
5184 dim
= isl_space_set_tuple_id(dim
, isl_dim_set
, id
);
5186 array
->extent
= isl_set_nat_universe(dim
);
5188 dim
= isl_space_params_alloc(ctx
, 0);
5189 array
->context
= isl_set_universe(dim
);
5191 array
= set_upper_bounds(array
, type
, 0);
5195 name
= base
.getAsString();
5197 if (types
&& base
->isRecordType()) {
5198 RecordDecl
*decl
= pet_clang_record_decl(base
);
5199 if (has_printable_definition(decl
))
5200 types
->insert(decl
);
5202 name
= "<subfield>";
5205 array
->element_type
= strdup(name
.c_str());
5206 array
->element_is_record
= base
->isRecordType();
5207 array
->element_size
= decl
->getASTContext().getTypeInfo(base
).first
/ 8;
5212 /* Construct and return a pet_array corresponding to the sequence
5213 * of declarations "decls".
5214 * If the sequence contains a single declaration, then it corresponds
5215 * to a simple array access. Otherwise, it corresponds to a member access,
5216 * with the declaration for the substructure following that of the containing
5217 * structure in the sequence of declarations.
5218 * We start with the outermost substructure and then combine it with
5219 * information from the inner structures.
5221 * Additionally, keep track of all required types in "types".
5223 struct pet_array
*PetScan::extract_array(isl_ctx
*ctx
,
5224 vector
<ValueDecl
*> decls
, lex_recorddecl_set
*types
)
5226 struct pet_array
*array
;
5227 vector
<ValueDecl
*>::iterator it
;
5231 array
= extract_array(ctx
, *it
, types
);
5233 for (++it
; it
!= decls
.end(); ++it
) {
5234 struct pet_array
*parent
;
5235 const char *base_name
, *field_name
;
5239 array
= extract_array(ctx
, *it
, types
);
5241 return pet_array_free(parent
);
5243 base_name
= isl_set_get_tuple_name(parent
->extent
);
5244 field_name
= isl_set_get_tuple_name(array
->extent
);
5245 product_name
= member_access_name(ctx
, base_name
, field_name
);
5247 array
->extent
= isl_set_product(isl_set_copy(parent
->extent
),
5250 array
->extent
= isl_set_set_tuple_name(array
->extent
,
5252 array
->context
= isl_set_intersect(array
->context
,
5253 isl_set_copy(parent
->context
));
5255 pet_array_free(parent
);
5258 if (!array
->extent
|| !array
->context
|| !product_name
)
5259 return pet_array_free(array
);
5265 /* Add a pet_type corresponding to "decl" to "scop, provided
5266 * it is a member of "types" and it has not been added before
5267 * (i.e., it is not a member of "types_done".
5269 * Since we want the user to be able to print the types
5270 * in the order in which they appear in the scop, we need to
5271 * make sure that types of fields in a structure appear before
5272 * that structure. We therefore call ourselves recursively
5273 * on the types of all record subfields.
5275 static struct pet_scop
*add_type(isl_ctx
*ctx
, struct pet_scop
*scop
,
5276 RecordDecl
*decl
, Preprocessor
&PP
, lex_recorddecl_set
&types
,
5277 lex_recorddecl_set
&types_done
)
5280 llvm::raw_string_ostream
S(s
);
5281 RecordDecl::field_iterator it
;
5283 if (types
.find(decl
) == types
.end())
5285 if (types_done
.find(decl
) != types_done
.end())
5288 for (it
= decl
->field_begin(); it
!= decl
->field_end(); ++it
) {
5290 QualType type
= it
->getType();
5292 if (!type
->isRecordType())
5294 record
= pet_clang_record_decl(type
);
5295 scop
= add_type(ctx
, scop
, record
, PP
, types
, types_done
);
5298 if (strlen(decl
->getName().str().c_str()) == 0)
5301 decl
->print(S
, PrintingPolicy(PP
.getLangOpts()));
5304 scop
->types
[scop
->n_type
] = pet_type_alloc(ctx
,
5305 decl
->getName().str().c_str(), s
.c_str());
5306 if (!scop
->types
[scop
->n_type
])
5307 return pet_scop_free(scop
);
5309 types_done
.insert(decl
);
5316 /* Construct a list of pet_arrays, one for each array (or scalar)
5317 * accessed inside "scop", add this list to "scop" and return the result.
5319 * The context of "scop" is updated with the intersection of
5320 * the contexts of all arrays, i.e., constraints on the parameters
5321 * that ensure that the arrays have a valid (non-negative) size.
5323 * If the any of the extracted arrays refers to a member access,
5324 * then also add the required types to "scop".
5326 struct pet_scop
*PetScan::scan_arrays(struct pet_scop
*scop
)
5329 array_desc_set arrays
;
5330 array_desc_set::iterator it
;
5331 lex_recorddecl_set types
;
5332 lex_recorddecl_set types_done
;
5333 lex_recorddecl_set::iterator types_it
;
5335 struct pet_array
**scop_arrays
;
5340 pet_scop_collect_arrays(scop
, arrays
);
5341 if (arrays
.size() == 0)
5344 n_array
= scop
->n_array
;
5346 scop_arrays
= isl_realloc_array(ctx
, scop
->arrays
, struct pet_array
*,
5347 n_array
+ arrays
.size());
5350 scop
->arrays
= scop_arrays
;
5352 for (it
= arrays
.begin(), i
= 0; it
!= arrays
.end(); ++it
, ++i
) {
5353 struct pet_array
*array
;
5354 array
= extract_array(ctx
, *it
, &types
);
5355 scop
->arrays
[n_array
+ i
] = array
;
5356 if (!scop
->arrays
[n_array
+ i
])
5359 scop
->context
= isl_set_intersect(scop
->context
,
5360 isl_set_copy(array
->context
));
5365 if (types
.size() == 0)
5368 scop
->types
= isl_alloc_array(ctx
, struct pet_type
*, types
.size());
5372 for (types_it
= types
.begin(); types_it
!= types
.end(); ++types_it
)
5373 scop
= add_type(ctx
, scop
, *types_it
, PP
, types
, types_done
);
5377 pet_scop_free(scop
);
5381 /* Bound all parameters in scop->context to the possible values
5382 * of the corresponding C variable.
5384 static struct pet_scop
*add_parameter_bounds(struct pet_scop
*scop
)
5391 n
= isl_set_dim(scop
->context
, isl_dim_param
);
5392 for (int i
= 0; i
< n
; ++i
) {
5396 id
= isl_set_get_dim_id(scop
->context
, isl_dim_param
, i
);
5397 if (pet_nested_in_id(id
)) {
5399 isl_die(isl_set_get_ctx(scop
->context
),
5401 "unresolved nested parameter", goto error
);
5403 decl
= (ValueDecl
*) isl_id_get_user(id
);
5406 scop
->context
= set_parameter_bounds(scop
->context
, i
, decl
);
5414 pet_scop_free(scop
);
5418 /* Construct a pet_scop from the given function.
5420 * If the scop was delimited by scop and endscop pragmas, then we override
5421 * the file offsets by those derived from the pragmas.
5423 struct pet_scop
*PetScan::scan(FunctionDecl
*fd
)
5428 stmt
= fd
->getBody();
5430 if (options
->autodetect
)
5431 scop
= extract(stmt
, true);
5434 scop
= pet_scop_update_start_end(scop
, loc
.start
, loc
.end
);
5436 scop
= pet_scop_detect_parameter_accesses(scop
);
5437 scop
= scan_arrays(scop
);
5438 scop
= add_parameter_bounds(scop
);
5439 scop
= pet_scop_gist(scop
, value_bounds
);