2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012-2015 Ecole Normale Superieure. All rights reserved.
4 * Copyright 2015-2016 Sven Verdoolaege. All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
19 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
22 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
23 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
24 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
25 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 * The views and conclusions contained in the software and documentation
31 * are those of the authors and should not be interpreted as
32 * representing official policies, either expressed or implied, of
43 #include <llvm/Support/raw_ostream.h>
44 #include <clang/AST/ASTContext.h>
45 #include <clang/AST/ASTDiagnostic.h>
46 #include <clang/AST/Attr.h>
47 #include <clang/AST/Expr.h>
48 #include <clang/AST/RecursiveASTVisitor.h>
51 #include <isl/space.h>
54 #include <isl/union_set.h>
63 #include "killed_locals.h"
68 #include "scop_plus.h"
69 #include "substituter.h"
71 #include "tree2scop.h"
74 using namespace clang
;
76 static enum pet_op_type
UnaryOperatorKind2pet_op_type(UnaryOperatorKind kind
)
86 return pet_op_post_inc
;
88 return pet_op_post_dec
;
90 return pet_op_pre_inc
;
92 return pet_op_pre_dec
;
98 static enum pet_op_type
BinaryOperatorKind2pet_op_type(BinaryOperatorKind kind
)
102 return pet_op_add_assign
;
104 return pet_op_sub_assign
;
106 return pet_op_mul_assign
;
108 return pet_op_div_assign
;
110 return pet_op_assign
;
152 #ifdef GETTYPEINFORETURNSTYPEINFO
154 static int size_in_bytes(ASTContext
&context
, QualType type
)
156 return context
.getTypeInfo(type
).Width
/ 8;
161 static int size_in_bytes(ASTContext
&context
, QualType type
)
163 return context
.getTypeInfo(type
).first
/ 8;
168 /* Check if the element type corresponding to the given array type
169 * has a const qualifier.
171 static bool const_base(QualType qt
)
173 const Type
*type
= qt
.getTypePtr();
175 if (type
->isPointerType())
176 return const_base(type
->getPointeeType());
177 if (type
->isArrayType()) {
178 const ArrayType
*atype
;
179 type
= type
->getCanonicalTypeInternal().getTypePtr();
180 atype
= cast
<ArrayType
>(type
);
181 return const_base(atype
->getElementType());
184 return qt
.isConstQualified();
189 std::map
<const Type
*, pet_expr
*>::iterator it
;
190 std::map
<FunctionDecl
*, pet_function_summary
*>::iterator it_s
;
192 for (it
= type_size
.begin(); it
!= type_size
.end(); ++it
)
193 pet_expr_free(it
->second
);
194 for (it_s
= summary_cache
.begin(); it_s
!= summary_cache
.end(); ++it_s
)
195 pet_function_summary_free(it_s
->second
);
197 isl_id_to_pet_expr_free(id_size
);
198 isl_union_map_free(value_bounds
);
201 /* Report a diagnostic on the range "range", unless autodetect is set.
203 void PetScan::report(SourceRange range
, unsigned id
)
205 if (options
->autodetect
)
208 SourceLocation loc
= range
.getBegin();
209 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
210 DiagnosticBuilder B
= diag
.Report(loc
, id
) << range
;
213 /* Report a diagnostic on "stmt", unless autodetect is set.
215 void PetScan::report(Stmt
*stmt
, unsigned id
)
217 report(stmt
->getSourceRange(), id
);
220 /* Report a diagnostic on "decl", unless autodetect is set.
222 void PetScan::report(Decl
*decl
, unsigned id
)
224 report(decl
->getSourceRange(), id
);
227 /* Called if we found something we (currently) cannot handle.
228 * We'll provide more informative warnings later.
230 * We only actually complain if autodetect is false.
232 void PetScan::unsupported(Stmt
*stmt
)
234 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
235 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
240 /* Report an unsupported unary operator, unless autodetect is set.
242 void PetScan::report_unsupported_unary_operator(Stmt
*stmt
)
244 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
245 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
246 "this type of unary operator is not supported");
250 /* Report an unsupported statement type, unless autodetect is set.
252 void PetScan::report_unsupported_statement_type(Stmt
*stmt
)
254 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
255 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
256 "this type of statement is not supported");
260 /* Report a missing prototype, unless autodetect is set.
262 void PetScan::report_prototype_required(Stmt
*stmt
)
264 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
265 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
266 "prototype required");
270 /* Report a missing increment, unless autodetect is set.
272 void PetScan::report_missing_increment(Stmt
*stmt
)
274 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
275 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
276 "missing increment");
280 /* Report a missing summary function, unless autodetect is set.
282 void PetScan::report_missing_summary_function(Stmt
*stmt
)
284 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
285 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
286 "missing summary function");
290 /* Report a missing summary function body, unless autodetect is set.
292 void PetScan::report_missing_summary_function_body(Stmt
*stmt
)
294 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
295 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
296 "missing summary function body");
300 /* Report an unsupported argument in a call to an inlined function,
301 * unless autodetect is set.
303 void PetScan::report_unsupported_inline_function_argument(Stmt
*stmt
)
305 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
306 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
307 "unsupported inline function call argument");
311 /* Report an unsupported type of declaration, unless autodetect is set.
313 void PetScan::report_unsupported_declaration(Decl
*decl
)
315 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
316 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
317 "unsupported declaration");
321 /* Report an unbalanced pair of scop/endscop pragmas, unless autodetect is set.
323 void PetScan::report_unbalanced_pragmas(SourceLocation scop
,
324 SourceLocation endscop
)
326 if (options
->autodetect
)
329 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
331 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
332 "unbalanced endscop pragma");
333 DiagnosticBuilder B2
= diag
.Report(endscop
, id
);
336 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Note
,
337 "corresponding scop pragma");
338 DiagnosticBuilder B
= diag
.Report(scop
, id
);
342 /* Extract an integer from "val", which is assumed to be non-negative.
344 static __isl_give isl_val
*extract_unsigned(isl_ctx
*ctx
,
345 const llvm::APInt
&val
)
348 const uint64_t *data
;
350 data
= val
.getRawData();
351 n
= val
.getNumWords();
352 return isl_val_int_from_chunks(ctx
, n
, sizeof(uint64_t), data
);
355 /* Extract an integer from "val". If "is_signed" is set, then "val"
356 * is signed. Otherwise it it unsigned.
358 static __isl_give isl_val
*extract_int(isl_ctx
*ctx
, bool is_signed
,
361 int is_negative
= is_signed
&& val
.isNegative();
367 v
= extract_unsigned(ctx
, val
);
374 /* Extract an integer from "expr".
376 __isl_give isl_val
*PetScan::extract_int(isl_ctx
*ctx
, IntegerLiteral
*expr
)
378 const Type
*type
= expr
->getType().getTypePtr();
379 bool is_signed
= type
->hasSignedIntegerRepresentation();
381 return ::extract_int(ctx
, is_signed
, expr
->getValue());
384 /* Extract an integer from "expr".
385 * Return NULL if "expr" does not (obviously) represent an integer.
387 __isl_give isl_val
*PetScan::extract_int(clang::ParenExpr
*expr
)
389 return extract_int(expr
->getSubExpr());
392 /* Extract an integer from "expr".
393 * Return NULL if "expr" does not (obviously) represent an integer.
395 __isl_give isl_val
*PetScan::extract_int(clang::Expr
*expr
)
397 if (expr
->getStmtClass() == Stmt::IntegerLiteralClass
)
398 return extract_int(ctx
, cast
<IntegerLiteral
>(expr
));
399 if (expr
->getStmtClass() == Stmt::ParenExprClass
)
400 return extract_int(cast
<ParenExpr
>(expr
));
406 /* Extract a pet_expr from the APInt "val", which is assumed
407 * to be non-negative.
409 __isl_give pet_expr
*PetScan::extract_expr(const llvm::APInt
&val
)
411 return pet_expr_new_int(extract_unsigned(ctx
, val
));
414 /* Return the number of bits needed to represent the type of "decl",
415 * if it is an integer type. Otherwise return 0.
416 * If qt is signed then return the opposite of the number of bits.
418 static int get_type_size(ValueDecl
*decl
)
420 return pet_clang_get_type_size(decl
->getType(), decl
->getASTContext());
423 /* Bound parameter "pos" of "set" to the possible values of "decl".
425 static __isl_give isl_set
*set_parameter_bounds(__isl_take isl_set
*set
,
426 unsigned pos
, ValueDecl
*decl
)
432 ctx
= isl_set_get_ctx(set
);
433 type_size
= get_type_size(decl
);
435 isl_die(ctx
, isl_error_invalid
, "not an integer type",
436 return isl_set_free(set
));
438 set
= isl_set_lower_bound_si(set
, isl_dim_param
, pos
, 0);
439 bound
= isl_val_int_from_ui(ctx
, type_size
);
440 bound
= isl_val_2exp(bound
);
441 bound
= isl_val_sub_ui(bound
, 1);
442 set
= isl_set_upper_bound_val(set
, isl_dim_param
, pos
, bound
);
444 bound
= isl_val_int_from_ui(ctx
, -type_size
- 1);
445 bound
= isl_val_2exp(bound
);
446 bound
= isl_val_sub_ui(bound
, 1);
447 set
= isl_set_upper_bound_val(set
, isl_dim_param
, pos
,
448 isl_val_copy(bound
));
449 bound
= isl_val_neg(bound
);
450 bound
= isl_val_sub_ui(bound
, 1);
451 set
= isl_set_lower_bound_val(set
, isl_dim_param
, pos
, bound
);
457 __isl_give pet_expr
*PetScan::extract_index_expr(ImplicitCastExpr
*expr
)
459 return extract_index_expr(expr
->getSubExpr());
462 /* Return the depth of the array accessed by the index expression "index".
463 * If "index" is an affine expression, i.e., if it does not access
464 * any array, then return 1.
465 * If "index" represent a member access, i.e., if its range is a wrapped
466 * relation, then return the sum of the depth of the array of structures
467 * and that of the member inside the structure.
469 static int extract_depth(__isl_keep isl_multi_pw_aff
*index
)
477 if (isl_multi_pw_aff_range_is_wrapping(index
)) {
478 int domain_depth
, range_depth
;
479 isl_multi_pw_aff
*domain
, *range
;
481 domain
= isl_multi_pw_aff_copy(index
);
482 domain
= isl_multi_pw_aff_range_factor_domain(domain
);
483 domain_depth
= extract_depth(domain
);
484 isl_multi_pw_aff_free(domain
);
485 range
= isl_multi_pw_aff_copy(index
);
486 range
= isl_multi_pw_aff_range_factor_range(range
);
487 range_depth
= extract_depth(range
);
488 isl_multi_pw_aff_free(range
);
490 return domain_depth
+ range_depth
;
493 if (!isl_multi_pw_aff_has_tuple_id(index
, isl_dim_out
))
496 id
= isl_multi_pw_aff_get_tuple_id(index
, isl_dim_out
);
499 decl
= pet_id_get_decl(id
);
502 return pet_clang_array_depth(decl
->getType());
505 /* Return the depth of the array accessed by the access expression "expr".
507 static int extract_depth(__isl_keep pet_expr
*expr
)
509 isl_multi_pw_aff
*index
;
512 index
= pet_expr_access_get_index(expr
);
513 depth
= extract_depth(index
);
514 isl_multi_pw_aff_free(index
);
519 /* Construct a pet_expr representing an index expression for an access
520 * to the variable referenced by "expr".
522 * If "expr" references an enum constant, then return an integer expression
523 * instead, representing the value of the enum constant.
525 __isl_give pet_expr
*PetScan::extract_index_expr(DeclRefExpr
*expr
)
527 return extract_index_expr(expr
->getDecl());
530 /* Construct a pet_expr representing an index expression for an access
531 * to the variable "decl".
533 * If "decl" is an enum constant, then we return an integer expression
534 * instead, representing the value of the enum constant.
536 __isl_give pet_expr
*PetScan::extract_index_expr(ValueDecl
*decl
)
540 if (isa
<EnumConstantDecl
>(decl
))
541 return extract_expr(cast
<EnumConstantDecl
>(decl
));
543 id
= pet_id_from_decl(ctx
, decl
);
544 return pet_id_create_index_expr(id
);
547 /* Construct a pet_expr representing the index expression "expr"
548 * Return NULL on error.
550 * If "expr" is a reference to an enum constant, then return
551 * an integer expression instead, representing the value of the enum constant.
553 __isl_give pet_expr
*PetScan::extract_index_expr(Expr
*expr
)
555 switch (expr
->getStmtClass()) {
556 case Stmt::ImplicitCastExprClass
:
557 return extract_index_expr(cast
<ImplicitCastExpr
>(expr
));
558 case Stmt::DeclRefExprClass
:
559 return extract_index_expr(cast
<DeclRefExpr
>(expr
));
560 case Stmt::ArraySubscriptExprClass
:
561 return extract_index_expr(cast
<ArraySubscriptExpr
>(expr
));
562 case Stmt::IntegerLiteralClass
:
563 return extract_expr(cast
<IntegerLiteral
>(expr
));
564 case Stmt::MemberExprClass
:
565 return extract_index_expr(cast
<MemberExpr
>(expr
));
572 /* Extract an index expression from the given array subscript expression.
574 * We first extract an index expression from the base.
575 * This will result in an index expression with a range that corresponds
576 * to the earlier indices.
577 * We then extract the current index and let
578 * pet_expr_access_subscript combine the two.
580 __isl_give pet_expr
*PetScan::extract_index_expr(ArraySubscriptExpr
*expr
)
582 Expr
*base
= expr
->getBase();
583 Expr
*idx
= expr
->getIdx();
587 base_expr
= extract_index_expr(base
);
588 index
= extract_expr(idx
);
590 base_expr
= pet_expr_access_subscript(base_expr
, index
);
595 /* Extract an index expression from a member expression.
597 * If the base access (to the structure containing the member)
602 * and the member is called "f", then the member access is of
607 * If the member access is to an anonymous struct, then simply return
611 * If the member access in the source code is of the form
615 * then it is treated as
619 __isl_give pet_expr
*PetScan::extract_index_expr(MemberExpr
*expr
)
621 Expr
*base
= expr
->getBase();
622 FieldDecl
*field
= cast
<FieldDecl
>(expr
->getMemberDecl());
623 pet_expr
*base_index
;
626 base_index
= extract_index_expr(base
);
628 if (expr
->isArrow()) {
629 pet_expr
*index
= pet_expr_new_int(isl_val_zero(ctx
));
630 base_index
= pet_expr_access_subscript(base_index
, index
);
633 if (field
->isAnonymousStructOrUnion())
636 id
= pet_id_from_decl(ctx
, field
);
638 return pet_expr_access_member(base_index
, id
);
641 /* Mark the given access pet_expr as a write.
643 static __isl_give pet_expr
*mark_write(__isl_take pet_expr
*access
)
645 access
= pet_expr_access_set_write(access
, 1);
646 access
= pet_expr_access_set_read(access
, 0);
651 /* Mark the given (read) access pet_expr as also possibly being written.
652 * That is, initialize the may write access relation from the may read relation
653 * and initialize the must write access relation to the empty relation.
655 static __isl_give pet_expr
*mark_may_write(__isl_take pet_expr
*expr
)
657 isl_union_map
*access
;
658 isl_union_map
*empty
;
660 access
= pet_expr_access_get_dependent_access(expr
,
661 pet_expr_access_may_read
);
662 empty
= isl_union_map_empty(isl_union_map_get_space(access
));
663 expr
= pet_expr_access_set_access(expr
, pet_expr_access_may_write
,
665 expr
= pet_expr_access_set_access(expr
, pet_expr_access_must_write
,
671 /* Construct a pet_expr representing a unary operator expression.
673 __isl_give pet_expr
*PetScan::extract_expr(UnaryOperator
*expr
)
679 op
= UnaryOperatorKind2pet_op_type(expr
->getOpcode());
680 if (op
== pet_op_last
) {
681 report_unsupported_unary_operator(expr
);
685 arg
= extract_expr(expr
->getSubExpr());
687 if (expr
->isIncrementDecrementOp() &&
688 pet_expr_get_type(arg
) == pet_expr_access
) {
689 arg
= mark_write(arg
);
690 arg
= pet_expr_access_set_read(arg
, 1);
693 type_size
= pet_clang_get_type_size(expr
->getType(), ast_context
);
694 return pet_expr_new_unary(type_size
, op
, arg
);
697 /* Construct a pet_expr representing a binary operator expression.
699 * If the top level operator is an assignment and the LHS is an access,
700 * then we mark that access as a write. If the operator is a compound
701 * assignment, the access is marked as both a read and a write.
703 __isl_give pet_expr
*PetScan::extract_expr(BinaryOperator
*expr
)
709 op
= BinaryOperatorKind2pet_op_type(expr
->getOpcode());
710 if (op
== pet_op_last
) {
715 lhs
= extract_expr(expr
->getLHS());
716 rhs
= extract_expr(expr
->getRHS());
718 if (expr
->isAssignmentOp() &&
719 pet_expr_get_type(lhs
) == pet_expr_access
) {
720 lhs
= mark_write(lhs
);
721 if (expr
->isCompoundAssignmentOp())
722 lhs
= pet_expr_access_set_read(lhs
, 1);
725 type_size
= pet_clang_get_type_size(expr
->getType(), ast_context
);
726 return pet_expr_new_binary(type_size
, op
, lhs
, rhs
);
729 /* Construct a pet_tree for a variable declaration and
730 * add the declaration to the list of declarations
731 * inside the current compound statement.
733 __isl_give pet_tree
*PetScan::extract(Decl
*decl
)
739 if (!isa
<VarDecl
>(decl
)) {
740 report_unsupported_declaration(decl
);
744 vd
= cast
<VarDecl
>(decl
);
745 declarations
.push_back(vd
);
747 lhs
= extract_access_expr(vd
);
748 lhs
= mark_write(lhs
);
750 tree
= pet_tree_new_decl(lhs
);
752 rhs
= extract_expr(vd
->getInit());
753 tree
= pet_tree_new_decl_init(lhs
, rhs
);
759 /* Construct a pet_tree for a variable declaration statement.
760 * If the declaration statement declares multiple variables,
761 * then return a group of pet_trees, one for each declared variable.
763 __isl_give pet_tree
*PetScan::extract(DeclStmt
*stmt
)
768 if (!stmt
->isSingleDecl()) {
769 const DeclGroup
&group
= stmt
->getDeclGroup().getDeclGroup();
771 tree
= pet_tree_new_block(ctx
, 0, n
);
773 for (unsigned i
= 0; i
< n
; ++i
) {
777 tree_i
= extract(group
[i
]);
778 loc
= construct_pet_loc(group
[i
]->getSourceRange(),
780 tree_i
= pet_tree_set_loc(tree_i
, loc
);
781 tree
= pet_tree_block_add_child(tree
, tree_i
);
787 return extract(stmt
->getSingleDecl());
790 /* Construct a pet_expr representing a conditional operation.
792 __isl_give pet_expr
*PetScan::extract_expr(ConditionalOperator
*expr
)
794 pet_expr
*cond
, *lhs
, *rhs
;
796 cond
= extract_expr(expr
->getCond());
797 lhs
= extract_expr(expr
->getTrueExpr());
798 rhs
= extract_expr(expr
->getFalseExpr());
800 return pet_expr_new_ternary(cond
, lhs
, rhs
);
803 __isl_give pet_expr
*PetScan::extract_expr(ImplicitCastExpr
*expr
)
805 return extract_expr(expr
->getSubExpr());
808 /* Construct a pet_expr representing a floating point value.
810 * If the floating point literal does not appear in a macro,
811 * then we use the original representation in the source code
812 * as the string representation. Otherwise, we use the pretty
813 * printer to produce a string representation.
815 __isl_give pet_expr
*PetScan::extract_expr(FloatingLiteral
*expr
)
819 const LangOptions
&LO
= PP
.getLangOpts();
820 SourceLocation loc
= expr
->getLocation();
822 if (!loc
.isMacroID()) {
823 SourceManager
&SM
= PP
.getSourceManager();
824 unsigned len
= Lexer::MeasureTokenLength(loc
, SM
, LO
);
825 s
= string(SM
.getCharacterData(loc
), len
);
827 llvm::raw_string_ostream
S(s
);
828 expr
->printPretty(S
, 0, PrintingPolicy(LO
));
831 d
= expr
->getValueAsApproximateDouble();
832 return pet_expr_new_double(ctx
, d
, s
.c_str());
835 /* Convert the index expression "index" into an access pet_expr of type "qt".
837 __isl_give pet_expr
*PetScan::extract_access_expr(QualType qt
,
838 __isl_take pet_expr
*index
)
843 depth
= extract_depth(index
);
844 type_size
= pet_clang_get_type_size(qt
, ast_context
);
846 index
= pet_expr_set_type_size(index
, type_size
);
847 index
= pet_expr_access_set_depth(index
, depth
);
852 /* Extract an index expression from "expr" and then convert it into
853 * an access pet_expr.
855 * If "expr" is a reference to an enum constant, then return
856 * an integer expression instead, representing the value of the enum constant.
858 __isl_give pet_expr
*PetScan::extract_access_expr(Expr
*expr
)
862 index
= extract_index_expr(expr
);
864 if (pet_expr_get_type(index
) == pet_expr_int
)
867 return extract_access_expr(expr
->getType(), index
);
870 /* Extract an index expression from "decl" and then convert it into
871 * an access pet_expr.
873 __isl_give pet_expr
*PetScan::extract_access_expr(ValueDecl
*decl
)
875 return extract_access_expr(decl
->getType(), extract_index_expr(decl
));
878 __isl_give pet_expr
*PetScan::extract_expr(ParenExpr
*expr
)
880 return extract_expr(expr
->getSubExpr());
883 /* Extract an assume statement from the argument "expr"
884 * of a __builtin_assume or __pencil_assume statement.
886 __isl_give pet_expr
*PetScan::extract_assume(Expr
*expr
)
888 return pet_expr_new_unary(0, pet_op_assume
, extract_expr(expr
));
891 /* If "expr" is an address-of operator, then return its argument.
892 * Otherwise, return NULL.
894 static Expr
*extract_addr_of_arg(Expr
*expr
)
898 if (expr
->getStmtClass() != Stmt::UnaryOperatorClass
)
900 op
= cast
<UnaryOperator
>(expr
);
901 if (op
->getOpcode() != UO_AddrOf
)
903 return op
->getSubExpr();
906 /* Construct a pet_expr corresponding to the function call argument "expr".
907 * The argument appears in position "pos" of a call to function "fd".
909 * If we are passing along a pointer to an array element
910 * or an entire row or even higher dimensional slice of an array,
911 * then the function being called may write into the array.
913 * We assume here that if the function is declared to take a pointer
914 * to a const type, then the function may only perform a read
915 * and that otherwise, it may either perform a read or a write (or both).
916 * We only perform this check if "detect_writes" is set.
918 __isl_give pet_expr
*PetScan::extract_argument(FunctionDecl
*fd
, int pos
,
919 Expr
*expr
, bool detect_writes
)
923 int is_addr
= 0, is_partial
= 0;
925 expr
= pet_clang_strip_casts(expr
);
926 arg
= extract_addr_of_arg(expr
);
931 res
= extract_expr(expr
);
934 if (pet_clang_array_depth(expr
->getType()) > 0)
936 if (detect_writes
&& (is_addr
|| is_partial
) &&
937 pet_expr_get_type(res
) == pet_expr_access
) {
939 if (!fd
->hasPrototype()) {
940 report_prototype_required(expr
);
941 return pet_expr_free(res
);
943 parm
= fd
->getParamDecl(pos
);
944 if (!const_base(parm
->getType()))
945 res
= mark_may_write(res
);
949 res
= pet_expr_new_unary(0, pet_op_address_of
, res
);
953 /* Find the first FunctionDecl with the given name.
954 * "call" is the corresponding call expression and is only used
955 * for reporting errors.
957 * Return NULL on error.
959 FunctionDecl
*PetScan::find_decl_from_name(CallExpr
*call
, string name
)
961 TranslationUnitDecl
*tu
= ast_context
.getTranslationUnitDecl();
962 DeclContext::decl_iterator begin
= tu
->decls_begin();
963 DeclContext::decl_iterator end
= tu
->decls_end();
964 for (DeclContext::decl_iterator i
= begin
; i
!= end
; ++i
) {
965 FunctionDecl
*fd
= dyn_cast
<FunctionDecl
>(*i
);
968 if (fd
->getName().str().compare(name
) != 0)
972 report_missing_summary_function_body(call
);
975 report_missing_summary_function(call
);
979 /* Return the FunctionDecl for the summary function associated to the
980 * function called by "call".
982 * In particular, if the pencil option is set, then
983 * search for an annotate attribute formatted as
984 * "pencil_access(name)", where "name" is the name of the summary function.
986 * If no summary function was specified, then return the FunctionDecl
987 * that is actually being called.
989 * Return NULL on error.
991 FunctionDecl
*PetScan::get_summary_function(CallExpr
*call
)
993 FunctionDecl
*decl
= call
->getDirectCallee();
997 if (!options
->pencil
)
1000 specific_attr_iterator
<AnnotateAttr
> begin
, end
, i
;
1001 begin
= decl
->specific_attr_begin
<AnnotateAttr
>();
1002 end
= decl
->specific_attr_end
<AnnotateAttr
>();
1003 for (i
= begin
; i
!= end
; ++i
) {
1004 string attr
= (*i
)->getAnnotation().str();
1006 const char prefix
[] = "pencil_access(";
1007 size_t start
= attr
.find(prefix
);
1008 if (start
== string::npos
)
1010 start
+= strlen(prefix
);
1011 string name
= attr
.substr(start
, attr
.find(')') - start
);
1013 return find_decl_from_name(call
, name
);
1019 /* Is "name" the name of an assume statement?
1020 * "pencil" indicates whether pencil builtins and pragmas should be supported.
1021 * "__builtin_assume" is always accepted.
1022 * If "pencil" is set, then "__pencil_assume" is also accepted.
1024 static bool is_assume(int pencil
, const string
&name
)
1026 if (name
== "__builtin_assume")
1028 return pencil
&& name
== "__pencil_assume";
1031 /* Construct a pet_expr representing a function call.
1033 * In the special case of a "call" to __builtin_assume or __pencil_assume,
1034 * construct an assume expression instead.
1036 * In the case of a "call" to __pencil_kill, the arguments
1037 * are neither read nor written (only killed), so there
1038 * is no need to check for writes to these arguments.
1040 * __pencil_assume and __pencil_kill are only recognized
1041 * when the pencil option is set.
1043 __isl_give pet_expr
*PetScan::extract_expr(CallExpr
*expr
)
1045 pet_expr
*res
= NULL
;
1051 fd
= expr
->getDirectCallee();
1057 name
= fd
->getDeclName().getAsString();
1058 n_arg
= expr
->getNumArgs();
1060 if (n_arg
== 1 && is_assume(options
->pencil
, name
))
1061 return extract_assume(expr
->getArg(0));
1062 is_kill
= options
->pencil
&& name
== "__pencil_kill";
1064 res
= pet_expr_new_call(ctx
, name
.c_str(), n_arg
);
1068 for (unsigned i
= 0; i
< n_arg
; ++i
) {
1069 Expr
*arg
= expr
->getArg(i
);
1070 res
= pet_expr_set_arg(res
, i
,
1071 PetScan::extract_argument(fd
, i
, arg
, !is_kill
));
1074 fd
= get_summary_function(expr
);
1076 return pet_expr_free(res
);
1078 res
= set_summary(res
, fd
);
1083 /* Construct a pet_expr representing a (C style) cast.
1085 __isl_give pet_expr
*PetScan::extract_expr(CStyleCastExpr
*expr
)
1090 arg
= extract_expr(expr
->getSubExpr());
1094 type
= expr
->getTypeAsWritten();
1095 return pet_expr_new_cast(type
.getAsString().c_str(), arg
);
1098 /* Construct a pet_expr representing an integer.
1100 __isl_give pet_expr
*PetScan::extract_expr(IntegerLiteral
*expr
)
1102 return pet_expr_new_int(extract_int(expr
));
1105 /* Construct a pet_expr representing the integer enum constant "ecd".
1107 __isl_give pet_expr
*PetScan::extract_expr(EnumConstantDecl
*ecd
)
1110 const llvm::APSInt
&init
= ecd
->getInitVal();
1111 v
= ::extract_int(ctx
, init
.isSigned(), init
);
1112 return pet_expr_new_int(v
);
1115 /* Try and construct a pet_expr representing "expr".
1117 __isl_give pet_expr
*PetScan::extract_expr(Expr
*expr
)
1119 switch (expr
->getStmtClass()) {
1120 case Stmt::UnaryOperatorClass
:
1121 return extract_expr(cast
<UnaryOperator
>(expr
));
1122 case Stmt::CompoundAssignOperatorClass
:
1123 case Stmt::BinaryOperatorClass
:
1124 return extract_expr(cast
<BinaryOperator
>(expr
));
1125 case Stmt::ImplicitCastExprClass
:
1126 return extract_expr(cast
<ImplicitCastExpr
>(expr
));
1127 case Stmt::ArraySubscriptExprClass
:
1128 case Stmt::DeclRefExprClass
:
1129 case Stmt::MemberExprClass
:
1130 return extract_access_expr(expr
);
1131 case Stmt::IntegerLiteralClass
:
1132 return extract_expr(cast
<IntegerLiteral
>(expr
));
1133 case Stmt::FloatingLiteralClass
:
1134 return extract_expr(cast
<FloatingLiteral
>(expr
));
1135 case Stmt::ParenExprClass
:
1136 return extract_expr(cast
<ParenExpr
>(expr
));
1137 case Stmt::ConditionalOperatorClass
:
1138 return extract_expr(cast
<ConditionalOperator
>(expr
));
1139 case Stmt::CallExprClass
:
1140 return extract_expr(cast
<CallExpr
>(expr
));
1141 case Stmt::CStyleCastExprClass
:
1142 return extract_expr(cast
<CStyleCastExpr
>(expr
));
1149 /* Check if the given initialization statement is an assignment.
1150 * If so, return that assignment. Otherwise return NULL.
1152 BinaryOperator
*PetScan::initialization_assignment(Stmt
*init
)
1154 BinaryOperator
*ass
;
1156 if (init
->getStmtClass() != Stmt::BinaryOperatorClass
)
1159 ass
= cast
<BinaryOperator
>(init
);
1160 if (ass
->getOpcode() != BO_Assign
)
1166 /* Check if the given initialization statement is a declaration
1167 * of a single variable.
1168 * If so, return that declaration. Otherwise return NULL.
1170 Decl
*PetScan::initialization_declaration(Stmt
*init
)
1174 if (init
->getStmtClass() != Stmt::DeclStmtClass
)
1177 decl
= cast
<DeclStmt
>(init
);
1179 if (!decl
->isSingleDecl())
1182 return decl
->getSingleDecl();
1185 /* Given the assignment operator in the initialization of a for loop,
1186 * extract the induction variable, i.e., the (integer)variable being
1189 ValueDecl
*PetScan::extract_induction_variable(BinaryOperator
*init
)
1196 lhs
= init
->getLHS();
1197 if (lhs
->getStmtClass() != Stmt::DeclRefExprClass
) {
1202 ref
= cast
<DeclRefExpr
>(lhs
);
1203 decl
= ref
->getDecl();
1204 type
= decl
->getType().getTypePtr();
1206 if (!type
->isIntegerType()) {
1214 /* Given the initialization statement of a for loop and the single
1215 * declaration in this initialization statement,
1216 * extract the induction variable, i.e., the (integer) variable being
1219 VarDecl
*PetScan::extract_induction_variable(Stmt
*init
, Decl
*decl
)
1223 vd
= cast
<VarDecl
>(decl
);
1225 const QualType type
= vd
->getType();
1226 if (!type
->isIntegerType()) {
1231 if (!vd
->getInit()) {
1239 /* Check that op is of the form iv++ or iv--.
1240 * Return a pet_expr representing "1" or "-1" accordingly.
1242 __isl_give pet_expr
*PetScan::extract_unary_increment(
1243 clang::UnaryOperator
*op
, clang::ValueDecl
*iv
)
1249 if (!op
->isIncrementDecrementOp()) {
1254 sub
= op
->getSubExpr();
1255 if (sub
->getStmtClass() != Stmt::DeclRefExprClass
) {
1260 ref
= cast
<DeclRefExpr
>(sub
);
1261 if (ref
->getDecl() != iv
) {
1266 if (op
->isIncrementOp())
1267 v
= isl_val_one(ctx
);
1269 v
= isl_val_negone(ctx
);
1271 return pet_expr_new_int(v
);
1274 /* Check if op is of the form
1278 * and return the increment "expr - iv" as a pet_expr.
1280 __isl_give pet_expr
*PetScan::extract_binary_increment(BinaryOperator
*op
,
1281 clang::ValueDecl
*iv
)
1286 pet_expr
*expr
, *expr_iv
;
1288 if (op
->getOpcode() != BO_Assign
) {
1294 if (lhs
->getStmtClass() != Stmt::DeclRefExprClass
) {
1299 ref
= cast
<DeclRefExpr
>(lhs
);
1300 if (ref
->getDecl() != iv
) {
1305 expr
= extract_expr(op
->getRHS());
1306 expr_iv
= extract_expr(lhs
);
1308 type_size
= pet_clang_get_type_size(iv
->getType(), ast_context
);
1309 return pet_expr_new_binary(type_size
, pet_op_sub
, expr
, expr_iv
);
1312 /* Check that op is of the form iv += cst or iv -= cst
1313 * and return a pet_expr corresponding to cst or -cst accordingly.
1315 __isl_give pet_expr
*PetScan::extract_compound_increment(
1316 CompoundAssignOperator
*op
, clang::ValueDecl
*iv
)
1322 BinaryOperatorKind opcode
;
1324 opcode
= op
->getOpcode();
1325 if (opcode
!= BO_AddAssign
&& opcode
!= BO_SubAssign
) {
1329 if (opcode
== BO_SubAssign
)
1333 if (lhs
->getStmtClass() != Stmt::DeclRefExprClass
) {
1338 ref
= cast
<DeclRefExpr
>(lhs
);
1339 if (ref
->getDecl() != iv
) {
1344 expr
= extract_expr(op
->getRHS());
1347 type_size
= pet_clang_get_type_size(op
->getType(), ast_context
);
1348 expr
= pet_expr_new_unary(type_size
, pet_op_minus
, expr
);
1354 /* Check that the increment of the given for loop increments
1355 * (or decrements) the induction variable "iv" and return
1356 * the increment as a pet_expr if successful.
1358 __isl_give pet_expr
*PetScan::extract_increment(clang::ForStmt
*stmt
,
1361 Stmt
*inc
= stmt
->getInc();
1364 report_missing_increment(stmt
);
1368 if (inc
->getStmtClass() == Stmt::UnaryOperatorClass
)
1369 return extract_unary_increment(cast
<UnaryOperator
>(inc
), iv
);
1370 if (inc
->getStmtClass() == Stmt::CompoundAssignOperatorClass
)
1371 return extract_compound_increment(
1372 cast
<CompoundAssignOperator
>(inc
), iv
);
1373 if (inc
->getStmtClass() == Stmt::BinaryOperatorClass
)
1374 return extract_binary_increment(cast
<BinaryOperator
>(inc
), iv
);
1380 /* Construct a pet_tree for a while loop.
1382 * If we were only able to extract part of the body, then simply
1385 __isl_give pet_tree
*PetScan::extract(WhileStmt
*stmt
)
1390 tree
= extract(stmt
->getBody());
1393 pe_cond
= extract_expr(stmt
->getCond());
1394 tree
= pet_tree_new_while(pe_cond
, tree
);
1399 /* Construct a pet_tree for a for statement.
1400 * The for loop is required to be of one of the following forms
1402 * for (i = init; condition; ++i)
1403 * for (i = init; condition; --i)
1404 * for (i = init; condition; i += constant)
1405 * for (i = init; condition; i -= constant)
1407 * We extract a pet_tree for the body and then include it in a pet_tree
1408 * of type pet_tree_for.
1410 * As a special case, we also allow a for loop of the form
1414 * in which case we return a pet_tree of type pet_tree_infinite_loop.
1416 * If we were only able to extract part of the body, then simply
1419 __isl_give pet_tree
*PetScan::extract_for(ForStmt
*stmt
)
1421 BinaryOperator
*ass
;
1429 pet_expr
*pe_init
, *pe_inc
, *pe_iv
, *pe_cond
;
1431 independent
= is_current_stmt_marked_independent();
1433 if (!stmt
->getInit() && !stmt
->getCond() && !stmt
->getInc()) {
1434 tree
= extract(stmt
->getBody());
1437 tree
= pet_tree_new_infinite_loop(tree
);
1441 init
= stmt
->getInit();
1446 if ((ass
= initialization_assignment(init
)) != NULL
) {
1447 iv
= extract_induction_variable(ass
);
1450 rhs
= ass
->getRHS();
1451 } else if ((decl
= initialization_declaration(init
)) != NULL
) {
1452 VarDecl
*var
= extract_induction_variable(init
, decl
);
1456 rhs
= var
->getInit();
1458 unsupported(stmt
->getInit());
1462 declared
= !initialization_assignment(stmt
->getInit());
1463 tree
= extract(stmt
->getBody());
1466 pe_iv
= extract_access_expr(iv
);
1467 pe_iv
= mark_write(pe_iv
);
1468 pe_init
= extract_expr(rhs
);
1469 if (!stmt
->getCond())
1470 pe_cond
= pet_expr_new_int(isl_val_one(ctx
));
1472 pe_cond
= extract_expr(stmt
->getCond());
1473 pe_inc
= extract_increment(stmt
, iv
);
1474 tree
= pet_tree_new_for(independent
, declared
, pe_iv
, pe_init
, pe_cond
,
1479 /* Store the names of the variables declared in decl_context
1480 * in the set declared_names. Make sure to only do this once by
1481 * setting declared_names_collected.
1483 void PetScan::collect_declared_names()
1485 DeclContext
*DC
= decl_context
;
1486 DeclContext::decl_iterator it
;
1488 if (declared_names_collected
)
1491 for (it
= DC
->decls_begin(); it
!= DC
->decls_end(); ++it
) {
1495 if (!isa
<NamedDecl
>(D
))
1497 named
= cast
<NamedDecl
>(D
);
1498 declared_names
.insert(named
->getName().str());
1501 declared_names_collected
= true;
1504 /* Add the names in "names" that are not also in this->declared_names
1505 * to this->used_names.
1506 * It is up to the caller to make sure that declared_names has been
1507 * populated, if needed.
1509 void PetScan::add_new_used_names(const std::set
<std::string
> &names
)
1511 std::set
<std::string
>::const_iterator it
;
1513 for (it
= names
.begin(); it
!= names
.end(); ++it
) {
1514 if (declared_names
.find(*it
) != declared_names
.end())
1516 used_names
.insert(*it
);
1520 /* Is the name "name" used in any declaration other than "decl"?
1522 * If the name was found to be in use before, the consider it to be in use.
1523 * Otherwise, check the DeclContext of the function containing the scop
1524 * as well as all ancestors of this DeclContext for declarations
1525 * other than "decl" that declare something called "name".
1527 bool PetScan::name_in_use(const string
&name
, Decl
*decl
)
1530 DeclContext::decl_iterator it
;
1532 if (used_names
.find(name
) != used_names
.end())
1535 for (DC
= decl_context
; DC
; DC
= DC
->getParent()) {
1536 for (it
= DC
->decls_begin(); it
!= DC
->decls_end(); ++it
) {
1542 if (!isa
<NamedDecl
>(D
))
1544 named
= cast
<NamedDecl
>(D
);
1545 if (named
->getName().str() == name
)
1553 /* Generate a new name based on "name" that is not in use.
1554 * Do so by adding a suffix _i, with i an integer.
1556 string
PetScan::generate_new_name(const string
&name
)
1561 std::ostringstream oss
;
1562 oss
<< name
<< "_" << n_rename
++;
1563 new_name
= oss
.str();
1564 } while (name_in_use(new_name
, NULL
));
1569 /* Try and construct a pet_tree corresponding to a compound statement.
1571 * "skip_declarations" is set if we should skip initial declarations
1572 * in the children of the compound statements.
1574 * Collect a new set of declarations for the current compound statement.
1575 * If any of the names in these declarations is also used by another
1576 * declaration reachable from the current function, then rename it
1577 * to a name that is not already in use.
1578 * In particular, keep track of the old and new names in a pet_substituter
1579 * and apply the substitutions to the pet_tree corresponding to the
1580 * compound statement.
1582 __isl_give pet_tree
*PetScan::extract(CompoundStmt
*stmt
,
1583 bool skip_declarations
)
1586 std::vector
<VarDecl
*> saved_declarations
;
1587 std::vector
<VarDecl
*>::iterator it
;
1588 pet_substituter substituter
;
1590 saved_declarations
= declarations
;
1591 declarations
.clear();
1592 tree
= extract(stmt
->children(), true, skip_declarations
, stmt
);
1593 for (it
= declarations
.begin(); it
!= declarations
.end(); ++it
) {
1596 VarDecl
*decl
= *it
;
1597 string name
= decl
->getName().str();
1598 bool in_use
= name_in_use(name
, decl
);
1600 used_names
.insert(name
);
1604 name
= generate_new_name(name
);
1605 id
= pet_id_from_name_and_decl(ctx
, name
.c_str(), decl
);
1606 expr
= pet_id_create_index_expr(id
);
1607 expr
= extract_access_expr(decl
->getType(), expr
);
1608 id
= pet_id_from_decl(ctx
, decl
);
1609 substituter
.add_sub(id
, expr
);
1610 used_names
.insert(name
);
1612 tree
= substituter
.substitute(tree
);
1613 declarations
= saved_declarations
;
1618 /* Return the file offset of the expansion location of "Loc".
1620 static unsigned getExpansionOffset(SourceManager
&SM
, SourceLocation Loc
)
1622 return SM
.getFileOffset(SM
.getExpansionLoc(Loc
));
1625 #ifdef HAVE_FINDLOCATIONAFTERTOKEN
1627 /* Return a SourceLocation for the location after the first semicolon
1628 * after "loc". If Lexer::findLocationAfterToken is available, we simply
1629 * call it and also skip trailing spaces and newline.
1631 static SourceLocation
location_after_semi(SourceLocation loc
, SourceManager
&SM
,
1632 const LangOptions
&LO
)
1634 return Lexer::findLocationAfterToken(loc
, tok::semi
, SM
, LO
, true);
1639 /* Return a SourceLocation for the location after the first semicolon
1640 * after "loc". If Lexer::findLocationAfterToken is not available,
1641 * we look in the underlying character data for the first semicolon.
1643 static SourceLocation
location_after_semi(SourceLocation loc
, SourceManager
&SM
,
1644 const LangOptions
&LO
)
1647 const char *s
= SM
.getCharacterData(loc
);
1649 semi
= strchr(s
, ';');
1651 return SourceLocation();
1652 return loc
.getFileLocWithOffset(semi
+ 1 - s
);
1657 /* If the token at "loc" is the first token on the line, then return
1658 * a location referring to the start of the line and set *indent
1659 * to the indentation of "loc"
1660 * Otherwise, return "loc" and set *indent to "".
1662 * This function is used to extend a scop to the start of the line
1663 * if the first token of the scop is also the first token on the line.
1665 * We look for the first token on the line. If its location is equal to "loc",
1666 * then the latter is the location of the first token on the line.
1668 static SourceLocation
move_to_start_of_line_if_first_token(SourceLocation loc
,
1669 SourceManager
&SM
, const LangOptions
&LO
, char **indent
)
1671 std::pair
<FileID
, unsigned> file_offset_pair
;
1672 llvm::StringRef file
;
1675 SourceLocation token_loc
, line_loc
;
1679 loc
= SM
.getExpansionLoc(loc
);
1680 col
= SM
.getExpansionColumnNumber(loc
);
1681 line_loc
= loc
.getLocWithOffset(1 - col
);
1682 file_offset_pair
= SM
.getDecomposedLoc(line_loc
);
1683 file
= SM
.getBufferData(file_offset_pair
.first
, NULL
);
1684 pos
= file
.data() + file_offset_pair
.second
;
1686 Lexer
lexer(SM
.getLocForStartOfFile(file_offset_pair
.first
), LO
,
1687 file
.begin(), pos
, file
.end());
1688 lexer
.LexFromRawLexer(tok
);
1689 token_loc
= tok
.getLocation();
1691 s
= SM
.getCharacterData(line_loc
);
1692 *indent
= strndup(s
, token_loc
== loc
? col
- 1 : 0);
1694 if (token_loc
== loc
)
1700 /* Construct a pet_loc corresponding to the region covered by "range".
1701 * If "skip_semi" is set, then we assume "range" is followed by
1702 * a semicolon and also include this semicolon.
1704 __isl_give pet_loc
*PetScan::construct_pet_loc(SourceRange range
,
1707 SourceLocation loc
= range
.getBegin();
1708 SourceManager
&SM
= PP
.getSourceManager();
1709 const LangOptions
&LO
= PP
.getLangOpts();
1710 int line
= PP
.getSourceManager().getExpansionLineNumber(loc
);
1711 unsigned start
, end
;
1714 loc
= move_to_start_of_line_if_first_token(loc
, SM
, LO
, &indent
);
1715 start
= getExpansionOffset(SM
, loc
);
1716 loc
= range
.getEnd();
1718 loc
= location_after_semi(loc
, SM
, LO
);
1720 loc
= PP
.getLocForEndOfToken(loc
);
1721 end
= getExpansionOffset(SM
, loc
);
1723 return pet_loc_alloc(ctx
, start
, end
, line
, indent
);
1726 /* Convert a top-level pet_expr to an expression pet_tree.
1728 __isl_give pet_tree
*PetScan::extract(__isl_take pet_expr
*expr
,
1729 SourceRange range
, bool skip_semi
)
1734 tree
= pet_tree_new_expr(expr
);
1735 loc
= construct_pet_loc(range
, skip_semi
);
1736 tree
= pet_tree_set_loc(tree
, loc
);
1741 /* Construct a pet_tree for an if statement.
1743 __isl_give pet_tree
*PetScan::extract(IfStmt
*stmt
)
1746 pet_tree
*tree
, *tree_else
;
1748 pe_cond
= extract_expr(stmt
->getCond());
1749 tree
= extract(stmt
->getThen());
1750 if (stmt
->getElse()) {
1751 tree_else
= extract(stmt
->getElse());
1752 if (options
->autodetect
) {
1753 if (tree
&& !tree_else
) {
1755 pet_expr_free(pe_cond
);
1758 if (!tree
&& tree_else
) {
1760 pet_expr_free(pe_cond
);
1764 tree
= pet_tree_new_if_else(pe_cond
, tree
, tree_else
);
1766 tree
= pet_tree_new_if(pe_cond
, tree
);
1770 /* Try and construct a pet_tree for a label statement.
1772 __isl_give pet_tree
*PetScan::extract(LabelStmt
*stmt
)
1777 label
= isl_id_alloc(ctx
, stmt
->getName(), NULL
);
1779 tree
= extract(stmt
->getSubStmt());
1780 tree
= pet_tree_set_label(tree
, label
);
1784 /* Update the location of "tree" to include the source range of "stmt".
1786 * Actually, we create a new location based on the source range of "stmt" and
1787 * then extend this new location to include the region of the original location.
1788 * This ensures that the line number of the final location refers to "stmt".
1790 __isl_give pet_tree
*PetScan::update_loc(__isl_take pet_tree
*tree
, Stmt
*stmt
)
1792 pet_loc
*loc
, *tree_loc
;
1794 tree_loc
= pet_tree_get_loc(tree
);
1795 loc
= construct_pet_loc(stmt
->getSourceRange(), false);
1796 loc
= pet_loc_update_start_end_from_loc(loc
, tree_loc
);
1797 pet_loc_free(tree_loc
);
1799 tree
= pet_tree_set_loc(tree
, loc
);
1803 /* Is "expr" of a type that can be converted to an access expression?
1805 static bool is_access_expr_type(Expr
*expr
)
1807 switch (expr
->getStmtClass()) {
1808 case Stmt::ArraySubscriptExprClass
:
1809 case Stmt::DeclRefExprClass
:
1810 case Stmt::MemberExprClass
:
1817 /* Tell the pet_inliner "inliner" about the formal arguments
1818 * in "fd" and the corresponding actual arguments in "call".
1819 * Return 0 if this was successful and -1 otherwise.
1821 * Any pointer argument is treated as an array.
1822 * The other arguments are treated as scalars.
1824 * In case of scalars, there is no restriction on the actual argument.
1825 * This actual argument is assigned to a variable with a name
1826 * that is derived from the name of the corresponding formal argument,
1827 * but made not to conflict with any variable names that are
1830 * In case of arrays, the actual argument needs to be an expression
1831 * of a type that can be converted to an access expression or the address
1832 * of such an expression, ignoring implicit and redundant casts.
1834 int PetScan::set_inliner_arguments(pet_inliner
&inliner
, CallExpr
*call
,
1839 n
= fd
->getNumParams();
1840 for (unsigned i
= 0; i
< n
; ++i
) {
1841 ParmVarDecl
*parm
= fd
->getParamDecl(i
);
1842 QualType type
= parm
->getType();
1847 arg
= call
->getArg(i
);
1848 if (pet_clang_array_depth(type
) == 0) {
1849 string name
= parm
->getName().str();
1850 if (name_in_use(name
, NULL
))
1851 name
= generate_new_name(name
);
1852 used_names
.insert(name
);
1853 inliner
.add_scalar_arg(parm
, name
, extract_expr(arg
));
1856 arg
= pet_clang_strip_casts(arg
);
1857 sub
= extract_addr_of_arg(arg
);
1860 arg
= pet_clang_strip_casts(sub
);
1862 if (!is_access_expr_type(arg
)) {
1863 report_unsupported_inline_function_argument(arg
);
1866 expr
= extract_access_expr(arg
);
1869 inliner
.add_array_arg(parm
, expr
, is_addr
);
1875 /* Internal data structure for PetScan::substitute_array_sizes.
1876 * ps is the PetScan on which the method was called.
1877 * substituter is the substituter that is used to substitute variables
1878 * in the size expressions.
1880 struct pet_substitute_array_sizes_data
{
1882 pet_substituter
*substituter
;
1886 static int substitute_array_size(__isl_keep pet_tree
*tree
, void *user
);
1889 /* If "tree" is a declaration, then perform the substitutions
1890 * in data->substituter on its size expression and store the result
1891 * in the size expression cache of data->ps such that the modified expression
1892 * will be used in subsequent calls to get_array_size.
1894 static int substitute_array_size(__isl_keep pet_tree
*tree
, void *user
)
1896 struct pet_substitute_array_sizes_data
*data
;
1898 pet_expr
*var
, *size
;
1900 if (!pet_tree_is_decl(tree
))
1903 data
= (struct pet_substitute_array_sizes_data
*) user
;
1904 var
= pet_tree_decl_get_var(tree
);
1905 id
= pet_expr_access_get_id(var
);
1908 size
= data
->ps
->get_array_size(id
);
1909 size
= data
->substituter
->substitute(size
);
1910 data
->ps
->set_array_size(id
, size
);
1915 /* Perform the substitutions in "substituter" on all the arrays declared
1916 * inside "tree" and store the results in the size expression cache
1917 * such that the modified expressions will be used in subsequent calls
1918 * to get_array_size.
1920 int PetScan::substitute_array_sizes(__isl_keep pet_tree
*tree
,
1921 pet_substituter
*substituter
)
1923 struct pet_substitute_array_sizes_data data
= { this, substituter
};
1925 return pet_tree_foreach_sub_tree(tree
, &substitute_array_size
, &data
);
1928 /* Try and construct a pet_tree from the body of "fd" using the actual
1929 * arguments in "call" in place of the formal arguments.
1930 * "fd" is assumed to point to the declaration with a function body.
1931 * In particular, construct a block that consists of assignments
1932 * of (parts of) the actual arguments to temporary variables
1933 * followed by the inlined function body with the formal arguments
1934 * replaced by (expressions containing) these temporary variables.
1936 * The actual inlining is taken care of by the pet_inliner object.
1937 * This function merely calls set_inliner_arguments to tell
1938 * the pet_inliner about the actual arguments, extracts a pet_tree
1939 * from the body of the called function and then passes this pet_tree
1940 * to the pet_inliner.
1941 * The substitutions performed by the inliner are also applied
1942 * to the size expressions of the arrays declared in the inlined
1943 * function. These size expressions are not stored in the tree
1944 * itself, but rather in the size expression cache.
1946 * During the extraction of the function body, all variables names
1947 * that are declared in the calling function as well all variable
1948 * names that are known to be in use are considered to be in use
1949 * in the called function to ensure that there is no naming conflict.
1950 * Similarly, the additional names that are in use in the called function
1951 * are considered to be in use in the calling function as well.
1953 * The location of the pet_tree is reset to the call site to ensure
1954 * that the extent of the scop does not include the body of the called
1957 __isl_give pet_tree
*PetScan::extract_inlined_call(CallExpr
*call
,
1960 int save_autodetect
;
1963 pet_inliner
inliner(ctx
, n_arg
, ast_context
);
1965 if (set_inliner_arguments(inliner
, call
, fd
) < 0)
1968 save_autodetect
= options
->autodetect
;
1969 options
->autodetect
= 0;
1970 PetScan
body_scan(PP
, ast_context
, fd
, loc
, options
,
1971 isl_union_map_copy(value_bounds
), independent
);
1972 collect_declared_names();
1973 body_scan
.add_new_used_names(declared_names
);
1974 body_scan
.add_new_used_names(used_names
);
1975 tree
= body_scan
.extract(fd
->getBody(), false);
1976 add_new_used_names(body_scan
.used_names
);
1977 options
->autodetect
= save_autodetect
;
1979 tree_loc
= construct_pet_loc(call
->getSourceRange(), true);
1980 tree
= pet_tree_set_loc(tree
, tree_loc
);
1982 substitute_array_sizes(tree
, &inliner
);
1984 return inliner
.inline_tree(tree
);
1987 /* Try and construct a pet_tree corresponding
1988 * to the expression statement "stmt".
1990 * If the outer expression is a function call and if the corresponding
1991 * function body is marked "inline", then return a pet_tree
1992 * corresponding to the inlined function.
1994 __isl_give pet_tree
*PetScan::extract_expr_stmt(Stmt
*stmt
)
1998 if (stmt
->getStmtClass() == Stmt::CallExprClass
) {
1999 CallExpr
*call
= cast
<CallExpr
>(stmt
);
2000 FunctionDecl
*fd
= call
->getDirectCallee();
2001 fd
= pet_clang_find_function_decl_with_body(fd
);
2002 if (fd
&& fd
->isInlineSpecified())
2003 return extract_inlined_call(call
, fd
);
2006 expr
= extract_expr(cast
<Expr
>(stmt
));
2007 return extract(expr
, stmt
->getSourceRange(), true);
2010 /* Try and construct a pet_tree corresponding to "stmt".
2012 * If "stmt" is a compound statement, then "skip_declarations"
2013 * indicates whether we should skip initial declarations in the
2014 * compound statement.
2016 * If the constructed pet_tree is not a (possibly) partial representation
2017 * of "stmt", we update start and end of the pet_scop to those of "stmt".
2018 * In particular, if skip_declarations is set, then we may have skipped
2019 * declarations inside "stmt" and so the pet_scop may not represent
2020 * the entire "stmt".
2021 * Note that this function may be called with "stmt" referring to the entire
2022 * body of the function, including the outer braces. In such cases,
2023 * skip_declarations will be set and the braces will not be taken into
2024 * account in tree->loc.
2026 __isl_give pet_tree
*PetScan::extract(Stmt
*stmt
, bool skip_declarations
)
2030 set_current_stmt(stmt
);
2032 if (isa
<Expr
>(stmt
))
2033 return extract_expr_stmt(cast
<Expr
>(stmt
));
2035 switch (stmt
->getStmtClass()) {
2036 case Stmt::WhileStmtClass
:
2037 tree
= extract(cast
<WhileStmt
>(stmt
));
2039 case Stmt::ForStmtClass
:
2040 tree
= extract_for(cast
<ForStmt
>(stmt
));
2042 case Stmt::IfStmtClass
:
2043 tree
= extract(cast
<IfStmt
>(stmt
));
2045 case Stmt::CompoundStmtClass
:
2046 tree
= extract(cast
<CompoundStmt
>(stmt
), skip_declarations
);
2048 case Stmt::LabelStmtClass
:
2049 tree
= extract(cast
<LabelStmt
>(stmt
));
2051 case Stmt::ContinueStmtClass
:
2052 tree
= pet_tree_new_continue(ctx
);
2054 case Stmt::BreakStmtClass
:
2055 tree
= pet_tree_new_break(ctx
);
2057 case Stmt::DeclStmtClass
:
2058 tree
= extract(cast
<DeclStmt
>(stmt
));
2060 case Stmt::NullStmtClass
:
2061 tree
= pet_tree_new_block(ctx
, 0, 0);
2064 report_unsupported_statement_type(stmt
);
2068 if (partial
|| skip_declarations
)
2071 return update_loc(tree
, stmt
);
2074 /* Given a sequence of statements "stmt_range" of which the first "n_decl"
2075 * are declarations and of which the remaining statements are represented
2076 * by "tree", try and extend "tree" to include the last sequence of
2077 * the initial declarations that can be completely extracted.
2079 * We start collecting the initial declarations and start over
2080 * whenever we come across a declaration that we cannot extract.
2081 * If we have been able to extract any declarations, then we
2082 * copy over the contents of "tree" at the end of the declarations.
2083 * Otherwise, we simply return the original "tree".
2085 __isl_give pet_tree
*PetScan::insert_initial_declarations(
2086 __isl_take pet_tree
*tree
, int n_decl
, StmtRange stmt_range
)
2094 n_stmt
= pet_tree_block_n_child(tree
);
2095 is_block
= pet_tree_block_get_block(tree
);
2096 res
= pet_tree_new_block(ctx
, is_block
, n_decl
+ n_stmt
);
2098 for (i
= stmt_range
.first
; n_decl
; ++i
, --n_decl
) {
2102 tree_i
= extract(child
);
2103 if (tree_i
&& !partial
) {
2104 res
= pet_tree_block_add_child(res
, tree_i
);
2107 pet_tree_free(tree_i
);
2109 if (pet_tree_block_n_child(res
) == 0)
2112 res
= pet_tree_new_block(ctx
, is_block
, n_decl
+ n_stmt
);
2115 if (pet_tree_block_n_child(res
) == 0) {
2120 for (j
= 0; j
< n_stmt
; ++j
) {
2123 tree_i
= pet_tree_block_get_child(tree
, j
);
2124 res
= pet_tree_block_add_child(res
, tree_i
);
2126 pet_tree_free(tree
);
2131 /* Try and construct a pet_tree corresponding to (part of)
2132 * a sequence of statements.
2134 * "block" is set if the sequence represents the children of
2135 * a compound statement.
2136 * "skip_declarations" is set if we should skip initial declarations
2137 * in the sequence of statements.
2138 * "parent" is the statement that has stmt_range as (some of) its children.
2140 * If autodetect is set, then we allow the extraction of only a subrange
2141 * of the sequence of statements. However, if there is at least one
2142 * kill and there is some subsequent statement for which we could not
2143 * construct a tree, then turn off the "block" property of the tree
2144 * such that no extra kill will be introduced at the end of the (partial)
2145 * block. If, on the other hand, the final range contains
2146 * no statements, then we discard the entire range.
2147 * If only a subrange of the sequence was extracted, but each statement
2148 * in the sequence was extracted completely, and if there are some
2149 * variable declarations in the sequence before or inside
2150 * the extracted subrange, then check if any of these variables are
2151 * not used after the extracted subrange. If so, add kills to these
2154 * If the entire range was extracted, apart from some initial declarations,
2155 * then we try and extend the range with the latest of those initial
2158 __isl_give pet_tree
*PetScan::extract(StmtRange stmt_range
, bool block
,
2159 bool skip_declarations
, Stmt
*parent
)
2163 bool has_kills
= false;
2164 bool partial_range
= false;
2165 bool outer_partial
= false;
2167 SourceManager
&SM
= PP
.getSourceManager();
2168 pet_killed_locals
kl(SM
);
2169 unsigned range_start
, range_end
;
2171 for (i
= stmt_range
.first
, j
= 0; i
!= stmt_range
.second
; ++i
, ++j
)
2174 tree
= pet_tree_new_block(ctx
, block
, j
);
2177 i
= stmt_range
.first
;
2178 if (skip_declarations
)
2179 for (; i
!= stmt_range
.second
; ++i
) {
2180 if ((*i
)->getStmtClass() != Stmt::DeclStmtClass
)
2182 if (options
->autodetect
)
2183 kl
.add_locals(cast
<DeclStmt
>(*i
));
2187 for (; i
!= stmt_range
.second
; ++i
) {
2191 tree_i
= extract(child
);
2192 if (pet_tree_block_n_child(tree
) != 0 && partial
) {
2193 pet_tree_free(tree_i
);
2196 if (child
->getStmtClass() == Stmt::DeclStmtClass
) {
2197 if (options
->autodetect
)
2198 kl
.add_locals(cast
<DeclStmt
>(child
));
2199 if (tree_i
&& block
)
2202 if (options
->autodetect
) {
2204 range_end
= getExpansionOffset(SM
,
2205 child
->getLocEnd());
2206 if (pet_tree_block_n_child(tree
) == 0)
2207 range_start
= getExpansionOffset(SM
,
2208 child
->getLocStart());
2209 tree
= pet_tree_block_add_child(tree
, tree_i
);
2211 partial_range
= true;
2213 if (pet_tree_block_n_child(tree
) != 0 && !tree_i
)
2214 outer_partial
= partial
= true;
2216 tree
= pet_tree_block_add_child(tree
, tree_i
);
2219 if (partial
|| !tree
)
2228 tree
= pet_tree_block_set_block(tree
, 0);
2229 if (outer_partial
) {
2230 kl
.remove_accessed_after(parent
,
2231 range_start
, range_end
);
2232 tree
= add_kills(tree
, kl
.locals
);
2234 } else if (partial_range
) {
2235 if (pet_tree_block_n_child(tree
) == 0) {
2236 pet_tree_free(tree
);
2240 } else if (skip
> 0)
2241 tree
= insert_initial_declarations(tree
, skip
, stmt_range
);
2247 static __isl_give pet_expr
*get_array_size(__isl_keep pet_expr
*access
,
2249 static struct pet_array
*extract_array(__isl_keep pet_expr
*access
,
2250 __isl_keep pet_context
*pc
, void *user
);
2253 /* Construct a pet_expr that holds the sizes of the array accessed
2255 * This function is used as a callback to pet_context_add_parameters,
2256 * which is also passed a pointer to the PetScan object.
2258 static __isl_give pet_expr
*get_array_size(__isl_keep pet_expr
*access
,
2261 PetScan
*ps
= (PetScan
*) user
;
2265 id
= pet_expr_access_get_id(access
);
2266 size
= ps
->get_array_size(id
);
2272 /* Construct and return a pet_array corresponding to the variable
2273 * accessed by "access".
2274 * This function is used as a callback to pet_scop_from_pet_tree,
2275 * which is also passed a pointer to the PetScan object.
2277 static struct pet_array
*extract_array(__isl_keep pet_expr
*access
,
2278 __isl_keep pet_context
*pc
, void *user
)
2280 PetScan
*ps
= (PetScan
*) user
;
2284 id
= pet_expr_access_get_id(access
);
2285 array
= ps
->extract_array(id
, NULL
, pc
);
2291 /* Extract a function summary from the body of "fd".
2293 * We extract a scop from the function body in a context with as
2294 * parameters the integer arguments of the function.
2295 * We turn off autodetection (in case it was set) to ensure that
2296 * the entire function body is considered.
2297 * We then collect the accessed array elements and attach them
2298 * to the corresponding array arguments, taking into account
2299 * that the function body may access members of array elements.
2301 * The reason for representing the integer arguments as parameters in
2302 * the context is that if we were to instead start with a context
2303 * with the function arguments as initial dimensions, then we would not
2304 * be able to refer to them from the array extents, without turning
2305 * array extents into maps.
2307 * The result is stored in the summary_cache cache so that we can reuse
2308 * it if this method gets called on the same function again later on.
2310 __isl_give pet_function_summary
*PetScan::get_summary(FunctionDecl
*fd
)
2316 pet_function_summary
*summary
;
2319 int save_autodetect
;
2320 struct pet_scop
*scop
;
2322 isl_union_set
*may_read
, *may_write
, *must_write
;
2323 isl_union_map
*to_inner
;
2325 if (summary_cache
.find(fd
) != summary_cache
.end())
2326 return pet_function_summary_copy(summary_cache
[fd
]);
2328 space
= isl_space_set_alloc(ctx
, 0, 0);
2330 n
= fd
->getNumParams();
2331 summary
= pet_function_summary_alloc(ctx
, n
);
2332 for (unsigned i
= 0; i
< n
; ++i
) {
2333 ParmVarDecl
*parm
= fd
->getParamDecl(i
);
2334 QualType type
= parm
->getType();
2337 if (!type
->isIntegerType())
2339 id
= pet_id_from_decl(ctx
, parm
);
2340 space
= isl_space_insert_dims(space
, isl_dim_param
, 0, 1);
2341 space
= isl_space_set_dim_id(space
, isl_dim_param
, 0,
2343 summary
= pet_function_summary_set_int(summary
, i
, id
);
2346 save_autodetect
= options
->autodetect
;
2347 options
->autodetect
= 0;
2348 PetScan
body_scan(PP
, ast_context
, fd
, loc
, options
,
2349 isl_union_map_copy(value_bounds
), independent
);
2351 tree
= body_scan
.extract(fd
->getBody(), false);
2353 domain
= isl_set_universe(space
);
2354 pc
= pet_context_alloc(domain
);
2355 pc
= pet_context_add_parameters(pc
, tree
,
2356 &::get_array_size
, &body_scan
);
2357 int_size
= size_in_bytes(ast_context
, ast_context
.IntTy
);
2358 scop
= pet_scop_from_pet_tree(tree
, int_size
,
2359 &::extract_array
, &body_scan
, pc
);
2360 scop
= scan_arrays(scop
, pc
);
2361 may_read
= isl_union_map_range(pet_scop_get_may_reads(scop
));
2362 may_write
= isl_union_map_range(pet_scop_get_may_writes(scop
));
2363 must_write
= isl_union_map_range(pet_scop_get_must_writes(scop
));
2364 to_inner
= pet_scop_compute_outer_to_inner(scop
);
2365 pet_scop_free(scop
);
2367 for (unsigned i
= 0; i
< n
; ++i
) {
2368 ParmVarDecl
*parm
= fd
->getParamDecl(i
);
2369 QualType type
= parm
->getType();
2370 struct pet_array
*array
;
2372 isl_union_set
*data_set
;
2373 isl_union_set
*may_read_i
, *may_write_i
, *must_write_i
;
2375 if (pet_clang_array_depth(type
) == 0)
2378 array
= body_scan
.extract_array(parm
, NULL
, pc
);
2379 space
= array
? isl_set_get_space(array
->extent
) : NULL
;
2380 pet_array_free(array
);
2381 data_set
= isl_union_set_from_set(isl_set_universe(space
));
2382 data_set
= isl_union_set_apply(data_set
,
2383 isl_union_map_copy(to_inner
));
2384 may_read_i
= isl_union_set_intersect(
2385 isl_union_set_copy(may_read
),
2386 isl_union_set_copy(data_set
));
2387 may_write_i
= isl_union_set_intersect(
2388 isl_union_set_copy(may_write
),
2389 isl_union_set_copy(data_set
));
2390 must_write_i
= isl_union_set_intersect(
2391 isl_union_set_copy(must_write
), data_set
);
2392 summary
= pet_function_summary_set_array(summary
, i
,
2393 may_read_i
, may_write_i
, must_write_i
);
2396 isl_union_set_free(may_read
);
2397 isl_union_set_free(may_write
);
2398 isl_union_set_free(must_write
);
2399 isl_union_map_free(to_inner
);
2401 options
->autodetect
= save_autodetect
;
2402 pet_context_free(pc
);
2404 summary_cache
[fd
] = pet_function_summary_copy(summary
);
2409 /* If "fd" has a function body, then extract a function summary from
2410 * this body and attach it to the call expression "expr".
2412 * Even if a function body is available, "fd" itself may point
2413 * to a declaration without function body. We therefore first
2414 * replace it by the declaration that comes with a body (if any).
2416 __isl_give pet_expr
*PetScan::set_summary(__isl_take pet_expr
*expr
,
2419 pet_function_summary
*summary
;
2423 fd
= pet_clang_find_function_decl_with_body(fd
);
2427 summary
= get_summary(fd
);
2429 expr
= pet_expr_call_set_summary(expr
, summary
);
2434 /* Extract a pet_scop from "tree".
2436 * We simply call pet_scop_from_pet_tree with the appropriate arguments and
2437 * then add pet_arrays for all accessed arrays.
2438 * We populate the pet_context with assignments for all parameters used
2439 * inside "tree" or any of the size expressions for the arrays accessed
2440 * by "tree" so that they can be used in affine expressions.
2442 struct pet_scop
*PetScan::extract_scop(__isl_take pet_tree
*tree
)
2449 int_size
= size_in_bytes(ast_context
, ast_context
.IntTy
);
2451 domain
= isl_set_universe(isl_space_set_alloc(ctx
, 0, 0));
2452 pc
= pet_context_alloc(domain
);
2453 pc
= pet_context_add_parameters(pc
, tree
, &::get_array_size
, this);
2454 scop
= pet_scop_from_pet_tree(tree
, int_size
,
2455 &::extract_array
, this, pc
);
2456 scop
= scan_arrays(scop
, pc
);
2457 pet_context_free(pc
);
2462 /* Add a call to __pencil_kill to the end of "tree" that kills
2463 * all the variables in "locals" and return the result.
2465 * No location is added to the kill because the most natural
2466 * location would lie outside the scop. Attaching such a location
2467 * to this tree would extend the scope of the final result
2468 * to include the location.
2470 __isl_give pet_tree
*PetScan::add_kills(__isl_take pet_tree
*tree
,
2471 set
<ValueDecl
*> locals
)
2475 pet_tree
*kill
, *block
;
2476 set
<ValueDecl
*>::iterator it
;
2478 if (locals
.size() == 0)
2480 expr
= pet_expr_new_call(ctx
, "__pencil_kill", locals
.size());
2482 for (it
= locals
.begin(); it
!= locals
.end(); ++it
) {
2484 arg
= extract_access_expr(*it
);
2485 expr
= pet_expr_set_arg(expr
, i
++, arg
);
2487 kill
= pet_tree_new_expr(expr
);
2488 block
= pet_tree_new_block(ctx
, 0, 2);
2489 block
= pet_tree_block_add_child(block
, tree
);
2490 block
= pet_tree_block_add_child(block
, kill
);
2495 /* Check if the scop marked by the user is exactly this Stmt
2496 * or part of this Stmt.
2497 * If so, return a pet_scop corresponding to the marked region.
2498 * Otherwise, return NULL.
2500 * If the scop is not further nested inside a child of "stmt",
2501 * then check if there are any variable declarations before the scop
2502 * inside "stmt". If so, and if these variables are not used
2503 * after the scop, then add kills to the variables.
2505 * If the scop starts in the middle of one of the children, without
2506 * also ending in that child, then report an error.
2508 struct pet_scop
*PetScan::scan(Stmt
*stmt
)
2510 SourceManager
&SM
= PP
.getSourceManager();
2511 unsigned start_off
, end_off
;
2514 start_off
= getExpansionOffset(SM
, stmt
->getLocStart());
2515 end_off
= getExpansionOffset(SM
, stmt
->getLocEnd());
2517 if (start_off
> loc
.end
)
2519 if (end_off
< loc
.start
)
2522 if (start_off
>= loc
.start
&& end_off
<= loc
.end
)
2523 return extract_scop(extract(stmt
));
2525 pet_killed_locals
kl(SM
);
2527 for (start
= stmt
->child_begin(); start
!= stmt
->child_end(); ++start
) {
2528 Stmt
*child
= *start
;
2531 start_off
= getExpansionOffset(SM
, child
->getLocStart());
2532 end_off
= getExpansionOffset(SM
, child
->getLocEnd());
2533 if (start_off
< loc
.start
&& end_off
>= loc
.end
)
2535 if (start_off
>= loc
.start
)
2537 if (loc
.start
< end_off
) {
2538 report_unbalanced_pragmas(loc
.scop
, loc
.endscop
);
2541 if (isa
<DeclStmt
>(child
))
2542 kl
.add_locals(cast
<DeclStmt
>(child
));
2546 for (end
= start
; end
!= stmt
->child_end(); ++end
) {
2548 start_off
= SM
.getFileOffset(child
->getLocStart());
2549 if (start_off
>= loc
.end
)
2553 kl
.remove_accessed_after(stmt
, loc
.start
, loc
.end
);
2555 tree
= extract(StmtRange(start
, end
), false, false, stmt
);
2556 tree
= add_kills(tree
, kl
.locals
);
2557 return extract_scop(tree
);
2560 /* Set the size of index "pos" of "array" to "size".
2561 * In particular, add a constraint of the form
2565 * to array->extent and a constraint of the form
2569 * to array->context.
2571 * The domain of "size" is assumed to be zero-dimensional.
2573 static struct pet_array
*update_size(struct pet_array
*array
, int pos
,
2574 __isl_take isl_pw_aff
*size
)
2587 valid
= isl_set_params(isl_pw_aff_nonneg_set(isl_pw_aff_copy(size
)));
2588 array
->context
= isl_set_intersect(array
->context
, valid
);
2590 dim
= isl_set_get_space(array
->extent
);
2591 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(dim
));
2592 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_in
, pos
, 1);
2593 univ
= isl_set_universe(isl_aff_get_domain_space(aff
));
2594 index
= isl_pw_aff_alloc(univ
, aff
);
2596 size
= isl_pw_aff_add_dims(size
, isl_dim_in
,
2597 isl_set_dim(array
->extent
, isl_dim_set
));
2598 id
= isl_set_get_tuple_id(array
->extent
);
2599 size
= isl_pw_aff_set_tuple_id(size
, isl_dim_in
, id
);
2600 bound
= isl_pw_aff_lt_set(index
, size
);
2602 array
->extent
= isl_set_intersect(array
->extent
, bound
);
2604 if (!array
->context
|| !array
->extent
)
2605 return pet_array_free(array
);
2609 isl_pw_aff_free(size
);
2613 #ifdef HAVE_DECAYEDTYPE
2615 /* If "qt" is a decayed type, then set *decayed to true and
2616 * return the original type.
2618 static QualType
undecay(QualType qt
, bool *decayed
)
2620 const Type
*type
= qt
.getTypePtr();
2622 *decayed
= isa
<DecayedType
>(type
);
2624 qt
= cast
<DecayedType
>(type
)->getOriginalType();
2630 /* If "qt" is a decayed type, then set *decayed to true and
2631 * return the original type.
2632 * Since this version of clang does not define a DecayedType,
2633 * we cannot obtain the original type even if it had been decayed and
2634 * we set *decayed to false.
2636 static QualType
undecay(QualType qt
, bool *decayed
)
2644 /* Figure out the size of the array at position "pos" and all
2645 * subsequent positions from "qt" and update the corresponding
2646 * argument of "expr" accordingly.
2648 * The initial type (when pos is zero) may be a pointer type decayed
2649 * from an array type, if this initial type is the type of a function
2650 * argument. This only happens if the original array type has
2651 * a constant size in the outer dimension as otherwise we get
2652 * a VariableArrayType. Try and obtain this original type (if available) and
2653 * take the outer array size into account if it was marked static.
2655 __isl_give pet_expr
*PetScan::set_upper_bounds(__isl_take pet_expr
*expr
,
2656 QualType qt
, int pos
)
2658 const ArrayType
*atype
;
2660 bool decayed
= false;
2666 qt
= undecay(qt
, &decayed
);
2668 if (qt
->isPointerType()) {
2669 qt
= qt
->getPointeeType();
2670 return set_upper_bounds(expr
, qt
, pos
+ 1);
2672 if (!qt
->isArrayType())
2675 qt
= qt
->getCanonicalTypeInternal();
2676 atype
= cast
<ArrayType
>(qt
.getTypePtr());
2678 if (decayed
&& atype
->getSizeModifier() != ArrayType::Static
) {
2679 qt
= atype
->getElementType();
2680 return set_upper_bounds(expr
, qt
, pos
+ 1);
2683 if (qt
->isConstantArrayType()) {
2684 const ConstantArrayType
*ca
= cast
<ConstantArrayType
>(atype
);
2685 size
= extract_expr(ca
->getSize());
2686 expr
= pet_expr_set_arg(expr
, pos
, size
);
2687 } else if (qt
->isVariableArrayType()) {
2688 const VariableArrayType
*vla
= cast
<VariableArrayType
>(atype
);
2689 size
= extract_expr(vla
->getSizeExpr());
2690 expr
= pet_expr_set_arg(expr
, pos
, size
);
2693 qt
= atype
->getElementType();
2695 return set_upper_bounds(expr
, qt
, pos
+ 1);
2698 /* Construct a pet_expr that holds the sizes of the array represented by "id".
2699 * The returned expression is a call expression with as arguments
2700 * the sizes in each dimension. If we are unable to derive the size
2701 * in a given dimension, then the corresponding argument is set to infinity.
2702 * In fact, we initialize all arguments to infinity and then update
2703 * them if we are able to figure out the size.
2705 * The result is stored in the id_size cache so that it can be reused
2706 * if this method is called on the same array identifier later.
2707 * The result is also stored in the type_size cache in case
2708 * it gets called on a different array identifier with the same type.
2710 __isl_give pet_expr
*PetScan::get_array_size(__isl_keep isl_id
*id
)
2712 QualType qt
= pet_id_get_array_type(id
);
2714 pet_expr
*expr
, *inf
;
2715 const Type
*type
= qt
.getTypePtr();
2716 isl_maybe_pet_expr m
;
2718 m
= isl_id_to_pet_expr_try_get(id_size
, id
);
2719 if (m
.valid
< 0 || m
.valid
)
2721 if (type_size
.find(type
) != type_size
.end())
2722 return pet_expr_copy(type_size
[type
]);
2724 depth
= pet_clang_array_depth(qt
);
2725 inf
= pet_expr_new_int(isl_val_infty(ctx
));
2726 expr
= pet_expr_new_call(ctx
, "bounds", depth
);
2727 for (int i
= 0; i
< depth
; ++i
)
2728 expr
= pet_expr_set_arg(expr
, i
, pet_expr_copy(inf
));
2731 expr
= set_upper_bounds(expr
, qt
, 0);
2732 type_size
[type
] = pet_expr_copy(expr
);
2733 id_size
= isl_id_to_pet_expr_set(id_size
, isl_id_copy(id
),
2734 pet_expr_copy(expr
));
2739 /* Set the array size of the array identified by "id" to "size",
2740 * replacing any previously stored value.
2742 void PetScan::set_array_size(__isl_take isl_id
*id
, __isl_take pet_expr
*size
)
2744 id_size
= isl_id_to_pet_expr_set(id_size
, id
, size
);
2747 /* Does "expr" represent the "integer" infinity?
2749 static int is_infty(__isl_keep pet_expr
*expr
)
2754 if (pet_expr_get_type(expr
) != pet_expr_int
)
2756 v
= pet_expr_int_get_val(expr
);
2757 res
= isl_val_is_infty(v
);
2763 /* Figure out the dimensions of an array "array" and
2764 * update "array" accordingly.
2766 * We first construct a pet_expr that holds the sizes of the array
2767 * in each dimension. The resulting expression may containing
2768 * infinity values for dimension where we are unable to derive
2769 * a size expression.
2771 * The arguments of the size expression that have a value different from
2772 * infinity are then converted to an affine expression
2773 * within the context "pc" and incorporated into the size of "array".
2774 * If we are unable to convert a size expression to an affine expression or
2775 * if the size is not a (symbolic) constant,
2776 * then we leave the corresponding size of "array" untouched.
2778 struct pet_array
*PetScan::set_upper_bounds(struct pet_array
*array
,
2779 __isl_keep pet_context
*pc
)
2788 id
= isl_set_get_tuple_id(array
->extent
);
2789 expr
= get_array_size(id
);
2792 n
= pet_expr_get_n_arg(expr
);
2793 for (int i
= 0; i
< n
; ++i
) {
2797 arg
= pet_expr_get_arg(expr
, i
);
2798 if (!is_infty(arg
)) {
2801 size
= pet_expr_extract_affine(arg
, pc
);
2802 dim
= isl_pw_aff_dim(size
, isl_dim_in
);
2804 array
= pet_array_free(array
);
2805 else if (isl_pw_aff_involves_nan(size
) ||
2806 isl_pw_aff_involves_dims(size
, isl_dim_in
, 0, dim
))
2807 isl_pw_aff_free(size
);
2809 size
= isl_pw_aff_drop_dims(size
,
2810 isl_dim_in
, 0, dim
);
2811 array
= update_size(array
, i
, size
);
2816 pet_expr_free(expr
);
2821 /* Does "decl" have a definition that we can keep track of in a pet_type?
2823 static bool has_printable_definition(RecordDecl
*decl
)
2825 if (!decl
->getDeclName())
2827 return decl
->getLexicalDeclContext() == decl
->getDeclContext();
2830 /* Add all TypedefType objects that appear when dereferencing "type"
2833 static void insert_intermediate_typedefs(PetTypes
*types
, QualType type
)
2835 type
= pet_clang_base_or_typedef_type(type
);
2836 while (isa
<TypedefType
>(type
)) {
2837 const TypedefType
*tt
;
2839 tt
= cast
<TypedefType
>(type
);
2840 types
->insert(tt
->getDecl());
2841 type
= tt
->desugar();
2842 type
= pet_clang_base_or_typedef_type(type
);
2846 /* Construct and return a pet_array corresponding to the variable
2847 * represented by "id".
2848 * In particular, initialize array->extent to
2850 * { name[i_1,...,i_d] : i_1,...,i_d >= 0 }
2852 * and then call set_upper_bounds to set the upper bounds on the indices
2853 * based on the type of the variable. The upper bounds are converted
2854 * to affine expressions within the context "pc".
2856 * If the base type is that of a record with a top-level definition or
2857 * of a typedef and if "types" is not null, then the RecordDecl or
2858 * TypedefType corresponding to the type, as well as any intermediate
2859 * TypedefType, is added to "types".
2861 * If the base type is that of a record with no top-level definition,
2862 * then we replace it by "<subfield>".
2864 * If the variable is a scalar, i.e., a zero-dimensional array,
2865 * then the "const" qualifier, if any, is removed from the base type.
2866 * This makes it easier for users of pet to turn initializations
2869 struct pet_array
*PetScan::extract_array(__isl_keep isl_id
*id
,
2870 PetTypes
*types
, __isl_keep pet_context
*pc
)
2872 struct pet_array
*array
;
2873 QualType qt
= pet_id_get_array_type(id
);
2874 int depth
= pet_clang_array_depth(qt
);
2875 QualType base
= pet_clang_base_type(qt
);
2879 array
= isl_calloc_type(ctx
, struct pet_array
);
2883 space
= isl_space_set_alloc(ctx
, 0, depth
);
2884 space
= isl_space_set_tuple_id(space
, isl_dim_set
, isl_id_copy(id
));
2886 array
->extent
= isl_set_nat_universe(space
);
2888 space
= isl_space_params_alloc(ctx
, 0);
2889 array
->context
= isl_set_universe(space
);
2891 array
= set_upper_bounds(array
, pc
);
2896 base
.removeLocalConst();
2897 name
= base
.getAsString();
2900 insert_intermediate_typedefs(types
, qt
);
2901 if (isa
<TypedefType
>(base
)) {
2902 types
->insert(cast
<TypedefType
>(base
)->getDecl());
2903 } else if (base
->isRecordType()) {
2904 RecordDecl
*decl
= pet_clang_record_decl(base
);
2905 TypedefNameDecl
*typedecl
;
2906 typedecl
= decl
->getTypedefNameForAnonDecl();
2908 types
->insert(typedecl
);
2909 else if (has_printable_definition(decl
))
2910 types
->insert(decl
);
2912 name
= "<subfield>";
2916 array
->element_type
= strdup(name
.c_str());
2917 array
->element_is_record
= base
->isRecordType();
2918 array
->element_size
= size_in_bytes(ast_context
, base
);
2923 /* Construct and return a pet_array corresponding to the variable "decl".
2925 struct pet_array
*PetScan::extract_array(ValueDecl
*decl
,
2926 PetTypes
*types
, __isl_keep pet_context
*pc
)
2931 id
= pet_id_from_decl(ctx
, decl
);
2932 array
= extract_array(id
, types
, pc
);
2938 /* Construct and return a pet_array corresponding to the sequence
2939 * of declarations represented by "decls".
2940 * The upper bounds of the array are converted to affine expressions
2941 * within the context "pc".
2942 * If the sequence contains a single declaration, then it corresponds
2943 * to a simple array access. Otherwise, it corresponds to a member access,
2944 * with the declaration for the substructure following that of the containing
2945 * structure in the sequence of declarations.
2946 * We start with the outermost substructure and then combine it with
2947 * information from the inner structures.
2949 * Additionally, keep track of all required types in "types".
2951 struct pet_array
*PetScan::extract_array(__isl_keep isl_id_list
*decls
,
2952 PetTypes
*types
, __isl_keep pet_context
*pc
)
2956 struct pet_array
*array
;
2958 id
= isl_id_list_get_id(decls
, 0);
2959 array
= extract_array(id
, types
, pc
);
2962 n
= isl_id_list_n_id(decls
);
2963 for (i
= 1; i
< n
; ++i
) {
2964 struct pet_array
*parent
;
2965 const char *base_name
, *field_name
;
2969 id
= isl_id_list_get_id(decls
, i
);
2970 array
= extract_array(id
, types
, pc
);
2973 return pet_array_free(parent
);
2975 base_name
= isl_set_get_tuple_name(parent
->extent
);
2976 field_name
= isl_set_get_tuple_name(array
->extent
);
2977 product_name
= pet_array_member_access_name(ctx
,
2978 base_name
, field_name
);
2980 array
->extent
= isl_set_product(isl_set_copy(parent
->extent
),
2983 array
->extent
= isl_set_set_tuple_name(array
->extent
,
2985 array
->context
= isl_set_intersect(array
->context
,
2986 isl_set_copy(parent
->context
));
2988 pet_array_free(parent
);
2991 if (!array
->extent
|| !array
->context
|| !product_name
)
2992 return pet_array_free(array
);
2998 static struct pet_scop
*add_type(isl_ctx
*ctx
, struct pet_scop
*scop
,
2999 RecordDecl
*decl
, Preprocessor
&PP
, PetTypes
&types
,
3000 std::set
<TypeDecl
*> &types_done
);
3001 static struct pet_scop
*add_type(isl_ctx
*ctx
, struct pet_scop
*scop
,
3002 TypedefNameDecl
*decl
, Preprocessor
&PP
, PetTypes
&types
,
3003 std::set
<TypeDecl
*> &types_done
);
3005 /* For each of the fields of "decl" that is itself a record type
3006 * or a typedef, or an array of such type, add a corresponding pet_type
3009 static struct pet_scop
*add_field_types(isl_ctx
*ctx
, struct pet_scop
*scop
,
3010 RecordDecl
*decl
, Preprocessor
&PP
, PetTypes
&types
,
3011 std::set
<TypeDecl
*> &types_done
)
3013 RecordDecl::field_iterator it
;
3015 for (it
= decl
->field_begin(); it
!= decl
->field_end(); ++it
) {
3016 QualType type
= it
->getType();
3018 type
= pet_clang_base_or_typedef_type(type
);
3019 if (isa
<TypedefType
>(type
)) {
3020 TypedefNameDecl
*typedefdecl
;
3022 typedefdecl
= cast
<TypedefType
>(type
)->getDecl();
3023 scop
= add_type(ctx
, scop
, typedefdecl
,
3024 PP
, types
, types_done
);
3025 } else if (type
->isRecordType()) {
3028 record
= pet_clang_record_decl(type
);
3029 scop
= add_type(ctx
, scop
, record
,
3030 PP
, types
, types_done
);
3037 /* Add a pet_type corresponding to "decl" to "scop", provided
3038 * it is a member of types.records and it has not been added before
3039 * (i.e., it is not a member of "types_done").
3041 * Since we want the user to be able to print the types
3042 * in the order in which they appear in the scop, we need to
3043 * make sure that types of fields in a structure appear before
3044 * that structure. We therefore call ourselves recursively
3045 * through add_field_types on the types of all record subfields.
3047 static struct pet_scop
*add_type(isl_ctx
*ctx
, struct pet_scop
*scop
,
3048 RecordDecl
*decl
, Preprocessor
&PP
, PetTypes
&types
,
3049 std::set
<TypeDecl
*> &types_done
)
3052 llvm::raw_string_ostream
S(s
);
3054 if (types
.records
.find(decl
) == types
.records
.end())
3056 if (types_done
.find(decl
) != types_done
.end())
3059 add_field_types(ctx
, scop
, decl
, PP
, types
, types_done
);
3061 if (strlen(decl
->getName().str().c_str()) == 0)
3064 decl
->print(S
, PrintingPolicy(PP
.getLangOpts()));
3067 scop
->types
[scop
->n_type
] = pet_type_alloc(ctx
,
3068 decl
->getName().str().c_str(), s
.c_str());
3069 if (!scop
->types
[scop
->n_type
])
3070 return pet_scop_free(scop
);
3072 types_done
.insert(decl
);
3079 /* Add a pet_type corresponding to "decl" to "scop", provided
3080 * it is a member of types.typedefs and it has not been added before
3081 * (i.e., it is not a member of "types_done").
3083 * If the underlying type is a structure, then we print the typedef
3084 * ourselves since clang does not print the definition of the structure
3085 * in the typedef. We also make sure in this case that the types of
3086 * the fields in the structure are added first.
3087 * Since the definition of the structure also gets printed this way,
3088 * add it to types_done such that it will not be printed again,
3089 * not even without the typedef.
3091 static struct pet_scop
*add_type(isl_ctx
*ctx
, struct pet_scop
*scop
,
3092 TypedefNameDecl
*decl
, Preprocessor
&PP
, PetTypes
&types
,
3093 std::set
<TypeDecl
*> &types_done
)
3096 llvm::raw_string_ostream
S(s
);
3097 QualType qt
= decl
->getUnderlyingType();
3099 if (types
.typedefs
.find(decl
) == types
.typedefs
.end())
3101 if (types_done
.find(decl
) != types_done
.end())
3104 if (qt
->isRecordType()) {
3105 RecordDecl
*rec
= pet_clang_record_decl(qt
);
3107 add_field_types(ctx
, scop
, rec
, PP
, types
, types_done
);
3109 rec
->print(S
, PrintingPolicy(PP
.getLangOpts()));
3111 S
<< decl
->getName();
3112 types_done
.insert(rec
);
3114 decl
->print(S
, PrintingPolicy(PP
.getLangOpts()));
3118 scop
->types
[scop
->n_type
] = pet_type_alloc(ctx
,
3119 decl
->getName().str().c_str(), s
.c_str());
3120 if (!scop
->types
[scop
->n_type
])
3121 return pet_scop_free(scop
);
3123 types_done
.insert(decl
);
3130 /* Construct a list of pet_arrays, one for each array (or scalar)
3131 * accessed inside "scop", add this list to "scop" and return the result.
3132 * The upper bounds of the arrays are converted to affine expressions
3133 * within the context "pc".
3135 * The context of "scop" is updated with the intersection of
3136 * the contexts of all arrays, i.e., constraints on the parameters
3137 * that ensure that the arrays have a valid (non-negative) size.
3139 * If any of the extracted arrays refers to a member access or
3140 * has a typedef'd type as base type,
3141 * then also add the required types to "scop".
3142 * The typedef types are printed first because their definitions
3143 * may include the definition of a struct and these struct definitions
3144 * should not be printed separately. While the typedef definition
3145 * is being printed, the struct is marked as having been printed as well,
3146 * such that the later printing of the struct by itself can be prevented.
3148 struct pet_scop
*PetScan::scan_arrays(struct pet_scop
*scop
,
3149 __isl_keep pet_context
*pc
)
3152 array_desc_set arrays
;
3153 array_desc_set::iterator it
;
3155 std::set
<TypeDecl
*> types_done
;
3156 std::set
<clang::RecordDecl
*, less_name
>::iterator records_it
;
3157 std::set
<clang::TypedefNameDecl
*, less_name
>::iterator typedefs_it
;
3159 struct pet_array
**scop_arrays
;
3164 pet_scop_collect_arrays(scop
, arrays
);
3165 if (arrays
.size() == 0)
3168 n_array
= scop
->n_array
;
3170 scop_arrays
= isl_realloc_array(ctx
, scop
->arrays
, struct pet_array
*,
3171 n_array
+ arrays
.size());
3174 scop
->arrays
= scop_arrays
;
3176 for (it
= arrays
.begin(), i
= 0; it
!= arrays
.end(); ++it
, ++i
) {
3177 struct pet_array
*array
;
3178 array
= extract_array(*it
, &types
, pc
);
3179 scop
->arrays
[n_array
+ i
] = array
;
3180 if (!scop
->arrays
[n_array
+ i
])
3183 scop
->context
= isl_set_intersect(scop
->context
,
3184 isl_set_copy(array
->context
));
3189 n
= types
.records
.size() + types
.typedefs
.size();
3193 scop
->types
= isl_alloc_array(ctx
, struct pet_type
*, n
);
3197 for (typedefs_it
= types
.typedefs
.begin();
3198 typedefs_it
!= types
.typedefs
.end(); ++typedefs_it
)
3199 scop
= add_type(ctx
, scop
, *typedefs_it
, PP
, types
, types_done
);
3201 for (records_it
= types
.records
.begin();
3202 records_it
!= types
.records
.end(); ++records_it
)
3203 scop
= add_type(ctx
, scop
, *records_it
, PP
, types
, types_done
);
3207 pet_scop_free(scop
);
3211 /* Bound all parameters in scop->context to the possible values
3212 * of the corresponding C variable.
3214 static struct pet_scop
*add_parameter_bounds(struct pet_scop
*scop
)
3221 n
= isl_set_dim(scop
->context
, isl_dim_param
);
3222 for (int i
= 0; i
< n
; ++i
) {
3226 id
= isl_set_get_dim_id(scop
->context
, isl_dim_param
, i
);
3227 if (pet_nested_in_id(id
)) {
3229 isl_die(isl_set_get_ctx(scop
->context
),
3231 "unresolved nested parameter", goto error
);
3233 decl
= pet_id_get_decl(id
);
3236 scop
->context
= set_parameter_bounds(scop
->context
, i
, decl
);
3244 pet_scop_free(scop
);
3248 /* Construct a pet_scop from the given function.
3250 * If the scop was delimited by scop and endscop pragmas, then we override
3251 * the file offsets by those derived from the pragmas.
3253 struct pet_scop
*PetScan::scan(FunctionDecl
*fd
)
3258 stmt
= fd
->getBody();
3260 if (options
->autodetect
) {
3261 set_current_stmt(stmt
);
3262 scop
= extract_scop(extract(stmt
, true));
3264 current_line
= loc
.start_line
;
3266 scop
= pet_scop_update_start_end(scop
, loc
.start
, loc
.end
);
3268 scop
= add_parameter_bounds(scop
);
3269 scop
= pet_scop_gist(scop
, value_bounds
);
3274 /* Update this->last_line and this->current_line based on the fact
3275 * that we are about to consider "stmt".
3277 void PetScan::set_current_stmt(Stmt
*stmt
)
3279 SourceLocation loc
= stmt
->getLocStart();
3280 SourceManager
&SM
= PP
.getSourceManager();
3282 last_line
= current_line
;
3283 current_line
= SM
.getExpansionLineNumber(loc
);
3286 /* Is the current statement marked by an independent pragma?
3287 * That is, is there an independent pragma on a line between
3288 * the line of the current statement and the line of the previous statement.
3289 * The search is not implemented very efficiently. We currently
3290 * assume that there are only a few independent pragmas, if any.
3292 bool PetScan::is_current_stmt_marked_independent()
3294 for (unsigned i
= 0; i
< independent
.size(); ++i
) {
3295 unsigned line
= independent
[i
].line
;
3297 if (last_line
< line
&& line
< current_line
)