add pet_expr_access_is_write
[pet.git] / scop.c
blob762fa78e3321f6f90e342c8acae5b3360e8dbed5
1 /*
2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012-2014 Ecole Normale Superieure. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials provided
15 * with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as
31 * representing official policies, either expressed or implied, of
32 * Leiden University.
33 */
35 #include <string.h>
36 #include <isl/constraint.h>
37 #include <isl/union_set.h>
39 #include "expr.h"
40 #include "filter.h"
41 #include "scop.h"
42 #include "print.h"
43 #include "value_bounds.h"
45 /* pet_scop with extra information that is used during parsing and printing.
47 * In particular, we keep track of conditions under which we want
48 * to skip the rest of the current loop iteration (skip[pet_skip_now])
49 * and of conditions under which we want to skip subsequent
50 * loop iterations (skip[pet_skip_later]).
52 * The conditions are represented as index expressions defined
53 * over a zero-dimensional domain. The index expression is either
54 * a boolean affine expression or an access to a variable, which
55 * is assumed to attain values zero and one. The condition holds
56 * if the variable has value one or if the affine expression
57 * has value one (typically for only part of the parameter space).
59 * A missing condition (skip[type] == NULL) means that we don't want
60 * to skip anything.
62 * Additionally, we keep track of the original input file
63 * inside pet_transform_C_source.
65 struct pet_scop_ext {
66 struct pet_scop scop;
68 isl_multi_pw_aff *skip[2];
69 FILE *input;
72 /* Construct a pet_stmt with given line number and statement
73 * number from a pet_expr.
74 * The initial iteration domain is the zero-dimensional universe.
75 * The name of the domain is given by "label" if it is non-NULL.
76 * Otherwise, the name is constructed as S_<id>.
77 * The domains of all access relations are modified to refer
78 * to the statement iteration domain.
80 struct pet_stmt *pet_stmt_from_pet_expr(isl_ctx *ctx, int line,
81 __isl_take isl_id *label, int id, struct pet_expr *expr)
83 struct pet_stmt *stmt;
84 isl_space *dim;
85 isl_set *dom;
86 isl_map *sched;
87 isl_multi_pw_aff *add_name;
88 char name[50];
90 if (!expr)
91 goto error;
93 stmt = isl_calloc_type(ctx, struct pet_stmt);
94 if (!stmt)
95 goto error;
97 dim = isl_space_set_alloc(ctx, 0, 0);
98 if (label)
99 dim = isl_space_set_tuple_id(dim, isl_dim_set, label);
100 else {
101 snprintf(name, sizeof(name), "S_%d", id);
102 dim = isl_space_set_tuple_name(dim, isl_dim_set, name);
104 dom = isl_set_universe(isl_space_copy(dim));
105 sched = isl_map_from_domain(isl_set_copy(dom));
107 dim = isl_space_from_domain(dim);
108 add_name = isl_multi_pw_aff_zero(dim);
109 expr = pet_expr_update_domain(expr, add_name);
111 stmt->line = line;
112 stmt->domain = dom;
113 stmt->schedule = sched;
114 stmt->body = expr;
116 if (!stmt->domain || !stmt->schedule || !stmt->body)
117 return pet_stmt_free(stmt);
119 return stmt;
120 error:
121 isl_id_free(label);
122 pet_expr_free(expr);
123 return NULL;
126 void *pet_stmt_free(struct pet_stmt *stmt)
128 int i;
130 if (!stmt)
131 return NULL;
133 isl_set_free(stmt->domain);
134 isl_map_free(stmt->schedule);
135 pet_expr_free(stmt->body);
137 for (i = 0; i < stmt->n_arg; ++i)
138 pet_expr_free(stmt->args[i]);
139 free(stmt->args);
141 free(stmt);
142 return NULL;
145 /* Return the iteration space of "stmt".
147 * If the statement has arguments, then stmt->domain is a wrapped map
148 * mapping the iteration domain to the values of the arguments
149 * for which this statement is executed.
150 * In this case, we need to extract the domain space of this wrapped map.
152 __isl_give isl_space *pet_stmt_get_space(struct pet_stmt *stmt)
154 isl_space *space;
156 if (!stmt)
157 return NULL;
159 space = isl_set_get_space(stmt->domain);
160 if (isl_space_is_wrapping(space))
161 space = isl_space_domain(isl_space_unwrap(space));
163 return space;
166 static void stmt_dump(struct pet_stmt *stmt, int indent)
168 int i;
170 if (!stmt)
171 return;
173 fprintf(stderr, "%*s%d\n", indent, "", stmt->line);
174 fprintf(stderr, "%*s", indent, "");
175 isl_set_dump(stmt->domain);
176 fprintf(stderr, "%*s", indent, "");
177 isl_map_dump(stmt->schedule);
178 pet_expr_dump_with_indent(stmt->body, indent);
179 for (i = 0; i < stmt->n_arg; ++i)
180 pet_expr_dump_with_indent(stmt->args[i], indent + 2);
183 void pet_stmt_dump(struct pet_stmt *stmt)
185 stmt_dump(stmt, 0);
188 /* Allocate a new pet_type with the given "name" and "definition".
190 struct pet_type *pet_type_alloc(isl_ctx *ctx, const char *name,
191 const char *definition)
193 struct pet_type *type;
195 type = isl_alloc_type(ctx, struct pet_type);
196 if (!type)
197 return NULL;
199 type->name = strdup(name);
200 type->definition = strdup(definition);
202 if (!type->name || !type->definition)
203 return pet_type_free(type);
205 return type;
208 /* Free "type" and return NULL.
210 struct pet_type *pet_type_free(struct pet_type *type)
212 if (!type)
213 return NULL;
215 free(type->name);
216 free(type->definition);
218 free(type);
219 return NULL;
222 struct pet_array *pet_array_free(struct pet_array *array)
224 if (!array)
225 return NULL;
227 isl_set_free(array->context);
228 isl_set_free(array->extent);
229 isl_set_free(array->value_bounds);
230 free(array->element_type);
232 free(array);
233 return NULL;
236 void pet_array_dump(struct pet_array *array)
238 if (!array)
239 return;
241 isl_set_dump(array->context);
242 isl_set_dump(array->extent);
243 isl_set_dump(array->value_bounds);
244 fprintf(stderr, "%s%s%s\n", array->element_type,
245 array->element_is_record ? " element-is-record" : "",
246 array->live_out ? " live-out" : "");
249 /* Alloc a pet_scop structure, with extra room for information that
250 * is only used during parsing.
252 struct pet_scop *pet_scop_alloc(isl_ctx *ctx)
254 return &isl_calloc_type(ctx, struct pet_scop_ext)->scop;
257 /* Construct a pet_scop with room for n statements.
259 static struct pet_scop *scop_alloc(isl_ctx *ctx, int n)
261 isl_space *space;
262 struct pet_scop *scop;
264 scop = pet_scop_alloc(ctx);
265 if (!scop)
266 return NULL;
268 space = isl_space_params_alloc(ctx, 0);
269 scop->context = isl_set_universe(isl_space_copy(space));
270 scop->context_value = isl_set_universe(space);
271 scop->stmts = isl_calloc_array(ctx, struct pet_stmt *, n);
272 if (!scop->context || !scop->stmts)
273 return pet_scop_free(scop);
275 scop->n_stmt = n;
277 return scop;
280 struct pet_scop *pet_scop_empty(isl_ctx *ctx)
282 return scop_alloc(ctx, 0);
285 /* Update "context" with respect to the valid parameter values for "access".
287 static __isl_give isl_set *access_extract_context(__isl_keep isl_map *access,
288 __isl_take isl_set *context)
290 context = isl_set_intersect(context,
291 isl_map_params(isl_map_copy(access)));
292 return context;
295 /* Update "context" with respect to the valid parameter values for "expr".
297 * If "expr" represents a conditional operator, then a parameter value
298 * needs to be valid for the condition and for at least one of the
299 * remaining two arguments.
300 * If the condition is an affine expression, then we can be a bit more specific.
301 * The parameter then has to be valid for the second argument for
302 * non-zero accesses and valid for the third argument for zero accesses.
304 static __isl_give isl_set *expr_extract_context(struct pet_expr *expr,
305 __isl_take isl_set *context)
307 int i;
309 if (expr->type == pet_expr_op && expr->op == pet_op_cond) {
310 int is_aff;
311 isl_set *context1, *context2;
313 is_aff = pet_expr_is_affine(expr->args[0]);
314 if (is_aff < 0)
315 goto error;
317 context = expr_extract_context(expr->args[0], context);
318 context1 = expr_extract_context(expr->args[1],
319 isl_set_copy(context));
320 context2 = expr_extract_context(expr->args[2], context);
322 if (is_aff) {
323 isl_map *access;
324 isl_set *zero_set;
326 access = isl_map_copy(expr->args[0]->acc.access);
327 access = isl_map_fix_si(access, isl_dim_out, 0, 0);
328 zero_set = isl_map_params(access);
329 context1 = isl_set_subtract(context1,
330 isl_set_copy(zero_set));
331 context2 = isl_set_intersect(context2, zero_set);
334 context = isl_set_union(context1, context2);
335 context = isl_set_coalesce(context);
337 return context;
340 for (i = 0; i < expr->n_arg; ++i)
341 context = expr_extract_context(expr->args[i], context);
343 if (expr->type == pet_expr_access)
344 context = access_extract_context(expr->acc.access, context);
346 return context;
347 error:
348 isl_set_free(context);
349 return NULL;
352 /* Update "context" with respect to the valid parameter values for "stmt".
354 * If the statement is an assume statement with an affine expression,
355 * then intersect "context" with that expression.
356 * Otherwise, intersect "context" with the contexts of the expressions
357 * inside "stmt".
359 static __isl_give isl_set *stmt_extract_context(struct pet_stmt *stmt,
360 __isl_take isl_set *context)
362 int i;
364 if (pet_stmt_is_assume(stmt) &&
365 pet_expr_is_affine(stmt->body->args[0])) {
366 isl_multi_pw_aff *index;
367 isl_pw_aff *pa;
368 isl_set *cond;
370 index = stmt->body->args[0]->acc.index;
371 pa = isl_multi_pw_aff_get_pw_aff(index, 0);
372 cond = isl_set_params(isl_pw_aff_non_zero_set(pa));
373 return isl_set_intersect(context, cond);
376 for (i = 0; i < stmt->n_arg; ++i)
377 context = expr_extract_context(stmt->args[i], context);
379 context = expr_extract_context(stmt->body, context);
381 return context;
384 /* Construct a pet_scop that contains the given pet_stmt.
386 struct pet_scop *pet_scop_from_pet_stmt(isl_ctx *ctx, struct pet_stmt *stmt)
388 struct pet_scop *scop;
390 if (!stmt)
391 return NULL;
393 scop = scop_alloc(ctx, 1);
394 if (!scop)
395 goto error;
397 scop->context = stmt_extract_context(stmt, scop->context);
398 if (!scop->context)
399 goto error;
401 scop->stmts[0] = stmt;
403 return scop;
404 error:
405 pet_stmt_free(stmt);
406 pet_scop_free(scop);
407 return NULL;
410 /* Does "mpa" represent an access to an element of an unnamed space, i.e.,
411 * does it represent an affine expression?
413 static int multi_pw_aff_is_affine(__isl_keep isl_multi_pw_aff *mpa)
415 int has_id;
417 has_id = isl_multi_pw_aff_has_tuple_id(mpa, isl_dim_out);
418 if (has_id < 0)
419 return -1;
421 return !has_id;
424 /* Return the piecewise affine expression "set ? 1 : 0" defined on "dom".
426 static __isl_give isl_pw_aff *indicator_function(__isl_take isl_set *set,
427 __isl_take isl_set *dom)
429 isl_pw_aff *pa;
430 pa = isl_set_indicator_function(set);
431 pa = isl_pw_aff_intersect_domain(pa, dom);
432 return pa;
435 /* Return "lhs || rhs", defined on the shared definition domain.
437 static __isl_give isl_pw_aff *pw_aff_or(__isl_take isl_pw_aff *lhs,
438 __isl_take isl_pw_aff *rhs)
440 isl_set *cond;
441 isl_set *dom;
443 dom = isl_set_intersect(isl_pw_aff_domain(isl_pw_aff_copy(lhs)),
444 isl_pw_aff_domain(isl_pw_aff_copy(rhs)));
445 cond = isl_set_union(isl_pw_aff_non_zero_set(lhs),
446 isl_pw_aff_non_zero_set(rhs));
447 cond = isl_set_coalesce(cond);
448 return indicator_function(cond, dom);
451 /* Combine ext1->skip[type] and ext2->skip[type] into ext->skip[type].
452 * ext may be equal to either ext1 or ext2.
454 * The two skips that need to be combined are assumed to be affine expressions.
456 * We need to skip in ext if we need to skip in either ext1 or ext2.
457 * We don't need to skip in ext if we don't need to skip in both ext1 and ext2.
459 static struct pet_scop_ext *combine_skips(struct pet_scop_ext *ext,
460 struct pet_scop_ext *ext1, struct pet_scop_ext *ext2,
461 enum pet_skip type)
463 isl_pw_aff *skip, *skip1, *skip2;
465 if (!ext)
466 return NULL;
467 if (!ext1->skip[type] && !ext2->skip[type])
468 return ext;
469 if (!ext1->skip[type]) {
470 if (ext == ext2)
471 return ext;
472 ext->skip[type] = ext2->skip[type];
473 ext2->skip[type] = NULL;
474 return ext;
476 if (!ext2->skip[type]) {
477 if (ext == ext1)
478 return ext;
479 ext->skip[type] = ext1->skip[type];
480 ext1->skip[type] = NULL;
481 return ext;
484 if (!multi_pw_aff_is_affine(ext1->skip[type]) ||
485 !multi_pw_aff_is_affine(ext2->skip[type]))
486 isl_die(isl_multi_pw_aff_get_ctx(ext1->skip[type]),
487 isl_error_internal, "can only combine affine skips",
488 goto error);
490 skip1 = isl_multi_pw_aff_get_pw_aff(ext1->skip[type], 0);
491 skip2 = isl_multi_pw_aff_get_pw_aff(ext2->skip[type], 0);
492 skip = pw_aff_or(skip1, skip2);
493 isl_multi_pw_aff_free(ext1->skip[type]);
494 ext1->skip[type] = NULL;
495 isl_multi_pw_aff_free(ext2->skip[type]);
496 ext2->skip[type] = NULL;
497 ext->skip[type] = isl_multi_pw_aff_from_pw_aff(skip);
498 if (!ext->skip[type])
499 goto error;
501 return ext;
502 error:
503 pet_scop_free(&ext->scop);
504 return NULL;
507 /* Combine scop1->skip[type] and scop2->skip[type] into scop->skip[type],
508 * where type takes on the values pet_skip_now and pet_skip_later.
509 * scop may be equal to either scop1 or scop2.
511 static struct pet_scop *scop_combine_skips(struct pet_scop *scop,
512 struct pet_scop *scop1, struct pet_scop *scop2)
514 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
515 struct pet_scop_ext *ext1 = (struct pet_scop_ext *) scop1;
516 struct pet_scop_ext *ext2 = (struct pet_scop_ext *) scop2;
518 ext = combine_skips(ext, ext1, ext2, pet_skip_now);
519 ext = combine_skips(ext, ext1, ext2, pet_skip_later);
520 return &ext->scop;
523 /* Update scop->start and scop->end to include the region from "start"
524 * to "end". In particular, if scop->end == 0, then "scop" does not
525 * have any offset information yet and we simply take the information
526 * from "start" and "end". Otherwise, we update the fields if the
527 * region from "start" to "end" is not already included.
529 struct pet_scop *pet_scop_update_start_end(struct pet_scop *scop,
530 unsigned start, unsigned end)
532 if (!scop)
533 return NULL;
534 if (scop->end == 0) {
535 scop->start = start;
536 scop->end = end;
537 } else {
538 if (start < scop->start)
539 scop->start = start;
540 if (end > scop->end)
541 scop->end = end;
544 return scop;
547 /* Does "implication" appear in the list of implications of "scop"?
549 static int is_known_implication(struct pet_scop *scop,
550 struct pet_implication *implication)
552 int i;
554 for (i = 0; i < scop->n_implication; ++i) {
555 struct pet_implication *pi = scop->implications[i];
556 int equal;
558 if (pi->satisfied != implication->satisfied)
559 continue;
560 equal = isl_map_is_equal(pi->extension, implication->extension);
561 if (equal < 0)
562 return -1;
563 if (equal)
564 return 1;
567 return 0;
570 /* Store the concatenation of the implications of "scop1" and "scop2"
571 * in "scop", removing duplicates (i.e., implications in "scop2" that
572 * already appear in "scop1").
574 static struct pet_scop *scop_collect_implications(isl_ctx *ctx,
575 struct pet_scop *scop, struct pet_scop *scop1, struct pet_scop *scop2)
577 int i, j;
579 if (!scop)
580 return NULL;
582 if (scop2->n_implication == 0) {
583 scop->n_implication = scop1->n_implication;
584 scop->implications = scop1->implications;
585 scop1->n_implication = 0;
586 scop1->implications = NULL;
587 return scop;
590 if (scop1->n_implication == 0) {
591 scop->n_implication = scop2->n_implication;
592 scop->implications = scop2->implications;
593 scop2->n_implication = 0;
594 scop2->implications = NULL;
595 return scop;
598 scop->implications = isl_calloc_array(ctx, struct pet_implication *,
599 scop1->n_implication + scop2->n_implication);
600 if (!scop->implications)
601 return pet_scop_free(scop);
603 for (i = 0; i < scop1->n_implication; ++i) {
604 scop->implications[i] = scop1->implications[i];
605 scop1->implications[i] = NULL;
608 scop->n_implication = scop1->n_implication;
609 j = scop1->n_implication;
610 for (i = 0; i < scop2->n_implication; ++i) {
611 int known;
613 known = is_known_implication(scop, scop2->implications[i]);
614 if (known < 0)
615 return pet_scop_free(scop);
616 if (known)
617 continue;
618 scop->implications[j++] = scop2->implications[i];
619 scop2->implications[i] = NULL;
621 scop->n_implication = j;
623 return scop;
626 /* Combine the offset information of "scop1" and "scop2" into "scop".
628 static struct pet_scop *scop_combine_start_end(struct pet_scop *scop,
629 struct pet_scop *scop1, struct pet_scop *scop2)
631 if (scop1->end)
632 scop = pet_scop_update_start_end(scop,
633 scop1->start, scop1->end);
634 if (scop2->end)
635 scop = pet_scop_update_start_end(scop,
636 scop2->start, scop2->end);
637 return scop;
640 /* Construct a pet_scop that contains the offset information,
641 * arrays, statements and skip information in "scop1" and "scop2".
643 static struct pet_scop *pet_scop_add(isl_ctx *ctx, struct pet_scop *scop1,
644 struct pet_scop *scop2)
646 int i;
647 struct pet_scop *scop = NULL;
649 if (!scop1 || !scop2)
650 goto error;
652 if (scop1->n_stmt == 0) {
653 scop2 = scop_combine_skips(scop2, scop1, scop2);
654 pet_scop_free(scop1);
655 return scop2;
658 if (scop2->n_stmt == 0) {
659 scop1 = scop_combine_skips(scop1, scop1, scop2);
660 pet_scop_free(scop2);
661 return scop1;
664 scop = scop_alloc(ctx, scop1->n_stmt + scop2->n_stmt);
665 if (!scop)
666 goto error;
668 scop->arrays = isl_calloc_array(ctx, struct pet_array *,
669 scop1->n_array + scop2->n_array);
670 if (!scop->arrays)
671 goto error;
672 scop->n_array = scop1->n_array + scop2->n_array;
674 for (i = 0; i < scop1->n_stmt; ++i) {
675 scop->stmts[i] = scop1->stmts[i];
676 scop1->stmts[i] = NULL;
679 for (i = 0; i < scop2->n_stmt; ++i) {
680 scop->stmts[scop1->n_stmt + i] = scop2->stmts[i];
681 scop2->stmts[i] = NULL;
684 for (i = 0; i < scop1->n_array; ++i) {
685 scop->arrays[i] = scop1->arrays[i];
686 scop1->arrays[i] = NULL;
689 for (i = 0; i < scop2->n_array; ++i) {
690 scop->arrays[scop1->n_array + i] = scop2->arrays[i];
691 scop2->arrays[i] = NULL;
694 scop = scop_collect_implications(ctx, scop, scop1, scop2);
695 scop = pet_scop_restrict_context(scop, isl_set_copy(scop1->context));
696 scop = pet_scop_restrict_context(scop, isl_set_copy(scop2->context));
697 scop = scop_combine_skips(scop, scop1, scop2);
698 scop = scop_combine_start_end(scop, scop1, scop2);
700 pet_scop_free(scop1);
701 pet_scop_free(scop2);
702 return scop;
703 error:
704 pet_scop_free(scop1);
705 pet_scop_free(scop2);
706 pet_scop_free(scop);
707 return NULL;
710 /* Apply the skip condition "skip" to "scop".
711 * That is, make sure "scop" is not executed when the condition holds.
713 * If "skip" is an affine expression, we add the conditions under
714 * which the expression is zero to the iteration domains.
715 * Otherwise, we add a filter on the variable attaining the value zero.
717 static struct pet_scop *restrict_skip(struct pet_scop *scop,
718 __isl_take isl_multi_pw_aff *skip)
720 isl_set *zero;
721 isl_pw_aff *pa;
722 int is_aff;
724 if (!scop || !skip)
725 goto error;
727 is_aff = multi_pw_aff_is_affine(skip);
728 if (is_aff < 0)
729 goto error;
731 if (!is_aff)
732 return pet_scop_filter(scop, skip, 0);
734 pa = isl_multi_pw_aff_get_pw_aff(skip, 0);
735 isl_multi_pw_aff_free(skip);
736 zero = isl_set_params(isl_pw_aff_zero_set(pa));
737 scop = pet_scop_restrict(scop, zero);
739 return scop;
740 error:
741 isl_multi_pw_aff_free(skip);
742 return pet_scop_free(scop);
745 /* Construct a pet_scop that contains the arrays, statements and
746 * skip information in "scop1" and "scop2", where the two scops
747 * are executed "in sequence". That is, breaks and continues
748 * in scop1 have an effect on scop2.
750 struct pet_scop *pet_scop_add_seq(isl_ctx *ctx, struct pet_scop *scop1,
751 struct pet_scop *scop2)
753 if (scop1 && pet_scop_has_skip(scop1, pet_skip_now))
754 scop2 = restrict_skip(scop2,
755 pet_scop_get_skip(scop1, pet_skip_now));
756 return pet_scop_add(ctx, scop1, scop2);
759 /* Construct a pet_scop that contains the arrays, statements and
760 * skip information in "scop1" and "scop2", where the two scops
761 * are executed "in parallel". That is, any break or continue
762 * in scop1 has no effect on scop2.
764 struct pet_scop *pet_scop_add_par(isl_ctx *ctx, struct pet_scop *scop1,
765 struct pet_scop *scop2)
767 return pet_scop_add(ctx, scop1, scop2);
770 void *pet_implication_free(struct pet_implication *implication)
772 int i;
774 if (!implication)
775 return NULL;
777 isl_map_free(implication->extension);
779 free(implication);
780 return NULL;
783 struct pet_scop *pet_scop_free(struct pet_scop *scop)
785 int i;
786 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
788 if (!scop)
789 return NULL;
790 isl_set_free(scop->context);
791 isl_set_free(scop->context_value);
792 if (scop->types)
793 for (i = 0; i < scop->n_type; ++i)
794 pet_type_free(scop->types[i]);
795 free(scop->types);
796 if (scop->arrays)
797 for (i = 0; i < scop->n_array; ++i)
798 pet_array_free(scop->arrays[i]);
799 free(scop->arrays);
800 if (scop->stmts)
801 for (i = 0; i < scop->n_stmt; ++i)
802 pet_stmt_free(scop->stmts[i]);
803 free(scop->stmts);
804 if (scop->implications)
805 for (i = 0; i < scop->n_implication; ++i)
806 pet_implication_free(scop->implications[i]);
807 free(scop->implications);
808 isl_multi_pw_aff_free(ext->skip[pet_skip_now]);
809 isl_multi_pw_aff_free(ext->skip[pet_skip_later]);
810 free(scop);
811 return NULL;
814 void pet_type_dump(struct pet_type *type)
816 if (!type)
817 return;
819 fprintf(stderr, "%s -> %s\n", type->name, type->definition);
822 void pet_implication_dump(struct pet_implication *implication)
824 if (!implication)
825 return;
827 fprintf(stderr, "%d\n", implication->satisfied);
828 isl_map_dump(implication->extension);
831 void pet_scop_dump(struct pet_scop *scop)
833 int i;
834 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
836 if (!scop)
837 return;
839 isl_set_dump(scop->context);
840 isl_set_dump(scop->context_value);
841 for (i = 0; i < scop->n_type; ++i)
842 pet_type_dump(scop->types[i]);
843 for (i = 0; i < scop->n_array; ++i)
844 pet_array_dump(scop->arrays[i]);
845 for (i = 0; i < scop->n_stmt; ++i)
846 pet_stmt_dump(scop->stmts[i]);
847 for (i = 0; i < scop->n_implication; ++i)
848 pet_implication_dump(scop->implications[i]);
850 if (ext->skip[0]) {
851 fprintf(stderr, "skip\n");
852 isl_multi_pw_aff_dump(ext->skip[0]);
853 isl_multi_pw_aff_dump(ext->skip[1]);
857 /* Return 1 if the two pet_arrays are equivalent.
859 * We don't compare element_size as this may be target dependent.
861 int pet_array_is_equal(struct pet_array *array1, struct pet_array *array2)
863 if (!array1 || !array2)
864 return 0;
866 if (!isl_set_is_equal(array1->context, array2->context))
867 return 0;
868 if (!isl_set_is_equal(array1->extent, array2->extent))
869 return 0;
870 if (!!array1->value_bounds != !!array2->value_bounds)
871 return 0;
872 if (array1->value_bounds &&
873 !isl_set_is_equal(array1->value_bounds, array2->value_bounds))
874 return 0;
875 if (strcmp(array1->element_type, array2->element_type))
876 return 0;
877 if (array1->element_is_record != array2->element_is_record)
878 return 0;
879 if (array1->live_out != array2->live_out)
880 return 0;
881 if (array1->uniquely_defined != array2->uniquely_defined)
882 return 0;
883 if (array1->declared != array2->declared)
884 return 0;
885 if (array1->exposed != array2->exposed)
886 return 0;
888 return 1;
891 /* Return 1 if the two pet_stmts are equivalent.
893 int pet_stmt_is_equal(struct pet_stmt *stmt1, struct pet_stmt *stmt2)
895 int i;
897 if (!stmt1 || !stmt2)
898 return 0;
900 if (stmt1->line != stmt2->line)
901 return 0;
902 if (!isl_set_is_equal(stmt1->domain, stmt2->domain))
903 return 0;
904 if (!isl_map_is_equal(stmt1->schedule, stmt2->schedule))
905 return 0;
906 if (!pet_expr_is_equal(stmt1->body, stmt2->body))
907 return 0;
908 if (stmt1->n_arg != stmt2->n_arg)
909 return 0;
910 for (i = 0; i < stmt1->n_arg; ++i) {
911 if (!pet_expr_is_equal(stmt1->args[i], stmt2->args[i]))
912 return 0;
915 return 1;
918 /* Return 1 if the two pet_types are equivalent.
920 * We only compare the names of the types since the exact representation
921 * of the definition may depend on the version of clang being used.
923 int pet_type_is_equal(struct pet_type *type1, struct pet_type *type2)
925 if (!type1 || !type2)
926 return 0;
928 if (strcmp(type1->name, type2->name))
929 return 0;
931 return 1;
934 /* Return 1 if the two pet_implications are equivalent.
936 int pet_implication_is_equal(struct pet_implication *implication1,
937 struct pet_implication *implication2)
939 if (!implication1 || !implication2)
940 return 0;
942 if (implication1->satisfied != implication2->satisfied)
943 return 0;
944 if (!isl_map_is_equal(implication1->extension, implication2->extension))
945 return 0;
947 return 1;
950 /* Return 1 if the two pet_scops are equivalent.
952 int pet_scop_is_equal(struct pet_scop *scop1, struct pet_scop *scop2)
954 int i;
956 if (!scop1 || !scop2)
957 return 0;
959 if (!isl_set_is_equal(scop1->context, scop2->context))
960 return 0;
961 if (!isl_set_is_equal(scop1->context_value, scop2->context_value))
962 return 0;
964 if (scop1->n_type != scop2->n_type)
965 return 0;
966 for (i = 0; i < scop1->n_type; ++i)
967 if (!pet_type_is_equal(scop1->types[i], scop2->types[i]))
968 return 0;
970 if (scop1->n_array != scop2->n_array)
971 return 0;
972 for (i = 0; i < scop1->n_array; ++i)
973 if (!pet_array_is_equal(scop1->arrays[i], scop2->arrays[i]))
974 return 0;
976 if (scop1->n_stmt != scop2->n_stmt)
977 return 0;
978 for (i = 0; i < scop1->n_stmt; ++i)
979 if (!pet_stmt_is_equal(scop1->stmts[i], scop2->stmts[i]))
980 return 0;
982 if (scop1->n_implication != scop2->n_implication)
983 return 0;
984 for (i = 0; i < scop1->n_implication; ++i)
985 if (!pet_implication_is_equal(scop1->implications[i],
986 scop2->implications[i]))
987 return 0;
989 return 1;
992 /* Prefix the schedule of "stmt" with an extra dimension with constant
993 * value "pos".
995 struct pet_stmt *pet_stmt_prefix(struct pet_stmt *stmt, int pos)
997 if (!stmt)
998 return NULL;
1000 stmt->schedule = isl_map_insert_dims(stmt->schedule, isl_dim_out, 0, 1);
1001 stmt->schedule = isl_map_fix_si(stmt->schedule, isl_dim_out, 0, pos);
1002 if (!stmt->schedule)
1003 return pet_stmt_free(stmt);
1005 return stmt;
1008 /* Prefix the schedules of all statements in "scop" with an extra
1009 * dimension with constant value "pos".
1011 struct pet_scop *pet_scop_prefix(struct pet_scop *scop, int pos)
1013 int i;
1015 if (!scop)
1016 return NULL;
1018 for (i = 0; i < scop->n_stmt; ++i) {
1019 scop->stmts[i] = pet_stmt_prefix(scop->stmts[i], pos);
1020 if (!scop->stmts[i])
1021 return pet_scop_free(scop);
1024 return scop;
1027 /* Given a set with a parameter at "param_pos" that refers to the
1028 * iterator, "move" the iterator to the first set dimension.
1029 * That is, essentially equate the parameter to the first set dimension
1030 * and then project it out.
1032 * The first set dimension may however refer to a virtual iterator,
1033 * while the parameter refers to the "real" iterator.
1034 * We therefore need to take into account the affine expression "iv_map", which
1035 * expresses the real iterator in terms of the virtual iterator.
1036 * In particular, we equate the set dimension to the input of the map
1037 * and the parameter to the output of the map and then project out
1038 * everything we don't need anymore.
1040 static __isl_give isl_set *internalize_iv(__isl_take isl_set *set,
1041 int param_pos, __isl_take isl_aff *iv_map)
1043 isl_map *map, *map2;
1044 map = isl_map_from_domain(set);
1045 map = isl_map_add_dims(map, isl_dim_out, 1);
1046 map = isl_map_equate(map, isl_dim_in, 0, isl_dim_out, 0);
1047 map2 = isl_map_from_aff(iv_map);
1048 map2 = isl_map_align_params(map2, isl_map_get_space(map));
1049 map = isl_map_apply_range(map, map2);
1050 map = isl_map_equate(map, isl_dim_param, param_pos, isl_dim_out, 0);
1051 map = isl_map_project_out(map, isl_dim_param, param_pos, 1);
1052 return isl_map_domain(map);
1055 /* Data used in embed_access.
1056 * extend adds an iterator to the iteration domain (through precomposition).
1057 * iv_map expresses the real iterator in terms of the virtual iterator
1058 * var_id represents the induction variable of the corresponding loop
1060 struct pet_embed_access {
1061 isl_multi_pw_aff *extend;
1062 isl_aff *iv_map;
1063 isl_id *var_id;
1066 /* Given an index expression, return an expression for the outer iterator.
1068 static __isl_give isl_aff *index_outer_iterator(
1069 __isl_take isl_multi_pw_aff *index)
1071 isl_space *space;
1072 isl_local_space *ls;
1074 space = isl_multi_pw_aff_get_domain_space(index);
1075 isl_multi_pw_aff_free(index);
1077 ls = isl_local_space_from_space(space);
1078 return isl_aff_var_on_domain(ls, isl_dim_set, 0);
1081 /* Replace an index expression that references the new (outer) iterator variable
1082 * by one that references the corresponding (real) iterator.
1084 * The input index expression is of the form
1086 * { S[i',...] -> i[] }
1088 * where i' refers to the virtual iterator.
1090 * iv_map is of the form
1092 * { [i'] -> [i] }
1094 * Return the index expression
1096 * { S[i',...] -> [i] }
1098 static __isl_give isl_multi_pw_aff *replace_by_iterator(
1099 __isl_take isl_multi_pw_aff *index, __isl_take isl_aff *iv_map)
1101 isl_space *space;
1102 isl_aff *aff;
1104 aff = index_outer_iterator(index);
1105 space = isl_aff_get_space(aff);
1106 iv_map = isl_aff_align_params(iv_map, space);
1107 aff = isl_aff_pullback_aff(iv_map, aff);
1109 return isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff));
1112 /* Given an index expression "index" that refers to the (real) iterator
1113 * through the parameter at position "pos", plug in "iv_map", expressing
1114 * the real iterator in terms of the virtual (outer) iterator.
1116 * In particular, the index expression is of the form
1118 * [..., i, ...] -> { S[i',...] -> ... i ... }
1120 * where i refers to the real iterator and i' refers to the virtual iterator.
1122 * iv_map is of the form
1124 * { [i'] -> [i] }
1126 * Return the index expression
1128 * [..., ...] -> { S[i',...] -> ... iv_map(i') ... }
1131 * We first move the parameter to the input
1133 * [..., ...] -> { [i, i',...] -> ... i ... }
1135 * and construct
1137 * { S[i',...] -> [i=iv_map(i'), i', ...] }
1139 * and then combine the two to obtain the desired result.
1141 static __isl_give isl_multi_pw_aff *index_internalize_iv(
1142 __isl_take isl_multi_pw_aff *index, int pos, __isl_take isl_aff *iv_map)
1144 isl_space *space = isl_multi_pw_aff_get_domain_space(index);
1145 isl_multi_aff *ma;
1147 space = isl_space_drop_dims(space, isl_dim_param, pos, 1);
1148 index = isl_multi_pw_aff_move_dims(index, isl_dim_in, 0,
1149 isl_dim_param, pos, 1);
1151 space = isl_space_map_from_set(space);
1152 ma = isl_multi_aff_identity(isl_space_copy(space));
1153 iv_map = isl_aff_align_params(iv_map, space);
1154 iv_map = isl_aff_pullback_aff(iv_map, isl_multi_aff_get_aff(ma, 0));
1155 ma = isl_multi_aff_flat_range_product(
1156 isl_multi_aff_from_aff(iv_map), ma);
1157 index = isl_multi_pw_aff_pullback_multi_aff(index, ma);
1159 return index;
1162 /* Does the index expression "index" reference a virtual array, i.e.,
1163 * one with user pointer equal to NULL?
1164 * A virtual array does not have any members.
1166 static int index_is_virtual_array(__isl_keep isl_multi_pw_aff *index)
1168 isl_id *id;
1169 int is_virtual;
1171 if (!isl_multi_pw_aff_has_tuple_id(index, isl_dim_out))
1172 return 0;
1173 if (isl_multi_pw_aff_range_is_wrapping(index))
1174 return 0;
1175 id = isl_multi_pw_aff_get_tuple_id(index, isl_dim_out);
1176 is_virtual = !isl_id_get_user(id);
1177 isl_id_free(id);
1179 return is_virtual;
1182 /* Does the access relation "access" reference a virtual array, i.e.,
1183 * one with user pointer equal to NULL?
1184 * A virtual array does not have any members.
1186 static int access_is_virtual_array(__isl_keep isl_map *access)
1188 isl_id *id;
1189 int is_virtual;
1191 if (!isl_map_has_tuple_id(access, isl_dim_out))
1192 return 0;
1193 if (isl_map_range_is_wrapping(access))
1194 return 0;
1195 id = isl_map_get_tuple_id(access, isl_dim_out);
1196 is_virtual = !isl_id_get_user(id);
1197 isl_id_free(id);
1199 return is_virtual;
1202 /* Embed the given index expression in an extra outer loop.
1203 * The domain of the index expression has already been updated.
1205 * If the access refers to the induction variable, then it is
1206 * turned into an access to the set of integers with index (and value)
1207 * equal to the induction variable.
1209 * If the accessed array is a virtual array (with user
1210 * pointer equal to NULL), as created by create_test_index,
1211 * then it is extended along with the domain of the index expression.
1213 static __isl_give isl_multi_pw_aff *embed_index_expression(
1214 __isl_take isl_multi_pw_aff *index, struct pet_embed_access *data)
1216 isl_id *array_id = NULL;
1217 int pos;
1219 if (isl_multi_pw_aff_has_tuple_id(index, isl_dim_out))
1220 array_id = isl_multi_pw_aff_get_tuple_id(index, isl_dim_out);
1221 if (array_id == data->var_id) {
1222 index = replace_by_iterator(index, isl_aff_copy(data->iv_map));
1223 } else if (index_is_virtual_array(index)) {
1224 isl_aff *aff;
1225 isl_multi_pw_aff *mpa;
1227 aff = index_outer_iterator(isl_multi_pw_aff_copy(index));
1228 mpa = isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff));
1229 index = isl_multi_pw_aff_flat_range_product(mpa, index);
1230 index = isl_multi_pw_aff_set_tuple_id(index, isl_dim_out,
1231 isl_id_copy(array_id));
1233 isl_id_free(array_id);
1235 pos = isl_multi_pw_aff_find_dim_by_id(index,
1236 isl_dim_param, data->var_id);
1237 if (pos >= 0)
1238 index = index_internalize_iv(index, pos,
1239 isl_aff_copy(data->iv_map));
1240 index = isl_multi_pw_aff_set_dim_id(index, isl_dim_in, 0,
1241 isl_id_copy(data->var_id));
1243 return index;
1246 /* Embed the given access relation in an extra outer loop.
1247 * The domain of the access relation has already been updated.
1249 * If the access refers to the induction variable, then it is
1250 * turned into an access to the set of integers with index (and value)
1251 * equal to the induction variable.
1253 * If the induction variable appears in the constraints (as a parameter),
1254 * then the parameter is equated to the newly introduced iteration
1255 * domain dimension and subsequently projected out.
1257 * Similarly, if the accessed array is a virtual array (with user
1258 * pointer equal to NULL), as created by create_test_index,
1259 * then it is extended along with the domain of the access.
1261 static __isl_give isl_map *embed_access_relation(__isl_take isl_map *access,
1262 struct pet_embed_access *data)
1264 isl_id *array_id = NULL;
1265 int pos;
1267 if (isl_map_has_tuple_id(access, isl_dim_out))
1268 array_id = isl_map_get_tuple_id(access, isl_dim_out);
1269 if (array_id == data->var_id || access_is_virtual_array(access)) {
1270 access = isl_map_insert_dims(access, isl_dim_out, 0, 1);
1271 access = isl_map_equate(access,
1272 isl_dim_in, 0, isl_dim_out, 0);
1273 if (array_id == data->var_id)
1274 access = isl_map_apply_range(access,
1275 isl_map_from_aff(isl_aff_copy(data->iv_map)));
1276 else
1277 access = isl_map_set_tuple_id(access, isl_dim_out,
1278 isl_id_copy(array_id));
1280 isl_id_free(array_id);
1282 pos = isl_map_find_dim_by_id(access, isl_dim_param, data->var_id);
1283 if (pos >= 0) {
1284 isl_set *set = isl_map_wrap(access);
1285 set = internalize_iv(set, pos, isl_aff_copy(data->iv_map));
1286 access = isl_set_unwrap(set);
1288 access = isl_map_set_dim_id(access, isl_dim_in, 0,
1289 isl_id_copy(data->var_id));
1291 return access;
1294 /* Given an access expression, embed the associated access relation and
1295 * index expression in an extra outer loop.
1297 * We first update the domains to insert the extra dimension and
1298 * then update the access relation and index expression to take
1299 * into account the mapping "iv_map" from virtual iterator
1300 * to real iterator.
1302 static struct pet_expr *embed_access(struct pet_expr *expr, void *user)
1304 struct pet_embed_access *data = user;
1306 expr = pet_expr_access_update_domain(expr, data->extend);
1307 if (!expr)
1308 return NULL;
1310 expr->acc.access = embed_access_relation(expr->acc.access, data);
1311 expr->acc.index = embed_index_expression(expr->acc.index, data);
1312 if (!expr->acc.access || !expr->acc.index)
1313 return pet_expr_free(expr);
1315 return expr;
1318 /* Embed all access subexpressions of "expr" in an extra loop.
1319 * "extend" inserts an outer loop iterator in the iteration domains
1320 * (through precomposition).
1321 * "iv_map" expresses the real iterator in terms of the virtual iterator
1322 * "var_id" represents the induction variable.
1324 static struct pet_expr *expr_embed(struct pet_expr *expr,
1325 __isl_take isl_multi_pw_aff *extend, __isl_take isl_aff *iv_map,
1326 __isl_keep isl_id *var_id)
1328 struct pet_embed_access data =
1329 { .extend = extend, .iv_map = iv_map, .var_id = var_id };
1331 expr = pet_expr_map_access(expr, &embed_access, &data);
1332 isl_aff_free(iv_map);
1333 isl_multi_pw_aff_free(extend);
1334 return expr;
1337 /* Embed the given pet_stmt in an extra outer loop with iteration domain
1338 * "dom" and schedule "sched". "var_id" represents the induction variable
1339 * of the loop. "iv_map" maps a possibly virtual iterator to the real iterator.
1340 * That is, it expresses the iterator that some of the parameters in "stmt"
1341 * may refer to in terms of the iterator used in "dom" and
1342 * the domain of "sched".
1344 * The iteration domain and schedule of the statement are updated
1345 * according to the iteration domain and schedule of the new loop.
1346 * If stmt->domain is a wrapped map, then the iteration domain
1347 * is the domain of this map, so we need to be careful to adjust
1348 * this domain.
1350 * If the induction variable appears in the constraints (as a parameter)
1351 * of the current iteration domain or the schedule of the statement,
1352 * then the parameter is equated to the newly introduced iteration
1353 * domain dimension and subsequently projected out.
1355 * Finally, all access relations are updated based on the extra loop.
1357 static struct pet_stmt *pet_stmt_embed(struct pet_stmt *stmt,
1358 __isl_take isl_set *dom, __isl_take isl_map *sched,
1359 __isl_take isl_aff *iv_map, __isl_take isl_id *var_id)
1361 int i;
1362 int pos;
1363 isl_id *stmt_id;
1364 isl_space *dim;
1365 isl_multi_pw_aff *extend;
1367 if (!stmt)
1368 goto error;
1370 if (isl_set_is_wrapping(stmt->domain)) {
1371 isl_map *map;
1372 isl_map *ext;
1373 isl_space *ran_dim;
1375 map = isl_set_unwrap(stmt->domain);
1376 stmt_id = isl_map_get_tuple_id(map, isl_dim_in);
1377 ran_dim = isl_space_range(isl_map_get_space(map));
1378 ext = isl_map_from_domain_and_range(isl_set_copy(dom),
1379 isl_set_universe(ran_dim));
1380 map = isl_map_flat_domain_product(ext, map);
1381 map = isl_map_set_tuple_id(map, isl_dim_in,
1382 isl_id_copy(stmt_id));
1383 dim = isl_space_domain(isl_map_get_space(map));
1384 stmt->domain = isl_map_wrap(map);
1385 } else {
1386 stmt_id = isl_set_get_tuple_id(stmt->domain);
1387 stmt->domain = isl_set_flat_product(isl_set_copy(dom),
1388 stmt->domain);
1389 stmt->domain = isl_set_set_tuple_id(stmt->domain,
1390 isl_id_copy(stmt_id));
1391 dim = isl_set_get_space(stmt->domain);
1394 pos = isl_set_find_dim_by_id(stmt->domain, isl_dim_param, var_id);
1395 if (pos >= 0)
1396 stmt->domain = internalize_iv(stmt->domain, pos,
1397 isl_aff_copy(iv_map));
1399 stmt->schedule = isl_map_flat_product(sched, stmt->schedule);
1400 stmt->schedule = isl_map_set_tuple_id(stmt->schedule,
1401 isl_dim_in, stmt_id);
1403 pos = isl_map_find_dim_by_id(stmt->schedule, isl_dim_param, var_id);
1404 if (pos >= 0) {
1405 isl_set *set = isl_map_wrap(stmt->schedule);
1406 set = internalize_iv(set, pos, isl_aff_copy(iv_map));
1407 stmt->schedule = isl_set_unwrap(set);
1410 dim = isl_space_map_from_set(dim);
1411 extend = isl_multi_pw_aff_identity(dim);
1412 extend = isl_multi_pw_aff_drop_dims(extend, isl_dim_out, 0, 1);
1413 extend = isl_multi_pw_aff_set_tuple_id(extend, isl_dim_out,
1414 isl_multi_pw_aff_get_tuple_id(extend, isl_dim_in));
1415 for (i = 0; i < stmt->n_arg; ++i)
1416 stmt->args[i] = expr_embed(stmt->args[i],
1417 isl_multi_pw_aff_copy(extend),
1418 isl_aff_copy(iv_map), var_id);
1419 stmt->body = expr_embed(stmt->body, extend, iv_map, var_id);
1421 isl_set_free(dom);
1422 isl_id_free(var_id);
1424 for (i = 0; i < stmt->n_arg; ++i)
1425 if (!stmt->args[i])
1426 return pet_stmt_free(stmt);
1427 if (!stmt->domain || !stmt->schedule || !stmt->body)
1428 return pet_stmt_free(stmt);
1429 return stmt;
1430 error:
1431 isl_set_free(dom);
1432 isl_map_free(sched);
1433 isl_aff_free(iv_map);
1434 isl_id_free(var_id);
1435 return NULL;
1438 /* Embed the given pet_array in an extra outer loop with iteration domain
1439 * "dom".
1440 * This embedding only has an effect on virtual arrays (those with
1441 * user pointer equal to NULL), which need to be extended along with
1442 * the iteration domain.
1444 static struct pet_array *pet_array_embed(struct pet_array *array,
1445 __isl_take isl_set *dom)
1447 isl_id *array_id = NULL;
1449 if (!array)
1450 goto error;
1452 if (isl_set_has_tuple_id(array->extent))
1453 array_id = isl_set_get_tuple_id(array->extent);
1455 if (array_id && !isl_id_get_user(array_id)) {
1456 array->extent = isl_set_flat_product(dom, array->extent);
1457 array->extent = isl_set_set_tuple_id(array->extent, array_id);
1458 if (!array->extent)
1459 return pet_array_free(array);
1460 } else {
1461 isl_set_free(dom);
1462 isl_id_free(array_id);
1465 return array;
1466 error:
1467 isl_set_free(dom);
1468 return NULL;
1471 /* Project out all unnamed parameters from "set" and return the result.
1473 static __isl_give isl_set *set_project_out_unnamed_params(
1474 __isl_take isl_set *set)
1476 int i, n;
1478 n = isl_set_dim(set, isl_dim_param);
1479 for (i = n - 1; i >= 0; --i) {
1480 if (isl_set_has_dim_name(set, isl_dim_param, i))
1481 continue;
1482 set = isl_set_project_out(set, isl_dim_param, i, 1);
1485 return set;
1488 /* Update the context with respect to an embedding into a loop
1489 * with iteration domain "dom" and induction variable "id".
1490 * "iv_map" expresses the real iterator (parameter "id") in terms
1491 * of a possibly virtual iterator (used in "dom").
1493 * If the current context is independent of "id", we don't need
1494 * to do anything.
1495 * Otherwise, a parameter value is invalid for the embedding if
1496 * any of the corresponding iterator values is invalid.
1497 * That is, a parameter value is valid only if all the corresponding
1498 * iterator values are valid.
1499 * We therefore compute the set of parameters
1501 * forall i in dom : valid (i)
1503 * or
1505 * not exists i in dom : not valid(i)
1507 * i.e.,
1509 * not exists i in dom \ valid(i)
1511 * Before we subtract valid(i) from dom, we first need to substitute
1512 * the real iterator for the virtual iterator.
1514 * If there are any unnamed parameters in "dom", then we consider
1515 * a parameter value to be valid if it is valid for any value of those
1516 * unnamed parameters. They are therefore projected out at the end.
1518 static __isl_give isl_set *context_embed(__isl_take isl_set *context,
1519 __isl_keep isl_set *dom, __isl_keep isl_aff *iv_map,
1520 __isl_keep isl_id *id)
1522 int pos;
1523 isl_multi_aff *ma;
1525 pos = isl_set_find_dim_by_id(context, isl_dim_param, id);
1526 if (pos < 0)
1527 return context;
1529 context = isl_set_from_params(context);
1530 context = isl_set_add_dims(context, isl_dim_set, 1);
1531 context = isl_set_equate(context, isl_dim_param, pos, isl_dim_set, 0);
1532 context = isl_set_project_out(context, isl_dim_param, pos, 1);
1533 ma = isl_multi_aff_from_aff(isl_aff_copy(iv_map));
1534 context = isl_set_preimage_multi_aff(context, ma);
1535 context = isl_set_subtract(isl_set_copy(dom), context);
1536 context = isl_set_params(context);
1537 context = isl_set_complement(context);
1538 context = set_project_out_unnamed_params(context);
1539 return context;
1542 /* Update the implication with respect to an embedding into a loop
1543 * with iteration domain "dom".
1545 * Since embed_access extends virtual arrays along with the domain
1546 * of the access, we need to do the same with domain and range
1547 * of the implication. Since the original implication is only valid
1548 * within a given iteration of the loop, the extended implication
1549 * maps the extra array dimension corresponding to the extra loop
1550 * to itself.
1552 static struct pet_implication *pet_implication_embed(
1553 struct pet_implication *implication, __isl_take isl_set *dom)
1555 isl_id *id;
1556 isl_map *map;
1558 if (!implication)
1559 goto error;
1561 map = isl_set_identity(dom);
1562 id = isl_map_get_tuple_id(implication->extension, isl_dim_in);
1563 map = isl_map_flat_product(map, implication->extension);
1564 map = isl_map_set_tuple_id(map, isl_dim_in, isl_id_copy(id));
1565 map = isl_map_set_tuple_id(map, isl_dim_out, id);
1566 implication->extension = map;
1567 if (!implication->extension)
1568 return pet_implication_free(implication);
1570 return implication;
1571 error:
1572 isl_set_free(dom);
1573 return NULL;
1576 /* Embed all statements and arrays in "scop" in an extra outer loop
1577 * with iteration domain "dom" and schedule "sched".
1578 * "id" represents the induction variable of the loop.
1579 * "iv_map" maps a possibly virtual iterator to the real iterator.
1580 * That is, it expresses the iterator that some of the parameters in "scop"
1581 * may refer to in terms of the iterator used in "dom" and
1582 * the domain of "sched".
1584 * Any skip conditions within the loop have no effect outside of the loop.
1585 * The caller is responsible for making sure skip[pet_skip_later] has been
1586 * taken into account.
1588 struct pet_scop *pet_scop_embed(struct pet_scop *scop, __isl_take isl_set *dom,
1589 __isl_take isl_aff *sched, __isl_take isl_aff *iv_map,
1590 __isl_take isl_id *id)
1592 int i;
1593 isl_map *sched_map;
1595 sched_map = isl_map_from_aff(sched);
1597 if (!scop)
1598 goto error;
1600 pet_scop_reset_skip(scop, pet_skip_now);
1601 pet_scop_reset_skip(scop, pet_skip_later);
1603 scop->context = context_embed(scop->context, dom, iv_map, id);
1604 if (!scop->context)
1605 goto error;
1607 for (i = 0; i < scop->n_stmt; ++i) {
1608 scop->stmts[i] = pet_stmt_embed(scop->stmts[i],
1609 isl_set_copy(dom), isl_map_copy(sched_map),
1610 isl_aff_copy(iv_map), isl_id_copy(id));
1611 if (!scop->stmts[i])
1612 goto error;
1615 for (i = 0; i < scop->n_array; ++i) {
1616 scop->arrays[i] = pet_array_embed(scop->arrays[i],
1617 isl_set_copy(dom));
1618 if (!scop->arrays[i])
1619 goto error;
1622 for (i = 0; i < scop->n_implication; ++i) {
1623 scop->implications[i] =
1624 pet_implication_embed(scop->implications[i],
1625 isl_set_copy(dom));
1626 if (!scop->implications[i])
1627 goto error;
1630 isl_set_free(dom);
1631 isl_map_free(sched_map);
1632 isl_aff_free(iv_map);
1633 isl_id_free(id);
1634 return scop;
1635 error:
1636 isl_set_free(dom);
1637 isl_map_free(sched_map);
1638 isl_aff_free(iv_map);
1639 isl_id_free(id);
1640 return pet_scop_free(scop);
1643 /* Add extra conditions on the parameters to the iteration domain of "stmt".
1645 static struct pet_stmt *stmt_restrict(struct pet_stmt *stmt,
1646 __isl_take isl_set *cond)
1648 if (!stmt)
1649 goto error;
1651 stmt->domain = isl_set_intersect_params(stmt->domain, cond);
1653 return stmt;
1654 error:
1655 isl_set_free(cond);
1656 return pet_stmt_free(stmt);
1659 /* Add extra conditions to scop->skip[type].
1661 * The new skip condition only holds if it held before
1662 * and the condition is true. It does not hold if it did not hold
1663 * before or the condition is false.
1665 * The skip condition is assumed to be an affine expression.
1667 static struct pet_scop *pet_scop_restrict_skip(struct pet_scop *scop,
1668 enum pet_skip type, __isl_keep isl_set *cond)
1670 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
1671 isl_pw_aff *skip;
1672 isl_set *dom;
1674 if (!scop)
1675 return NULL;
1676 if (!ext->skip[type])
1677 return scop;
1679 if (!multi_pw_aff_is_affine(ext->skip[type]))
1680 isl_die(isl_multi_pw_aff_get_ctx(ext->skip[type]),
1681 isl_error_internal, "can only restrict affine skips",
1682 return pet_scop_free(scop));
1684 skip = isl_multi_pw_aff_get_pw_aff(ext->skip[type], 0);
1685 dom = isl_pw_aff_domain(isl_pw_aff_copy(skip));
1686 cond = isl_set_copy(cond);
1687 cond = isl_set_from_params(cond);
1688 cond = isl_set_intersect(cond, isl_pw_aff_non_zero_set(skip));
1689 skip = indicator_function(cond, dom);
1690 isl_multi_pw_aff_free(ext->skip[type]);
1691 ext->skip[type] = isl_multi_pw_aff_from_pw_aff(skip);
1692 if (!ext->skip[type])
1693 return pet_scop_free(scop);
1695 return scop;
1698 /* Add extra conditions on the parameters to all iteration domains
1699 * and skip conditions.
1701 * A parameter value is valid for the result if it was valid
1702 * for the original scop and satisfies "cond" or if it does
1703 * not satisfy "cond" as in this case the scop is not executed
1704 * and the original constraints on the parameters are irrelevant.
1706 struct pet_scop *pet_scop_restrict(struct pet_scop *scop,
1707 __isl_take isl_set *cond)
1709 int i;
1711 scop = pet_scop_restrict_skip(scop, pet_skip_now, cond);
1712 scop = pet_scop_restrict_skip(scop, pet_skip_later, cond);
1714 if (!scop)
1715 goto error;
1717 scop->context = isl_set_intersect(scop->context, isl_set_copy(cond));
1718 scop->context = isl_set_union(scop->context,
1719 isl_set_complement(isl_set_copy(cond)));
1720 scop->context = isl_set_coalesce(scop->context);
1721 scop->context = set_project_out_unnamed_params(scop->context);
1722 if (!scop->context)
1723 goto error;
1725 for (i = 0; i < scop->n_stmt; ++i) {
1726 scop->stmts[i] = stmt_restrict(scop->stmts[i],
1727 isl_set_copy(cond));
1728 if (!scop->stmts[i])
1729 goto error;
1732 isl_set_free(cond);
1733 return scop;
1734 error:
1735 isl_set_free(cond);
1736 return pet_scop_free(scop);
1739 /* Insert an argument expression corresponding to "test" in front
1740 * of the list of arguments described by *n_arg and *args.
1742 static int args_insert_access(unsigned *n_arg, struct pet_expr ***args,
1743 __isl_keep isl_multi_pw_aff *test)
1745 int i;
1746 isl_ctx *ctx = isl_multi_pw_aff_get_ctx(test);
1748 if (!test)
1749 return -1;
1751 if (!*args) {
1752 *args = isl_calloc_array(ctx, struct pet_expr *, 1);
1753 if (!*args)
1754 return -1;
1755 } else {
1756 struct pet_expr **ext;
1757 ext = isl_calloc_array(ctx, struct pet_expr *, 1 + *n_arg);
1758 if (!ext)
1759 return -1;
1760 for (i = 0; i < *n_arg; ++i)
1761 ext[1 + i] = (*args)[i];
1762 free(*args);
1763 *args = ext;
1765 (*n_arg)++;
1766 (*args)[0] = pet_expr_from_index(isl_multi_pw_aff_copy(test));
1767 if (!(*args)[0])
1768 return -1;
1770 return 0;
1773 /* Look through the applications in "scop" for any that can be
1774 * applied to the filter expressed by "map" and "satisified".
1775 * If there is any, then apply it to "map" and return the result.
1776 * Otherwise, return "map".
1777 * "id" is the identifier of the virtual array.
1779 * We only introduce at most one implication for any given virtual array,
1780 * so we can apply the implication and return as soon as we find one.
1782 static __isl_give isl_map *apply_implications(struct pet_scop *scop,
1783 __isl_take isl_map *map, __isl_keep isl_id *id, int satisfied)
1785 int i;
1787 for (i = 0; i < scop->n_implication; ++i) {
1788 struct pet_implication *pi = scop->implications[i];
1789 isl_id *pi_id;
1791 if (pi->satisfied != satisfied)
1792 continue;
1793 pi_id = isl_map_get_tuple_id(pi->extension, isl_dim_in);
1794 isl_id_free(pi_id);
1795 if (pi_id != id)
1796 continue;
1798 return isl_map_apply_range(map, isl_map_copy(pi->extension));
1801 return map;
1804 /* Is the filter expressed by "test" and "satisfied" implied
1805 * by filter "pos" on "domain", with filter "expr", taking into
1806 * account the implications of "scop"?
1808 * For filter on domain implying that expressed by "test" and "satisfied",
1809 * the filter needs to be an access to the same (virtual) array as "test" and
1810 * the filter value needs to be equal to "satisfied".
1811 * Moreover, the filter access relation, possibly extended by
1812 * the implications in "scop" needs to contain "test".
1814 static int implies_filter(struct pet_scop *scop,
1815 __isl_keep isl_map *domain, int pos, struct pet_expr *expr,
1816 __isl_keep isl_map *test, int satisfied)
1818 isl_id *test_id, *arg_id;
1819 isl_val *val;
1820 int is_int;
1821 int s;
1822 int is_subset;
1823 isl_map *implied;
1825 if (expr->type != pet_expr_access)
1826 return 0;
1827 test_id = isl_map_get_tuple_id(test, isl_dim_out);
1828 arg_id = pet_expr_access_get_id(expr);
1829 isl_id_free(arg_id);
1830 isl_id_free(test_id);
1831 if (test_id != arg_id)
1832 return 0;
1833 val = isl_map_plain_get_val_if_fixed(domain, isl_dim_out, pos);
1834 is_int = isl_val_is_int(val);
1835 if (is_int)
1836 s = isl_val_get_num_si(val);
1837 isl_val_free(val);
1838 if (!val)
1839 return -1;
1840 if (!is_int)
1841 return 0;
1842 if (s != satisfied)
1843 return 0;
1845 implied = isl_map_copy(expr->acc.access);
1846 implied = apply_implications(scop, implied, test_id, satisfied);
1847 is_subset = isl_map_is_subset(test, implied);
1848 isl_map_free(implied);
1850 return is_subset;
1853 /* Is the filter expressed by "test" and "satisfied" implied
1854 * by any of the filters on the domain of "stmt", taking into
1855 * account the implications of "scop"?
1857 static int filter_implied(struct pet_scop *scop,
1858 struct pet_stmt *stmt, __isl_keep isl_multi_pw_aff *test, int satisfied)
1860 int i;
1861 int implied;
1862 isl_id *test_id;
1863 isl_map *domain;
1864 isl_map *test_map;
1866 if (!scop || !stmt || !test)
1867 return -1;
1868 if (scop->n_implication == 0)
1869 return 0;
1870 if (stmt->n_arg == 0)
1871 return 0;
1873 domain = isl_set_unwrap(isl_set_copy(stmt->domain));
1874 test_map = isl_map_from_multi_pw_aff(isl_multi_pw_aff_copy(test));
1876 implied = 0;
1877 for (i = 0; i < stmt->n_arg; ++i) {
1878 implied = implies_filter(scop, domain, i, stmt->args[i],
1879 test_map, satisfied);
1880 if (implied < 0 || implied)
1881 break;
1884 isl_map_free(test_map);
1885 isl_map_free(domain);
1886 return implied;
1889 /* Make the statement "stmt" depend on the value of "test"
1890 * being equal to "satisfied" by adjusting stmt->domain.
1892 * The domain of "test" corresponds to the (zero or more) outer dimensions
1893 * of the iteration domain.
1895 * We first extend "test" to apply to the entire iteration domain and
1896 * then check if the filter that we are about to add is implied
1897 * by any of the current filters, possibly taking into account
1898 * the implications in "scop". If so, we leave "stmt" untouched and return.
1900 * Otherwise, we insert an argument corresponding to a read to "test"
1901 * from the iteration domain of "stmt" in front of the list of arguments.
1902 * We also insert a corresponding output dimension in the wrapped
1903 * map contained in stmt->domain, with value set to "satisfied".
1905 static struct pet_stmt *stmt_filter(struct pet_scop *scop,
1906 struct pet_stmt *stmt, __isl_take isl_multi_pw_aff *test, int satisfied)
1908 int i;
1909 int implied;
1910 isl_id *id;
1911 isl_ctx *ctx;
1912 isl_pw_multi_aff *pma;
1913 isl_multi_aff *add_dom;
1914 isl_space *space;
1915 isl_local_space *ls;
1916 int n_test_dom;
1918 if (!stmt || !test)
1919 goto error;
1921 space = pet_stmt_get_space(stmt);
1922 n_test_dom = isl_multi_pw_aff_dim(test, isl_dim_in);
1923 space = isl_space_from_domain(space);
1924 space = isl_space_add_dims(space, isl_dim_out, n_test_dom);
1925 add_dom = isl_multi_aff_zero(isl_space_copy(space));
1926 ls = isl_local_space_from_space(isl_space_domain(space));
1927 for (i = 0; i < n_test_dom; ++i) {
1928 isl_aff *aff;
1929 aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
1930 isl_dim_set, i);
1931 add_dom = isl_multi_aff_set_aff(add_dom, i, aff);
1933 isl_local_space_free(ls);
1934 test = isl_multi_pw_aff_pullback_multi_aff(test, add_dom);
1936 implied = filter_implied(scop, stmt, test, satisfied);
1937 if (implied < 0)
1938 goto error;
1939 if (implied) {
1940 isl_multi_pw_aff_free(test);
1941 return stmt;
1944 id = isl_multi_pw_aff_get_tuple_id(test, isl_dim_out);
1945 pma = pet_filter_insert_pma(isl_set_get_space(stmt->domain),
1946 id, satisfied);
1947 stmt->domain = isl_set_preimage_pw_multi_aff(stmt->domain, pma);
1949 if (args_insert_access(&stmt->n_arg, &stmt->args, test) < 0)
1950 goto error;
1952 isl_multi_pw_aff_free(test);
1953 return stmt;
1954 error:
1955 isl_multi_pw_aff_free(test);
1956 return pet_stmt_free(stmt);
1959 /* Does "scop" have a skip condition of the given "type"?
1961 int pet_scop_has_skip(struct pet_scop *scop, enum pet_skip type)
1963 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
1965 if (!scop)
1966 return -1;
1967 return ext->skip[type] != NULL;
1970 /* Does "scop" have a skip condition of the given "type" that
1971 * is an affine expression?
1973 int pet_scop_has_affine_skip(struct pet_scop *scop, enum pet_skip type)
1975 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
1977 if (!scop)
1978 return -1;
1979 if (!ext->skip[type])
1980 return 0;
1981 return multi_pw_aff_is_affine(ext->skip[type]);
1984 /* Does "scop" have a skip condition of the given "type" that
1985 * is not an affine expression?
1987 int pet_scop_has_var_skip(struct pet_scop *scop, enum pet_skip type)
1989 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
1990 int aff;
1992 if (!scop)
1993 return -1;
1994 if (!ext->skip[type])
1995 return 0;
1996 aff = multi_pw_aff_is_affine(ext->skip[type]);
1997 if (aff < 0)
1998 return -1;
1999 return !aff;
2002 /* Does "scop" have a skip condition of the given "type" that
2003 * is affine and holds on the entire domain?
2005 int pet_scop_has_universal_skip(struct pet_scop *scop, enum pet_skip type)
2007 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
2008 isl_pw_aff *pa;
2009 isl_set *set;
2010 int is_aff;
2011 int is_univ;
2013 is_aff = pet_scop_has_affine_skip(scop, type);
2014 if (is_aff < 0 || !is_aff)
2015 return is_aff;
2017 pa = isl_multi_pw_aff_get_pw_aff(ext->skip[type], 0);
2018 set = isl_pw_aff_non_zero_set(pa);
2019 is_univ = isl_set_plain_is_universe(set);
2020 isl_set_free(set);
2022 return is_univ;
2025 /* Replace scop->skip[type] by "skip".
2027 struct pet_scop *pet_scop_set_skip(struct pet_scop *scop,
2028 enum pet_skip type, __isl_take isl_multi_pw_aff *skip)
2030 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
2032 if (!scop || !skip)
2033 goto error;
2035 isl_multi_pw_aff_free(ext->skip[type]);
2036 ext->skip[type] = skip;
2038 return scop;
2039 error:
2040 isl_multi_pw_aff_free(skip);
2041 return pet_scop_free(scop);
2044 /* Return a copy of scop->skip[type].
2046 __isl_give isl_multi_pw_aff *pet_scop_get_skip(struct pet_scop *scop,
2047 enum pet_skip type)
2049 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
2051 if (!scop)
2052 return NULL;
2054 return isl_multi_pw_aff_copy(ext->skip[type]);
2057 /* Assuming scop->skip[type] is an affine expression,
2058 * return the constraints on the parameters for which the skip condition
2059 * holds.
2061 __isl_give isl_set *pet_scop_get_affine_skip_domain(struct pet_scop *scop,
2062 enum pet_skip type)
2064 isl_multi_pw_aff *skip;
2065 isl_pw_aff *pa;
2067 skip = pet_scop_get_skip(scop, type);
2068 pa = isl_multi_pw_aff_get_pw_aff(skip, 0);
2069 isl_multi_pw_aff_free(skip);
2070 return isl_set_params(isl_pw_aff_non_zero_set(pa));
2073 /* Return the identifier of the variable that is accessed by
2074 * the skip condition of the given type.
2076 * The skip condition is assumed not to be an affine condition.
2078 __isl_give isl_id *pet_scop_get_skip_id(struct pet_scop *scop,
2079 enum pet_skip type)
2081 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
2083 if (!scop)
2084 return NULL;
2086 return isl_multi_pw_aff_get_tuple_id(ext->skip[type], isl_dim_out);
2089 /* Return an access pet_expr corresponding to the skip condition
2090 * of the given type.
2092 struct pet_expr *pet_scop_get_skip_expr(struct pet_scop *scop,
2093 enum pet_skip type)
2095 return pet_expr_from_index(pet_scop_get_skip(scop, type));
2098 /* Drop the the skip condition scop->skip[type].
2100 void pet_scop_reset_skip(struct pet_scop *scop, enum pet_skip type)
2102 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
2104 if (!scop)
2105 return;
2107 isl_multi_pw_aff_free(ext->skip[type]);
2108 ext->skip[type] = NULL;
2111 /* Make the skip condition (if any) depend on the value of "test" being
2112 * equal to "satisfied".
2114 * We only support the case where the original skip condition is universal,
2115 * i.e., where skipping is unconditional, and where satisfied == 1.
2116 * In this case, the skip condition is changed to skip only when
2117 * "test" is equal to one.
2119 static struct pet_scop *pet_scop_filter_skip(struct pet_scop *scop,
2120 enum pet_skip type, __isl_keep isl_multi_pw_aff *test, int satisfied)
2122 int is_univ = 0;
2124 if (!scop)
2125 return NULL;
2126 if (!pet_scop_has_skip(scop, type))
2127 return scop;
2129 if (satisfied)
2130 is_univ = pet_scop_has_universal_skip(scop, type);
2131 if (is_univ < 0)
2132 return pet_scop_free(scop);
2133 if (satisfied && is_univ) {
2134 isl_multi_pw_aff *skip;
2135 skip = isl_multi_pw_aff_copy(test);
2136 scop = pet_scop_set_skip(scop, type, skip);
2137 if (!scop)
2138 return NULL;
2139 } else {
2140 isl_die(isl_multi_pw_aff_get_ctx(test), isl_error_internal,
2141 "skip expression cannot be filtered",
2142 return pet_scop_free(scop));
2145 return scop;
2148 /* Make all statements in "scop" depend on the value of "test"
2149 * being equal to "satisfied" by adjusting their domains.
2151 struct pet_scop *pet_scop_filter(struct pet_scop *scop,
2152 __isl_take isl_multi_pw_aff *test, int satisfied)
2154 int i;
2156 scop = pet_scop_filter_skip(scop, pet_skip_now, test, satisfied);
2157 scop = pet_scop_filter_skip(scop, pet_skip_later, test, satisfied);
2159 if (!scop || !test)
2160 goto error;
2162 for (i = 0; i < scop->n_stmt; ++i) {
2163 scop->stmts[i] = stmt_filter(scop, scop->stmts[i],
2164 isl_multi_pw_aff_copy(test), satisfied);
2165 if (!scop->stmts[i])
2166 goto error;
2169 isl_multi_pw_aff_free(test);
2170 return scop;
2171 error:
2172 isl_multi_pw_aff_free(test);
2173 return pet_scop_free(scop);
2176 /* Add all parameters in "expr" to "space" and return the result.
2178 static __isl_give isl_space *expr_collect_params(struct pet_expr *expr,
2179 __isl_take isl_space *space)
2181 int i;
2183 if (!expr)
2184 goto error;
2185 for (i = 0; i < expr->n_arg; ++i)
2186 space = expr_collect_params(expr->args[i], space);
2188 if (expr->type == pet_expr_access)
2189 space = isl_space_align_params(space,
2190 isl_map_get_space(expr->acc.access));
2192 return space;
2193 error:
2194 pet_expr_free(expr);
2195 return isl_space_free(space);
2198 /* Add all parameters in "stmt" to "space" and return the result.
2200 static __isl_give isl_space *stmt_collect_params(struct pet_stmt *stmt,
2201 __isl_take isl_space *space)
2203 int i;
2205 if (!stmt)
2206 return isl_space_free(space);
2208 space = isl_space_align_params(space, isl_set_get_space(stmt->domain));
2209 space = isl_space_align_params(space,
2210 isl_map_get_space(stmt->schedule));
2211 for (i = 0; i < stmt->n_arg; ++i)
2212 space = expr_collect_params(stmt->args[i], space);
2213 space = expr_collect_params(stmt->body, space);
2215 return space;
2218 /* Add all parameters in "array" to "space" and return the result.
2220 static __isl_give isl_space *array_collect_params(struct pet_array *array,
2221 __isl_take isl_space *space)
2223 if (!array)
2224 return isl_space_free(space);
2226 space = isl_space_align_params(space,
2227 isl_set_get_space(array->context));
2228 space = isl_space_align_params(space, isl_set_get_space(array->extent));
2230 return space;
2233 /* Add all parameters in "scop" to "space" and return the result.
2235 static __isl_give isl_space *scop_collect_params(struct pet_scop *scop,
2236 __isl_take isl_space *space)
2238 int i;
2240 if (!scop)
2241 return isl_space_free(space);
2243 for (i = 0; i < scop->n_array; ++i)
2244 space = array_collect_params(scop->arrays[i], space);
2246 for (i = 0; i < scop->n_stmt; ++i)
2247 space = stmt_collect_params(scop->stmts[i], space);
2249 return space;
2252 /* Add all parameters in "space" to the domain, schedule and
2253 * all access relations in "stmt".
2255 static struct pet_stmt *stmt_propagate_params(struct pet_stmt *stmt,
2256 __isl_take isl_space *space)
2258 int i;
2260 if (!stmt)
2261 goto error;
2263 stmt->domain = isl_set_align_params(stmt->domain,
2264 isl_space_copy(space));
2265 stmt->schedule = isl_map_align_params(stmt->schedule,
2266 isl_space_copy(space));
2268 for (i = 0; i < stmt->n_arg; ++i) {
2269 stmt->args[i] = pet_expr_align_params(stmt->args[i],
2270 isl_space_copy(space));
2271 if (!stmt->args[i])
2272 goto error;
2274 stmt->body = pet_expr_align_params(stmt->body, isl_space_copy(space));
2276 if (!stmt->domain || !stmt->schedule || !stmt->body)
2277 goto error;
2279 isl_space_free(space);
2280 return stmt;
2281 error:
2282 isl_space_free(space);
2283 return pet_stmt_free(stmt);
2286 /* Add all parameters in "space" to "array".
2288 static struct pet_array *array_propagate_params(struct pet_array *array,
2289 __isl_take isl_space *space)
2291 if (!array)
2292 goto error;
2294 array->context = isl_set_align_params(array->context,
2295 isl_space_copy(space));
2296 array->extent = isl_set_align_params(array->extent,
2297 isl_space_copy(space));
2298 if (array->value_bounds) {
2299 array->value_bounds = isl_set_align_params(array->value_bounds,
2300 isl_space_copy(space));
2301 if (!array->value_bounds)
2302 goto error;
2305 if (!array->context || !array->extent)
2306 goto error;
2308 isl_space_free(space);
2309 return array;
2310 error:
2311 isl_space_free(space);
2312 return pet_array_free(array);
2315 /* Add all parameters in "space" to "scop".
2317 static struct pet_scop *scop_propagate_params(struct pet_scop *scop,
2318 __isl_take isl_space *space)
2320 int i;
2322 if (!scop)
2323 goto error;
2325 for (i = 0; i < scop->n_array; ++i) {
2326 scop->arrays[i] = array_propagate_params(scop->arrays[i],
2327 isl_space_copy(space));
2328 if (!scop->arrays[i])
2329 goto error;
2332 for (i = 0; i < scop->n_stmt; ++i) {
2333 scop->stmts[i] = stmt_propagate_params(scop->stmts[i],
2334 isl_space_copy(space));
2335 if (!scop->stmts[i])
2336 goto error;
2339 isl_space_free(space);
2340 return scop;
2341 error:
2342 isl_space_free(space);
2343 return pet_scop_free(scop);
2346 /* Update all isl_sets and isl_maps in "scop" such that they all
2347 * have the same parameters.
2349 struct pet_scop *pet_scop_align_params(struct pet_scop *scop)
2351 isl_space *space;
2353 if (!scop)
2354 return NULL;
2356 space = isl_set_get_space(scop->context);
2357 space = scop_collect_params(scop, space);
2359 scop->context = isl_set_align_params(scop->context,
2360 isl_space_copy(space));
2361 scop = scop_propagate_params(scop, space);
2363 if (scop && !scop->context)
2364 return pet_scop_free(scop);
2366 return scop;
2369 /* Replace all accesses to (0D) arrays that correspond to one of the parameters
2370 * in "space" by a value equal to the corresponding parameter.
2372 static struct pet_stmt *stmt_detect_parameter_accesses(struct pet_stmt *stmt,
2373 __isl_take isl_space *space)
2375 if (!stmt)
2376 goto error;
2378 stmt->body = pet_expr_detect_parameter_accesses(stmt->body,
2379 isl_space_copy(space));
2381 if (!stmt->domain || !stmt->schedule || !stmt->body)
2382 goto error;
2384 isl_space_free(space);
2385 return stmt;
2386 error:
2387 isl_space_free(space);
2388 return pet_stmt_free(stmt);
2391 /* Replace all accesses to (0D) arrays that correspond to one of the parameters
2392 * in "space" by a value equal to the corresponding parameter.
2394 static struct pet_scop *scop_detect_parameter_accesses(struct pet_scop *scop,
2395 __isl_take isl_space *space)
2397 int i;
2399 if (!scop)
2400 goto error;
2402 for (i = 0; i < scop->n_stmt; ++i) {
2403 scop->stmts[i] = stmt_detect_parameter_accesses(scop->stmts[i],
2404 isl_space_copy(space));
2405 if (!scop->stmts[i])
2406 goto error;
2409 isl_space_free(space);
2410 return scop;
2411 error:
2412 isl_space_free(space);
2413 return pet_scop_free(scop);
2416 /* Replace all accesses to (0D) arrays that correspond to any of
2417 * the parameters used in "scop" by a value equal
2418 * to the corresponding parameter.
2420 struct pet_scop *pet_scop_detect_parameter_accesses(struct pet_scop *scop)
2422 isl_space *space;
2424 if (!scop)
2425 return NULL;
2427 space = isl_set_get_space(scop->context);
2428 space = scop_collect_params(scop, space);
2430 scop = scop_detect_parameter_accesses(scop, space);
2432 return scop;
2435 /* Add the access relation of the access expression "expr" to "accesses" and
2436 * return the result.
2437 * The domain of the access relation is intersected with "domain".
2438 * If "tag" is set, then the access relation is tagged with
2439 * the corresponding reference identifier.
2441 static __isl_give isl_union_map *expr_collect_access(struct pet_expr *expr,
2442 int tag, __isl_take isl_union_map *accesses, __isl_keep isl_set *domain)
2444 isl_map *access;
2446 access = pet_expr_access_get_may_access(expr);
2447 access = isl_map_intersect_domain(access, isl_set_copy(domain));
2448 if (tag)
2449 access = pet_expr_tag_access(expr, access);
2450 return isl_union_map_add_map(accesses, access);
2453 /* Add all read access relations (if "read" is set) and/or all write
2454 * access relations (if "write" is set) to "accesses" and return the result.
2455 * The domains of the access relations are intersected with "domain".
2456 * If "tag" is set, then the access relations are tagged with
2457 * the corresponding reference identifiers.
2459 * If "must" is set, then we only add the accesses that are definitely
2460 * performed. Otherwise, we add all potential accesses.
2461 * In particular, if the access has any arguments, then if "must" is
2462 * set we currently skip the access completely. If "must" is not set,
2463 * we project out the values of the access arguments.
2465 static __isl_give isl_union_map *expr_collect_accesses(struct pet_expr *expr,
2466 int read, int write, int must, int tag,
2467 __isl_take isl_union_map *accesses, __isl_keep isl_set *domain)
2469 int i;
2470 isl_id *id;
2471 isl_space *dim;
2473 if (!expr)
2474 return isl_union_map_free(accesses);
2476 for (i = 0; i < expr->n_arg; ++i)
2477 accesses = expr_collect_accesses(expr->args[i],
2478 read, write, must, tag, accesses, domain);
2480 if (expr->type == pet_expr_access && !pet_expr_is_affine(expr) &&
2481 ((read && expr->acc.read) || (write && expr->acc.write)) &&
2482 (!must || expr->n_arg == 0)) {
2483 accesses = expr_collect_access(expr, tag, accesses, domain);
2486 return accesses;
2489 /* Collect and return all read access relations (if "read" is set)
2490 * and/or all write access relations (if "write" is set) in "stmt".
2491 * If "tag" is set, then the access relations are tagged with
2492 * the corresponding reference identifiers.
2493 * If "kill" is set, then "stmt" is a kill statement and we simply
2494 * add the argument of the kill operation.
2496 * If "must" is set, then we only add the accesses that are definitely
2497 * performed. Otherwise, we add all potential accesses.
2498 * In particular, if the statement has any arguments, then if "must" is
2499 * set we currently skip the statement completely. If "must" is not set,
2500 * we project out the values of the statement arguments.
2502 static __isl_give isl_union_map *stmt_collect_accesses(struct pet_stmt *stmt,
2503 int read, int write, int kill, int must, int tag,
2504 __isl_take isl_space *dim)
2506 isl_union_map *accesses;
2507 isl_set *domain;
2509 if (!stmt)
2510 return NULL;
2512 accesses = isl_union_map_empty(dim);
2514 if (must && stmt->n_arg > 0)
2515 return accesses;
2517 domain = isl_set_copy(stmt->domain);
2518 if (isl_set_is_wrapping(domain))
2519 domain = isl_map_domain(isl_set_unwrap(domain));
2521 if (kill)
2522 accesses = expr_collect_access(stmt->body->args[0], tag,
2523 accesses, domain);
2524 else
2525 accesses = expr_collect_accesses(stmt->body, read, write,
2526 must, tag, accesses, domain);
2527 isl_set_free(domain);
2529 return accesses;
2532 /* Is "stmt" an assignment statement?
2534 int pet_stmt_is_assign(struct pet_stmt *stmt)
2536 if (!stmt)
2537 return 0;
2538 if (stmt->body->type != pet_expr_op)
2539 return 0;
2540 return stmt->body->op == pet_op_assign;
2543 /* Is "stmt" a kill statement?
2545 int pet_stmt_is_kill(struct pet_stmt *stmt)
2547 if (!stmt)
2548 return 0;
2549 if (stmt->body->type != pet_expr_op)
2550 return 0;
2551 return stmt->body->op == pet_op_kill;
2554 /* Is "stmt" an assume statement?
2556 int pet_stmt_is_assume(struct pet_stmt *stmt)
2558 if (stmt->body->type != pet_expr_op)
2559 return 0;
2560 return stmt->body->op == pet_op_assume;
2563 /* Compute a mapping from all arrays (of structs) in scop
2564 * to their innermost arrays.
2566 * In particular, for each array of a primitive type, the result
2567 * contains the identity mapping on that array.
2568 * For each array involving member accesses, the result
2569 * contains a mapping from the elements of any intermediate array of structs
2570 * to all corresponding elements of the innermost nested arrays.
2572 static __isl_give isl_union_map *compute_to_inner(struct pet_scop *scop)
2574 int i;
2575 isl_union_map *to_inner;
2577 to_inner = isl_union_map_empty(isl_set_get_space(scop->context));
2579 for (i = 0; i < scop->n_array; ++i) {
2580 struct pet_array *array = scop->arrays[i];
2581 isl_set *set;
2582 isl_map *map, *gist;
2584 if (array->element_is_record)
2585 continue;
2587 map = isl_set_identity(isl_set_copy(array->extent));
2589 set = isl_map_domain(isl_map_copy(map));
2590 gist = isl_map_copy(map);
2591 gist = isl_map_gist_domain(gist, isl_set_copy(set));
2592 to_inner = isl_union_map_add_map(to_inner, gist);
2594 while (set && isl_set_is_wrapping(set)) {
2595 isl_id *id;
2596 isl_map *wrapped;
2598 id = isl_set_get_tuple_id(set);
2599 wrapped = isl_set_unwrap(set);
2600 wrapped = isl_map_domain_map(wrapped);
2601 wrapped = isl_map_set_tuple_id(wrapped, isl_dim_in, id);
2602 map = isl_map_apply_domain(map, wrapped);
2603 set = isl_map_domain(isl_map_copy(map));
2604 gist = isl_map_copy(map);
2605 gist = isl_map_gist_domain(gist, isl_set_copy(set));
2606 to_inner = isl_union_map_add_map(to_inner, gist);
2609 isl_set_free(set);
2610 isl_map_free(map);
2613 return to_inner;
2616 /* Collect and return all read access relations (if "read" is set)
2617 * and/or all write access relations (if "write" is set) in "scop".
2618 * If "kill" is set, then we only add the arguments of kill operations.
2619 * If "must" is set, then we only add the accesses that are definitely
2620 * performed. Otherwise, we add all potential accesses.
2621 * If "tag" is set, then the access relations are tagged with
2622 * the corresponding reference identifiers.
2623 * For accesses to structures, the returned access relation accesses
2624 * all individual fields in the structures.
2626 static __isl_give isl_union_map *scop_collect_accesses(struct pet_scop *scop,
2627 int read, int write, int kill, int must, int tag)
2629 int i;
2630 isl_union_map *accesses;
2631 isl_union_set *arrays;
2632 isl_union_map *to_inner;
2634 if (!scop)
2635 return NULL;
2637 accesses = isl_union_map_empty(isl_set_get_space(scop->context));
2639 for (i = 0; i < scop->n_stmt; ++i) {
2640 struct pet_stmt *stmt = scop->stmts[i];
2641 isl_union_map *accesses_i;
2642 isl_space *space;
2644 if (kill && !pet_stmt_is_kill(stmt))
2645 continue;
2647 space = isl_set_get_space(scop->context);
2648 accesses_i = stmt_collect_accesses(stmt, read, write, kill,
2649 must, tag, space);
2650 accesses = isl_union_map_union(accesses, accesses_i);
2653 arrays = isl_union_set_empty(isl_union_map_get_space(accesses));
2654 for (i = 0; i < scop->n_array; ++i) {
2655 isl_set *extent = isl_set_copy(scop->arrays[i]->extent);
2656 arrays = isl_union_set_add_set(arrays, extent);
2658 accesses = isl_union_map_intersect_range(accesses, arrays);
2660 to_inner = compute_to_inner(scop);
2661 accesses = isl_union_map_apply_range(accesses, to_inner);
2663 return accesses;
2666 /* Collect all potential read access relations.
2668 __isl_give isl_union_map *pet_scop_collect_may_reads(struct pet_scop *scop)
2670 return scop_collect_accesses(scop, 1, 0, 0, 0, 0);
2673 /* Collect all potential write access relations.
2675 __isl_give isl_union_map *pet_scop_collect_may_writes(struct pet_scop *scop)
2677 return scop_collect_accesses(scop, 0, 1, 0, 0, 0);
2680 /* Collect all definite write access relations.
2682 __isl_give isl_union_map *pet_scop_collect_must_writes(struct pet_scop *scop)
2684 return scop_collect_accesses(scop, 0, 1, 0, 1, 0);
2687 /* Collect all definite kill access relations.
2689 __isl_give isl_union_map *pet_scop_collect_must_kills(struct pet_scop *scop)
2691 return scop_collect_accesses(scop, 0, 0, 1, 1, 0);
2694 /* Collect all tagged potential read access relations.
2696 __isl_give isl_union_map *pet_scop_collect_tagged_may_reads(
2697 struct pet_scop *scop)
2699 return scop_collect_accesses(scop, 1, 0, 0, 0, 1);
2702 /* Collect all tagged potential write access relations.
2704 __isl_give isl_union_map *pet_scop_collect_tagged_may_writes(
2705 struct pet_scop *scop)
2707 return scop_collect_accesses(scop, 0, 1, 0, 0, 1);
2710 /* Collect all tagged definite write access relations.
2712 __isl_give isl_union_map *pet_scop_collect_tagged_must_writes(
2713 struct pet_scop *scop)
2715 return scop_collect_accesses(scop, 0, 1, 0, 1, 1);
2718 /* Collect all tagged definite kill access relations.
2720 __isl_give isl_union_map *pet_scop_collect_tagged_must_kills(
2721 struct pet_scop *scop)
2723 return scop_collect_accesses(scop, 0, 0, 1, 1, 1);
2726 /* Collect and return the union of iteration domains in "scop".
2728 __isl_give isl_union_set *pet_scop_collect_domains(struct pet_scop *scop)
2730 int i;
2731 isl_set *domain_i;
2732 isl_union_set *domain;
2734 if (!scop)
2735 return NULL;
2737 domain = isl_union_set_empty(isl_set_get_space(scop->context));
2739 for (i = 0; i < scop->n_stmt; ++i) {
2740 domain_i = isl_set_copy(scop->stmts[i]->domain);
2741 domain = isl_union_set_add_set(domain, domain_i);
2744 return domain;
2747 /* Collect and return the schedules of the statements in "scop".
2748 * The range is normalized to the maximal number of scheduling
2749 * dimensions.
2751 __isl_give isl_union_map *pet_scop_collect_schedule(struct pet_scop *scop)
2753 int i, j;
2754 isl_map *schedule_i;
2755 isl_union_map *schedule;
2756 int depth, max_depth = 0;
2758 if (!scop)
2759 return NULL;
2761 schedule = isl_union_map_empty(isl_set_get_space(scop->context));
2763 for (i = 0; i < scop->n_stmt; ++i) {
2764 depth = isl_map_dim(scop->stmts[i]->schedule, isl_dim_out);
2765 if (depth > max_depth)
2766 max_depth = depth;
2769 for (i = 0; i < scop->n_stmt; ++i) {
2770 schedule_i = isl_map_copy(scop->stmts[i]->schedule);
2771 depth = isl_map_dim(schedule_i, isl_dim_out);
2772 schedule_i = isl_map_add_dims(schedule_i, isl_dim_out,
2773 max_depth - depth);
2774 for (j = depth; j < max_depth; ++j)
2775 schedule_i = isl_map_fix_si(schedule_i,
2776 isl_dim_out, j, 0);
2777 schedule = isl_union_map_add_map(schedule, schedule_i);
2780 return schedule;
2783 /* Does statement "stmt" write to "id"?
2785 static int stmt_writes(struct pet_stmt *stmt, __isl_keep isl_id *id)
2787 return pet_expr_writes(stmt->body, id);
2790 /* Is there any write access in "scop" that accesses "id"?
2792 int pet_scop_writes(struct pet_scop *scop, __isl_keep isl_id *id)
2794 int i;
2796 if (!scop)
2797 return -1;
2799 for (i = 0; i < scop->n_stmt; ++i) {
2800 int writes = stmt_writes(scop->stmts[i], id);
2801 if (writes < 0 || writes)
2802 return writes;
2805 return 0;
2808 /* Add a reference identifier to all access expressions in "stmt".
2809 * "n_ref" points to an integer that contains the sequence number
2810 * of the next reference.
2812 static struct pet_stmt *stmt_add_ref_ids(struct pet_stmt *stmt, int *n_ref)
2814 int i;
2816 if (!stmt)
2817 return NULL;
2819 for (i = 0; i < stmt->n_arg; ++i) {
2820 stmt->args[i] = pet_expr_add_ref_ids(stmt->args[i], n_ref);
2821 if (!stmt->args[i])
2822 return pet_stmt_free(stmt);
2825 stmt->body = pet_expr_add_ref_ids(stmt->body, n_ref);
2826 if (!stmt->body)
2827 return pet_stmt_free(stmt);
2829 return stmt;
2832 /* Add a reference identifier to all access expressions in "scop".
2834 struct pet_scop *pet_scop_add_ref_ids(struct pet_scop *scop)
2836 int i;
2837 int n_ref;
2839 if (!scop)
2840 return NULL;
2842 n_ref = 0;
2843 for (i = 0; i < scop->n_stmt; ++i) {
2844 scop->stmts[i] = stmt_add_ref_ids(scop->stmts[i], &n_ref);
2845 if (!scop->stmts[i])
2846 return pet_scop_free(scop);
2849 return scop;
2852 /* Reset the user pointer on all parameter ids in "array".
2854 static struct pet_array *array_anonymize(struct pet_array *array)
2856 if (!array)
2857 return NULL;
2859 array->context = isl_set_reset_user(array->context);
2860 array->extent = isl_set_reset_user(array->extent);
2861 if (!array->context || !array->extent)
2862 return pet_array_free(array);
2864 return array;
2867 /* Reset the user pointer on all parameter and tuple ids in "stmt".
2869 static struct pet_stmt *stmt_anonymize(struct pet_stmt *stmt)
2871 int i;
2872 isl_space *space;
2873 isl_set *domain;
2875 if (!stmt)
2876 return NULL;
2878 stmt->domain = isl_set_reset_user(stmt->domain);
2879 stmt->schedule = isl_map_reset_user(stmt->schedule);
2880 if (!stmt->domain || !stmt->schedule)
2881 return pet_stmt_free(stmt);
2883 for (i = 0; i < stmt->n_arg; ++i) {
2884 stmt->args[i] = pet_expr_anonymize(stmt->args[i]);
2885 if (!stmt->args[i])
2886 return pet_stmt_free(stmt);
2889 stmt->body = pet_expr_anonymize(stmt->body);
2890 if (!stmt->body)
2891 return pet_stmt_free(stmt);
2893 return stmt;
2896 /* Reset the user pointer on the tuple ids and all parameter ids
2897 * in "implication".
2899 static struct pet_implication *implication_anonymize(
2900 struct pet_implication *implication)
2902 if (!implication)
2903 return NULL;
2905 implication->extension = isl_map_reset_user(implication->extension);
2906 if (!implication->extension)
2907 return pet_implication_free(implication);
2909 return implication;
2912 /* Reset the user pointer on all parameter and tuple ids in "scop".
2914 struct pet_scop *pet_scop_anonymize(struct pet_scop *scop)
2916 int i;
2918 if (!scop)
2919 return NULL;
2921 scop->context = isl_set_reset_user(scop->context);
2922 scop->context_value = isl_set_reset_user(scop->context_value);
2923 if (!scop->context || !scop->context_value)
2924 return pet_scop_free(scop);
2926 for (i = 0; i < scop->n_array; ++i) {
2927 scop->arrays[i] = array_anonymize(scop->arrays[i]);
2928 if (!scop->arrays[i])
2929 return pet_scop_free(scop);
2932 for (i = 0; i < scop->n_stmt; ++i) {
2933 scop->stmts[i] = stmt_anonymize(scop->stmts[i]);
2934 if (!scop->stmts[i])
2935 return pet_scop_free(scop);
2938 for (i = 0; i < scop->n_implication; ++i) {
2939 scop->implications[i] =
2940 implication_anonymize(scop->implications[i]);
2941 if (!scop->implications[i])
2942 return pet_scop_free(scop);
2945 return scop;
2948 /* Compute the gist of the iteration domain and all access relations
2949 * of "stmt" based on the constraints on the parameters specified by "context"
2950 * and the constraints on the values of nested accesses specified
2951 * by "value_bounds".
2953 static struct pet_stmt *stmt_gist(struct pet_stmt *stmt,
2954 __isl_keep isl_set *context, __isl_keep isl_union_map *value_bounds)
2956 int i;
2957 isl_set *domain;
2959 if (!stmt)
2960 return NULL;
2962 domain = isl_set_copy(stmt->domain);
2963 if (stmt->n_arg > 0)
2964 domain = isl_map_domain(isl_set_unwrap(domain));
2966 domain = isl_set_intersect_params(domain, isl_set_copy(context));
2968 for (i = 0; i < stmt->n_arg; ++i) {
2969 stmt->args[i] = pet_expr_gist(stmt->args[i],
2970 domain, value_bounds);
2971 if (!stmt->args[i])
2972 goto error;
2975 stmt->body = pet_expr_gist(stmt->body, domain, value_bounds);
2976 if (!stmt->body)
2977 goto error;
2979 isl_set_free(domain);
2981 domain = isl_set_universe(pet_stmt_get_space(stmt));
2982 domain = isl_set_intersect_params(domain, isl_set_copy(context));
2983 if (stmt->n_arg > 0)
2984 domain = pet_value_bounds_apply(domain, stmt->n_arg, stmt->args,
2985 value_bounds);
2986 stmt->domain = isl_set_gist(stmt->domain, domain);
2987 if (!stmt->domain)
2988 return pet_stmt_free(stmt);
2990 return stmt;
2991 error:
2992 isl_set_free(domain);
2993 return pet_stmt_free(stmt);
2996 /* Compute the gist of the extent of the array
2997 * based on the constraints on the parameters specified by "context".
2999 static struct pet_array *array_gist(struct pet_array *array,
3000 __isl_keep isl_set *context)
3002 if (!array)
3003 return NULL;
3005 array->extent = isl_set_gist_params(array->extent,
3006 isl_set_copy(context));
3007 if (!array->extent)
3008 return pet_array_free(array);
3010 return array;
3013 /* Compute the gist of all sets and relations in "scop"
3014 * based on the constraints on the parameters specified by "scop->context"
3015 * and the constraints on the values of nested accesses specified
3016 * by "value_bounds".
3018 struct pet_scop *pet_scop_gist(struct pet_scop *scop,
3019 __isl_keep isl_union_map *value_bounds)
3021 int i;
3023 if (!scop)
3024 return NULL;
3026 scop->context = isl_set_coalesce(scop->context);
3027 if (!scop->context)
3028 return pet_scop_free(scop);
3030 for (i = 0; i < scop->n_array; ++i) {
3031 scop->arrays[i] = array_gist(scop->arrays[i], scop->context);
3032 if (!scop->arrays[i])
3033 return pet_scop_free(scop);
3036 for (i = 0; i < scop->n_stmt; ++i) {
3037 scop->stmts[i] = stmt_gist(scop->stmts[i], scop->context,
3038 value_bounds);
3039 if (!scop->stmts[i])
3040 return pet_scop_free(scop);
3043 return scop;
3046 /* Intersect the context of "scop" with "context".
3047 * To ensure that we don't introduce any unnamed parameters in
3048 * the context of "scop", we first remove the unnamed parameters
3049 * from "context".
3051 struct pet_scop *pet_scop_restrict_context(struct pet_scop *scop,
3052 __isl_take isl_set *context)
3054 if (!scop)
3055 goto error;
3057 context = set_project_out_unnamed_params(context);
3058 scop->context = isl_set_intersect(scop->context, context);
3059 if (!scop->context)
3060 return pet_scop_free(scop);
3062 return scop;
3063 error:
3064 isl_set_free(context);
3065 return pet_scop_free(scop);
3068 /* Drop the current context of "scop". That is, replace the context
3069 * by a universal set.
3071 struct pet_scop *pet_scop_reset_context(struct pet_scop *scop)
3073 isl_space *space;
3075 if (!scop)
3076 return NULL;
3078 space = isl_set_get_space(scop->context);
3079 isl_set_free(scop->context);
3080 scop->context = isl_set_universe(space);
3081 if (!scop->context)
3082 return pet_scop_free(scop);
3084 return scop;
3087 /* Append "array" to the arrays of "scop".
3089 struct pet_scop *pet_scop_add_array(struct pet_scop *scop,
3090 struct pet_array *array)
3092 isl_ctx *ctx;
3093 struct pet_array **arrays;
3095 if (!array || !scop)
3096 goto error;
3098 ctx = isl_set_get_ctx(scop->context);
3099 arrays = isl_realloc_array(ctx, scop->arrays, struct pet_array *,
3100 scop->n_array + 1);
3101 if (!arrays)
3102 goto error;
3103 scop->arrays = arrays;
3104 scop->arrays[scop->n_array] = array;
3105 scop->n_array++;
3107 return scop;
3108 error:
3109 pet_array_free(array);
3110 return pet_scop_free(scop);
3113 /* Create and return an implication on filter values equal to "satisfied"
3114 * with extension "map".
3116 static struct pet_implication *new_implication(__isl_take isl_map *map,
3117 int satisfied)
3119 isl_ctx *ctx;
3120 struct pet_implication *implication;
3122 if (!map)
3123 return NULL;
3124 ctx = isl_map_get_ctx(map);
3125 implication = isl_alloc_type(ctx, struct pet_implication);
3126 if (!implication)
3127 goto error;
3129 implication->extension = map;
3130 implication->satisfied = satisfied;
3132 return implication;
3133 error:
3134 isl_map_free(map);
3135 return NULL;
3138 /* Add an implication on filter values equal to "satisfied"
3139 * with extension "map" to "scop".
3141 struct pet_scop *pet_scop_add_implication(struct pet_scop *scop,
3142 __isl_take isl_map *map, int satisfied)
3144 isl_ctx *ctx;
3145 struct pet_implication *implication;
3146 struct pet_implication **implications;
3148 implication = new_implication(map, satisfied);
3149 if (!scop || !implication)
3150 goto error;
3152 ctx = isl_set_get_ctx(scop->context);
3153 implications = isl_realloc_array(ctx, scop->implications,
3154 struct pet_implication *,
3155 scop->n_implication + 1);
3156 if (!implications)
3157 goto error;
3158 scop->implications = implications;
3159 scop->implications[scop->n_implication] = implication;
3160 scop->n_implication++;
3162 return scop;
3163 error:
3164 pet_implication_free(implication);
3165 return pet_scop_free(scop);
3168 /* Given an access expression, check if it is data dependent.
3169 * If so, set *found and abort the search.
3171 static int is_data_dependent(struct pet_expr *expr, void *user)
3173 int *found = user;
3175 if (expr->n_arg) {
3176 *found = 1;
3177 return -1;
3180 return 0;
3183 /* Does "scop" contain any data dependent accesses?
3185 * Check the body of each statement for such accesses.
3187 int pet_scop_has_data_dependent_accesses(struct pet_scop *scop)
3189 int i;
3190 int found = 0;
3192 if (!scop)
3193 return -1;
3195 for (i = 0; i < scop->n_stmt; ++i) {
3196 int r = pet_expr_foreach_access_expr(scop->stmts[i]->body,
3197 &is_data_dependent, &found);
3198 if (r < 0 && !found)
3199 return -1;
3200 if (found)
3201 return found;
3204 return found;
3207 /* Does "scop" contain and data dependent conditions?
3209 int pet_scop_has_data_dependent_conditions(struct pet_scop *scop)
3211 int i;
3213 if (!scop)
3214 return -1;
3216 for (i = 0; i < scop->n_stmt; ++i)
3217 if (scop->stmts[i]->n_arg > 0)
3218 return 1;
3220 return 0;
3223 /* Keep track of the "input" file inside the (extended) "scop".
3225 struct pet_scop *pet_scop_set_input_file(struct pet_scop *scop, FILE *input)
3227 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
3229 if (!scop)
3230 return NULL;
3232 ext->input = input;
3234 return scop;
3237 /* Print the original code corresponding to "scop" to printer "p".
3239 * pet_scop_print_original can only be called from
3240 * a pet_transform_C_source callback. This means that the input
3241 * file is stored in the extended scop and that the printer prints
3242 * to a file.
3244 __isl_give isl_printer *pet_scop_print_original(struct pet_scop *scop,
3245 __isl_take isl_printer *p)
3247 struct pet_scop_ext *ext = (struct pet_scop_ext *) scop;
3248 FILE *output;
3250 if (!scop || !p)
3251 return isl_printer_free(p);
3253 if (!ext->input)
3254 isl_die(isl_printer_get_ctx(p), isl_error_invalid,
3255 "no input file stored in scop",
3256 return isl_printer_free(p));
3258 output = isl_printer_get_file(p);
3259 if (!output)
3260 return isl_printer_free(p);
3262 if (copy(ext->input, output, scop->start, scop->end) < 0)
3263 return isl_printer_free(p);
3265 return p;