2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012-2014 Ecole Normale Superieure. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials provided
15 * with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as
31 * representing official policies, either expressed or implied, of
36 #include <isl/constraint.h>
37 #include <isl/union_set.h>
38 #include <isl/schedule_node.h>
42 #include "expr_access_type.h"
49 #include "value_bounds.h"
51 /* pet_scop with extra information that is used during parsing and printing.
53 * In particular, we keep track of conditions under which we want
54 * to skip the rest of the current loop iteration (skip[pet_skip_now])
55 * and of conditions under which we want to skip subsequent
56 * loop iterations (skip[pet_skip_later]).
58 * The conditions are represented as index expressions defined
59 * over the outer loop iterators. The index expression is either
60 * a boolean affine expression or an access to a variable, which
61 * is assumed to attain values zero and one. The condition holds
62 * if the variable has value one or if the affine expression
63 * has value one (typically for only part of the domain).
65 * A missing condition (skip[type] == NULL) means that we don't want
68 * Additionally, we keep track of the original input file
69 * inside pet_transform_C_source.
74 isl_multi_pw_aff
*skip
[2];
78 /* Construct a pet_stmt with given domain and statement number from a pet_tree.
79 * The input domain is anonymous and is the same as the domains
80 * of the access expressions inside "tree".
81 * These domains are modified to include the name of the statement.
82 * This name is given by tree->label if it is non-NULL.
83 * Otherwise, the name is constructed as S_<id>.
85 struct pet_stmt
*pet_stmt_from_pet_tree(__isl_take isl_set
*domain
,
86 int id
, __isl_take pet_tree
*tree
)
88 struct pet_stmt
*stmt
;
93 isl_multi_pw_aff
*add_name
;
99 ctx
= pet_tree_get_ctx(tree
);
100 stmt
= isl_calloc_type(ctx
, struct pet_stmt
);
105 label
= isl_id_copy(tree
->label
);
107 snprintf(name
, sizeof(name
), "S_%d", id
);
108 label
= isl_id_alloc(ctx
, name
, NULL
);
110 domain
= isl_set_set_tuple_id(domain
, label
);
111 space
= isl_set_get_space(domain
);
112 space
= pet_nested_remove_from_space(space
);
113 ma
= pet_prefix_projection(space
, isl_space_dim(space
, isl_dim_set
));
115 add_name
= isl_multi_pw_aff_from_multi_aff(ma
);
116 tree
= pet_tree_update_domain(tree
, add_name
);
118 stmt
->loc
= pet_tree_get_loc(tree
);
119 stmt
->domain
= domain
;
122 if (!stmt
->domain
|| !stmt
->body
)
123 return pet_stmt_free(stmt
);
127 isl_set_free(domain
);
132 void *pet_stmt_free(struct pet_stmt
*stmt
)
139 pet_loc_free(stmt
->loc
);
140 isl_set_free(stmt
->domain
);
141 pet_tree_free(stmt
->body
);
143 for (i
= 0; i
< stmt
->n_arg
; ++i
)
144 pet_expr_free(stmt
->args
[i
]);
151 /* Return the iteration space of "stmt".
153 * If the statement has arguments, then stmt->domain is a wrapped map
154 * mapping the iteration domain to the values of the arguments
155 * for which this statement is executed.
156 * In this case, we need to extract the domain space of this wrapped map.
158 __isl_give isl_space
*pet_stmt_get_space(struct pet_stmt
*stmt
)
165 space
= isl_set_get_space(stmt
->domain
);
166 if (isl_space_is_wrapping(space
))
167 space
= isl_space_domain(isl_space_unwrap(space
));
172 static void stmt_dump(struct pet_stmt
*stmt
, int indent
)
179 fprintf(stderr
, "%*s%d\n", indent
, "", pet_loc_get_line(stmt
->loc
));
180 fprintf(stderr
, "%*s", indent
, "");
181 isl_set_dump(stmt
->domain
);
182 pet_tree_dump_with_indent(stmt
->body
, indent
);
183 for (i
= 0; i
< stmt
->n_arg
; ++i
)
184 pet_expr_dump_with_indent(stmt
->args
[i
], indent
+ 2);
187 void pet_stmt_dump(struct pet_stmt
*stmt
)
192 /* Allocate a new pet_type with the given "name" and "definition".
194 struct pet_type
*pet_type_alloc(isl_ctx
*ctx
, const char *name
,
195 const char *definition
)
197 struct pet_type
*type
;
199 type
= isl_alloc_type(ctx
, struct pet_type
);
203 type
->name
= strdup(name
);
204 type
->definition
= strdup(definition
);
206 if (!type
->name
|| !type
->definition
)
207 return pet_type_free(type
);
212 /* Free "type" and return NULL.
214 struct pet_type
*pet_type_free(struct pet_type
*type
)
220 free(type
->definition
);
226 struct pet_array
*pet_array_free(struct pet_array
*array
)
231 isl_set_free(array
->context
);
232 isl_set_free(array
->extent
);
233 isl_set_free(array
->value_bounds
);
234 free(array
->element_type
);
240 void pet_array_dump(struct pet_array
*array
)
245 isl_set_dump(array
->context
);
246 isl_set_dump(array
->extent
);
247 isl_set_dump(array
->value_bounds
);
248 fprintf(stderr
, "%s%s%s\n", array
->element_type
,
249 array
->element_is_record
? " element-is-record" : "",
250 array
->live_out
? " live-out" : "");
253 /* Alloc a pet_scop structure, with extra room for information that
254 * is only used during parsing.
256 struct pet_scop
*pet_scop_alloc(isl_ctx
*ctx
)
258 return &isl_calloc_type(ctx
, struct pet_scop_ext
)->scop
;
261 /* Construct a pet_scop in the given space, with the given schedule and
262 * room for n statements.
264 * The context is initialized as a universe set in "space".
266 * Since no information on the location is known at this point,
267 * scop->loc is initialized with pet_loc_dummy.
269 static struct pet_scop
*scop_alloc(__isl_take isl_space
*space
, int n
,
270 __isl_take isl_schedule
*schedule
)
273 struct pet_scop
*scop
;
275 if (!space
|| !schedule
)
278 ctx
= isl_space_get_ctx(space
);
279 scop
= pet_scop_alloc(ctx
);
283 scop
->context
= isl_set_universe(isl_space_copy(space
));
284 scop
->context_value
= isl_set_universe(isl_space_params(space
));
285 scop
->stmts
= isl_calloc_array(ctx
, struct pet_stmt
*, n
);
286 scop
->schedule
= schedule
;
287 if (!scop
->context
|| !scop
->stmts
)
288 return pet_scop_free(scop
);
290 scop
->loc
= &pet_loc_dummy
;
295 isl_space_free(space
);
296 isl_schedule_free(schedule
);
300 /* Construct a pet_scop in the given space containing 0 statements
301 * (and therefore an empty iteration domain).
303 struct pet_scop
*pet_scop_empty(__isl_take isl_space
*space
)
305 isl_schedule
*schedule
;
307 schedule
= isl_schedule_empty(isl_space_copy(space
));
309 return scop_alloc(space
, 0, schedule
);
312 /* Given either an iteration domain or a wrapped map with
313 * the iteration domain in the domain and some arguments
314 * in the range, return the iteration domain.
315 * That is, drop the arguments if there are any.
317 static __isl_give isl_set
*drop_arguments(__isl_take isl_set
*domain
)
319 if (isl_set_is_wrapping(domain
))
320 domain
= isl_map_domain(isl_set_unwrap(domain
));
324 /* Update "context" with the constraints imposed on the outer iteration
325 * domain by access expression "expr".
326 * "context" lives in an anonymous space, while the domain of the access
327 * relation of "expr" refers to a particular statement.
328 * This reference therefore needs to be stripped off.
330 static __isl_give isl_set
*access_extract_context(__isl_keep pet_expr
*expr
,
331 __isl_take isl_set
*context
)
333 isl_multi_pw_aff
*mpa
;
336 mpa
= pet_expr_access_get_index(expr
);
337 domain
= drop_arguments(isl_multi_pw_aff_domain(mpa
));
338 domain
= isl_set_reset_tuple_id(domain
);
339 context
= isl_set_intersect(context
, domain
);
343 /* Update "context" with the constraints imposed on the outer iteration
346 * "context" lives in an anonymous space, while the domains of
347 * the access relations in "expr" refer to a particular statement.
348 * This reference therefore needs to be stripped off.
350 * If "expr" represents a conditional operator, then a parameter or outer
351 * iterator value needs to be valid for the condition and
352 * for at least one of the remaining two arguments.
353 * If the condition is an affine expression, then we can be a bit more specific.
354 * The value then has to be valid for the second argument for
355 * non-zero accesses and valid for the third argument for zero accesses.
357 * If "expr" represents a kill statement, then its argument is the entire
358 * extent of the array being killed. Do not update "context" based
359 * on this argument as that would impose constraints that ensure that
360 * the array is non-empty.
362 static __isl_give isl_set
*expr_extract_context(__isl_keep pet_expr
*expr
,
363 __isl_take isl_set
*context
)
367 if (expr
->type
== pet_expr_op
&& expr
->op
== pet_op_kill
)
370 if (expr
->type
== pet_expr_op
&& expr
->op
== pet_op_cond
) {
372 isl_set
*context1
, *context2
;
374 is_aff
= pet_expr_is_affine(expr
->args
[0]);
378 context
= expr_extract_context(expr
->args
[0], context
);
379 context1
= expr_extract_context(expr
->args
[1],
380 isl_set_copy(context
));
381 context2
= expr_extract_context(expr
->args
[2], context
);
384 isl_multi_pw_aff
*mpa
;
388 mpa
= pet_expr_access_get_index(expr
->args
[0]);
389 pa
= isl_multi_pw_aff_get_pw_aff(mpa
, 0);
390 isl_multi_pw_aff_free(mpa
);
391 zero_set
= drop_arguments(isl_pw_aff_zero_set(pa
));
392 zero_set
= isl_set_reset_tuple_id(zero_set
);
393 context1
= isl_set_subtract(context1
,
394 isl_set_copy(zero_set
));
395 context2
= isl_set_intersect(context2
, zero_set
);
398 context
= isl_set_union(context1
, context2
);
399 context
= isl_set_coalesce(context
);
404 for (i
= 0; i
< expr
->n_arg
; ++i
)
405 context
= expr_extract_context(expr
->args
[i
], context
);
407 if (expr
->type
== pet_expr_access
)
408 context
= access_extract_context(expr
, context
);
412 isl_set_free(context
);
416 /* Is "stmt" an assume statement with an affine assumption?
418 int pet_stmt_is_affine_assume(struct pet_stmt
*stmt
)
422 return pet_tree_is_affine_assume(stmt
->body
);
425 /* Given an assume statement "stmt" with an access argument,
426 * return the index expression of the argument.
428 __isl_give isl_multi_pw_aff
*pet_stmt_assume_get_index(struct pet_stmt
*stmt
)
432 return pet_tree_assume_get_index(stmt
->body
);
435 /* Update "context" with the constraints imposed on the outer iteration
438 * If the statement is an assume statement with an affine expression,
439 * then intersect "context" with that expression.
440 * Otherwise, if the statement body is an expression tree,
441 * then intersect "context" with the context of this expression.
442 * Note that we cannot safely extract a context from subtrees
443 * of the statement body since we cannot tell when those subtrees
444 * are executed, if at all.
446 static __isl_give isl_set
*stmt_extract_context(struct pet_stmt
*stmt
,
447 __isl_take isl_set
*context
)
452 if (pet_stmt_is_affine_assume(stmt
)) {
453 isl_multi_pw_aff
*index
;
457 index
= pet_stmt_assume_get_index(stmt
);
458 pa
= isl_multi_pw_aff_get_pw_aff(index
, 0);
459 isl_multi_pw_aff_free(index
);
460 cond
= isl_pw_aff_non_zero_set(pa
);
461 cond
= isl_set_reset_tuple_id(cond
);
462 return isl_set_intersect(context
, cond
);
465 for (i
= 0; i
< stmt
->n_arg
; ++i
)
466 context
= expr_extract_context(stmt
->args
[i
], context
);
468 if (pet_tree_get_type(stmt
->body
) != pet_tree_expr
)
471 body
= pet_tree_expr_get_expr(stmt
->body
);
472 context
= expr_extract_context(body
, context
);
478 /* Construct a pet_scop in the given space that contains the given pet_stmt.
479 * The initial schedule consists of only the iteration domain.
481 struct pet_scop
*pet_scop_from_pet_stmt(__isl_take isl_space
*space
,
482 struct pet_stmt
*stmt
)
484 struct pet_scop
*scop
;
486 isl_union_set
*domain
;
487 isl_schedule
*schedule
;
490 space
= isl_space_free(space
);
492 set
= pet_nested_remove_from_set(isl_set_copy(stmt
->domain
));
493 domain
= isl_union_set_from_set(set
);
494 schedule
= isl_schedule_from_domain(domain
);
496 scop
= scop_alloc(space
, 1, schedule
);
500 scop
->context
= stmt_extract_context(stmt
, scop
->context
);
504 scop
->stmts
[0] = stmt
;
505 scop
->loc
= pet_loc_copy(stmt
->loc
);
508 return pet_scop_free(scop
);
517 /* Does "mpa" represent an access to an element of an unnamed space, i.e.,
518 * does it represent an affine expression?
520 static int multi_pw_aff_is_affine(__isl_keep isl_multi_pw_aff
*mpa
)
524 has_id
= isl_multi_pw_aff_has_tuple_id(mpa
, isl_dim_out
);
531 /* Return the piecewise affine expression "set ? 1 : 0" defined on "dom".
533 static __isl_give isl_pw_aff
*indicator_function(__isl_take isl_set
*set
,
534 __isl_take isl_set
*dom
)
537 pa
= isl_set_indicator_function(set
);
538 pa
= isl_pw_aff_intersect_domain(pa
, dom
);
542 /* Return "lhs || rhs", defined on the shared definition domain.
544 static __isl_give isl_pw_aff
*pw_aff_or(__isl_take isl_pw_aff
*lhs
,
545 __isl_take isl_pw_aff
*rhs
)
550 dom
= isl_set_intersect(isl_pw_aff_domain(isl_pw_aff_copy(lhs
)),
551 isl_pw_aff_domain(isl_pw_aff_copy(rhs
)));
552 cond
= isl_set_union(isl_pw_aff_non_zero_set(lhs
),
553 isl_pw_aff_non_zero_set(rhs
));
554 cond
= isl_set_coalesce(cond
);
555 return indicator_function(cond
, dom
);
558 /* Combine ext1->skip[type] and ext2->skip[type] into ext->skip[type].
559 * ext may be equal to either ext1 or ext2.
561 * The two skips that need to be combined are assumed to be affine expressions.
563 * We need to skip in ext if we need to skip in either ext1 or ext2.
564 * We don't need to skip in ext if we don't need to skip in both ext1 and ext2.
566 static struct pet_scop_ext
*combine_skips(struct pet_scop_ext
*ext
,
567 struct pet_scop_ext
*ext1
, struct pet_scop_ext
*ext2
,
570 isl_pw_aff
*skip
, *skip1
, *skip2
;
574 if (!ext1
->skip
[type
] && !ext2
->skip
[type
])
576 if (!ext1
->skip
[type
]) {
579 ext
->skip
[type
] = ext2
->skip
[type
];
580 ext2
->skip
[type
] = NULL
;
583 if (!ext2
->skip
[type
]) {
586 ext
->skip
[type
] = ext1
->skip
[type
];
587 ext1
->skip
[type
] = NULL
;
591 if (!multi_pw_aff_is_affine(ext1
->skip
[type
]) ||
592 !multi_pw_aff_is_affine(ext2
->skip
[type
]))
593 isl_die(isl_multi_pw_aff_get_ctx(ext1
->skip
[type
]),
594 isl_error_internal
, "can only combine affine skips",
597 skip1
= isl_multi_pw_aff_get_pw_aff(ext1
->skip
[type
], 0);
598 skip2
= isl_multi_pw_aff_get_pw_aff(ext2
->skip
[type
], 0);
599 skip
= pw_aff_or(skip1
, skip2
);
600 isl_multi_pw_aff_free(ext1
->skip
[type
]);
601 ext1
->skip
[type
] = NULL
;
602 isl_multi_pw_aff_free(ext2
->skip
[type
]);
603 ext2
->skip
[type
] = NULL
;
604 ext
->skip
[type
] = isl_multi_pw_aff_from_pw_aff(skip
);
605 if (!ext
->skip
[type
])
610 pet_scop_free(&ext
->scop
);
614 /* Combine scop1->skip[type] and scop2->skip[type] into scop->skip[type],
615 * where type takes on the values pet_skip_now and pet_skip_later.
616 * scop may be equal to either scop1 or scop2.
618 static struct pet_scop
*scop_combine_skips(struct pet_scop
*scop
,
619 struct pet_scop
*scop1
, struct pet_scop
*scop2
)
621 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
622 struct pet_scop_ext
*ext1
= (struct pet_scop_ext
*) scop1
;
623 struct pet_scop_ext
*ext2
= (struct pet_scop_ext
*) scop2
;
625 ext
= combine_skips(ext
, ext1
, ext2
, pet_skip_now
);
626 ext
= combine_skips(ext
, ext1
, ext2
, pet_skip_later
);
630 /* Update start and end of scop->loc to include the region from "start"
631 * to "end". In particular, if scop->loc == &pet_loc_dummy, then "scop"
632 * does not have any offset information yet and we simply take the information
633 * from "start" and "end". Otherwise, we update loc using "start" and "end".
635 struct pet_scop
*pet_scop_update_start_end(struct pet_scop
*scop
,
636 unsigned start
, unsigned end
)
641 if (scop
->loc
== &pet_loc_dummy
)
642 scop
->loc
= pet_loc_alloc(isl_set_get_ctx(scop
->context
),
643 start
, end
, -1, strdup(""));
645 scop
->loc
= pet_loc_update_start_end(scop
->loc
, start
, end
);
648 return pet_scop_free(scop
);
653 /* Update start and end of scop->loc to include the region identified
656 struct pet_scop
*pet_scop_update_start_end_from_loc(struct pet_scop
*scop
,
657 __isl_keep pet_loc
*loc
)
659 return pet_scop_update_start_end(scop
, pet_loc_get_start(loc
),
660 pet_loc_get_end(loc
));
663 /* Replace the location of "scop" by "loc".
665 struct pet_scop
*pet_scop_set_loc(struct pet_scop
*scop
,
666 __isl_take pet_loc
*loc
)
671 pet_loc_free(scop
->loc
);
681 /* Does "implication" appear in the list of implications of "scop"?
683 static int is_known_implication(struct pet_scop
*scop
,
684 struct pet_implication
*implication
)
688 for (i
= 0; i
< scop
->n_implication
; ++i
) {
689 struct pet_implication
*pi
= scop
->implications
[i
];
692 if (pi
->satisfied
!= implication
->satisfied
)
694 equal
= isl_map_is_equal(pi
->extension
, implication
->extension
);
704 /* Store the concatenation of the implications of "scop1" and "scop2"
705 * in "scop", removing duplicates (i.e., implications in "scop2" that
706 * already appear in "scop1").
708 static struct pet_scop
*scop_collect_implications(isl_ctx
*ctx
,
709 struct pet_scop
*scop
, struct pet_scop
*scop1
, struct pet_scop
*scop2
)
716 if (scop2
->n_implication
== 0) {
717 scop
->n_implication
= scop1
->n_implication
;
718 scop
->implications
= scop1
->implications
;
719 scop1
->n_implication
= 0;
720 scop1
->implications
= NULL
;
724 if (scop1
->n_implication
== 0) {
725 scop
->n_implication
= scop2
->n_implication
;
726 scop
->implications
= scop2
->implications
;
727 scop2
->n_implication
= 0;
728 scop2
->implications
= NULL
;
732 scop
->implications
= isl_calloc_array(ctx
, struct pet_implication
*,
733 scop1
->n_implication
+ scop2
->n_implication
);
734 if (!scop
->implications
)
735 return pet_scop_free(scop
);
737 for (i
= 0; i
< scop1
->n_implication
; ++i
) {
738 scop
->implications
[i
] = scop1
->implications
[i
];
739 scop1
->implications
[i
] = NULL
;
742 scop
->n_implication
= scop1
->n_implication
;
743 j
= scop1
->n_implication
;
744 for (i
= 0; i
< scop2
->n_implication
; ++i
) {
747 known
= is_known_implication(scop
, scop2
->implications
[i
]);
749 return pet_scop_free(scop
);
752 scop
->implications
[j
++] = scop2
->implications
[i
];
753 scop2
->implications
[i
] = NULL
;
755 scop
->n_implication
= j
;
760 /* Combine the offset information of "scop1" and "scop2" into "scop".
762 static struct pet_scop
*scop_combine_start_end(struct pet_scop
*scop
,
763 struct pet_scop
*scop1
, struct pet_scop
*scop2
)
765 if (scop1
->loc
!= &pet_loc_dummy
)
766 scop
= pet_scop_update_start_end_from_loc(scop
, scop1
->loc
);
767 if (scop2
->loc
!= &pet_loc_dummy
)
768 scop
= pet_scop_update_start_end_from_loc(scop
, scop2
->loc
);
772 /* Create and return an independence that filters out the dependences
773 * in "filter" with local variables "local".
775 static struct pet_independence
*new_independence(
776 __isl_take isl_union_map
*filter
, __isl_take isl_union_set
*local
)
779 struct pet_independence
*independence
;
781 if (!filter
|| !local
)
783 ctx
= isl_union_map_get_ctx(filter
);
784 independence
= isl_alloc_type(ctx
, struct pet_independence
);
788 independence
->filter
= filter
;
789 independence
->local
= local
;
793 isl_union_map_free(filter
);
794 isl_union_set_free(local
);
798 /* Add an independence that filters out the dependences
799 * in "filter" with local variables "local" to "scop".
801 struct pet_scop
*pet_scop_add_independence(struct pet_scop
*scop
,
802 __isl_take isl_union_map
*filter
, __isl_take isl_union_set
*local
)
805 struct pet_independence
*independence
;
806 struct pet_independence
**independences
;
808 ctx
= isl_union_map_get_ctx(filter
);
809 independence
= new_independence(filter
, local
);
810 if (!scop
|| !independence
)
813 independences
= isl_realloc_array(ctx
, scop
->independences
,
814 struct pet_independence
*,
815 scop
->n_independence
+ 1);
818 scop
->independences
= independences
;
819 scop
->independences
[scop
->n_independence
] = independence
;
820 scop
->n_independence
++;
824 pet_independence_free(independence
);
829 /* Store the concatenation of the independences of "scop1" and "scop2"
832 static struct pet_scop
*scop_collect_independences(isl_ctx
*ctx
,
833 struct pet_scop
*scop
, struct pet_scop
*scop1
, struct pet_scop
*scop2
)
840 if (scop2
->n_independence
== 0) {
841 scop
->n_independence
= scop1
->n_independence
;
842 scop
->independences
= scop1
->independences
;
843 scop1
->n_independence
= 0;
844 scop1
->independences
= NULL
;
848 if (scop1
->n_independence
== 0) {
849 scop
->n_independence
= scop2
->n_independence
;
850 scop
->independences
= scop2
->independences
;
851 scop2
->n_independence
= 0;
852 scop2
->independences
= NULL
;
856 scop
->independences
= isl_calloc_array(ctx
, struct pet_independence
*,
857 scop1
->n_independence
+ scop2
->n_independence
);
858 if (!scop
->independences
)
859 return pet_scop_free(scop
);
861 for (i
= 0; i
< scop1
->n_independence
; ++i
) {
862 scop
->independences
[i
] = scop1
->independences
[i
];
863 scop1
->independences
[i
] = NULL
;
866 off
= scop1
->n_independence
;
867 for (i
= 0; i
< scop2
->n_independence
; ++i
) {
868 scop
->independences
[off
+ i
] = scop2
->independences
[i
];
869 scop2
->independences
[i
] = NULL
;
871 scop
->n_independence
= scop1
->n_independence
+ scop2
->n_independence
;
876 /* Construct a pet_scop with the given schedule
877 * that contains the offset information,
878 * arrays, statements and skip information in "scop1" and "scop2".
880 static struct pet_scop
*pet_scop_add(isl_ctx
*ctx
,
881 __isl_take isl_schedule
*schedule
, struct pet_scop
*scop1
,
882 struct pet_scop
*scop2
)
886 struct pet_scop
*scop
= NULL
;
888 if (!scop1
|| !scop2
)
891 if (scop1
->n_stmt
== 0) {
892 scop2
= scop_combine_skips(scop2
, scop1
, scop2
);
893 pet_scop_free(scop1
);
894 isl_schedule_free(schedule
);
898 if (scop2
->n_stmt
== 0) {
899 scop1
= scop_combine_skips(scop1
, scop1
, scop2
);
900 pet_scop_free(scop2
);
901 isl_schedule_free(schedule
);
905 space
= isl_set_get_space(scop1
->context
);
906 scop
= scop_alloc(space
, scop1
->n_stmt
+ scop2
->n_stmt
,
907 isl_schedule_copy(schedule
));
911 scop
->arrays
= isl_calloc_array(ctx
, struct pet_array
*,
912 scop1
->n_array
+ scop2
->n_array
);
915 scop
->n_array
= scop1
->n_array
+ scop2
->n_array
;
917 for (i
= 0; i
< scop1
->n_stmt
; ++i
) {
918 scop
->stmts
[i
] = scop1
->stmts
[i
];
919 scop1
->stmts
[i
] = NULL
;
922 for (i
= 0; i
< scop2
->n_stmt
; ++i
) {
923 scop
->stmts
[scop1
->n_stmt
+ i
] = scop2
->stmts
[i
];
924 scop2
->stmts
[i
] = NULL
;
927 for (i
= 0; i
< scop1
->n_array
; ++i
) {
928 scop
->arrays
[i
] = scop1
->arrays
[i
];
929 scop1
->arrays
[i
] = NULL
;
932 for (i
= 0; i
< scop2
->n_array
; ++i
) {
933 scop
->arrays
[scop1
->n_array
+ i
] = scop2
->arrays
[i
];
934 scop2
->arrays
[i
] = NULL
;
937 scop
= scop_collect_implications(ctx
, scop
, scop1
, scop2
);
938 scop
= pet_scop_restrict_context(scop
, isl_set_copy(scop1
->context
));
939 scop
= pet_scop_restrict_context(scop
, isl_set_copy(scop2
->context
));
940 scop
= scop_combine_skips(scop
, scop1
, scop2
);
941 scop
= scop_combine_start_end(scop
, scop1
, scop2
);
942 scop
= scop_collect_independences(ctx
, scop
, scop1
, scop2
);
944 pet_scop_free(scop1
);
945 pet_scop_free(scop2
);
946 isl_schedule_free(schedule
);
949 pet_scop_free(scop1
);
950 pet_scop_free(scop2
);
952 isl_schedule_free(schedule
);
956 /* Apply the skip condition "skip" to "scop".
957 * That is, make sure "scop" is not executed when the condition holds.
959 * If "skip" is an affine expression, we add the conditions under
960 * which the expression is zero to the context and the skip conditions
962 * Otherwise, we add a filter on the variable attaining the value zero.
964 static struct pet_scop
*restrict_skip(struct pet_scop
*scop
,
965 __isl_take isl_multi_pw_aff
*skip
)
974 is_aff
= multi_pw_aff_is_affine(skip
);
979 return pet_scop_filter(scop
, skip
, 0);
981 pa
= isl_multi_pw_aff_get_pw_aff(skip
, 0);
982 isl_multi_pw_aff_free(skip
);
983 zero
= isl_pw_aff_zero_set(pa
);
984 scop
= pet_scop_restrict(scop
, zero
);
988 isl_multi_pw_aff_free(skip
);
989 return pet_scop_free(scop
);
992 /* Construct a pet_scop that contains the arrays, statements and
993 * skip information in "scop1" and "scop2", where the two scops
994 * are executed "in sequence". That is, breaks and continues
995 * in scop1 have an effect on scop2 and the schedule of the result
996 * is the sequence of the schedules of "scop1" and "scop2".
998 struct pet_scop
*pet_scop_add_seq(isl_ctx
*ctx
, struct pet_scop
*scop1
,
999 struct pet_scop
*scop2
)
1001 isl_schedule
*schedule
;
1003 if (!scop1
|| !scop2
)
1006 if (scop1
&& pet_scop_has_skip(scop1
, pet_skip_now
))
1007 scop2
= restrict_skip(scop2
,
1008 pet_scop_get_skip(scop1
, pet_skip_now
));
1009 schedule
= isl_schedule_sequence(isl_schedule_copy(scop1
->schedule
),
1010 isl_schedule_copy(scop2
->schedule
));
1011 return pet_scop_add(ctx
, schedule
, scop1
, scop2
);
1013 pet_scop_free(scop1
);
1014 pet_scop_free(scop2
);
1018 /* Construct a pet_scop that contains the arrays, statements and
1019 * skip information in "scop1" and "scop2", where the two scops
1020 * are executed "in parallel". That is, any break or continue
1021 * in scop1 has no effect on scop2 and the schedule of the result
1022 * is the set of the schedules of "scop1" and "scop2".
1024 struct pet_scop
*pet_scop_add_par(isl_ctx
*ctx
, struct pet_scop
*scop1
,
1025 struct pet_scop
*scop2
)
1027 isl_schedule
*schedule
;
1029 if (!scop1
|| !scop2
)
1032 schedule
= isl_schedule_set(isl_schedule_copy(scop1
->schedule
),
1033 isl_schedule_copy(scop2
->schedule
));
1034 return pet_scop_add(ctx
, schedule
, scop1
, scop2
);
1036 pet_scop_free(scop1
);
1037 pet_scop_free(scop2
);
1041 void *pet_implication_free(struct pet_implication
*implication
)
1048 isl_map_free(implication
->extension
);
1054 void *pet_independence_free(struct pet_independence
*independence
)
1059 isl_union_map_free(independence
->filter
);
1060 isl_union_set_free(independence
->local
);
1066 struct pet_scop
*pet_scop_free(struct pet_scop
*scop
)
1069 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
1073 pet_loc_free(scop
->loc
);
1074 isl_set_free(scop
->context
);
1075 isl_set_free(scop
->context_value
);
1076 isl_schedule_free(scop
->schedule
);
1078 for (i
= 0; i
< scop
->n_type
; ++i
)
1079 pet_type_free(scop
->types
[i
]);
1082 for (i
= 0; i
< scop
->n_array
; ++i
)
1083 pet_array_free(scop
->arrays
[i
]);
1086 for (i
= 0; i
< scop
->n_stmt
; ++i
)
1087 pet_stmt_free(scop
->stmts
[i
]);
1089 if (scop
->implications
)
1090 for (i
= 0; i
< scop
->n_implication
; ++i
)
1091 pet_implication_free(scop
->implications
[i
]);
1092 free(scop
->implications
);
1093 if (scop
->independences
)
1094 for (i
= 0; i
< scop
->n_independence
; ++i
)
1095 pet_independence_free(scop
->independences
[i
]);
1096 free(scop
->independences
);
1097 isl_multi_pw_aff_free(ext
->skip
[pet_skip_now
]);
1098 isl_multi_pw_aff_free(ext
->skip
[pet_skip_later
]);
1103 void pet_type_dump(struct pet_type
*type
)
1108 fprintf(stderr
, "%s -> %s\n", type
->name
, type
->definition
);
1111 void pet_implication_dump(struct pet_implication
*implication
)
1116 fprintf(stderr
, "%d\n", implication
->satisfied
);
1117 isl_map_dump(implication
->extension
);
1120 void pet_scop_dump(struct pet_scop
*scop
)
1123 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
1128 isl_set_dump(scop
->context
);
1129 isl_set_dump(scop
->context_value
);
1130 isl_schedule_dump(scop
->schedule
);
1131 for (i
= 0; i
< scop
->n_type
; ++i
)
1132 pet_type_dump(scop
->types
[i
]);
1133 for (i
= 0; i
< scop
->n_array
; ++i
)
1134 pet_array_dump(scop
->arrays
[i
]);
1135 for (i
= 0; i
< scop
->n_stmt
; ++i
)
1136 pet_stmt_dump(scop
->stmts
[i
]);
1137 for (i
= 0; i
< scop
->n_implication
; ++i
)
1138 pet_implication_dump(scop
->implications
[i
]);
1141 fprintf(stderr
, "skip\n");
1142 isl_multi_pw_aff_dump(ext
->skip
[0]);
1143 isl_multi_pw_aff_dump(ext
->skip
[1]);
1147 /* Return 1 if the two pet_arrays are equivalent.
1149 * We don't compare element_size as this may be target dependent.
1151 int pet_array_is_equal(struct pet_array
*array1
, struct pet_array
*array2
)
1153 if (!array1
|| !array2
)
1156 if (!isl_set_is_equal(array1
->context
, array2
->context
))
1158 if (!isl_set_is_equal(array1
->extent
, array2
->extent
))
1160 if (!!array1
->value_bounds
!= !!array2
->value_bounds
)
1162 if (array1
->value_bounds
&&
1163 !isl_set_is_equal(array1
->value_bounds
, array2
->value_bounds
))
1165 if (strcmp(array1
->element_type
, array2
->element_type
))
1167 if (array1
->element_is_record
!= array2
->element_is_record
)
1169 if (array1
->live_out
!= array2
->live_out
)
1171 if (array1
->uniquely_defined
!= array2
->uniquely_defined
)
1173 if (array1
->declared
!= array2
->declared
)
1175 if (array1
->exposed
!= array2
->exposed
)
1181 /* Return 1 if the two pet_stmts are equivalent.
1183 int pet_stmt_is_equal(struct pet_stmt
*stmt1
, struct pet_stmt
*stmt2
)
1187 if (!stmt1
|| !stmt2
)
1190 if (pet_loc_get_line(stmt1
->loc
) != pet_loc_get_line(stmt2
->loc
))
1192 if (!isl_set_is_equal(stmt1
->domain
, stmt2
->domain
))
1194 if (!pet_tree_is_equal(stmt1
->body
, stmt2
->body
))
1196 if (stmt1
->n_arg
!= stmt2
->n_arg
)
1198 for (i
= 0; i
< stmt1
->n_arg
; ++i
) {
1199 if (!pet_expr_is_equal(stmt1
->args
[i
], stmt2
->args
[i
]))
1206 /* Return 1 if the two pet_types are equivalent.
1208 * We only compare the names of the types since the exact representation
1209 * of the definition may depend on the version of clang being used.
1211 int pet_type_is_equal(struct pet_type
*type1
, struct pet_type
*type2
)
1213 if (!type1
|| !type2
)
1216 if (strcmp(type1
->name
, type2
->name
))
1222 /* Return 1 if the two pet_implications are equivalent.
1224 int pet_implication_is_equal(struct pet_implication
*implication1
,
1225 struct pet_implication
*implication2
)
1227 if (!implication1
|| !implication2
)
1230 if (implication1
->satisfied
!= implication2
->satisfied
)
1232 if (!isl_map_is_equal(implication1
->extension
, implication2
->extension
))
1238 /* Return 1 if the two pet_independences are equivalent.
1240 int pet_independence_is_equal(struct pet_independence
*independence1
,
1241 struct pet_independence
*independence2
)
1243 if (!independence1
|| !independence2
)
1246 if (!isl_union_map_is_equal(independence1
->filter
,
1247 independence2
->filter
))
1249 if (!isl_union_set_is_equal(independence1
->local
, independence2
->local
))
1255 /* Return 1 if the two pet_scops are equivalent.
1257 int pet_scop_is_equal(struct pet_scop
*scop1
, struct pet_scop
*scop2
)
1262 if (!scop1
|| !scop2
)
1265 if (!isl_set_is_equal(scop1
->context
, scop2
->context
))
1267 if (!isl_set_is_equal(scop1
->context_value
, scop2
->context_value
))
1269 equal
= isl_schedule_plain_is_equal(scop1
->schedule
, scop2
->schedule
);
1275 if (scop1
->n_type
!= scop2
->n_type
)
1277 for (i
= 0; i
< scop1
->n_type
; ++i
)
1278 if (!pet_type_is_equal(scop1
->types
[i
], scop2
->types
[i
]))
1281 if (scop1
->n_array
!= scop2
->n_array
)
1283 for (i
= 0; i
< scop1
->n_array
; ++i
)
1284 if (!pet_array_is_equal(scop1
->arrays
[i
], scop2
->arrays
[i
]))
1287 if (scop1
->n_stmt
!= scop2
->n_stmt
)
1289 for (i
= 0; i
< scop1
->n_stmt
; ++i
)
1290 if (!pet_stmt_is_equal(scop1
->stmts
[i
], scop2
->stmts
[i
]))
1293 if (scop1
->n_implication
!= scop2
->n_implication
)
1295 for (i
= 0; i
< scop1
->n_implication
; ++i
)
1296 if (!pet_implication_is_equal(scop1
->implications
[i
],
1297 scop2
->implications
[i
]))
1300 if (scop1
->n_independence
!= scop2
->n_independence
)
1302 for (i
= 0; i
< scop1
->n_independence
; ++i
)
1303 if (!pet_independence_is_equal(scop1
->independences
[i
],
1304 scop2
->independences
[i
]))
1310 /* Does the set "extent" reference a virtual array, i.e.,
1311 * one with user pointer equal to NULL?
1312 * A virtual array does not have any members.
1314 static int extent_is_virtual_array(__isl_keep isl_set
*extent
)
1319 if (!isl_set_has_tuple_id(extent
))
1321 if (isl_set_is_wrapping(extent
))
1323 id
= isl_set_get_tuple_id(extent
);
1324 is_virtual
= !isl_id_get_user(id
);
1330 /* Intersect the initial dimensions of "array" with "domain", provided
1331 * that "array" represents a virtual array.
1333 * If "array" is virtual, then We take the preimage of "domain"
1334 * over the projection of the extent of "array" onto its initial dimensions
1335 * and intersect this extent with the result.
1337 static struct pet_array
*virtual_array_intersect_domain_prefix(
1338 struct pet_array
*array
, __isl_take isl_set
*domain
)
1344 if (!array
|| !extent_is_virtual_array(array
->extent
)) {
1345 isl_set_free(domain
);
1349 space
= isl_set_get_space(array
->extent
);
1350 n
= isl_set_dim(domain
, isl_dim_set
);
1351 ma
= pet_prefix_projection(space
, n
);
1352 domain
= isl_set_preimage_multi_aff(domain
, ma
);
1354 array
->extent
= isl_set_intersect(array
->extent
, domain
);
1356 return pet_array_free(array
);
1361 /* Intersect the initial dimensions of the domain of "stmt"
1364 * We take the preimage of "domain" over the projection of the
1365 * domain of "stmt" onto its initial dimensions and intersect
1366 * the domain of "stmt" with the result.
1368 static struct pet_stmt
*stmt_intersect_domain_prefix(struct pet_stmt
*stmt
,
1369 __isl_take isl_set
*domain
)
1378 space
= isl_set_get_space(stmt
->domain
);
1379 n
= isl_set_dim(domain
, isl_dim_set
);
1380 ma
= pet_prefix_projection(space
, n
);
1381 domain
= isl_set_preimage_multi_aff(domain
, ma
);
1383 stmt
->domain
= isl_set_intersect(stmt
->domain
, domain
);
1385 return pet_stmt_free(stmt
);
1389 isl_set_free(domain
);
1390 return pet_stmt_free(stmt
);
1393 /* Intersect the initial dimensions of the domain of "implication"
1396 * We take the preimage of "domain" over the projection of the
1397 * domain of "implication" onto its initial dimensions and intersect
1398 * the domain of "implication" with the result.
1400 static struct pet_implication
*implication_intersect_domain_prefix(
1401 struct pet_implication
*implication
, __isl_take isl_set
*domain
)
1410 space
= isl_map_get_space(implication
->extension
);
1411 n
= isl_set_dim(domain
, isl_dim_set
);
1412 ma
= pet_prefix_projection(isl_space_domain(space
), n
);
1413 domain
= isl_set_preimage_multi_aff(domain
, ma
);
1415 implication
->extension
=
1416 isl_map_intersect_domain(implication
->extension
, domain
);
1417 if (!implication
->extension
)
1418 return pet_implication_free(implication
);
1422 isl_set_free(domain
);
1423 return pet_implication_free(implication
);
1426 /* Intersect the initial dimensions of the domains in "scop" with "domain".
1428 * The extents of the virtual arrays match the iteration domains,
1429 * so if the iteration domain changes, we need to change those extents too.
1431 * The domain of the schedule is intersected with (i.e., replaced by)
1432 * the union of the updated iteration domains.
1434 struct pet_scop
*pet_scop_intersect_domain_prefix(struct pet_scop
*scop
,
1435 __isl_take isl_set
*domain
)
1442 for (i
= 0; i
< scop
->n_array
; ++i
) {
1443 scop
->arrays
[i
] = virtual_array_intersect_domain_prefix(
1444 scop
->arrays
[i
], isl_set_copy(domain
));
1445 if (!scop
->arrays
[i
])
1449 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
1450 scop
->stmts
[i
] = stmt_intersect_domain_prefix(scop
->stmts
[i
],
1451 isl_set_copy(domain
));
1452 if (!scop
->stmts
[i
])
1456 for (i
= 0; i
< scop
->n_implication
; ++i
) {
1457 scop
->implications
[i
] =
1458 implication_intersect_domain_prefix(scop
->implications
[i
],
1459 isl_set_copy(domain
));
1460 if (!scop
->implications
[i
])
1461 return pet_scop_free(scop
);
1464 scop
->schedule
= isl_schedule_intersect_domain(scop
->schedule
,
1465 pet_scop_collect_domains(scop
));
1466 if (!scop
->schedule
)
1469 isl_set_free(domain
);
1472 isl_set_free(domain
);
1473 return pet_scop_free(scop
);
1476 /* Update the context with respect to an embedding into a loop
1477 * with iteration domain "dom".
1478 * The input context lives in the same space as "dom".
1479 * The output context has the inner dimension removed.
1481 * An outer loop iterator value is invalid for the embedding if
1482 * any of the corresponding inner iterator values is invalid.
1483 * That is, an outer loop iterator value is valid only if all the corresponding
1484 * inner iterator values are valid.
1485 * We therefore compute the set of outer loop iterators l
1487 * forall i: dom(l,i) => valid(l,i)
1491 * forall i: not dom(l,i) or valid(l,i)
1495 * not exists i: dom(l,i) and not valid(l,i)
1499 * not exists i: (dom \ valid)(l,i)
1501 * If there are any unnamed parameters in "dom", then we consider
1502 * a parameter value to be valid if it is valid for any value of those
1503 * unnamed parameters. They are therefore projected out at the end.
1505 static __isl_give isl_set
*context_embed(__isl_take isl_set
*context
,
1506 __isl_keep isl_set
*dom
)
1510 pos
= isl_set_dim(context
, isl_dim_set
) - 1;
1511 context
= isl_set_subtract(isl_set_copy(dom
), context
);
1512 context
= isl_set_project_out(context
, isl_dim_set
, pos
, 1);
1513 context
= isl_set_complement(context
);
1514 context
= pet_nested_remove_from_set(context
);
1519 /* Update the implication with respect to an embedding into a loop
1520 * with iteration domain "dom".
1522 * Since embed_access extends virtual arrays along with the domain
1523 * of the access, we need to do the same with domain and range
1524 * of the implication. Since the original implication is only valid
1525 * within a given iteration of the loop, the extended implication
1526 * maps the extra array dimension corresponding to the extra loop
1529 static struct pet_implication
*pet_implication_embed(
1530 struct pet_implication
*implication
, __isl_take isl_set
*dom
)
1538 map
= isl_set_identity(dom
);
1539 id
= isl_map_get_tuple_id(implication
->extension
, isl_dim_in
);
1540 map
= isl_map_flat_product(map
, implication
->extension
);
1541 map
= isl_map_set_tuple_id(map
, isl_dim_in
, isl_id_copy(id
));
1542 map
= isl_map_set_tuple_id(map
, isl_dim_out
, id
);
1543 implication
->extension
= map
;
1544 if (!implication
->extension
)
1545 return pet_implication_free(implication
);
1553 /* Internal data structure for outer_projection_mupa.
1555 * "n" is the number of outer dimensions onto which to project.
1556 * "res" collects the result.
1558 struct pet_outer_projection_data
{
1560 isl_union_pw_multi_aff
*res
;
1563 /* Create a function that maps "set" onto its outer data->n dimensions and
1564 * add it to data->res.
1566 static isl_stat
add_outer_projection(__isl_take isl_set
*set
, void *user
)
1568 struct pet_outer_projection_data
*data
= user
;
1571 isl_pw_multi_aff
*pma
;
1573 dim
= isl_set_dim(set
, isl_dim_set
);
1574 space
= isl_set_get_space(set
);
1575 pma
= isl_pw_multi_aff_project_out_map(space
,
1576 isl_dim_set
, data
->n
, dim
- data
->n
);
1577 data
->res
= isl_union_pw_multi_aff_add_pw_multi_aff(data
->res
, pma
);
1584 /* Create and return a function that maps the sets in "domain"
1585 * onto their outer "n" dimensions.
1587 static __isl_give isl_multi_union_pw_aff
*outer_projection_mupa(
1588 __isl_take isl_union_set
*domain
, int n
)
1590 struct pet_outer_projection_data data
;
1593 space
= isl_union_set_get_space(domain
);
1595 data
.res
= isl_union_pw_multi_aff_empty(space
);
1596 if (isl_union_set_foreach_set(domain
, &add_outer_projection
, &data
) < 0)
1597 data
.res
= isl_union_pw_multi_aff_free(data
.res
);
1599 isl_union_set_free(domain
);
1600 return isl_multi_union_pw_aff_from_union_pw_multi_aff(data
.res
);
1603 /* Embed "schedule" in a loop with schedule "prefix".
1604 * The domain of "prefix" corresponds to the outer dimensions
1605 * of the iteration domains.
1606 * We therefore construct a projection onto these outer dimensions,
1607 * compose it with "prefix" and then add the result as a band schedule.
1609 * If the domain of the schedule is empty, then there is no need
1610 * to insert any node.
1612 static __isl_give isl_schedule
*schedule_embed(
1613 __isl_take isl_schedule
*schedule
, __isl_keep isl_multi_aff
*prefix
)
1617 isl_union_set
*domain
;
1619 isl_multi_union_pw_aff
*mupa
;
1621 domain
= isl_schedule_get_domain(schedule
);
1622 empty
= isl_union_set_is_empty(domain
);
1623 if (empty
< 0 || empty
) {
1624 isl_union_set_free(domain
);
1625 return empty
< 0 ? isl_schedule_free(schedule
) : schedule
;
1628 n
= isl_multi_aff_dim(prefix
, isl_dim_in
);
1629 mupa
= outer_projection_mupa(domain
, n
);
1630 ma
= isl_multi_aff_copy(prefix
);
1631 mupa
= isl_multi_union_pw_aff_apply_multi_aff(mupa
, ma
);
1632 schedule
= isl_schedule_insert_partial_schedule(schedule
, mupa
);
1637 /* Adjust the context and the schedule according to an embedding
1638 * in a loop with iteration domain "dom" and schedule "sched".
1640 struct pet_scop
*pet_scop_embed(struct pet_scop
*scop
, __isl_take isl_set
*dom
,
1641 __isl_take isl_multi_aff
*sched
)
1648 scop
->context
= context_embed(scop
->context
, dom
);
1652 scop
->schedule
= schedule_embed(scop
->schedule
, sched
);
1653 if (!scop
->schedule
)
1657 isl_multi_aff_free(sched
);
1661 isl_multi_aff_free(sched
);
1662 return pet_scop_free(scop
);
1665 /* Add extra conditions to scop->skip[type].
1667 * The new skip condition only holds if it held before
1668 * and the condition is true. It does not hold if it did not hold
1669 * before or the condition is false.
1671 * The skip condition is assumed to be an affine expression.
1673 static struct pet_scop
*pet_scop_restrict_skip(struct pet_scop
*scop
,
1674 enum pet_skip type
, __isl_keep isl_set
*cond
)
1676 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
1682 if (!ext
->skip
[type
])
1685 if (!multi_pw_aff_is_affine(ext
->skip
[type
]))
1686 isl_die(isl_multi_pw_aff_get_ctx(ext
->skip
[type
]),
1687 isl_error_internal
, "can only restrict affine skips",
1688 return pet_scop_free(scop
));
1690 skip
= isl_multi_pw_aff_get_pw_aff(ext
->skip
[type
], 0);
1691 dom
= isl_pw_aff_domain(isl_pw_aff_copy(skip
));
1692 cond
= isl_set_copy(cond
);
1693 cond
= isl_set_intersect(cond
, isl_pw_aff_non_zero_set(skip
));
1694 skip
= indicator_function(cond
, dom
);
1695 isl_multi_pw_aff_free(ext
->skip
[type
]);
1696 ext
->skip
[type
] = isl_multi_pw_aff_from_pw_aff(skip
);
1697 if (!ext
->skip
[type
])
1698 return pet_scop_free(scop
);
1703 /* Adjust the context and the skip conditions to the fact that
1704 * the scop was created in a context where "cond" holds.
1706 * An outer loop iterator or parameter value is valid for the result
1707 * if it was valid for the original scop and satisfies "cond" or if it does
1708 * not satisfy "cond" as in this case the scop is not executed
1709 * and the original constraints on these values are irrelevant.
1711 struct pet_scop
*pet_scop_restrict(struct pet_scop
*scop
,
1712 __isl_take isl_set
*cond
)
1716 scop
= pet_scop_restrict_skip(scop
, pet_skip_now
, cond
);
1717 scop
= pet_scop_restrict_skip(scop
, pet_skip_later
, cond
);
1722 scop
->context
= isl_set_intersect(scop
->context
, isl_set_copy(cond
));
1723 scop
->context
= isl_set_union(scop
->context
,
1724 isl_set_complement(isl_set_copy(cond
)));
1725 scop
->context
= isl_set_coalesce(scop
->context
);
1726 scop
->context
= pet_nested_remove_from_set(scop
->context
);
1734 return pet_scop_free(scop
);
1737 /* Insert an argument expression corresponding to "test" in front
1738 * of the list of arguments described by *n_arg and *args.
1740 static int args_insert_access(unsigned *n_arg
, pet_expr
***args
,
1741 __isl_keep isl_multi_pw_aff
*test
)
1744 isl_ctx
*ctx
= isl_multi_pw_aff_get_ctx(test
);
1750 *args
= isl_calloc_array(ctx
, pet_expr
*, 1);
1755 ext
= isl_calloc_array(ctx
, pet_expr
*, 1 + *n_arg
);
1758 for (i
= 0; i
< *n_arg
; ++i
)
1759 ext
[1 + i
] = (*args
)[i
];
1764 (*args
)[0] = pet_expr_from_index(isl_multi_pw_aff_copy(test
));
1771 /* Look through the applications in "scop" for any that can be
1772 * applied to the filter expressed by "map" and "satisified".
1773 * If there is any, then apply it to "map" and return the result.
1774 * Otherwise, return "map".
1775 * "id" is the identifier of the virtual array.
1777 * We only introduce at most one implication for any given virtual array,
1778 * so we can apply the implication and return as soon as we find one.
1780 static __isl_give isl_map
*apply_implications(struct pet_scop
*scop
,
1781 __isl_take isl_map
*map
, __isl_keep isl_id
*id
, int satisfied
)
1785 for (i
= 0; i
< scop
->n_implication
; ++i
) {
1786 struct pet_implication
*pi
= scop
->implications
[i
];
1789 if (pi
->satisfied
!= satisfied
)
1791 pi_id
= isl_map_get_tuple_id(pi
->extension
, isl_dim_in
);
1796 return isl_map_apply_range(map
, isl_map_copy(pi
->extension
));
1802 /* Is the filter expressed by "test" and "satisfied" implied
1803 * by filter "pos" on "domain", with filter "expr", taking into
1804 * account the implications of "scop"?
1806 * For filter on domain implying that expressed by "test" and "satisfied",
1807 * the filter needs to be an access to the same (virtual) array as "test" and
1808 * the filter value needs to be equal to "satisfied".
1809 * Moreover, the filter access relation, possibly extended by
1810 * the implications in "scop" needs to contain "test".
1812 static int implies_filter(struct pet_scop
*scop
,
1813 __isl_keep isl_map
*domain
, int pos
, __isl_keep pet_expr
*expr
,
1814 __isl_keep isl_map
*test
, int satisfied
)
1816 isl_id
*test_id
, *arg_id
;
1823 if (expr
->type
!= pet_expr_access
)
1825 test_id
= isl_map_get_tuple_id(test
, isl_dim_out
);
1826 arg_id
= pet_expr_access_get_id(expr
);
1827 isl_id_free(arg_id
);
1828 isl_id_free(test_id
);
1829 if (test_id
!= arg_id
)
1831 val
= isl_map_plain_get_val_if_fixed(domain
, isl_dim_out
, pos
);
1832 is_int
= isl_val_is_int(val
);
1834 s
= isl_val_get_num_si(val
);
1843 implied
= isl_map_from_multi_pw_aff(pet_expr_access_get_index(expr
));
1844 implied
= apply_implications(scop
, implied
, test_id
, satisfied
);
1845 is_subset
= isl_map_is_subset(test
, implied
);
1846 isl_map_free(implied
);
1851 /* Is the filter expressed by "test" and "satisfied" implied
1852 * by any of the filters on the domain of "stmt", taking into
1853 * account the implications of "scop"?
1855 static int filter_implied(struct pet_scop
*scop
,
1856 struct pet_stmt
*stmt
, __isl_keep isl_multi_pw_aff
*test
, int satisfied
)
1864 if (!scop
|| !stmt
|| !test
)
1866 if (scop
->n_implication
== 0)
1868 if (stmt
->n_arg
== 0)
1871 domain
= isl_set_unwrap(isl_set_copy(stmt
->domain
));
1872 test_map
= isl_map_from_multi_pw_aff(isl_multi_pw_aff_copy(test
));
1875 for (i
= 0; i
< stmt
->n_arg
; ++i
) {
1876 implied
= implies_filter(scop
, domain
, i
, stmt
->args
[i
],
1877 test_map
, satisfied
);
1878 if (implied
< 0 || implied
)
1882 isl_map_free(test_map
);
1883 isl_map_free(domain
);
1887 /* Make the statement "stmt" depend on the value of "test"
1888 * being equal to "satisfied" by adjusting stmt->domain.
1890 * The domain of "test" corresponds to the (zero or more) outer dimensions
1891 * of the iteration domain.
1893 * We first extend "test" to apply to the entire iteration domain and
1894 * then check if the filter that we are about to add is implied
1895 * by any of the current filters, possibly taking into account
1896 * the implications in "scop". If so, we leave "stmt" untouched and return.
1898 * Otherwise, we insert an argument corresponding to a read to "test"
1899 * from the iteration domain of "stmt" in front of the list of arguments.
1900 * We also insert a corresponding output dimension in the wrapped
1901 * map contained in stmt->domain, with value set to "satisfied".
1903 static struct pet_stmt
*stmt_filter(struct pet_scop
*scop
,
1904 struct pet_stmt
*stmt
, __isl_take isl_multi_pw_aff
*test
, int satisfied
)
1910 isl_pw_multi_aff
*pma
;
1911 isl_multi_aff
*add_dom
;
1913 isl_local_space
*ls
;
1919 space
= pet_stmt_get_space(stmt
);
1920 n_test_dom
= isl_multi_pw_aff_dim(test
, isl_dim_in
);
1921 space
= isl_space_from_domain(space
);
1922 space
= isl_space_add_dims(space
, isl_dim_out
, n_test_dom
);
1923 add_dom
= isl_multi_aff_zero(isl_space_copy(space
));
1924 ls
= isl_local_space_from_space(isl_space_domain(space
));
1925 for (i
= 0; i
< n_test_dom
; ++i
) {
1927 aff
= isl_aff_var_on_domain(isl_local_space_copy(ls
),
1929 add_dom
= isl_multi_aff_set_aff(add_dom
, i
, aff
);
1931 isl_local_space_free(ls
);
1932 test
= isl_multi_pw_aff_pullback_multi_aff(test
, add_dom
);
1934 implied
= filter_implied(scop
, stmt
, test
, satisfied
);
1938 isl_multi_pw_aff_free(test
);
1942 id
= isl_multi_pw_aff_get_tuple_id(test
, isl_dim_out
);
1943 pma
= pet_filter_insert_pma(isl_set_get_space(stmt
->domain
),
1945 stmt
->domain
= isl_set_preimage_pw_multi_aff(stmt
->domain
, pma
);
1947 if (args_insert_access(&stmt
->n_arg
, &stmt
->args
, test
) < 0)
1950 isl_multi_pw_aff_free(test
);
1953 isl_multi_pw_aff_free(test
);
1954 return pet_stmt_free(stmt
);
1957 /* Does "scop" have a skip condition of the given "type"?
1959 int pet_scop_has_skip(struct pet_scop
*scop
, enum pet_skip type
)
1961 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
1965 return ext
->skip
[type
] != NULL
;
1968 /* Does "scop" have a skip condition of the given "type" that
1969 * is an affine expression?
1971 int pet_scop_has_affine_skip(struct pet_scop
*scop
, enum pet_skip type
)
1973 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
1977 if (!ext
->skip
[type
])
1979 return multi_pw_aff_is_affine(ext
->skip
[type
]);
1982 /* Does "scop" have a skip condition of the given "type" that
1983 * is not an affine expression?
1985 int pet_scop_has_var_skip(struct pet_scop
*scop
, enum pet_skip type
)
1987 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
1992 if (!ext
->skip
[type
])
1994 aff
= multi_pw_aff_is_affine(ext
->skip
[type
]);
2000 /* Does "scop" have a skip condition of the given "type" that
2001 * is affine and holds on the entire domain?
2003 int pet_scop_has_universal_skip(struct pet_scop
*scop
, enum pet_skip type
)
2005 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
2011 is_aff
= pet_scop_has_affine_skip(scop
, type
);
2012 if (is_aff
< 0 || !is_aff
)
2015 pa
= isl_multi_pw_aff_get_pw_aff(ext
->skip
[type
], 0);
2016 set
= isl_pw_aff_non_zero_set(pa
);
2017 is_univ
= isl_set_plain_is_universe(set
);
2023 /* Replace scop->skip[type] by "skip".
2025 struct pet_scop
*pet_scop_set_skip(struct pet_scop
*scop
,
2026 enum pet_skip type
, __isl_take isl_multi_pw_aff
*skip
)
2028 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
2033 isl_multi_pw_aff_free(ext
->skip
[type
]);
2034 ext
->skip
[type
] = skip
;
2038 isl_multi_pw_aff_free(skip
);
2039 return pet_scop_free(scop
);
2042 /* Return a copy of scop->skip[type].
2044 __isl_give isl_multi_pw_aff
*pet_scop_get_skip(struct pet_scop
*scop
,
2047 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
2052 return isl_multi_pw_aff_copy(ext
->skip
[type
]);
2055 /* Assuming scop->skip[type] is an affine expression,
2056 * return the constraints on the outer loop domain for which the skip condition
2059 __isl_give isl_set
*pet_scop_get_affine_skip_domain(struct pet_scop
*scop
,
2062 isl_multi_pw_aff
*skip
;
2065 skip
= pet_scop_get_skip(scop
, type
);
2066 pa
= isl_multi_pw_aff_get_pw_aff(skip
, 0);
2067 isl_multi_pw_aff_free(skip
);
2068 return isl_pw_aff_non_zero_set(pa
);
2071 /* Return the identifier of the variable that is accessed by
2072 * the skip condition of the given type.
2074 * The skip condition is assumed not to be an affine condition.
2076 __isl_give isl_id
*pet_scop_get_skip_id(struct pet_scop
*scop
,
2079 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
2084 return isl_multi_pw_aff_get_tuple_id(ext
->skip
[type
], isl_dim_out
);
2087 /* Return an access pet_expr corresponding to the skip condition
2088 * of the given type.
2090 __isl_give pet_expr
*pet_scop_get_skip_expr(struct pet_scop
*scop
,
2093 return pet_expr_from_index(pet_scop_get_skip(scop
, type
));
2096 /* Drop the skip condition scop->skip[type].
2098 void pet_scop_reset_skip(struct pet_scop
*scop
, enum pet_skip type
)
2100 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
2105 isl_multi_pw_aff_free(ext
->skip
[type
]);
2106 ext
->skip
[type
] = NULL
;
2109 /* Drop all skip conditions on "scop".
2111 struct pet_scop
*pet_scop_reset_skips(struct pet_scop
*scop
)
2113 pet_scop_reset_skip(scop
, pet_skip_now
);
2114 pet_scop_reset_skip(scop
, pet_skip_later
);
2119 /* Make the skip condition (if any) depend on the value of "test" being
2120 * equal to "satisfied".
2122 * We only support the case where the original skip condition is universal,
2123 * i.e., where skipping is unconditional, and where satisfied == 1.
2124 * In this case, the skip condition is changed to skip only when
2125 * "test" is equal to one.
2127 static struct pet_scop
*pet_scop_filter_skip(struct pet_scop
*scop
,
2128 enum pet_skip type
, __isl_keep isl_multi_pw_aff
*test
, int satisfied
)
2134 if (!pet_scop_has_skip(scop
, type
))
2138 is_univ
= pet_scop_has_universal_skip(scop
, type
);
2140 return pet_scop_free(scop
);
2141 if (satisfied
&& is_univ
) {
2142 isl_multi_pw_aff
*skip
;
2143 skip
= isl_multi_pw_aff_copy(test
);
2144 scop
= pet_scop_set_skip(scop
, type
, skip
);
2148 isl_die(isl_multi_pw_aff_get_ctx(test
), isl_error_internal
,
2149 "skip expression cannot be filtered",
2150 return pet_scop_free(scop
));
2156 /* Make all statements in "scop" depend on the value of "test"
2157 * being equal to "satisfied" by adjusting their domains.
2159 struct pet_scop
*pet_scop_filter(struct pet_scop
*scop
,
2160 __isl_take isl_multi_pw_aff
*test
, int satisfied
)
2164 scop
= pet_scop_filter_skip(scop
, pet_skip_now
, test
, satisfied
);
2165 scop
= pet_scop_filter_skip(scop
, pet_skip_later
, test
, satisfied
);
2170 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
2171 scop
->stmts
[i
] = stmt_filter(scop
, scop
->stmts
[i
],
2172 isl_multi_pw_aff_copy(test
), satisfied
);
2173 if (!scop
->stmts
[i
])
2177 isl_multi_pw_aff_free(test
);
2180 isl_multi_pw_aff_free(test
);
2181 return pet_scop_free(scop
);
2184 /* Add the parameters of the access expression "expr" to "space".
2186 static int access_collect_params(__isl_keep pet_expr
*expr
, void *user
)
2189 isl_space
*expr_space
;
2190 isl_space
**space
= user
;
2192 expr_space
= pet_expr_access_get_parameter_space(expr
);
2193 *space
= isl_space_align_params(*space
, expr_space
);
2195 return *space
? 0 : -1;
2198 /* Add all parameters in "stmt" to "space" and return the result.
2200 static __isl_give isl_space
*stmt_collect_params(struct pet_stmt
*stmt
,
2201 __isl_take isl_space
*space
)
2206 return isl_space_free(space
);
2208 space
= isl_space_align_params(space
, isl_set_get_space(stmt
->domain
));
2209 for (i
= 0; i
< stmt
->n_arg
; ++i
)
2210 if (pet_expr_foreach_access_expr(stmt
->args
[i
],
2211 &access_collect_params
, &space
) < 0)
2212 space
= isl_space_free(space
);
2213 if (pet_tree_foreach_access_expr(stmt
->body
, &access_collect_params
,
2215 space
= isl_space_free(space
);
2220 /* Add all parameters in "array" to "space" and return the result.
2222 static __isl_give isl_space
*array_collect_params(struct pet_array
*array
,
2223 __isl_take isl_space
*space
)
2226 return isl_space_free(space
);
2228 space
= isl_space_align_params(space
,
2229 isl_set_get_space(array
->context
));
2230 space
= isl_space_align_params(space
, isl_set_get_space(array
->extent
));
2235 /* Add all parameters in "independence" to "space" and return the result.
2237 static __isl_give isl_space
*independence_collect_params(
2238 struct pet_independence
*independence
, __isl_take isl_space
*space
)
2241 return isl_space_free(space
);
2243 space
= isl_space_align_params(space
,
2244 isl_union_map_get_space(independence
->filter
));
2245 space
= isl_space_align_params(space
,
2246 isl_union_set_get_space(independence
->local
));
2251 /* Collect all parameters in "scop" in a parameter space and return the result.
2253 static __isl_give isl_space
*scop_collect_params(struct pet_scop
*scop
)
2261 space
= isl_set_get_space(scop
->context
);
2263 for (i
= 0; i
< scop
->n_array
; ++i
)
2264 space
= array_collect_params(scop
->arrays
[i
], space
);
2266 for (i
= 0; i
< scop
->n_stmt
; ++i
)
2267 space
= stmt_collect_params(scop
->stmts
[i
], space
);
2269 for (i
= 0; i
< scop
->n_independence
; ++i
)
2270 space
= independence_collect_params(scop
->independences
[i
],
2276 /* Add all parameters in "space" to the domain and
2277 * all access relations in "stmt".
2279 static struct pet_stmt
*stmt_propagate_params(struct pet_stmt
*stmt
,
2280 __isl_take isl_space
*space
)
2287 stmt
->domain
= isl_set_align_params(stmt
->domain
,
2288 isl_space_copy(space
));
2290 for (i
= 0; i
< stmt
->n_arg
; ++i
) {
2291 stmt
->args
[i
] = pet_expr_align_params(stmt
->args
[i
],
2292 isl_space_copy(space
));
2296 stmt
->body
= pet_tree_align_params(stmt
->body
, isl_space_copy(space
));
2298 if (!stmt
->domain
|| !stmt
->body
)
2301 isl_space_free(space
);
2304 isl_space_free(space
);
2305 return pet_stmt_free(stmt
);
2308 /* Add all parameters in "space" to "array".
2310 static struct pet_array
*array_propagate_params(struct pet_array
*array
,
2311 __isl_take isl_space
*space
)
2316 array
->context
= isl_set_align_params(array
->context
,
2317 isl_space_copy(space
));
2318 array
->extent
= isl_set_align_params(array
->extent
,
2319 isl_space_copy(space
));
2320 if (array
->value_bounds
) {
2321 array
->value_bounds
= isl_set_align_params(array
->value_bounds
,
2322 isl_space_copy(space
));
2323 if (!array
->value_bounds
)
2327 if (!array
->context
|| !array
->extent
)
2330 isl_space_free(space
);
2333 isl_space_free(space
);
2334 return pet_array_free(array
);
2337 /* Add all parameters in "space" to "independence".
2339 static struct pet_independence
*independence_propagate_params(
2340 struct pet_independence
*independence
, __isl_take isl_space
*space
)
2345 independence
->filter
= isl_union_map_align_params(independence
->filter
,
2346 isl_space_copy(space
));
2347 independence
->local
= isl_union_set_align_params(independence
->local
,
2348 isl_space_copy(space
));
2349 if (!independence
->filter
|| !independence
->local
)
2352 isl_space_free(space
);
2353 return independence
;
2355 isl_space_free(space
);
2356 return pet_independence_free(independence
);
2359 /* Add all parameters in "space" to "scop".
2361 static struct pet_scop
*scop_propagate_params(struct pet_scop
*scop
,
2362 __isl_take isl_space
*space
)
2369 scop
->context
= isl_set_align_params(scop
->context
,
2370 isl_space_copy(space
));
2371 scop
->schedule
= isl_schedule_align_params(scop
->schedule
,
2372 isl_space_copy(space
));
2373 if (!scop
->context
|| !scop
->schedule
)
2376 for (i
= 0; i
< scop
->n_array
; ++i
) {
2377 scop
->arrays
[i
] = array_propagate_params(scop
->arrays
[i
],
2378 isl_space_copy(space
));
2379 if (!scop
->arrays
[i
])
2383 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
2384 scop
->stmts
[i
] = stmt_propagate_params(scop
->stmts
[i
],
2385 isl_space_copy(space
));
2386 if (!scop
->stmts
[i
])
2390 for (i
= 0; i
< scop
->n_independence
; ++i
) {
2391 scop
->independences
[i
] = independence_propagate_params(
2392 scop
->independences
[i
], isl_space_copy(space
));
2393 if (!scop
->independences
[i
])
2397 isl_space_free(space
);
2400 isl_space_free(space
);
2401 return pet_scop_free(scop
);
2404 /* Update all isl_sets and isl_maps in "scop" such that they all
2405 * have the same parameters.
2407 struct pet_scop
*pet_scop_align_params(struct pet_scop
*scop
)
2414 space
= scop_collect_params(scop
);
2416 scop
= scop_propagate_params(scop
, space
);
2421 /* Add the access relation of the give "type" of the access expression "expr"
2422 * to "accesses" and return the result.
2423 * The domain of the access relation is intersected with "domain".
2424 * If "tag" is set, then the access relation is tagged with
2425 * the corresponding reference identifier.
2427 static __isl_give isl_union_map
*expr_collect_access(__isl_keep pet_expr
*expr
,
2428 enum pet_expr_access_type type
, int tag
,
2429 __isl_take isl_union_map
*accesses
, __isl_keep isl_union_set
*domain
)
2431 isl_union_map
*access
;
2433 access
= pet_expr_access_get_access(expr
, type
);
2434 access
= isl_union_map_intersect_domain(access
,
2435 isl_union_set_copy(domain
));
2437 access
= pet_expr_tag_access(expr
, access
);
2438 return isl_union_map_union(accesses
, access
);
2441 /* Internal data structure for expr_collect_accesses.
2443 * "type" is the type of accesses we want to collect.
2444 * "tag" is set if the access relations should be tagged with
2445 * the corresponding reference identifiers.
2446 * "domain" are constraints on the domain of the access relations.
2447 * "accesses" collects the results.
2449 struct pet_expr_collect_accesses_data
{
2450 enum pet_expr_access_type type
;
2452 isl_union_set
*domain
;
2454 isl_union_map
*accesses
;
2457 /* Add the access relation of the access expression "expr"
2458 * to data->accesses if the access expression is a read and we are collecting
2459 * reads and/or it is a write and we are collecting writes.
2460 * The domains of the access relations are intersected with data->domain.
2461 * If data->tag is set, then the access relations are tagged with
2462 * the corresponding reference identifiers.
2464 * If data->type is pet_expr_access_must_write, then we only add
2465 * the accesses that are definitely performed. Otherwise, we add
2466 * all potential accesses.
2467 * In particular, if the access has any arguments, then in case of
2468 * pet_expr_access_must_write we currently skip the access completely.
2469 * In other cases, we project out the values of the access arguments.
2471 static int expr_collect_accesses(__isl_keep pet_expr
*expr
, void *user
)
2473 struct pet_expr_collect_accesses_data
*data
= user
;
2481 if (pet_expr_is_affine(expr
))
2483 if (data
->type
== pet_expr_access_must_write
&& expr
->n_arg
!= 0)
2486 if ((data
->type
== pet_expr_access_may_read
&& expr
->acc
.read
) ||
2487 ((data
->type
== pet_expr_access_may_write
||
2488 data
->type
== pet_expr_access_must_write
) && expr
->acc
.write
))
2489 data
->accesses
= expr_collect_access(expr
,
2490 data
->type
, data
->tag
,
2491 data
->accesses
, data
->domain
);
2493 return data
->accesses
? 0 : -1;
2496 /* Collect and return all access relations of the given "type" in "stmt".
2497 * If "tag" is set, then the access relations are tagged with
2498 * the corresponding reference identifiers.
2499 * If "type" is pet_expr_access_killed, then "stmt" is a kill statement and
2500 * we simply add the argument of the kill operation.
2502 * If we are looking for definite accesses (pet_expr_access_must_write
2503 * or pet_expr_access_killed), then we only add the accesses that are
2504 * definitely performed. Otherwise, we add all potential accesses.
2505 * In particular, if the statement has any arguments, then if we are looking
2506 * for definite accesses we currently skip the statement completely. Othewise,
2507 * we project out the values of the statement arguments.
2508 * If the statement body is not an expression tree, then we cannot
2509 * know for sure if/when the accesses inside the tree are performed.
2510 * We therefore ignore such statements when we are looking for
2511 * definite accesses.
2513 static __isl_give isl_union_map
*stmt_collect_accesses(struct pet_stmt
*stmt
,
2514 enum pet_expr_access_type type
, int tag
, __isl_take isl_space
*dim
)
2516 struct pet_expr_collect_accesses_data data
= { type
, tag
};
2523 data
.accesses
= isl_union_map_empty(dim
);
2525 if (type
== pet_expr_access_must_write
||
2526 type
== pet_expr_access_killed
)
2531 if (must
&& stmt
->n_arg
> 0)
2532 return data
.accesses
;
2533 if (must
&& pet_tree_get_type(stmt
->body
) != pet_tree_expr
)
2534 return data
.accesses
;
2536 domain
= drop_arguments(isl_set_copy(stmt
->domain
));
2537 data
.domain
= isl_union_set_from_set(domain
);
2539 if (type
== pet_expr_access_killed
) {
2540 pet_expr
*body
, *arg
;
2542 body
= pet_tree_expr_get_expr(stmt
->body
);
2543 arg
= pet_expr_get_arg(body
, 0);
2544 data
.accesses
= expr_collect_access(arg
,
2545 pet_expr_access_killed
, tag
,
2546 data
.accesses
, data
.domain
);
2548 pet_expr_free(body
);
2549 } else if (pet_tree_foreach_access_expr(stmt
->body
,
2550 &expr_collect_accesses
, &data
) < 0)
2551 data
.accesses
= isl_union_map_free(data
.accesses
);
2553 isl_union_set_free(data
.domain
);
2555 return data
.accesses
;
2558 /* Is "stmt" an assignment statement?
2560 int pet_stmt_is_assign(struct pet_stmt
*stmt
)
2564 return pet_tree_is_assign(stmt
->body
);
2567 /* Is "stmt" a kill statement?
2569 int pet_stmt_is_kill(struct pet_stmt
*stmt
)
2573 return pet_tree_is_kill(stmt
->body
);
2576 /* Is "stmt" an assume statement?
2578 int pet_stmt_is_assume(struct pet_stmt
*stmt
)
2582 return pet_tree_is_assume(stmt
->body
);
2585 /* Helper function to add a domain gisted copy of "map" (wrt "set") to "umap".
2587 static __isl_give isl_union_map
*add_gisted(__isl_take isl_union_map
*umap
,
2588 __isl_keep isl_map
*map
, __isl_keep isl_set
*set
)
2592 gist
= isl_map_copy(map
);
2593 gist
= isl_map_gist_domain(gist
, isl_set_copy(set
));
2594 return isl_union_map_add_map(umap
, gist
);
2597 /* Compute a mapping from all arrays (of structs) in scop
2600 * If "from_outermost" is set, then the domain only consists
2601 * of outermost arrays.
2602 * If "to_innermost" is set, then the range only consists
2603 * of innermost arrays.
2605 static __isl_give isl_union_map
*compute_to_inner(struct pet_scop
*scop
,
2606 int from_outermost
, int to_innermost
)
2609 isl_union_map
*to_inner
;
2614 to_inner
= isl_union_map_empty(isl_set_get_space(scop
->context
));
2616 for (i
= 0; i
< scop
->n_array
; ++i
) {
2617 struct pet_array
*array
= scop
->arrays
[i
];
2621 if (to_innermost
&& array
->element_is_record
)
2624 set
= isl_set_copy(array
->extent
);
2625 map
= isl_set_identity(isl_set_copy(set
));
2627 while (set
&& isl_set_is_wrapping(set
)) {
2631 if (!from_outermost
)
2632 to_inner
= add_gisted(to_inner
, map
, set
);
2634 id
= isl_set_get_tuple_id(set
);
2635 wrapped
= isl_set_unwrap(set
);
2636 wrapped
= isl_map_domain_map(wrapped
);
2637 wrapped
= isl_map_set_tuple_id(wrapped
, isl_dim_in
, id
);
2638 map
= isl_map_apply_domain(map
, wrapped
);
2639 set
= isl_map_domain(isl_map_copy(map
));
2642 map
= isl_map_gist_domain(map
, set
);
2643 to_inner
= isl_union_map_add_map(to_inner
, map
);
2649 /* Compute a mapping from all arrays (of structs) in scop
2650 * to their innermost arrays.
2652 * In particular, for each array of a primitive type, the result
2653 * contains the identity mapping on that array.
2654 * For each array involving member accesses, the result
2655 * contains a mapping from the elements of any intermediate array of structs
2656 * to all corresponding elements of the innermost nested arrays.
2658 static __isl_give isl_union_map
*pet_scop_compute_any_to_inner(
2659 struct pet_scop
*scop
)
2661 return compute_to_inner(scop
, 0, 1);
2664 /* Compute a mapping from all outermost arrays (of structs) in scop
2665 * to their innermost members.
2667 __isl_give isl_union_map
*pet_scop_compute_outer_to_inner(struct pet_scop
*scop
)
2669 return compute_to_inner(scop
, 1, 1);
2672 /* Compute a mapping from all outermost arrays (of structs) in scop
2673 * to their members, including the outermost arrays themselves.
2675 __isl_give isl_union_map
*pet_scop_compute_outer_to_any(struct pet_scop
*scop
)
2677 return compute_to_inner(scop
, 1, 0);
2680 /* Collect and return all access relations of the given "type" in "scop".
2681 * If "type" is pet_expr_access_killed, then we only add the arguments of
2683 * If we are looking for definite accesses (pet_expr_access_must_write
2684 * or pet_expr_access_killed), then we only add the accesses that are
2685 * definitely performed. Otherwise, we add all potential accesses.
2686 * If "tag" is set, then the access relations are tagged with
2687 * the corresponding reference identifiers.
2688 * For accesses to structures, the returned access relation accesses
2689 * all individual fields in the structures.
2691 static __isl_give isl_union_map
*scop_collect_accesses(struct pet_scop
*scop
,
2692 enum pet_expr_access_type type
, int tag
)
2695 isl_union_map
*accesses
;
2696 isl_union_set
*arrays
;
2697 isl_union_map
*to_inner
;
2702 accesses
= isl_union_map_empty(isl_set_get_space(scop
->context
));
2704 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
2705 struct pet_stmt
*stmt
= scop
->stmts
[i
];
2706 isl_union_map
*accesses_i
;
2709 if (type
== pet_expr_access_killed
&& !pet_stmt_is_kill(stmt
))
2712 space
= isl_set_get_space(scop
->context
);
2713 accesses_i
= stmt_collect_accesses(stmt
, type
, tag
, space
);
2714 accesses
= isl_union_map_union(accesses
, accesses_i
);
2717 arrays
= isl_union_set_empty(isl_union_map_get_space(accesses
));
2718 for (i
= 0; i
< scop
->n_array
; ++i
) {
2719 isl_set
*extent
= isl_set_copy(scop
->arrays
[i
]->extent
);
2720 arrays
= isl_union_set_add_set(arrays
, extent
);
2722 accesses
= isl_union_map_intersect_range(accesses
, arrays
);
2724 to_inner
= pet_scop_compute_any_to_inner(scop
);
2725 accesses
= isl_union_map_apply_range(accesses
, to_inner
);
2730 /* Collect all potential read access relations.
2732 __isl_give isl_union_map
*pet_scop_collect_may_reads(struct pet_scop
*scop
)
2734 return scop_collect_accesses(scop
, pet_expr_access_may_read
, 0);
2737 /* Collect all potential write access relations.
2739 __isl_give isl_union_map
*pet_scop_collect_may_writes(struct pet_scop
*scop
)
2741 return scop_collect_accesses(scop
, pet_expr_access_may_write
, 0);
2744 /* Collect all definite write access relations.
2746 __isl_give isl_union_map
*pet_scop_collect_must_writes(struct pet_scop
*scop
)
2748 return scop_collect_accesses(scop
, pet_expr_access_must_write
, 0);
2751 /* Collect all definite kill access relations.
2753 __isl_give isl_union_map
*pet_scop_collect_must_kills(struct pet_scop
*scop
)
2755 return scop_collect_accesses(scop
, pet_expr_access_killed
, 0);
2758 /* Collect all tagged potential read access relations.
2760 __isl_give isl_union_map
*pet_scop_collect_tagged_may_reads(
2761 struct pet_scop
*scop
)
2763 return scop_collect_accesses(scop
, pet_expr_access_may_read
, 1);
2766 /* Collect all tagged potential write access relations.
2768 __isl_give isl_union_map
*pet_scop_collect_tagged_may_writes(
2769 struct pet_scop
*scop
)
2771 return scop_collect_accesses(scop
, pet_expr_access_may_write
, 1);
2774 /* Collect all tagged definite write access relations.
2776 __isl_give isl_union_map
*pet_scop_collect_tagged_must_writes(
2777 struct pet_scop
*scop
)
2779 return scop_collect_accesses(scop
, pet_expr_access_must_write
, 1);
2782 /* Collect all tagged definite kill access relations.
2784 __isl_give isl_union_map
*pet_scop_collect_tagged_must_kills(
2785 struct pet_scop
*scop
)
2787 return scop_collect_accesses(scop
, pet_expr_access_killed
, 1);
2790 /* Collect and return the union of iteration domains in "scop".
2792 __isl_give isl_union_set
*pet_scop_collect_domains(struct pet_scop
*scop
)
2796 isl_union_set
*domain
;
2801 domain
= isl_union_set_empty(isl_set_get_space(scop
->context
));
2803 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
2804 domain_i
= isl_set_copy(scop
->stmts
[i
]->domain
);
2805 if (scop
->stmts
[i
]->n_arg
> 0)
2806 domain_i
= isl_map_domain(isl_set_unwrap(domain_i
));
2807 domain
= isl_union_set_add_set(domain
, domain_i
);
2813 /* Add a reference identifier to all access expressions in "stmt".
2814 * "n_ref" points to an integer that contains the sequence number
2815 * of the next reference.
2817 static struct pet_stmt
*stmt_add_ref_ids(struct pet_stmt
*stmt
, int *n_ref
)
2824 for (i
= 0; i
< stmt
->n_arg
; ++i
) {
2825 stmt
->args
[i
] = pet_expr_add_ref_ids(stmt
->args
[i
], n_ref
);
2827 return pet_stmt_free(stmt
);
2830 stmt
->body
= pet_tree_add_ref_ids(stmt
->body
, n_ref
);
2832 return pet_stmt_free(stmt
);
2837 /* Add a reference identifier to all access expressions in "scop".
2839 struct pet_scop
*pet_scop_add_ref_ids(struct pet_scop
*scop
)
2848 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
2849 scop
->stmts
[i
] = stmt_add_ref_ids(scop
->stmts
[i
], &n_ref
);
2850 if (!scop
->stmts
[i
])
2851 return pet_scop_free(scop
);
2857 /* Reset the user pointer on all parameter ids in "array".
2859 static struct pet_array
*array_anonymize(struct pet_array
*array
)
2864 array
->context
= isl_set_reset_user(array
->context
);
2865 array
->extent
= isl_set_reset_user(array
->extent
);
2866 if (!array
->context
|| !array
->extent
)
2867 return pet_array_free(array
);
2872 /* Reset the user pointer on all parameter and tuple ids in "stmt".
2874 static struct pet_stmt
*stmt_anonymize(struct pet_stmt
*stmt
)
2883 stmt
->domain
= isl_set_reset_user(stmt
->domain
);
2885 return pet_stmt_free(stmt
);
2887 for (i
= 0; i
< stmt
->n_arg
; ++i
) {
2888 stmt
->args
[i
] = pet_expr_anonymize(stmt
->args
[i
]);
2890 return pet_stmt_free(stmt
);
2893 stmt
->body
= pet_tree_anonymize(stmt
->body
);
2895 return pet_stmt_free(stmt
);
2900 /* Reset the user pointer on the tuple ids and all parameter ids
2903 static struct pet_implication
*implication_anonymize(
2904 struct pet_implication
*implication
)
2909 implication
->extension
= isl_map_reset_user(implication
->extension
);
2910 if (!implication
->extension
)
2911 return pet_implication_free(implication
);
2916 /* Reset the user pointer on the tuple ids and all parameter ids
2917 * in "independence".
2919 static struct pet_independence
*independence_anonymize(
2920 struct pet_independence
*independence
)
2925 independence
->filter
= isl_union_map_reset_user(independence
->filter
);
2926 independence
->local
= isl_union_set_reset_user(independence
->local
);
2927 if (!independence
->filter
|| !independence
->local
)
2928 return pet_independence_free(independence
);
2930 return independence
;
2933 /* Reset the user pointer on all parameter and tuple ids in "scop".
2935 struct pet_scop
*pet_scop_anonymize(struct pet_scop
*scop
)
2942 scop
->context
= isl_set_reset_user(scop
->context
);
2943 scop
->context_value
= isl_set_reset_user(scop
->context_value
);
2944 scop
->schedule
= isl_schedule_reset_user(scop
->schedule
);
2945 if (!scop
->context
|| !scop
->context_value
|| !scop
->schedule
)
2946 return pet_scop_free(scop
);
2948 for (i
= 0; i
< scop
->n_array
; ++i
) {
2949 scop
->arrays
[i
] = array_anonymize(scop
->arrays
[i
]);
2950 if (!scop
->arrays
[i
])
2951 return pet_scop_free(scop
);
2954 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
2955 scop
->stmts
[i
] = stmt_anonymize(scop
->stmts
[i
]);
2956 if (!scop
->stmts
[i
])
2957 return pet_scop_free(scop
);
2960 for (i
= 0; i
< scop
->n_implication
; ++i
) {
2961 scop
->implications
[i
] =
2962 implication_anonymize(scop
->implications
[i
]);
2963 if (!scop
->implications
[i
])
2964 return pet_scop_free(scop
);
2967 for (i
= 0; i
< scop
->n_independence
; ++i
) {
2968 scop
->independences
[i
] =
2969 independence_anonymize(scop
->independences
[i
]);
2970 if (!scop
->independences
[i
])
2971 return pet_scop_free(scop
);
2977 /* Compute the gist of the iteration domain and all access relations
2978 * of "stmt" based on the constraints on the parameters specified by "context"
2979 * and the constraints on the values of nested accesses specified
2980 * by "value_bounds".
2982 static struct pet_stmt
*stmt_gist(struct pet_stmt
*stmt
,
2983 __isl_keep isl_set
*context
, __isl_keep isl_union_map
*value_bounds
)
2991 domain
= isl_set_copy(stmt
->domain
);
2992 if (stmt
->n_arg
> 0)
2993 domain
= isl_map_domain(isl_set_unwrap(domain
));
2995 domain
= isl_set_intersect_params(domain
, isl_set_copy(context
));
2997 for (i
= 0; i
< stmt
->n_arg
; ++i
) {
2998 stmt
->args
[i
] = pet_expr_gist(stmt
->args
[i
],
2999 domain
, value_bounds
);
3004 stmt
->body
= pet_tree_gist(stmt
->body
, domain
, value_bounds
);
3008 isl_set_free(domain
);
3010 domain
= isl_set_universe(pet_stmt_get_space(stmt
));
3011 domain
= isl_set_intersect_params(domain
, isl_set_copy(context
));
3012 if (stmt
->n_arg
> 0)
3013 domain
= pet_value_bounds_apply(domain
, stmt
->n_arg
, stmt
->args
,
3015 stmt
->domain
= isl_set_gist(stmt
->domain
, domain
);
3017 return pet_stmt_free(stmt
);
3021 isl_set_free(domain
);
3022 return pet_stmt_free(stmt
);
3025 /* Compute the gist of the extent of the array
3026 * based on the constraints on the parameters specified by "context".
3028 static struct pet_array
*array_gist(struct pet_array
*array
,
3029 __isl_keep isl_set
*context
)
3034 array
->extent
= isl_set_gist_params(array
->extent
,
3035 isl_set_copy(context
));
3037 return pet_array_free(array
);
3042 /* Compute the gist of all sets and relations in "scop"
3043 * based on the constraints on the parameters specified by "scop->context"
3044 * and the constraints on the values of nested accesses specified
3045 * by "value_bounds".
3047 struct pet_scop
*pet_scop_gist(struct pet_scop
*scop
,
3048 __isl_keep isl_union_map
*value_bounds
)
3055 scop
->context
= isl_set_coalesce(scop
->context
);
3057 return pet_scop_free(scop
);
3059 for (i
= 0; i
< scop
->n_array
; ++i
) {
3060 scop
->arrays
[i
] = array_gist(scop
->arrays
[i
], scop
->context
);
3061 if (!scop
->arrays
[i
])
3062 return pet_scop_free(scop
);
3065 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
3066 scop
->stmts
[i
] = stmt_gist(scop
->stmts
[i
], scop
->context
,
3068 if (!scop
->stmts
[i
])
3069 return pet_scop_free(scop
);
3075 /* Intersect the context of "scop" with "context".
3076 * To ensure that we don't introduce any unnamed parameters in
3077 * the context of "scop", we first remove the unnamed parameters
3080 struct pet_scop
*pet_scop_restrict_context(struct pet_scop
*scop
,
3081 __isl_take isl_set
*context
)
3086 context
= pet_nested_remove_from_set(context
);
3087 scop
->context
= isl_set_intersect(scop
->context
, context
);
3089 return pet_scop_free(scop
);
3093 isl_set_free(context
);
3094 return pet_scop_free(scop
);
3097 /* Drop the current context of "scop". That is, replace the context
3098 * by a universal set.
3100 struct pet_scop
*pet_scop_reset_context(struct pet_scop
*scop
)
3107 space
= isl_set_get_space(scop
->context
);
3108 isl_set_free(scop
->context
);
3109 scop
->context
= isl_set_universe(space
);
3111 return pet_scop_free(scop
);
3116 /* Append "array" to the arrays of "scop".
3118 struct pet_scop
*pet_scop_add_array(struct pet_scop
*scop
,
3119 struct pet_array
*array
)
3122 struct pet_array
**arrays
;
3124 if (!array
|| !scop
)
3127 ctx
= isl_set_get_ctx(scop
->context
);
3128 arrays
= isl_realloc_array(ctx
, scop
->arrays
, struct pet_array
*,
3132 scop
->arrays
= arrays
;
3133 scop
->arrays
[scop
->n_array
] = array
;
3138 pet_array_free(array
);
3139 return pet_scop_free(scop
);
3142 /* Create an index expression for an access to a virtual array
3143 * representing the result of a condition.
3144 * Unlike other accessed data, the id of the array is NULL as
3145 * there is no ValueDecl in the program corresponding to the virtual
3147 * The index expression is created as an identity mapping on "space".
3148 * That is, the dimension of the array is the same as that of "space".
3150 __isl_give isl_multi_pw_aff
*pet_create_test_index(__isl_take isl_space
*space
,
3156 snprintf(name
, sizeof(name
), "__pet_test_%d", test_nr
);
3157 id
= isl_id_alloc(isl_space_get_ctx(space
), name
, NULL
);
3158 space
= isl_space_map_from_set(space
);
3159 space
= isl_space_set_tuple_id(space
, isl_dim_out
, id
);
3160 return isl_multi_pw_aff_identity(space
);
3163 /* Add an array with the given extent to the list
3164 * of arrays in "scop" and return the extended pet_scop.
3165 * Specifically, the extent is determined by the image of "domain"
3167 * "int_size" is the number of bytes needed to represent values of type "int".
3168 * The array is marked as attaining values 0 and 1 only and
3169 * as each element being assigned at most once.
3171 struct pet_scop
*pet_scop_add_boolean_array(struct pet_scop
*scop
,
3172 __isl_take isl_set
*domain
, __isl_take isl_multi_pw_aff
*index
,
3177 struct pet_array
*array
;
3180 if (!scop
|| !domain
|| !index
)
3183 ctx
= isl_multi_pw_aff_get_ctx(index
);
3184 array
= isl_calloc_type(ctx
, struct pet_array
);
3188 access
= isl_map_from_multi_pw_aff(index
);
3189 access
= isl_map_intersect_domain(access
, domain
);
3190 array
->extent
= isl_map_range(access
);
3191 space
= isl_space_params_alloc(ctx
, 0);
3192 array
->context
= isl_set_universe(space
);
3193 space
= isl_space_set_alloc(ctx
, 0, 1);
3194 array
->value_bounds
= isl_set_universe(space
);
3195 array
->value_bounds
= isl_set_lower_bound_si(array
->value_bounds
,
3197 array
->value_bounds
= isl_set_upper_bound_si(array
->value_bounds
,
3199 array
->element_type
= strdup("int");
3200 array
->element_size
= int_size
;
3201 array
->uniquely_defined
= 1;
3203 if (!array
->extent
|| !array
->context
)
3204 array
= pet_array_free(array
);
3206 scop
= pet_scop_add_array(scop
, array
);
3210 isl_set_free(domain
);
3211 isl_multi_pw_aff_free(index
);
3212 return pet_scop_free(scop
);
3215 /* Create and return an implication on filter values equal to "satisfied"
3216 * with extension "map".
3218 static struct pet_implication
*new_implication(__isl_take isl_map
*map
,
3222 struct pet_implication
*implication
;
3226 ctx
= isl_map_get_ctx(map
);
3227 implication
= isl_alloc_type(ctx
, struct pet_implication
);
3231 implication
->extension
= map
;
3232 implication
->satisfied
= satisfied
;
3240 /* Add an implication on filter values equal to "satisfied"
3241 * with extension "map" to "scop".
3243 struct pet_scop
*pet_scop_add_implication(struct pet_scop
*scop
,
3244 __isl_take isl_map
*map
, int satisfied
)
3247 struct pet_implication
*implication
;
3248 struct pet_implication
**implications
;
3250 implication
= new_implication(map
, satisfied
);
3251 if (!scop
|| !implication
)
3254 ctx
= isl_set_get_ctx(scop
->context
);
3255 implications
= isl_realloc_array(ctx
, scop
->implications
,
3256 struct pet_implication
*,
3257 scop
->n_implication
+ 1);
3260 scop
->implications
= implications
;
3261 scop
->implications
[scop
->n_implication
] = implication
;
3262 scop
->n_implication
++;
3266 pet_implication_free(implication
);
3267 return pet_scop_free(scop
);
3270 /* Create and return a function that maps the iteration domains
3271 * of the statements in "scop" onto their outer "n" dimensions.
3272 * "space" is the parameters space of the created function.
3274 static __isl_give isl_union_pw_multi_aff
*outer_projection(
3275 struct pet_scop
*scop
, __isl_take isl_space
*space
, int n
)
3278 isl_union_pw_multi_aff
*res
;
3280 res
= isl_union_pw_multi_aff_empty(space
);
3283 return isl_union_pw_multi_aff_free(res
);
3285 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
3286 struct pet_stmt
*stmt
= scop
->stmts
[i
];
3289 isl_pw_multi_aff
*pma
;
3291 space
= pet_stmt_get_space(stmt
);
3292 ma
= pet_prefix_projection(space
, n
);
3293 pma
= isl_pw_multi_aff_from_multi_aff(ma
);
3294 res
= isl_union_pw_multi_aff_add_pw_multi_aff(res
, pma
);
3300 /* Add an independence to "scop" for the inner iterator of "domain"
3301 * with local variables "local", where "domain" represents the outer
3302 * loop iterators of all statements in "scop".
3303 * If "sign" is positive, then the inner iterator increases.
3304 * Otherwise it decreases.
3306 * The independence is supposed to filter out any dependence of
3307 * an iteration of domain on a previous iteration along the inner dimension.
3308 * We therefore create a mapping from an iteration to later iterations and
3309 * then plug in the projection of the iterations domains of "scop"
3310 * onto the outer loop iterators.
3312 struct pet_scop
*pet_scop_set_independent(struct pet_scop
*scop
,
3313 __isl_keep isl_set
*domain
, __isl_take isl_union_set
*local
, int sign
)
3318 isl_union_map
*independence
;
3319 isl_union_pw_multi_aff
*proj
;
3321 if (!scop
|| !domain
|| !local
)
3324 dim
= isl_set_dim(domain
, isl_dim_set
);
3325 space
= isl_space_map_from_set(isl_set_get_space(domain
));
3326 map
= isl_map_universe(space
);
3327 for (i
= 0; i
+ 1 < dim
; ++i
)
3328 map
= isl_map_equate(map
, isl_dim_in
, i
, isl_dim_out
, i
);
3330 map
= isl_map_order_lt(map
,
3331 isl_dim_in
, dim
- 1, isl_dim_out
, dim
- 1);
3333 map
= isl_map_order_gt(map
,
3334 isl_dim_in
, dim
- 1, isl_dim_out
, dim
- 1);
3336 independence
= isl_union_map_from_map(map
);
3337 space
= isl_space_params(isl_set_get_space(domain
));
3338 proj
= outer_projection(scop
, space
, dim
);
3339 independence
= isl_union_map_preimage_domain_union_pw_multi_aff(
3340 independence
, isl_union_pw_multi_aff_copy(proj
));
3341 independence
= isl_union_map_preimage_range_union_pw_multi_aff(
3342 independence
, proj
);
3344 scop
= pet_scop_add_independence(scop
, independence
, local
);
3348 isl_union_set_free(local
);
3349 return pet_scop_free(scop
);
3352 /* Given an access expression, check if it is data dependent.
3353 * If so, set *found and abort the search.
3355 static int is_data_dependent(__isl_keep pet_expr
*expr
, void *user
)
3359 if (pet_expr_get_n_arg(expr
) > 0) {
3367 /* Does "scop" contain any data dependent accesses?
3369 * Check the body of each statement for such accesses.
3371 int pet_scop_has_data_dependent_accesses(struct pet_scop
*scop
)
3379 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
3380 int r
= pet_tree_foreach_access_expr(scop
->stmts
[i
]->body
,
3381 &is_data_dependent
, &found
);
3382 if (r
< 0 && !found
)
3391 /* Does "scop" contain and data dependent conditions?
3393 int pet_scop_has_data_dependent_conditions(struct pet_scop
*scop
)
3400 for (i
= 0; i
< scop
->n_stmt
; ++i
)
3401 if (scop
->stmts
[i
]->n_arg
> 0)
3407 /* Keep track of the "input" file inside the (extended) "scop".
3409 struct pet_scop
*pet_scop_set_input_file(struct pet_scop
*scop
, FILE *input
)
3411 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
3421 /* Print the original code corresponding to "scop" to printer "p".
3423 * pet_scop_print_original can only be called from
3424 * a pet_transform_C_source callback. This means that the input
3425 * file is stored in the extended scop and that the printer prints
3428 __isl_give isl_printer
*pet_scop_print_original(struct pet_scop
*scop
,
3429 __isl_take isl_printer
*p
)
3431 struct pet_scop_ext
*ext
= (struct pet_scop_ext
*) scop
;
3433 unsigned start
, end
;
3436 return isl_printer_free(p
);
3439 isl_die(isl_printer_get_ctx(p
), isl_error_invalid
,
3440 "no input file stored in scop",
3441 return isl_printer_free(p
));
3443 output
= isl_printer_get_file(p
);
3445 return isl_printer_free(p
);
3447 start
= pet_loc_get_start(scop
->loc
);
3448 end
= pet_loc_get_end(scop
->loc
);
3449 if (copy(ext
->input
, output
, start
, end
) < 0)
3450 return isl_printer_free(p
);