2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012-2015 Ecole Normale Superieure. All rights reserved.
4 * Copyright 2015 Sven Verdoolaege. All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
19 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
22 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
23 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
24 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
25 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 * The views and conclusions contained in the software and documentation
31 * are those of the authors and should not be interpreted as
32 * representing official policies, either expressed or implied, of
43 #include <llvm/Support/raw_ostream.h>
44 #include <clang/AST/ASTContext.h>
45 #include <clang/AST/ASTDiagnostic.h>
46 #include <clang/AST/Attr.h>
47 #include <clang/AST/Expr.h>
48 #include <clang/AST/RecursiveASTVisitor.h>
51 #include <isl/space.h>
54 #include <isl/union_set.h>
67 #include "scop_plus.h"
68 #include "substituter.h"
70 #include "tree2scop.h"
73 using namespace clang
;
75 static enum pet_op_type
UnaryOperatorKind2pet_op_type(UnaryOperatorKind kind
)
85 return pet_op_post_inc
;
87 return pet_op_post_dec
;
89 return pet_op_pre_inc
;
91 return pet_op_pre_dec
;
97 static enum pet_op_type
BinaryOperatorKind2pet_op_type(BinaryOperatorKind kind
)
101 return pet_op_add_assign
;
103 return pet_op_sub_assign
;
105 return pet_op_mul_assign
;
107 return pet_op_div_assign
;
109 return pet_op_assign
;
151 #if defined(DECLREFEXPR_CREATE_REQUIRES_BOOL)
152 static DeclRefExpr
*create_DeclRefExpr(VarDecl
*var
)
154 return DeclRefExpr::Create(var
->getASTContext(), var
->getQualifierLoc(),
155 SourceLocation(), var
, false, var
->getInnerLocStart(),
156 var
->getType(), VK_LValue
);
158 #elif defined(DECLREFEXPR_CREATE_REQUIRES_SOURCELOCATION)
159 static DeclRefExpr
*create_DeclRefExpr(VarDecl
*var
)
161 return DeclRefExpr::Create(var
->getASTContext(), var
->getQualifierLoc(),
162 SourceLocation(), var
, var
->getInnerLocStart(), var
->getType(),
166 static DeclRefExpr
*create_DeclRefExpr(VarDecl
*var
)
168 return DeclRefExpr::Create(var
->getASTContext(), var
->getQualifierLoc(),
169 var
, var
->getInnerLocStart(), var
->getType(), VK_LValue
);
173 #ifdef GETTYPEINFORETURNSTYPEINFO
175 static int size_in_bytes(ASTContext
&context
, QualType type
)
177 return context
.getTypeInfo(type
).Width
/ 8;
182 static int size_in_bytes(ASTContext
&context
, QualType type
)
184 return context
.getTypeInfo(type
).first
/ 8;
189 /* Check if the element type corresponding to the given array type
190 * has a const qualifier.
192 static bool const_base(QualType qt
)
194 const Type
*type
= qt
.getTypePtr();
196 if (type
->isPointerType())
197 return const_base(type
->getPointeeType());
198 if (type
->isArrayType()) {
199 const ArrayType
*atype
;
200 type
= type
->getCanonicalTypeInternal().getTypePtr();
201 atype
= cast
<ArrayType
>(type
);
202 return const_base(atype
->getElementType());
205 return qt
.isConstQualified();
210 std::map
<const Type
*, pet_expr
*>::iterator it
;
211 std::map
<FunctionDecl
*, pet_function_summary
*>::iterator it_s
;
213 for (it
= type_size
.begin(); it
!= type_size
.end(); ++it
)
214 pet_expr_free(it
->second
);
215 for (it_s
= summary_cache
.begin(); it_s
!= summary_cache
.end(); ++it_s
)
216 pet_function_summary_free(it_s
->second
);
218 isl_union_map_free(value_bounds
);
221 /* Report a diagnostic on the range "range", unless autodetect is set.
223 void PetScan::report(SourceRange range
, unsigned id
)
225 if (options
->autodetect
)
228 SourceLocation loc
= range
.getBegin();
229 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
230 DiagnosticBuilder B
= diag
.Report(loc
, id
) << range
;
233 /* Report a diagnostic on "stmt", unless autodetect is set.
235 void PetScan::report(Stmt
*stmt
, unsigned id
)
237 report(stmt
->getSourceRange(), id
);
240 /* Report a diagnostic on "decl", unless autodetect is set.
242 void PetScan::report(Decl
*decl
, unsigned id
)
244 report(decl
->getSourceRange(), id
);
247 /* Called if we found something we (currently) cannot handle.
248 * We'll provide more informative warnings later.
250 * We only actually complain if autodetect is false.
252 void PetScan::unsupported(Stmt
*stmt
)
254 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
255 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
260 /* Report an unsupported unary operator, unless autodetect is set.
262 void PetScan::report_unsupported_unary_operator(Stmt
*stmt
)
264 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
265 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
266 "this type of unary operator is not supported");
270 /* Report an unsupported statement type, unless autodetect is set.
272 void PetScan::report_unsupported_statement_type(Stmt
*stmt
)
274 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
275 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
276 "this type of statement is not supported");
280 /* Report a missing prototype, unless autodetect is set.
282 void PetScan::report_prototype_required(Stmt
*stmt
)
284 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
285 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
286 "prototype required");
290 /* Report a missing increment, unless autodetect is set.
292 void PetScan::report_missing_increment(Stmt
*stmt
)
294 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
295 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
296 "missing increment");
300 /* Report a missing summary function, unless autodetect is set.
302 void PetScan::report_missing_summary_function(Stmt
*stmt
)
304 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
305 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
306 "missing summary function");
310 /* Report a missing summary function body, unless autodetect is set.
312 void PetScan::report_missing_summary_function_body(Stmt
*stmt
)
314 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
315 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
316 "missing summary function body");
320 /* Report an unsupported argument in a call to an inlined function,
321 * unless autodetect is set.
323 void PetScan::report_unsupported_inline_function_argument(Stmt
*stmt
)
325 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
326 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
327 "unsupported inline function call argument");
331 /* Report an unsupported type of declaration, unless autodetect is set.
333 void PetScan::report_unsupported_declaration(Decl
*decl
)
335 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
336 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
337 "unsupported declaration");
341 /* Extract an integer from "val", which is assumed to be non-negative.
343 static __isl_give isl_val
*extract_unsigned(isl_ctx
*ctx
,
344 const llvm::APInt
&val
)
347 const uint64_t *data
;
349 data
= val
.getRawData();
350 n
= val
.getNumWords();
351 return isl_val_int_from_chunks(ctx
, n
, sizeof(uint64_t), data
);
354 /* Extract an integer from "val". If "is_signed" is set, then "val"
355 * is signed. Otherwise it it unsigned.
357 static __isl_give isl_val
*extract_int(isl_ctx
*ctx
, bool is_signed
,
360 int is_negative
= is_signed
&& val
.isNegative();
366 v
= extract_unsigned(ctx
, val
);
373 /* Extract an integer from "expr".
375 __isl_give isl_val
*PetScan::extract_int(isl_ctx
*ctx
, IntegerLiteral
*expr
)
377 const Type
*type
= expr
->getType().getTypePtr();
378 bool is_signed
= type
->hasSignedIntegerRepresentation();
380 return ::extract_int(ctx
, is_signed
, expr
->getValue());
383 /* Extract an integer from "expr".
384 * Return NULL if "expr" does not (obviously) represent an integer.
386 __isl_give isl_val
*PetScan::extract_int(clang::ParenExpr
*expr
)
388 return extract_int(expr
->getSubExpr());
391 /* Extract an integer from "expr".
392 * Return NULL if "expr" does not (obviously) represent an integer.
394 __isl_give isl_val
*PetScan::extract_int(clang::Expr
*expr
)
396 if (expr
->getStmtClass() == Stmt::IntegerLiteralClass
)
397 return extract_int(ctx
, cast
<IntegerLiteral
>(expr
));
398 if (expr
->getStmtClass() == Stmt::ParenExprClass
)
399 return extract_int(cast
<ParenExpr
>(expr
));
405 /* Extract a pet_expr from the APInt "val", which is assumed
406 * to be non-negative.
408 __isl_give pet_expr
*PetScan::extract_expr(const llvm::APInt
&val
)
410 return pet_expr_new_int(extract_unsigned(ctx
, val
));
413 /* Return the number of bits needed to represent the type of "decl",
414 * if it is an integer type. Otherwise return 0.
415 * If qt is signed then return the opposite of the number of bits.
417 static int get_type_size(ValueDecl
*decl
)
419 return pet_clang_get_type_size(decl
->getType(), decl
->getASTContext());
422 /* Bound parameter "pos" of "set" to the possible values of "decl".
424 static __isl_give isl_set
*set_parameter_bounds(__isl_take isl_set
*set
,
425 unsigned pos
, ValueDecl
*decl
)
431 ctx
= isl_set_get_ctx(set
);
432 type_size
= get_type_size(decl
);
434 isl_die(ctx
, isl_error_invalid
, "not an integer type",
435 return isl_set_free(set
));
437 set
= isl_set_lower_bound_si(set
, isl_dim_param
, pos
, 0);
438 bound
= isl_val_int_from_ui(ctx
, type_size
);
439 bound
= isl_val_2exp(bound
);
440 bound
= isl_val_sub_ui(bound
, 1);
441 set
= isl_set_upper_bound_val(set
, isl_dim_param
, pos
, bound
);
443 bound
= isl_val_int_from_ui(ctx
, -type_size
- 1);
444 bound
= isl_val_2exp(bound
);
445 bound
= isl_val_sub_ui(bound
, 1);
446 set
= isl_set_upper_bound_val(set
, isl_dim_param
, pos
,
447 isl_val_copy(bound
));
448 bound
= isl_val_neg(bound
);
449 bound
= isl_val_sub_ui(bound
, 1);
450 set
= isl_set_lower_bound_val(set
, isl_dim_param
, pos
, bound
);
456 __isl_give pet_expr
*PetScan::extract_index_expr(ImplicitCastExpr
*expr
)
458 return extract_index_expr(expr
->getSubExpr());
461 /* Return the depth of an array of the given type.
463 static int array_depth(const Type
*type
)
465 if (type
->isPointerType())
466 return 1 + array_depth(type
->getPointeeType().getTypePtr());
467 if (type
->isArrayType()) {
468 const ArrayType
*atype
;
469 type
= type
->getCanonicalTypeInternal().getTypePtr();
470 atype
= cast
<ArrayType
>(type
);
471 return 1 + array_depth(atype
->getElementType().getTypePtr());
476 /* Return the depth of the array accessed by the index expression "index".
477 * If "index" is an affine expression, i.e., if it does not access
478 * any array, then return 1.
479 * If "index" represent a member access, i.e., if its range is a wrapped
480 * relation, then return the sum of the depth of the array of structures
481 * and that of the member inside the structure.
483 static int extract_depth(__isl_keep isl_multi_pw_aff
*index
)
491 if (isl_multi_pw_aff_range_is_wrapping(index
)) {
492 int domain_depth
, range_depth
;
493 isl_multi_pw_aff
*domain
, *range
;
495 domain
= isl_multi_pw_aff_copy(index
);
496 domain
= isl_multi_pw_aff_range_factor_domain(domain
);
497 domain_depth
= extract_depth(domain
);
498 isl_multi_pw_aff_free(domain
);
499 range
= isl_multi_pw_aff_copy(index
);
500 range
= isl_multi_pw_aff_range_factor_range(range
);
501 range_depth
= extract_depth(range
);
502 isl_multi_pw_aff_free(range
);
504 return domain_depth
+ range_depth
;
507 if (!isl_multi_pw_aff_has_tuple_id(index
, isl_dim_out
))
510 id
= isl_multi_pw_aff_get_tuple_id(index
, isl_dim_out
);
513 decl
= pet_id_get_decl(id
);
516 return array_depth(decl
->getType().getTypePtr());
519 /* Return the depth of the array accessed by the access expression "expr".
521 static int extract_depth(__isl_keep pet_expr
*expr
)
523 isl_multi_pw_aff
*index
;
526 index
= pet_expr_access_get_index(expr
);
527 depth
= extract_depth(index
);
528 isl_multi_pw_aff_free(index
);
533 /* Construct a pet_expr representing an index expression for an access
534 * to the variable referenced by "expr".
536 * If "expr" references an enum constant, then return an integer expression
537 * instead, representing the value of the enum constant.
539 __isl_give pet_expr
*PetScan::extract_index_expr(DeclRefExpr
*expr
)
541 return extract_index_expr(expr
->getDecl());
544 /* Construct a pet_expr representing an index expression for an access
545 * to the variable "decl".
547 * If "decl" is an enum constant, then we return an integer expression
548 * instead, representing the value of the enum constant.
550 __isl_give pet_expr
*PetScan::extract_index_expr(ValueDecl
*decl
)
554 if (isa
<EnumConstantDecl
>(decl
))
555 return extract_expr(cast
<EnumConstantDecl
>(decl
));
557 id
= pet_id_from_decl(ctx
, decl
);
558 return pet_id_create_index_expr(id
);
561 /* Construct a pet_expr representing the index expression "expr"
562 * Return NULL on error.
564 * If "expr" is a reference to an enum constant, then return
565 * an integer expression instead, representing the value of the enum constant.
567 __isl_give pet_expr
*PetScan::extract_index_expr(Expr
*expr
)
569 switch (expr
->getStmtClass()) {
570 case Stmt::ImplicitCastExprClass
:
571 return extract_index_expr(cast
<ImplicitCastExpr
>(expr
));
572 case Stmt::DeclRefExprClass
:
573 return extract_index_expr(cast
<DeclRefExpr
>(expr
));
574 case Stmt::ArraySubscriptExprClass
:
575 return extract_index_expr(cast
<ArraySubscriptExpr
>(expr
));
576 case Stmt::IntegerLiteralClass
:
577 return extract_expr(cast
<IntegerLiteral
>(expr
));
578 case Stmt::MemberExprClass
:
579 return extract_index_expr(cast
<MemberExpr
>(expr
));
586 /* Extract an index expression from the given array subscript expression.
588 * We first extract an index expression from the base.
589 * This will result in an index expression with a range that corresponds
590 * to the earlier indices.
591 * We then extract the current index and let
592 * pet_expr_access_subscript combine the two.
594 __isl_give pet_expr
*PetScan::extract_index_expr(ArraySubscriptExpr
*expr
)
596 Expr
*base
= expr
->getBase();
597 Expr
*idx
= expr
->getIdx();
601 base_expr
= extract_index_expr(base
);
602 index
= extract_expr(idx
);
604 base_expr
= pet_expr_access_subscript(base_expr
, index
);
609 /* Extract an index expression from a member expression.
611 * If the base access (to the structure containing the member)
616 * and the member is called "f", then the member access is of
621 * If the member access is to an anonymous struct, then simply return
625 * If the member access in the source code is of the form
629 * then it is treated as
633 __isl_give pet_expr
*PetScan::extract_index_expr(MemberExpr
*expr
)
635 Expr
*base
= expr
->getBase();
636 FieldDecl
*field
= cast
<FieldDecl
>(expr
->getMemberDecl());
637 pet_expr
*base_index
;
640 base_index
= extract_index_expr(base
);
642 if (expr
->isArrow()) {
643 pet_expr
*index
= pet_expr_new_int(isl_val_zero(ctx
));
644 base_index
= pet_expr_access_subscript(base_index
, index
);
647 if (field
->isAnonymousStructOrUnion())
650 id
= pet_id_from_decl(ctx
, field
);
652 return pet_expr_access_member(base_index
, id
);
655 /* Mark the given access pet_expr as a write.
657 static __isl_give pet_expr
*mark_write(__isl_take pet_expr
*access
)
659 access
= pet_expr_access_set_write(access
, 1);
660 access
= pet_expr_access_set_read(access
, 0);
665 /* Mark the given (read) access pet_expr as also possibly being written.
666 * That is, initialize the may write access relation from the may read relation
667 * and initialize the must write access relation to the empty relation.
669 static __isl_give pet_expr
*mark_may_write(__isl_take pet_expr
*expr
)
671 isl_union_map
*access
;
672 isl_union_map
*empty
;
674 access
= pet_expr_access_get_dependent_access(expr
,
675 pet_expr_access_may_read
);
676 empty
= isl_union_map_empty(isl_union_map_get_space(access
));
677 expr
= pet_expr_access_set_access(expr
, pet_expr_access_may_write
,
679 expr
= pet_expr_access_set_access(expr
, pet_expr_access_must_write
,
685 /* Construct a pet_expr representing a unary operator expression.
687 __isl_give pet_expr
*PetScan::extract_expr(UnaryOperator
*expr
)
693 op
= UnaryOperatorKind2pet_op_type(expr
->getOpcode());
694 if (op
== pet_op_last
) {
695 report_unsupported_unary_operator(expr
);
699 arg
= extract_expr(expr
->getSubExpr());
701 if (expr
->isIncrementDecrementOp() &&
702 pet_expr_get_type(arg
) == pet_expr_access
) {
703 arg
= mark_write(arg
);
704 arg
= pet_expr_access_set_read(arg
, 1);
707 type_size
= pet_clang_get_type_size(expr
->getType(), ast_context
);
708 return pet_expr_new_unary(type_size
, op
, arg
);
711 /* Construct a pet_expr representing a binary operator expression.
713 * If the top level operator is an assignment and the LHS is an access,
714 * then we mark that access as a write. If the operator is a compound
715 * assignment, the access is marked as both a read and a write.
717 __isl_give pet_expr
*PetScan::extract_expr(BinaryOperator
*expr
)
723 op
= BinaryOperatorKind2pet_op_type(expr
->getOpcode());
724 if (op
== pet_op_last
) {
729 lhs
= extract_expr(expr
->getLHS());
730 rhs
= extract_expr(expr
->getRHS());
732 if (expr
->isAssignmentOp() &&
733 pet_expr_get_type(lhs
) == pet_expr_access
) {
734 lhs
= mark_write(lhs
);
735 if (expr
->isCompoundAssignmentOp())
736 lhs
= pet_expr_access_set_read(lhs
, 1);
739 type_size
= pet_clang_get_type_size(expr
->getType(), ast_context
);
740 return pet_expr_new_binary(type_size
, op
, lhs
, rhs
);
743 /* Construct a pet_tree for a variable declaration and
744 * add the declaration to the list of declarations
745 * inside the current compound statement.
747 __isl_give pet_tree
*PetScan::extract(Decl
*decl
)
753 if (!isa
<VarDecl
>(decl
)) {
754 report_unsupported_declaration(decl
);
758 vd
= cast
<VarDecl
>(decl
);
759 declarations
.push_back(vd
);
761 lhs
= extract_access_expr(vd
);
762 lhs
= mark_write(lhs
);
764 tree
= pet_tree_new_decl(lhs
);
766 rhs
= extract_expr(vd
->getInit());
767 tree
= pet_tree_new_decl_init(lhs
, rhs
);
773 /* Construct a pet_tree for a variable declaration statement.
774 * If the declaration statement declares multiple variables,
775 * then return a group of pet_trees, one for each declared variable.
777 __isl_give pet_tree
*PetScan::extract(DeclStmt
*stmt
)
782 if (!stmt
->isSingleDecl()) {
783 const DeclGroup
&group
= stmt
->getDeclGroup().getDeclGroup();
785 tree
= pet_tree_new_block(ctx
, 0, n
);
787 for (unsigned i
= 0; i
< n
; ++i
) {
791 tree_i
= extract(group
[i
]);
792 loc
= construct_pet_loc(group
[i
]->getSourceRange(),
794 tree_i
= pet_tree_set_loc(tree_i
, loc
);
795 tree
= pet_tree_block_add_child(tree
, tree_i
);
801 return extract(stmt
->getSingleDecl());
804 /* Construct a pet_expr representing a conditional operation.
806 __isl_give pet_expr
*PetScan::extract_expr(ConditionalOperator
*expr
)
808 pet_expr
*cond
, *lhs
, *rhs
;
810 cond
= extract_expr(expr
->getCond());
811 lhs
= extract_expr(expr
->getTrueExpr());
812 rhs
= extract_expr(expr
->getFalseExpr());
814 return pet_expr_new_ternary(cond
, lhs
, rhs
);
817 __isl_give pet_expr
*PetScan::extract_expr(ImplicitCastExpr
*expr
)
819 return extract_expr(expr
->getSubExpr());
822 /* Construct a pet_expr representing a floating point value.
824 * If the floating point literal does not appear in a macro,
825 * then we use the original representation in the source code
826 * as the string representation. Otherwise, we use the pretty
827 * printer to produce a string representation.
829 __isl_give pet_expr
*PetScan::extract_expr(FloatingLiteral
*expr
)
833 const LangOptions
&LO
= PP
.getLangOpts();
834 SourceLocation loc
= expr
->getLocation();
836 if (!loc
.isMacroID()) {
837 SourceManager
&SM
= PP
.getSourceManager();
838 unsigned len
= Lexer::MeasureTokenLength(loc
, SM
, LO
);
839 s
= string(SM
.getCharacterData(loc
), len
);
841 llvm::raw_string_ostream
S(s
);
842 expr
->printPretty(S
, 0, PrintingPolicy(LO
));
845 d
= expr
->getValueAsApproximateDouble();
846 return pet_expr_new_double(ctx
, d
, s
.c_str());
849 /* Convert the index expression "index" into an access pet_expr of type "qt".
851 __isl_give pet_expr
*PetScan::extract_access_expr(QualType qt
,
852 __isl_take pet_expr
*index
)
857 depth
= extract_depth(index
);
858 type_size
= pet_clang_get_type_size(qt
, ast_context
);
860 index
= pet_expr_set_type_size(index
, type_size
);
861 index
= pet_expr_access_set_depth(index
, depth
);
866 /* Extract an index expression from "expr" and then convert it into
867 * an access pet_expr.
869 * If "expr" is a reference to an enum constant, then return
870 * an integer expression instead, representing the value of the enum constant.
872 __isl_give pet_expr
*PetScan::extract_access_expr(Expr
*expr
)
876 index
= extract_index_expr(expr
);
878 if (pet_expr_get_type(index
) == pet_expr_int
)
881 return extract_access_expr(expr
->getType(), index
);
884 /* Extract an index expression from "decl" and then convert it into
885 * an access pet_expr.
887 __isl_give pet_expr
*PetScan::extract_access_expr(ValueDecl
*decl
)
889 return extract_access_expr(decl
->getType(), extract_index_expr(decl
));
892 __isl_give pet_expr
*PetScan::extract_expr(ParenExpr
*expr
)
894 return extract_expr(expr
->getSubExpr());
897 /* Extract an assume statement from the argument "expr"
898 * of a __pencil_assume statement.
900 __isl_give pet_expr
*PetScan::extract_assume(Expr
*expr
)
902 return pet_expr_new_unary(0, pet_op_assume
, extract_expr(expr
));
905 /* If "expr" is an address-of operator, then return its argument.
906 * Otherwise, return NULL.
908 static Expr
*extract_addr_of_arg(Expr
*expr
)
912 if (expr
->getStmtClass() != Stmt::UnaryOperatorClass
)
914 op
= cast
<UnaryOperator
>(expr
);
915 if (op
->getOpcode() != UO_AddrOf
)
917 return op
->getSubExpr();
920 /* Construct a pet_expr corresponding to the function call argument "expr".
921 * The argument appears in position "pos" of a call to function "fd".
923 * If we are passing along a pointer to an array element
924 * or an entire row or even higher dimensional slice of an array,
925 * then the function being called may write into the array.
927 * We assume here that if the function is declared to take a pointer
928 * to a const type, then the function may only perform a read
929 * and that otherwise, it may either perform a read or a write (or both).
930 * We only perform this check if "detect_writes" is set.
932 __isl_give pet_expr
*PetScan::extract_argument(FunctionDecl
*fd
, int pos
,
933 Expr
*expr
, bool detect_writes
)
937 int is_addr
= 0, is_partial
= 0;
939 expr
= pet_clang_strip_casts(expr
);
940 arg
= extract_addr_of_arg(expr
);
945 res
= extract_expr(expr
);
948 if (array_depth(expr
->getType().getTypePtr()) > 0)
950 if (detect_writes
&& (is_addr
|| is_partial
) &&
951 pet_expr_get_type(res
) == pet_expr_access
) {
953 if (!fd
->hasPrototype()) {
954 report_prototype_required(expr
);
955 return pet_expr_free(res
);
957 parm
= fd
->getParamDecl(pos
);
958 if (!const_base(parm
->getType()))
959 res
= mark_may_write(res
);
963 res
= pet_expr_new_unary(0, pet_op_address_of
, res
);
967 /* Find the first FunctionDecl with the given name.
968 * "call" is the corresponding call expression and is only used
969 * for reporting errors.
971 * Return NULL on error.
973 FunctionDecl
*PetScan::find_decl_from_name(CallExpr
*call
, string name
)
975 TranslationUnitDecl
*tu
= ast_context
.getTranslationUnitDecl();
976 DeclContext::decl_iterator begin
= tu
->decls_begin();
977 DeclContext::decl_iterator end
= tu
->decls_end();
978 for (DeclContext::decl_iterator i
= begin
; i
!= end
; ++i
) {
979 FunctionDecl
*fd
= dyn_cast
<FunctionDecl
>(*i
);
982 if (fd
->getName().str().compare(name
) != 0)
986 report_missing_summary_function_body(call
);
989 report_missing_summary_function(call
);
993 /* Return the FunctionDecl for the summary function associated to the
994 * function called by "call".
996 * In particular, if the pencil option is set, then
997 * search for an annotate attribute formatted as
998 * "pencil_access(name)", where "name" is the name of the summary function.
1000 * If no summary function was specified, then return the FunctionDecl
1001 * that is actually being called.
1003 * Return NULL on error.
1005 FunctionDecl
*PetScan::get_summary_function(CallExpr
*call
)
1007 FunctionDecl
*decl
= call
->getDirectCallee();
1011 if (!options
->pencil
)
1014 specific_attr_iterator
<AnnotateAttr
> begin
, end
, i
;
1015 begin
= decl
->specific_attr_begin
<AnnotateAttr
>();
1016 end
= decl
->specific_attr_end
<AnnotateAttr
>();
1017 for (i
= begin
; i
!= end
; ++i
) {
1018 string attr
= (*i
)->getAnnotation().str();
1020 const char prefix
[] = "pencil_access(";
1021 size_t start
= attr
.find(prefix
);
1022 if (start
== string::npos
)
1024 start
+= strlen(prefix
);
1025 string name
= attr
.substr(start
, attr
.find(')') - start
);
1027 return find_decl_from_name(call
, name
);
1033 /* Construct a pet_expr representing a function call.
1035 * In the special case of a "call" to __pencil_assume,
1036 * construct an assume expression instead.
1038 * In the case of a "call" to __pencil_kill, the arguments
1039 * are neither read nor written (only killed), so there
1040 * is no need to check for writes to these arguments.
1042 * __pencil_assume and __pencil_kill are only recognized
1043 * when the pencil option is set.
1045 __isl_give pet_expr
*PetScan::extract_expr(CallExpr
*expr
)
1047 pet_expr
*res
= NULL
;
1053 fd
= expr
->getDirectCallee();
1059 name
= fd
->getDeclName().getAsString();
1060 n_arg
= expr
->getNumArgs();
1062 if (options
->pencil
&& n_arg
== 1 && name
== "__pencil_assume")
1063 return extract_assume(expr
->getArg(0));
1064 is_kill
= options
->pencil
&& name
== "__pencil_kill";
1066 res
= pet_expr_new_call(ctx
, name
.c_str(), n_arg
);
1070 for (unsigned i
= 0; i
< n_arg
; ++i
) {
1071 Expr
*arg
= expr
->getArg(i
);
1072 res
= pet_expr_set_arg(res
, i
,
1073 PetScan::extract_argument(fd
, i
, arg
, !is_kill
));
1076 fd
= get_summary_function(expr
);
1078 return pet_expr_free(res
);
1080 res
= set_summary(res
, fd
);
1085 /* Construct a pet_expr representing a (C style) cast.
1087 __isl_give pet_expr
*PetScan::extract_expr(CStyleCastExpr
*expr
)
1092 arg
= extract_expr(expr
->getSubExpr());
1096 type
= expr
->getTypeAsWritten();
1097 return pet_expr_new_cast(type
.getAsString().c_str(), arg
);
1100 /* Construct a pet_expr representing an integer.
1102 __isl_give pet_expr
*PetScan::extract_expr(IntegerLiteral
*expr
)
1104 return pet_expr_new_int(extract_int(expr
));
1107 /* Construct a pet_expr representing the integer enum constant "ecd".
1109 __isl_give pet_expr
*PetScan::extract_expr(EnumConstantDecl
*ecd
)
1112 const llvm::APSInt
&init
= ecd
->getInitVal();
1113 v
= ::extract_int(ctx
, init
.isSigned(), init
);
1114 return pet_expr_new_int(v
);
1117 /* Try and construct a pet_expr representing "expr".
1119 __isl_give pet_expr
*PetScan::extract_expr(Expr
*expr
)
1121 switch (expr
->getStmtClass()) {
1122 case Stmt::UnaryOperatorClass
:
1123 return extract_expr(cast
<UnaryOperator
>(expr
));
1124 case Stmt::CompoundAssignOperatorClass
:
1125 case Stmt::BinaryOperatorClass
:
1126 return extract_expr(cast
<BinaryOperator
>(expr
));
1127 case Stmt::ImplicitCastExprClass
:
1128 return extract_expr(cast
<ImplicitCastExpr
>(expr
));
1129 case Stmt::ArraySubscriptExprClass
:
1130 case Stmt::DeclRefExprClass
:
1131 case Stmt::MemberExprClass
:
1132 return extract_access_expr(expr
);
1133 case Stmt::IntegerLiteralClass
:
1134 return extract_expr(cast
<IntegerLiteral
>(expr
));
1135 case Stmt::FloatingLiteralClass
:
1136 return extract_expr(cast
<FloatingLiteral
>(expr
));
1137 case Stmt::ParenExprClass
:
1138 return extract_expr(cast
<ParenExpr
>(expr
));
1139 case Stmt::ConditionalOperatorClass
:
1140 return extract_expr(cast
<ConditionalOperator
>(expr
));
1141 case Stmt::CallExprClass
:
1142 return extract_expr(cast
<CallExpr
>(expr
));
1143 case Stmt::CStyleCastExprClass
:
1144 return extract_expr(cast
<CStyleCastExpr
>(expr
));
1151 /* Check if the given initialization statement is an assignment.
1152 * If so, return that assignment. Otherwise return NULL.
1154 BinaryOperator
*PetScan::initialization_assignment(Stmt
*init
)
1156 BinaryOperator
*ass
;
1158 if (init
->getStmtClass() != Stmt::BinaryOperatorClass
)
1161 ass
= cast
<BinaryOperator
>(init
);
1162 if (ass
->getOpcode() != BO_Assign
)
1168 /* Check if the given initialization statement is a declaration
1169 * of a single variable.
1170 * If so, return that declaration. Otherwise return NULL.
1172 Decl
*PetScan::initialization_declaration(Stmt
*init
)
1176 if (init
->getStmtClass() != Stmt::DeclStmtClass
)
1179 decl
= cast
<DeclStmt
>(init
);
1181 if (!decl
->isSingleDecl())
1184 return decl
->getSingleDecl();
1187 /* Given the assignment operator in the initialization of a for loop,
1188 * extract the induction variable, i.e., the (integer)variable being
1191 ValueDecl
*PetScan::extract_induction_variable(BinaryOperator
*init
)
1198 lhs
= init
->getLHS();
1199 if (lhs
->getStmtClass() != Stmt::DeclRefExprClass
) {
1204 ref
= cast
<DeclRefExpr
>(lhs
);
1205 decl
= ref
->getDecl();
1206 type
= decl
->getType().getTypePtr();
1208 if (!type
->isIntegerType()) {
1216 /* Given the initialization statement of a for loop and the single
1217 * declaration in this initialization statement,
1218 * extract the induction variable, i.e., the (integer) variable being
1221 VarDecl
*PetScan::extract_induction_variable(Stmt
*init
, Decl
*decl
)
1225 vd
= cast
<VarDecl
>(decl
);
1227 const QualType type
= vd
->getType();
1228 if (!type
->isIntegerType()) {
1233 if (!vd
->getInit()) {
1241 /* Check that op is of the form iv++ or iv--.
1242 * Return a pet_expr representing "1" or "-1" accordingly.
1244 __isl_give pet_expr
*PetScan::extract_unary_increment(
1245 clang::UnaryOperator
*op
, clang::ValueDecl
*iv
)
1251 if (!op
->isIncrementDecrementOp()) {
1256 sub
= op
->getSubExpr();
1257 if (sub
->getStmtClass() != Stmt::DeclRefExprClass
) {
1262 ref
= cast
<DeclRefExpr
>(sub
);
1263 if (ref
->getDecl() != iv
) {
1268 if (op
->isIncrementOp())
1269 v
= isl_val_one(ctx
);
1271 v
= isl_val_negone(ctx
);
1273 return pet_expr_new_int(v
);
1276 /* Check if op is of the form
1280 * and return the increment "expr - iv" as a pet_expr.
1282 __isl_give pet_expr
*PetScan::extract_binary_increment(BinaryOperator
*op
,
1283 clang::ValueDecl
*iv
)
1288 pet_expr
*expr
, *expr_iv
;
1290 if (op
->getOpcode() != BO_Assign
) {
1296 if (lhs
->getStmtClass() != Stmt::DeclRefExprClass
) {
1301 ref
= cast
<DeclRefExpr
>(lhs
);
1302 if (ref
->getDecl() != iv
) {
1307 expr
= extract_expr(op
->getRHS());
1308 expr_iv
= extract_expr(lhs
);
1310 type_size
= pet_clang_get_type_size(iv
->getType(), ast_context
);
1311 return pet_expr_new_binary(type_size
, pet_op_sub
, expr
, expr_iv
);
1314 /* Check that op is of the form iv += cst or iv -= cst
1315 * and return a pet_expr corresponding to cst or -cst accordingly.
1317 __isl_give pet_expr
*PetScan::extract_compound_increment(
1318 CompoundAssignOperator
*op
, clang::ValueDecl
*iv
)
1324 BinaryOperatorKind opcode
;
1326 opcode
= op
->getOpcode();
1327 if (opcode
!= BO_AddAssign
&& opcode
!= BO_SubAssign
) {
1331 if (opcode
== BO_SubAssign
)
1335 if (lhs
->getStmtClass() != Stmt::DeclRefExprClass
) {
1340 ref
= cast
<DeclRefExpr
>(lhs
);
1341 if (ref
->getDecl() != iv
) {
1346 expr
= extract_expr(op
->getRHS());
1349 type_size
= pet_clang_get_type_size(op
->getType(), ast_context
);
1350 expr
= pet_expr_new_unary(type_size
, pet_op_minus
, expr
);
1356 /* Check that the increment of the given for loop increments
1357 * (or decrements) the induction variable "iv" and return
1358 * the increment as a pet_expr if successful.
1360 __isl_give pet_expr
*PetScan::extract_increment(clang::ForStmt
*stmt
,
1363 Stmt
*inc
= stmt
->getInc();
1366 report_missing_increment(stmt
);
1370 if (inc
->getStmtClass() == Stmt::UnaryOperatorClass
)
1371 return extract_unary_increment(cast
<UnaryOperator
>(inc
), iv
);
1372 if (inc
->getStmtClass() == Stmt::CompoundAssignOperatorClass
)
1373 return extract_compound_increment(
1374 cast
<CompoundAssignOperator
>(inc
), iv
);
1375 if (inc
->getStmtClass() == Stmt::BinaryOperatorClass
)
1376 return extract_binary_increment(cast
<BinaryOperator
>(inc
), iv
);
1382 /* Construct a pet_tree for a while loop.
1384 * If we were only able to extract part of the body, then simply
1387 __isl_give pet_tree
*PetScan::extract(WhileStmt
*stmt
)
1392 tree
= extract(stmt
->getBody());
1395 pe_cond
= extract_expr(stmt
->getCond());
1396 tree
= pet_tree_new_while(pe_cond
, tree
);
1401 /* Construct a pet_tree for a for statement.
1402 * The for loop is required to be of one of the following forms
1404 * for (i = init; condition; ++i)
1405 * for (i = init; condition; --i)
1406 * for (i = init; condition; i += constant)
1407 * for (i = init; condition; i -= constant)
1409 * We extract a pet_tree for the body and then include it in a pet_tree
1410 * of type pet_tree_for.
1412 * As a special case, we also allow a for loop of the form
1416 * in which case we return a pet_tree of type pet_tree_infinite_loop.
1418 * If we were only able to extract part of the body, then simply
1421 __isl_give pet_tree
*PetScan::extract_for(ForStmt
*stmt
)
1423 BinaryOperator
*ass
;
1431 pet_expr
*pe_init
, *pe_inc
, *pe_iv
, *pe_cond
;
1433 independent
= is_current_stmt_marked_independent();
1435 if (!stmt
->getInit() && !stmt
->getCond() && !stmt
->getInc()) {
1436 tree
= extract(stmt
->getBody());
1439 tree
= pet_tree_new_infinite_loop(tree
);
1443 init
= stmt
->getInit();
1448 if ((ass
= initialization_assignment(init
)) != NULL
) {
1449 iv
= extract_induction_variable(ass
);
1452 lhs
= ass
->getLHS();
1453 rhs
= ass
->getRHS();
1454 } else if ((decl
= initialization_declaration(init
)) != NULL
) {
1455 VarDecl
*var
= extract_induction_variable(init
, decl
);
1459 rhs
= var
->getInit();
1460 lhs
= create_DeclRefExpr(var
);
1462 unsupported(stmt
->getInit());
1466 declared
= !initialization_assignment(stmt
->getInit());
1467 tree
= extract(stmt
->getBody());
1470 pe_iv
= extract_access_expr(iv
);
1471 pe_iv
= mark_write(pe_iv
);
1472 pe_init
= extract_expr(rhs
);
1473 if (!stmt
->getCond())
1474 pe_cond
= pet_expr_new_int(isl_val_one(ctx
));
1476 pe_cond
= extract_expr(stmt
->getCond());
1477 pe_inc
= extract_increment(stmt
, iv
);
1478 tree
= pet_tree_new_for(independent
, declared
, pe_iv
, pe_init
, pe_cond
,
1483 /* Store the names of the variables declared in decl_context
1484 * in the set declared_names. Make sure to only do this once by
1485 * setting declared_names_collected.
1487 void PetScan::collect_declared_names()
1489 DeclContext
*DC
= decl_context
;
1490 DeclContext::decl_iterator it
;
1492 if (declared_names_collected
)
1495 for (it
= DC
->decls_begin(); it
!= DC
->decls_end(); ++it
) {
1499 if (!isa
<NamedDecl
>(D
))
1501 named
= cast
<NamedDecl
>(D
);
1502 declared_names
.insert(named
->getName().str());
1505 declared_names_collected
= true;
1508 /* Add the names in "names" that are not also in this->declared_names
1509 * to this->used_names.
1510 * It is up to the caller to make sure that declared_names has been
1511 * populated, if needed.
1513 void PetScan::add_new_used_names(const std::set
<std::string
> &names
)
1515 std::set
<std::string
>::const_iterator it
;
1517 for (it
= names
.begin(); it
!= names
.end(); ++it
) {
1518 if (declared_names
.find(*it
) != declared_names
.end())
1520 used_names
.insert(*it
);
1524 /* Is the name "name" used in any declaration other than "decl"?
1526 * If the name was found to be in use before, the consider it to be in use.
1527 * Otherwise, check the DeclContext of the function containing the scop
1528 * as well as all ancestors of this DeclContext for declarations
1529 * other than "decl" that declare something called "name".
1531 bool PetScan::name_in_use(const string
&name
, Decl
*decl
)
1534 DeclContext::decl_iterator it
;
1536 if (used_names
.find(name
) != used_names
.end())
1539 for (DC
= decl_context
; DC
; DC
= DC
->getParent()) {
1540 for (it
= DC
->decls_begin(); it
!= DC
->decls_end(); ++it
) {
1546 if (!isa
<NamedDecl
>(D
))
1548 named
= cast
<NamedDecl
>(D
);
1549 if (named
->getName().str() == name
)
1557 /* Generate a new name based on "name" that is not in use.
1558 * Do so by adding a suffix _i, with i an integer.
1560 string
PetScan::generate_new_name(const string
&name
)
1565 std::ostringstream oss
;
1566 oss
<< name
<< "_" << n_rename
++;
1567 new_name
= oss
.str();
1568 } while (name_in_use(new_name
, NULL
));
1573 /* Try and construct a pet_tree corresponding to a compound statement.
1575 * "skip_declarations" is set if we should skip initial declarations
1576 * in the children of the compound statements.
1578 * Collect a new set of declarations for the current compound statement.
1579 * If any of the names in these declarations is also used by another
1580 * declaration reachable from the current function, then rename it
1581 * to a name that is not already in use.
1582 * In particular, keep track of the old and new names in a pet_substituter
1583 * and apply the substitutions to the pet_tree corresponding to the
1584 * compound statement.
1586 __isl_give pet_tree
*PetScan::extract(CompoundStmt
*stmt
,
1587 bool skip_declarations
)
1590 std::vector
<VarDecl
*> saved_declarations
;
1591 std::vector
<VarDecl
*>::iterator it
;
1592 pet_substituter substituter
;
1594 saved_declarations
= declarations
;
1595 declarations
.clear();
1596 tree
= extract(stmt
->children(), true, skip_declarations
);
1597 for (it
= declarations
.begin(); it
!= declarations
.end(); ++it
) {
1600 VarDecl
*decl
= *it
;
1601 string name
= decl
->getName().str();
1602 bool in_use
= name_in_use(name
, decl
);
1604 used_names
.insert(name
);
1608 name
= generate_new_name(name
);
1609 id
= pet_id_from_name_and_decl(ctx
, name
.c_str(), decl
);
1610 expr
= pet_id_create_index_expr(id
);
1611 expr
= extract_access_expr(decl
->getType(), expr
);
1612 id
= pet_id_from_decl(ctx
, decl
);
1613 substituter
.add_sub(id
, expr
);
1614 used_names
.insert(name
);
1616 tree
= substituter
.substitute(tree
);
1617 declarations
= saved_declarations
;
1622 /* Return the file offset of the expansion location of "Loc".
1624 static unsigned getExpansionOffset(SourceManager
&SM
, SourceLocation Loc
)
1626 return SM
.getFileOffset(SM
.getExpansionLoc(Loc
));
1629 #ifdef HAVE_FINDLOCATIONAFTERTOKEN
1631 /* Return a SourceLocation for the location after the first semicolon
1632 * after "loc". If Lexer::findLocationAfterToken is available, we simply
1633 * call it and also skip trailing spaces and newline.
1635 static SourceLocation
location_after_semi(SourceLocation loc
, SourceManager
&SM
,
1636 const LangOptions
&LO
)
1638 return Lexer::findLocationAfterToken(loc
, tok::semi
, SM
, LO
, true);
1643 /* Return a SourceLocation for the location after the first semicolon
1644 * after "loc". If Lexer::findLocationAfterToken is not available,
1645 * we look in the underlying character data for the first semicolon.
1647 static SourceLocation
location_after_semi(SourceLocation loc
, SourceManager
&SM
,
1648 const LangOptions
&LO
)
1651 const char *s
= SM
.getCharacterData(loc
);
1653 semi
= strchr(s
, ';');
1655 return SourceLocation();
1656 return loc
.getFileLocWithOffset(semi
+ 1 - s
);
1661 /* If the token at "loc" is the first token on the line, then return
1662 * a location referring to the start of the line and set *indent
1663 * to the indentation of "loc"
1664 * Otherwise, return "loc" and set *indent to "".
1666 * This function is used to extend a scop to the start of the line
1667 * if the first token of the scop is also the first token on the line.
1669 * We look for the first token on the line. If its location is equal to "loc",
1670 * then the latter is the location of the first token on the line.
1672 static SourceLocation
move_to_start_of_line_if_first_token(SourceLocation loc
,
1673 SourceManager
&SM
, const LangOptions
&LO
, char **indent
)
1675 std::pair
<FileID
, unsigned> file_offset_pair
;
1676 llvm::StringRef file
;
1679 SourceLocation token_loc
, line_loc
;
1683 loc
= SM
.getExpansionLoc(loc
);
1684 col
= SM
.getExpansionColumnNumber(loc
);
1685 line_loc
= loc
.getLocWithOffset(1 - col
);
1686 file_offset_pair
= SM
.getDecomposedLoc(line_loc
);
1687 file
= SM
.getBufferData(file_offset_pair
.first
, NULL
);
1688 pos
= file
.data() + file_offset_pair
.second
;
1690 Lexer
lexer(SM
.getLocForStartOfFile(file_offset_pair
.first
), LO
,
1691 file
.begin(), pos
, file
.end());
1692 lexer
.LexFromRawLexer(tok
);
1693 token_loc
= tok
.getLocation();
1695 s
= SM
.getCharacterData(line_loc
);
1696 *indent
= strndup(s
, token_loc
== loc
? col
- 1 : 0);
1698 if (token_loc
== loc
)
1704 /* Construct a pet_loc corresponding to the region covered by "range".
1705 * If "skip_semi" is set, then we assume "range" is followed by
1706 * a semicolon and also include this semicolon.
1708 __isl_give pet_loc
*PetScan::construct_pet_loc(SourceRange range
,
1711 SourceLocation loc
= range
.getBegin();
1712 SourceManager
&SM
= PP
.getSourceManager();
1713 const LangOptions
&LO
= PP
.getLangOpts();
1714 int line
= PP
.getSourceManager().getExpansionLineNumber(loc
);
1715 unsigned start
, end
;
1718 loc
= move_to_start_of_line_if_first_token(loc
, SM
, LO
, &indent
);
1719 start
= getExpansionOffset(SM
, loc
);
1720 loc
= range
.getEnd();
1722 loc
= location_after_semi(loc
, SM
, LO
);
1724 loc
= PP
.getLocForEndOfToken(loc
);
1725 end
= getExpansionOffset(SM
, loc
);
1727 return pet_loc_alloc(ctx
, start
, end
, line
, indent
);
1730 /* Convert a top-level pet_expr to an expression pet_tree.
1732 __isl_give pet_tree
*PetScan::extract(__isl_take pet_expr
*expr
,
1733 SourceRange range
, bool skip_semi
)
1738 tree
= pet_tree_new_expr(expr
);
1739 loc
= construct_pet_loc(range
, skip_semi
);
1740 tree
= pet_tree_set_loc(tree
, loc
);
1745 /* Construct a pet_tree for an if statement.
1747 __isl_give pet_tree
*PetScan::extract(IfStmt
*stmt
)
1750 pet_tree
*tree
, *tree_else
;
1752 pe_cond
= extract_expr(stmt
->getCond());
1753 tree
= extract(stmt
->getThen());
1754 if (stmt
->getElse()) {
1755 tree_else
= extract(stmt
->getElse());
1756 if (options
->autodetect
) {
1757 if (tree
&& !tree_else
) {
1759 pet_expr_free(pe_cond
);
1762 if (!tree
&& tree_else
) {
1764 pet_expr_free(pe_cond
);
1768 tree
= pet_tree_new_if_else(pe_cond
, tree
, tree_else
);
1770 tree
= pet_tree_new_if(pe_cond
, tree
);
1774 /* Try and construct a pet_tree for a label statement.
1776 __isl_give pet_tree
*PetScan::extract(LabelStmt
*stmt
)
1781 label
= isl_id_alloc(ctx
, stmt
->getName(), NULL
);
1783 tree
= extract(stmt
->getSubStmt());
1784 tree
= pet_tree_set_label(tree
, label
);
1788 /* Update the location of "tree" to include the source range of "stmt".
1790 * Actually, we create a new location based on the source range of "stmt" and
1791 * then extend this new location to include the region of the original location.
1792 * This ensures that the line number of the final location refers to "stmt".
1794 __isl_give pet_tree
*PetScan::update_loc(__isl_take pet_tree
*tree
, Stmt
*stmt
)
1796 pet_loc
*loc
, *tree_loc
;
1798 tree_loc
= pet_tree_get_loc(tree
);
1799 loc
= construct_pet_loc(stmt
->getSourceRange(), false);
1800 loc
= pet_loc_update_start_end_from_loc(loc
, tree_loc
);
1801 pet_loc_free(tree_loc
);
1803 tree
= pet_tree_set_loc(tree
, loc
);
1807 /* Is "expr" of a type that can be converted to an access expression?
1809 static bool is_access_expr_type(Expr
*expr
)
1811 switch (expr
->getStmtClass()) {
1812 case Stmt::ArraySubscriptExprClass
:
1813 case Stmt::DeclRefExprClass
:
1814 case Stmt::MemberExprClass
:
1821 /* Tell the pet_inliner "inliner" about the formal arguments
1822 * in "fd" and the corresponding actual arguments in "call".
1823 * Return 0 if this was successful and -1 otherwise.
1825 * Any pointer argument is treated as an array.
1826 * The other arguments are treated as scalars.
1828 * In case of scalars, there is no restriction on the actual argument.
1829 * This actual argument is assigned to a variable with a name
1830 * that is derived from the name of the corresponding formal argument,
1831 * but made not to conflict with any variable names that are
1834 * In case of arrays, the actual argument needs to be an expression
1835 * of a type that can be converted to an access expression or the address
1836 * of such an expression, ignoring implicit and redundant casts.
1838 int PetScan::set_inliner_arguments(pet_inliner
&inliner
, CallExpr
*call
,
1843 n
= fd
->getNumParams();
1844 for (unsigned i
= 0; i
< n
; ++i
) {
1845 ParmVarDecl
*parm
= fd
->getParamDecl(i
);
1846 QualType type
= parm
->getType();
1851 arg
= call
->getArg(i
);
1852 if (array_depth(type
.getTypePtr()) == 0) {
1853 string name
= parm
->getName().str();
1854 if (name_in_use(name
, NULL
))
1855 name
= generate_new_name(name
);
1856 inliner
.add_scalar_arg(parm
, name
, extract_expr(arg
));
1859 arg
= pet_clang_strip_casts(arg
);
1860 sub
= extract_addr_of_arg(arg
);
1863 arg
= pet_clang_strip_casts(sub
);
1865 if (!is_access_expr_type(arg
)) {
1866 report_unsupported_inline_function_argument(arg
);
1869 expr
= extract_access_expr(arg
);
1872 inliner
.add_array_arg(parm
, expr
, is_addr
);
1878 /* Try and construct a pet_tree from the body of "fd" using the actual
1879 * arguments in "call" in place of the formal arguments.
1880 * "fd" is assumed to point to the declaration with a function body.
1881 * In particular, construct a block that consists of assignments
1882 * of (parts of) the actual arguments to temporary variables
1883 * followed by the inlined function body with the formal arguments
1884 * replaced by (expressions containing) these temporary variables.
1886 * The actual inlining is taken care of by the pet_inliner function.
1887 * This function merely calls set_inliner_arguments to tell
1888 * the pet_inliner about the actual arguments, extracts a pet_tree
1889 * from the body of the called function and then passes this pet_tree
1890 * to the pet_inliner.
1892 * During the extraction of the function body, all variables names
1893 * that are declared in the calling function as well all variable
1894 * names that are known to be in use are considered to be in use
1895 * in the called function to ensure that there is no naming conflict.
1896 * Similarly, the additional names that are in use in the called function
1897 * are considered to be in use in the calling function as well.
1899 * The location of the pet_tree is reset to the call site to ensure
1900 * that the extent of the scop does not include the body of the called
1903 __isl_give pet_tree
*PetScan::extract_inlined_call(CallExpr
*call
,
1906 int save_autodetect
;
1909 pet_inliner
inliner(ctx
, n_arg
, ast_context
);
1911 if (set_inliner_arguments(inliner
, call
, fd
) < 0)
1914 save_autodetect
= options
->autodetect
;
1915 options
->autodetect
= 0;
1916 PetScan
body_scan(PP
, ast_context
, fd
, loc
, options
,
1917 isl_union_map_copy(value_bounds
), independent
);
1918 collect_declared_names();
1919 body_scan
.add_new_used_names(declared_names
);
1920 body_scan
.add_new_used_names(used_names
);
1921 tree
= body_scan
.extract(fd
->getBody(), false);
1922 add_new_used_names(body_scan
.used_names
);
1923 options
->autodetect
= save_autodetect
;
1925 tree_loc
= construct_pet_loc(call
->getSourceRange(), true);
1926 tree
= pet_tree_set_loc(tree
, tree_loc
);
1928 return inliner
.inline_tree(tree
);
1931 /* Try and construct a pet_tree corresponding
1932 * to the expression statement "stmt".
1934 * If the outer expression is a function call and if the corresponding
1935 * function body is marked "inline", then return a pet_tree
1936 * corresponding to the inlined function.
1938 __isl_give pet_tree
*PetScan::extract_expr_stmt(Stmt
*stmt
)
1942 if (stmt
->getStmtClass() == Stmt::CallExprClass
) {
1943 CallExpr
*call
= cast
<CallExpr
>(stmt
);
1944 FunctionDecl
*fd
= call
->getDirectCallee();
1945 fd
= pet_clang_find_function_decl_with_body(fd
);
1946 if (fd
&& fd
->isInlineSpecified())
1947 return extract_inlined_call(call
, fd
);
1950 expr
= extract_expr(cast
<Expr
>(stmt
));
1951 return extract(expr
, stmt
->getSourceRange(), true);
1954 /* Try and construct a pet_tree corresponding to "stmt".
1956 * If "stmt" is a compound statement, then "skip_declarations"
1957 * indicates whether we should skip initial declarations in the
1958 * compound statement.
1960 * If the constructed pet_tree is not a (possibly) partial representation
1961 * of "stmt", we update start and end of the pet_scop to those of "stmt".
1962 * In particular, if skip_declarations is set, then we may have skipped
1963 * declarations inside "stmt" and so the pet_scop may not represent
1964 * the entire "stmt".
1965 * Note that this function may be called with "stmt" referring to the entire
1966 * body of the function, including the outer braces. In such cases,
1967 * skip_declarations will be set and the braces will not be taken into
1968 * account in tree->loc.
1970 __isl_give pet_tree
*PetScan::extract(Stmt
*stmt
, bool skip_declarations
)
1974 set_current_stmt(stmt
);
1976 if (isa
<Expr
>(stmt
))
1977 return extract_expr_stmt(cast
<Expr
>(stmt
));
1979 switch (stmt
->getStmtClass()) {
1980 case Stmt::WhileStmtClass
:
1981 tree
= extract(cast
<WhileStmt
>(stmt
));
1983 case Stmt::ForStmtClass
:
1984 tree
= extract_for(cast
<ForStmt
>(stmt
));
1986 case Stmt::IfStmtClass
:
1987 tree
= extract(cast
<IfStmt
>(stmt
));
1989 case Stmt::CompoundStmtClass
:
1990 tree
= extract(cast
<CompoundStmt
>(stmt
), skip_declarations
);
1992 case Stmt::LabelStmtClass
:
1993 tree
= extract(cast
<LabelStmt
>(stmt
));
1995 case Stmt::ContinueStmtClass
:
1996 tree
= pet_tree_new_continue(ctx
);
1998 case Stmt::BreakStmtClass
:
1999 tree
= pet_tree_new_break(ctx
);
2001 case Stmt::DeclStmtClass
:
2002 tree
= extract(cast
<DeclStmt
>(stmt
));
2005 report_unsupported_statement_type(stmt
);
2009 if (partial
|| skip_declarations
)
2012 return update_loc(tree
, stmt
);
2015 /* Given a sequence of statements "stmt_range" of which the first "n_decl"
2016 * are declarations and of which the remaining statements are represented
2017 * by "tree", try and extend "tree" to include the last sequence of
2018 * the initial declarations that can be completely extracted.
2020 * We start collecting the initial declarations and start over
2021 * whenever we come across a declaration that we cannot extract.
2022 * If we have been able to extract any declarations, then we
2023 * copy over the contents of "tree" at the end of the declarations.
2024 * Otherwise, we simply return the original "tree".
2026 __isl_give pet_tree
*PetScan::insert_initial_declarations(
2027 __isl_take pet_tree
*tree
, int n_decl
, StmtRange stmt_range
)
2035 n_stmt
= pet_tree_block_n_child(tree
);
2036 is_block
= pet_tree_block_get_block(tree
);
2037 res
= pet_tree_new_block(ctx
, is_block
, n_decl
+ n_stmt
);
2039 for (i
= stmt_range
.first
; n_decl
; ++i
, --n_decl
) {
2043 tree_i
= extract(child
);
2044 if (tree_i
&& !partial
) {
2045 res
= pet_tree_block_add_child(res
, tree_i
);
2048 pet_tree_free(tree_i
);
2050 if (pet_tree_block_n_child(res
) == 0)
2053 res
= pet_tree_new_block(ctx
, is_block
, n_decl
+ n_stmt
);
2056 if (pet_tree_block_n_child(res
) == 0) {
2061 for (j
= 0; j
< n_stmt
; ++j
) {
2064 tree_i
= pet_tree_block_get_child(tree
, j
);
2065 res
= pet_tree_block_add_child(res
, tree_i
);
2067 pet_tree_free(tree
);
2072 /* Try and construct a pet_tree corresponding to (part of)
2073 * a sequence of statements.
2075 * "block" is set if the sequence represents the children of
2076 * a compound statement.
2077 * "skip_declarations" is set if we should skip initial declarations
2078 * in the sequence of statements.
2080 * If autodetect is set, then we allow the extraction of only a subrange
2081 * of the sequence of statements. However, if there is at least one
2082 * kill and there is some subsequent statement for which we could not
2083 * construct a tree, then turn off the "block" property of the tree
2084 * such that no extra kill will be introduced at the end of the (partial)
2085 * block. If, on the other hand, the final range contains
2086 * no statements, then we discard the entire range.
2088 * If the entire range was extracted, apart from some initial declarations,
2089 * then we try and extend the range with the latest of those initial
2092 __isl_give pet_tree
*PetScan::extract(StmtRange stmt_range
, bool block
,
2093 bool skip_declarations
)
2097 bool has_kills
= false;
2098 bool partial_range
= false;
2101 for (i
= stmt_range
.first
, j
= 0; i
!= stmt_range
.second
; ++i
, ++j
)
2104 tree
= pet_tree_new_block(ctx
, block
, j
);
2107 i
= stmt_range
.first
;
2108 if (skip_declarations
)
2109 for (; i
!= stmt_range
.second
; ++i
) {
2110 if ((*i
)->getStmtClass() != Stmt::DeclStmtClass
)
2115 for (; i
!= stmt_range
.second
; ++i
) {
2119 tree_i
= extract(child
);
2120 if (pet_tree_block_n_child(tree
) != 0 && partial
) {
2121 pet_tree_free(tree_i
);
2124 if (tree_i
&& child
->getStmtClass() == Stmt::DeclStmtClass
&&
2127 if (options
->autodetect
) {
2129 tree
= pet_tree_block_add_child(tree
, tree_i
);
2131 partial_range
= true;
2132 if (pet_tree_block_n_child(tree
) != 0 && !tree_i
)
2135 tree
= pet_tree_block_add_child(tree
, tree_i
);
2138 if (partial
|| !tree
)
2147 tree
= pet_tree_block_set_block(tree
, 0);
2148 } else if (partial_range
) {
2149 if (pet_tree_block_n_child(tree
) == 0) {
2150 pet_tree_free(tree
);
2154 } else if (skip
> 0)
2155 tree
= insert_initial_declarations(tree
, skip
, stmt_range
);
2161 static __isl_give pet_expr
*get_array_size(__isl_keep pet_expr
*access
,
2163 static struct pet_array
*extract_array(__isl_keep pet_expr
*access
,
2164 __isl_keep pet_context
*pc
, void *user
);
2167 /* Construct a pet_expr that holds the sizes of the array accessed
2169 * This function is used as a callback to pet_context_add_parameters,
2170 * which is also passed a pointer to the PetScan object.
2172 static __isl_give pet_expr
*get_array_size(__isl_keep pet_expr
*access
,
2175 PetScan
*ps
= (PetScan
*) user
;
2179 id
= pet_expr_access_get_id(access
);
2180 type
= pet_id_get_array_type(id
).getTypePtr();
2182 return ps
->get_array_size(type
);
2185 /* Construct and return a pet_array corresponding to the variable
2186 * accessed by "access".
2187 * This function is used as a callback to pet_scop_from_pet_tree,
2188 * which is also passed a pointer to the PetScan object.
2190 static struct pet_array
*extract_array(__isl_keep pet_expr
*access
,
2191 __isl_keep pet_context
*pc
, void *user
)
2193 PetScan
*ps
= (PetScan
*) user
;
2198 ctx
= pet_expr_get_ctx(access
);
2199 id
= pet_expr_access_get_id(access
);
2200 array
= ps
->extract_array(id
, NULL
, pc
);
2206 /* Extract a function summary from the body of "fd".
2208 * We extract a scop from the function body in a context with as
2209 * parameters the integer arguments of the function.
2210 * We turn off autodetection (in case it was set) to ensure that
2211 * the entire function body is considered.
2212 * We then collect the accessed array elements and attach them
2213 * to the corresponding array arguments, taking into account
2214 * that the function body may access members of array elements.
2216 * The reason for representing the integer arguments as parameters in
2217 * the context is that if we were to instead start with a context
2218 * with the function arguments as initial dimensions, then we would not
2219 * be able to refer to them from the array extents, without turning
2220 * array extents into maps.
2222 * The result is stored in the summary_cache cache so that we can reuse
2223 * it if this method gets called on the same function again later on.
2225 __isl_give pet_function_summary
*PetScan::get_summary(FunctionDecl
*fd
)
2231 pet_function_summary
*summary
;
2234 int save_autodetect
;
2235 struct pet_scop
*scop
;
2237 isl_union_set
*may_read
, *may_write
, *must_write
;
2238 isl_union_map
*to_inner
;
2240 if (summary_cache
.find(fd
) != summary_cache
.end())
2241 return pet_function_summary_copy(summary_cache
[fd
]);
2243 space
= isl_space_set_alloc(ctx
, 0, 0);
2245 n
= fd
->getNumParams();
2246 summary
= pet_function_summary_alloc(ctx
, n
);
2247 for (unsigned i
= 0; i
< n
; ++i
) {
2248 ParmVarDecl
*parm
= fd
->getParamDecl(i
);
2249 QualType type
= parm
->getType();
2252 if (!type
->isIntegerType())
2254 id
= pet_id_from_decl(ctx
, parm
);
2255 space
= isl_space_insert_dims(space
, isl_dim_param
, 0, 1);
2256 space
= isl_space_set_dim_id(space
, isl_dim_param
, 0,
2258 summary
= pet_function_summary_set_int(summary
, i
, id
);
2261 save_autodetect
= options
->autodetect
;
2262 options
->autodetect
= 0;
2263 PetScan
body_scan(PP
, ast_context
, fd
, loc
, options
,
2264 isl_union_map_copy(value_bounds
), independent
);
2266 tree
= body_scan
.extract(fd
->getBody(), false);
2268 domain
= isl_set_universe(space
);
2269 pc
= pet_context_alloc(domain
);
2270 pc
= pet_context_add_parameters(pc
, tree
,
2271 &::get_array_size
, &body_scan
);
2272 int_size
= size_in_bytes(ast_context
, ast_context
.IntTy
);
2273 scop
= pet_scop_from_pet_tree(tree
, int_size
,
2274 &::extract_array
, &body_scan
, pc
);
2275 scop
= scan_arrays(scop
, pc
);
2276 may_read
= isl_union_map_range(pet_scop_get_may_reads(scop
));
2277 may_write
= isl_union_map_range(pet_scop_get_may_writes(scop
));
2278 must_write
= isl_union_map_range(pet_scop_get_must_writes(scop
));
2279 to_inner
= pet_scop_compute_outer_to_inner(scop
);
2280 pet_scop_free(scop
);
2282 for (unsigned i
= 0; i
< n
; ++i
) {
2283 ParmVarDecl
*parm
= fd
->getParamDecl(i
);
2284 QualType type
= parm
->getType();
2285 struct pet_array
*array
;
2287 isl_union_set
*data_set
;
2288 isl_union_set
*may_read_i
, *may_write_i
, *must_write_i
;
2290 if (array_depth(type
.getTypePtr()) == 0)
2293 array
= body_scan
.extract_array(parm
, NULL
, pc
);
2294 space
= array
? isl_set_get_space(array
->extent
) : NULL
;
2295 pet_array_free(array
);
2296 data_set
= isl_union_set_from_set(isl_set_universe(space
));
2297 data_set
= isl_union_set_apply(data_set
,
2298 isl_union_map_copy(to_inner
));
2299 may_read_i
= isl_union_set_intersect(
2300 isl_union_set_copy(may_read
),
2301 isl_union_set_copy(data_set
));
2302 may_write_i
= isl_union_set_intersect(
2303 isl_union_set_copy(may_write
),
2304 isl_union_set_copy(data_set
));
2305 must_write_i
= isl_union_set_intersect(
2306 isl_union_set_copy(must_write
), data_set
);
2307 summary
= pet_function_summary_set_array(summary
, i
,
2308 may_read_i
, may_write_i
, must_write_i
);
2311 isl_union_set_free(may_read
);
2312 isl_union_set_free(may_write
);
2313 isl_union_set_free(must_write
);
2314 isl_union_map_free(to_inner
);
2316 options
->autodetect
= save_autodetect
;
2317 pet_context_free(pc
);
2319 summary_cache
[fd
] = pet_function_summary_copy(summary
);
2324 /* If "fd" has a function body, then extract a function summary from
2325 * this body and attach it to the call expression "expr".
2327 * Even if a function body is available, "fd" itself may point
2328 * to a declaration without function body. We therefore first
2329 * replace it by the declaration that comes with a body (if any).
2331 __isl_give pet_expr
*PetScan::set_summary(__isl_take pet_expr
*expr
,
2334 pet_function_summary
*summary
;
2338 fd
= pet_clang_find_function_decl_with_body(fd
);
2342 summary
= get_summary(fd
);
2344 expr
= pet_expr_call_set_summary(expr
, summary
);
2349 /* Extract a pet_scop from "tree".
2351 * We simply call pet_scop_from_pet_tree with the appropriate arguments and
2352 * then add pet_arrays for all accessed arrays.
2353 * We populate the pet_context with assignments for all parameters used
2354 * inside "tree" or any of the size expressions for the arrays accessed
2355 * by "tree" so that they can be used in affine expressions.
2357 struct pet_scop
*PetScan::extract_scop(__isl_take pet_tree
*tree
)
2364 int_size
= size_in_bytes(ast_context
, ast_context
.IntTy
);
2366 domain
= isl_set_universe(isl_space_set_alloc(ctx
, 0, 0));
2367 pc
= pet_context_alloc(domain
);
2368 pc
= pet_context_add_parameters(pc
, tree
, &::get_array_size
, this);
2369 scop
= pet_scop_from_pet_tree(tree
, int_size
,
2370 &::extract_array
, this, pc
);
2371 scop
= scan_arrays(scop
, pc
);
2372 pet_context_free(pc
);
2377 /* Given a DeclRefExpr or an ArraySubscriptExpr, return a pointer
2378 * to the base DeclRefExpr.
2379 * If the expression is something other than a nested ArraySubscriptExpr
2380 * with a DeclRefExpr at the base, then return NULL.
2382 static DeclRefExpr
*extract_array_base(Expr
*expr
)
2384 while (isa
<ArraySubscriptExpr
>(expr
)) {
2385 expr
= (cast
<ArraySubscriptExpr
>(expr
))->getBase();
2386 expr
= pet_clang_strip_casts(expr
);
2388 return dyn_cast
<DeclRefExpr
>(expr
);
2391 /* Structure for keeping track of local variables that can be killed
2393 * In particular, variables of interest are first added to "locals"
2394 * Then the Stmt in which the variable declaration appears is scanned
2395 * for any possible leak of a pointer or any use after a specified scop.
2396 * In such cases, the variable is removed from "locals".
2397 * The scop is assumed to appear at the same level of the declaration.
2398 * In particular, it does not appear inside a nested control structure,
2399 * meaning that it is sufficient to look at uses of the variables
2400 * that textually appear after the specified scop.
2402 * locals is the set of variables of interest.
2403 * accessed keeps track of the variables that are accessed inside the scop.
2404 * scop_start is the start of the scop
2405 * scop_end is the end of the scop
2406 * addr_end is the end of the latest visited address_of expression.
2407 * expr_end is the end of the latest handled expression.
2409 struct killed_locals
: RecursiveASTVisitor
<killed_locals
> {
2411 set
<ValueDecl
*> locals
;
2412 set
<ValueDecl
*> accessed
;
2413 unsigned scop_start
;
2418 killed_locals(SourceManager
&SM
) : SM(SM
) {}
2420 void add_local(Decl
*decl
);
2421 void add_locals(DeclStmt
*stmt
);
2422 void set_addr_end(UnaryOperator
*expr
);
2423 bool check_decl_in_expr(Expr
*expr
);
2424 void remove_accessed_after(Stmt
*stmt
, unsigned start
, unsigned end
);
2425 bool VisitUnaryOperator(UnaryOperator
*expr
) {
2426 if (expr
->getOpcode() == UO_AddrOf
)
2430 bool VisitArraySubscriptExpr(ArraySubscriptExpr
*expr
) {
2431 return check_decl_in_expr(expr
);
2433 bool VisitDeclRefExpr(DeclRefExpr
*expr
) {
2434 return check_decl_in_expr(expr
);
2437 set
<ValueDecl
*>::iterator it
;
2438 cerr
<< "local" << endl
;
2439 for (it
= locals
.begin(); it
!= locals
.end(); ++it
)
2441 cerr
<< "accessed" << endl
;
2442 for (it
= accessed
.begin(); it
!= accessed
.end(); ++it
)
2447 /* Add "decl" to the set of local variables, provided it is a ValueDecl.
2449 void killed_locals::add_local(Decl
*decl
)
2453 vd
= dyn_cast
<ValueDecl
>(decl
);
2458 /* Add all variables declared by "stmt" to the set of local variables.
2460 void killed_locals::add_locals(DeclStmt
*stmt
)
2462 if (stmt
->isSingleDecl()) {
2463 add_local(stmt
->getSingleDecl());
2465 const DeclGroup
&group
= stmt
->getDeclGroup().getDeclGroup();
2466 unsigned n
= group
.size();
2467 for (unsigned i
= 0; i
< n
; ++i
)
2468 add_local(group
[i
]);
2472 /* Set this->addr_end to the end of the address_of expression "expr".
2474 void killed_locals::set_addr_end(UnaryOperator
*expr
)
2476 addr_end
= getExpansionOffset(SM
, expr
->getLocEnd());
2479 /* Given an expression of type ArraySubscriptExpr or DeclRefExpr,
2481 * - is the variable used inside the scop?
2482 * - is the variable used after the scop or can a pointer be taken?
2483 * Return true if the traversal should continue.
2485 * Reset the pointer to the end of the latest address-of expression
2486 * such that only the first array or scalar is considered to have
2487 * its address taken. In particular, accesses inside the indices
2488 * of the array should not be considered to have their address taken.
2490 * If the variable is not one of the local variables or
2491 * if the access appears inside an expression that was already handled,
2492 * then simply return.
2494 * Otherwise, the expression is handled and "expr_end" is updated
2495 * to prevent subexpressions with the same base expression
2496 * from being handled as well.
2498 * If a higher-dimensional slice of an array is accessed or
2499 * if the access appears inside an address-of expression,
2500 * then a pointer may leak, so the variable should not be killed.
2501 * Similarly, if the access appears after the end of the scop,
2502 * then the variable should not be killed.
2504 * Otherwise, if the access appears inside the scop, then
2505 * keep track of the fact that the variable was accessed at least once
2508 bool killed_locals::check_decl_in_expr(Expr
*expr
)
2514 unsigned old_addr_end
;
2516 ref
= extract_array_base(expr
);
2520 old_addr_end
= addr_end
;
2523 decl
= ref
->getDecl();
2524 if (locals
.find(decl
) == locals
.end())
2526 loc
= getExpansionOffset(SM
, expr
->getLocStart());
2527 if (loc
<= expr_end
)
2530 expr_end
= getExpansionOffset(SM
, ref
->getLocEnd());
2531 depth
= array_depth(expr
->getType().getTypePtr());
2532 if (loc
>= scop_end
|| loc
<= old_addr_end
|| depth
!= 0)
2534 if (loc
>= scop_start
&& loc
<= scop_end
)
2535 accessed
.insert(decl
);
2537 return locals
.size() != 0;
2540 /* Remove the local variables that may be accessed inside "stmt" after
2541 * the scop starting at "start" and ending at "end", or that
2542 * are not accessed at all inside that scop.
2544 * If there are no local variables that could potentially be killed,
2545 * then simply return.
2547 * Otherwise, scan "stmt" for any potential use of the variables
2548 * after the scop. This includes a possible pointer being taken
2549 * to (part of) the variable. If there is any such use, then
2550 * the variable is removed from the set of local variables.
2552 * At the same time, keep track of the variables that are
2553 * used anywhere inside the scop. At the end, replace the local
2554 * variables with the intersection with these accessed variables.
2556 void killed_locals::remove_accessed_after(Stmt
*stmt
, unsigned start
,
2559 set
<ValueDecl
*> accessed_local
;
2561 if (locals
.size() == 0)
2568 set_intersection(locals
.begin(), locals
.end(),
2569 accessed
.begin(), accessed
.end(),
2570 inserter(accessed_local
, accessed_local
.begin()));
2571 locals
= accessed_local
;
2574 /* Add a call to __pencil_kill to the end of "tree" that kills
2575 * all the variables in "locals" and return the result.
2577 * No location is added to the kill because the most natural
2578 * location would lie outside the scop. Attaching such a location
2579 * to this tree would extend the scope of the final result
2580 * to include the location.
2582 __isl_give pet_tree
*PetScan::add_kills(__isl_take pet_tree
*tree
,
2583 set
<ValueDecl
*> locals
)
2587 pet_tree
*kill
, *block
;
2588 set
<ValueDecl
*>::iterator it
;
2590 if (locals
.size() == 0)
2592 expr
= pet_expr_new_call(ctx
, "__pencil_kill", locals
.size());
2594 for (it
= locals
.begin(); it
!= locals
.end(); ++it
) {
2596 arg
= extract_access_expr(*it
);
2597 expr
= pet_expr_set_arg(expr
, i
++, arg
);
2599 kill
= pet_tree_new_expr(expr
);
2600 block
= pet_tree_new_block(ctx
, 0, 2);
2601 block
= pet_tree_block_add_child(block
, tree
);
2602 block
= pet_tree_block_add_child(block
, kill
);
2607 /* Check if the scop marked by the user is exactly this Stmt
2608 * or part of this Stmt.
2609 * If so, return a pet_scop corresponding to the marked region.
2610 * Otherwise, return NULL.
2612 * If the scop is not further nested inside a child of "stmt",
2613 * then check if there are any variable declarations before the scop
2614 * inside "stmt". If so, and if these variables are not used
2615 * after the scop, then add kills to the variables.
2617 struct pet_scop
*PetScan::scan(Stmt
*stmt
)
2619 SourceManager
&SM
= PP
.getSourceManager();
2620 unsigned start_off
, end_off
;
2623 start_off
= getExpansionOffset(SM
, stmt
->getLocStart());
2624 end_off
= getExpansionOffset(SM
, stmt
->getLocEnd());
2626 if (start_off
> loc
.end
)
2628 if (end_off
< loc
.start
)
2631 if (start_off
>= loc
.start
&& end_off
<= loc
.end
)
2632 return extract_scop(extract(stmt
));
2634 killed_locals
kl(SM
);
2636 for (start
= stmt
->child_begin(); start
!= stmt
->child_end(); ++start
) {
2637 Stmt
*child
= *start
;
2640 start_off
= getExpansionOffset(SM
, child
->getLocStart());
2641 end_off
= getExpansionOffset(SM
, child
->getLocEnd());
2642 if (start_off
< loc
.start
&& end_off
>= loc
.end
)
2644 if (start_off
>= loc
.start
)
2646 if (isa
<DeclStmt
>(child
))
2647 kl
.add_locals(cast
<DeclStmt
>(child
));
2651 for (end
= start
; end
!= stmt
->child_end(); ++end
) {
2653 start_off
= SM
.getFileOffset(child
->getLocStart());
2654 if (start_off
>= loc
.end
)
2658 kl
.remove_accessed_after(stmt
, loc
.start
, loc
.end
);
2660 tree
= extract(StmtRange(start
, end
), false, false);
2661 tree
= add_kills(tree
, kl
.locals
);
2662 return extract_scop(tree
);
2665 /* Set the size of index "pos" of "array" to "size".
2666 * In particular, add a constraint of the form
2670 * to array->extent and a constraint of the form
2674 * to array->context.
2676 * The domain of "size" is assumed to be zero-dimensional.
2678 static struct pet_array
*update_size(struct pet_array
*array
, int pos
,
2679 __isl_take isl_pw_aff
*size
)
2692 valid
= isl_set_params(isl_pw_aff_nonneg_set(isl_pw_aff_copy(size
)));
2693 array
->context
= isl_set_intersect(array
->context
, valid
);
2695 dim
= isl_set_get_space(array
->extent
);
2696 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(dim
));
2697 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_in
, pos
, 1);
2698 univ
= isl_set_universe(isl_aff_get_domain_space(aff
));
2699 index
= isl_pw_aff_alloc(univ
, aff
);
2701 size
= isl_pw_aff_add_dims(size
, isl_dim_in
,
2702 isl_set_dim(array
->extent
, isl_dim_set
));
2703 id
= isl_set_get_tuple_id(array
->extent
);
2704 size
= isl_pw_aff_set_tuple_id(size
, isl_dim_in
, id
);
2705 bound
= isl_pw_aff_lt_set(index
, size
);
2707 array
->extent
= isl_set_intersect(array
->extent
, bound
);
2709 if (!array
->context
|| !array
->extent
)
2710 return pet_array_free(array
);
2714 isl_pw_aff_free(size
);
2718 #ifdef HAVE_DECAYEDTYPE
2720 /* If "type" is a decayed type, then set *decayed to true and
2721 * return the original type.
2723 static const Type
*undecay(const Type
*type
, bool *decayed
)
2725 *decayed
= isa
<DecayedType
>(type
);
2727 type
= cast
<DecayedType
>(type
)->getOriginalType().getTypePtr();
2733 /* If "type" is a decayed type, then set *decayed to true and
2734 * return the original type.
2735 * Since this version of clang does not define a DecayedType,
2736 * we cannot obtain the original type even if it had been decayed and
2737 * we set *decayed to false.
2739 static const Type
*undecay(const Type
*type
, bool *decayed
)
2747 /* Figure out the size of the array at position "pos" and all
2748 * subsequent positions from "type" and update the corresponding
2749 * argument of "expr" accordingly.
2751 * The initial type (when pos is zero) may be a pointer type decayed
2752 * from an array type, if this initial type is the type of a function
2753 * argument. This only happens if the original array type has
2754 * a constant size in the outer dimension as otherwise we get
2755 * a VariableArrayType. Try and obtain this original type (if available) and
2756 * take the outer array size into account if it was marked static.
2758 __isl_give pet_expr
*PetScan::set_upper_bounds(__isl_take pet_expr
*expr
,
2759 const Type
*type
, int pos
)
2761 const ArrayType
*atype
;
2763 bool decayed
= false;
2769 type
= undecay(type
, &decayed
);
2771 if (type
->isPointerType()) {
2772 type
= type
->getPointeeType().getTypePtr();
2773 return set_upper_bounds(expr
, type
, pos
+ 1);
2775 if (!type
->isArrayType())
2778 type
= type
->getCanonicalTypeInternal().getTypePtr();
2779 atype
= cast
<ArrayType
>(type
);
2781 if (decayed
&& atype
->getSizeModifier() != ArrayType::Static
) {
2782 type
= atype
->getElementType().getTypePtr();
2783 return set_upper_bounds(expr
, type
, pos
+ 1);
2786 if (type
->isConstantArrayType()) {
2787 const ConstantArrayType
*ca
= cast
<ConstantArrayType
>(atype
);
2788 size
= extract_expr(ca
->getSize());
2789 expr
= pet_expr_set_arg(expr
, pos
, size
);
2790 } else if (type
->isVariableArrayType()) {
2791 const VariableArrayType
*vla
= cast
<VariableArrayType
>(atype
);
2792 size
= extract_expr(vla
->getSizeExpr());
2793 expr
= pet_expr_set_arg(expr
, pos
, size
);
2796 type
= atype
->getElementType().getTypePtr();
2798 return set_upper_bounds(expr
, type
, pos
+ 1);
2801 /* Construct a pet_expr that holds the sizes of an array of the given type.
2802 * The returned expression is a call expression with as arguments
2803 * the sizes in each dimension. If we are unable to derive the size
2804 * in a given dimension, then the corresponding argument is set to infinity.
2805 * In fact, we initialize all arguments to infinity and then update
2806 * them if we are able to figure out the size.
2808 * The result is stored in the type_size cache so that we can reuse
2809 * it if this method gets called on the same type again later on.
2811 __isl_give pet_expr
*PetScan::get_array_size(const Type
*type
)
2814 pet_expr
*expr
, *inf
;
2816 if (type_size
.find(type
) != type_size
.end())
2817 return pet_expr_copy(type_size
[type
]);
2819 depth
= array_depth(type
);
2820 inf
= pet_expr_new_int(isl_val_infty(ctx
));
2821 expr
= pet_expr_new_call(ctx
, "bounds", depth
);
2822 for (int i
= 0; i
< depth
; ++i
)
2823 expr
= pet_expr_set_arg(expr
, i
, pet_expr_copy(inf
));
2826 expr
= set_upper_bounds(expr
, type
, 0);
2827 type_size
[type
] = pet_expr_copy(expr
);
2832 /* Does "expr" represent the "integer" infinity?
2834 static int is_infty(__isl_keep pet_expr
*expr
)
2839 if (pet_expr_get_type(expr
) != pet_expr_int
)
2841 v
= pet_expr_int_get_val(expr
);
2842 res
= isl_val_is_infty(v
);
2848 /* Figure out the dimensions of an array "array" based on its type
2849 * "type" and update "array" accordingly.
2851 * We first construct a pet_expr that holds the sizes of the array
2852 * in each dimension. The resulting expression may containing
2853 * infinity values for dimension where we are unable to derive
2854 * a size expression.
2856 * The arguments of the size expression that have a value different from
2857 * infinity are then converted to an affine expression
2858 * within the context "pc" and incorporated into the size of "array".
2859 * If we are unable to convert a size expression to an affine expression or
2860 * if the size is not a (symbolic) constant,
2861 * then we leave the corresponding size of "array" untouched.
2863 struct pet_array
*PetScan::set_upper_bounds(struct pet_array
*array
,
2864 const Type
*type
, __isl_keep pet_context
*pc
)
2872 expr
= get_array_size(type
);
2874 n
= pet_expr_get_n_arg(expr
);
2875 for (int i
= 0; i
< n
; ++i
) {
2879 arg
= pet_expr_get_arg(expr
, i
);
2880 if (!is_infty(arg
)) {
2883 size
= pet_expr_extract_affine(arg
, pc
);
2884 dim
= isl_pw_aff_dim(size
, isl_dim_in
);
2886 array
= pet_array_free(array
);
2887 else if (isl_pw_aff_involves_nan(size
) ||
2888 isl_pw_aff_involves_dims(size
, isl_dim_in
, 0, dim
))
2889 isl_pw_aff_free(size
);
2891 size
= isl_pw_aff_drop_dims(size
,
2892 isl_dim_in
, 0, dim
);
2893 array
= update_size(array
, i
, size
);
2898 pet_expr_free(expr
);
2903 /* Does "decl" have a definition that we can keep track of in a pet_type?
2905 static bool has_printable_definition(RecordDecl
*decl
)
2907 if (!decl
->getDeclName())
2909 return decl
->getLexicalDeclContext() == decl
->getDeclContext();
2912 /* Construct and return a pet_array corresponding to the variable
2913 * represented by "id".
2914 * In particular, initialize array->extent to
2916 * { name[i_1,...,i_d] : i_1,...,i_d >= 0 }
2918 * and then call set_upper_bounds to set the upper bounds on the indices
2919 * based on the type of the variable. The upper bounds are converted
2920 * to affine expressions within the context "pc".
2922 * If the base type is that of a record with a top-level definition or
2923 * of a typedef and if "types" is not null, then the RecordDecl or
2924 * TypedefType corresponding to the type
2925 * is added to "types".
2927 * If the base type is that of a record with no top-level definition,
2928 * then we replace it by "<subfield>".
2930 struct pet_array
*PetScan::extract_array(__isl_keep isl_id
*id
,
2931 PetTypes
*types
, __isl_keep pet_context
*pc
)
2933 struct pet_array
*array
;
2934 QualType qt
= pet_id_get_array_type(id
);
2935 const Type
*type
= qt
.getTypePtr();
2936 int depth
= array_depth(type
);
2937 QualType base
= pet_clang_base_type(qt
);
2941 array
= isl_calloc_type(ctx
, struct pet_array
);
2945 space
= isl_space_set_alloc(ctx
, 0, depth
);
2946 space
= isl_space_set_tuple_id(space
, isl_dim_set
, isl_id_copy(id
));
2948 array
->extent
= isl_set_nat_universe(space
);
2950 space
= isl_space_params_alloc(ctx
, 0);
2951 array
->context
= isl_set_universe(space
);
2953 array
= set_upper_bounds(array
, type
, pc
);
2957 name
= base
.getAsString();
2960 if (isa
<TypedefType
>(base
)) {
2961 types
->insert(cast
<TypedefType
>(base
)->getDecl());
2962 } else if (base
->isRecordType()) {
2963 RecordDecl
*decl
= pet_clang_record_decl(base
);
2964 TypedefNameDecl
*typedecl
;
2965 typedecl
= decl
->getTypedefNameForAnonDecl();
2967 types
->insert(typedecl
);
2968 else if (has_printable_definition(decl
))
2969 types
->insert(decl
);
2971 name
= "<subfield>";
2975 array
->element_type
= strdup(name
.c_str());
2976 array
->element_is_record
= base
->isRecordType();
2977 array
->element_size
= size_in_bytes(ast_context
, base
);
2982 /* Construct and return a pet_array corresponding to the variable "decl".
2984 struct pet_array
*PetScan::extract_array(ValueDecl
*decl
,
2985 PetTypes
*types
, __isl_keep pet_context
*pc
)
2990 id
= pet_id_from_decl(ctx
, decl
);
2991 array
= extract_array(id
, types
, pc
);
2997 /* Construct and return a pet_array corresponding to the sequence
2998 * of declarations represented by "decls".
2999 * The upper bounds of the array are converted to affine expressions
3000 * within the context "pc".
3001 * If the sequence contains a single declaration, then it corresponds
3002 * to a simple array access. Otherwise, it corresponds to a member access,
3003 * with the declaration for the substructure following that of the containing
3004 * structure in the sequence of declarations.
3005 * We start with the outermost substructure and then combine it with
3006 * information from the inner structures.
3008 * Additionally, keep track of all required types in "types".
3010 struct pet_array
*PetScan::extract_array(__isl_keep isl_id_list
*decls
,
3011 PetTypes
*types
, __isl_keep pet_context
*pc
)
3015 struct pet_array
*array
;
3017 id
= isl_id_list_get_id(decls
, 0);
3018 array
= extract_array(id
, types
, pc
);
3021 n
= isl_id_list_n_id(decls
);
3022 for (i
= 1; i
< n
; ++i
) {
3023 struct pet_array
*parent
;
3024 const char *base_name
, *field_name
;
3028 id
= isl_id_list_get_id(decls
, i
);
3029 array
= extract_array(id
, types
, pc
);
3032 return pet_array_free(parent
);
3034 base_name
= isl_set_get_tuple_name(parent
->extent
);
3035 field_name
= isl_set_get_tuple_name(array
->extent
);
3036 product_name
= pet_array_member_access_name(ctx
,
3037 base_name
, field_name
);
3039 array
->extent
= isl_set_product(isl_set_copy(parent
->extent
),
3042 array
->extent
= isl_set_set_tuple_name(array
->extent
,
3044 array
->context
= isl_set_intersect(array
->context
,
3045 isl_set_copy(parent
->context
));
3047 pet_array_free(parent
);
3050 if (!array
->extent
|| !array
->context
|| !product_name
)
3051 return pet_array_free(array
);
3057 static struct pet_scop
*add_type(isl_ctx
*ctx
, struct pet_scop
*scop
,
3058 RecordDecl
*decl
, Preprocessor
&PP
, PetTypes
&types
,
3059 std::set
<TypeDecl
*> &types_done
);
3060 static struct pet_scop
*add_type(isl_ctx
*ctx
, struct pet_scop
*scop
,
3061 TypedefNameDecl
*decl
, Preprocessor
&PP
, PetTypes
&types
,
3062 std::set
<TypeDecl
*> &types_done
);
3064 /* For each of the fields of "decl" that is itself a record type
3065 * or a typedef, add a corresponding pet_type to "scop".
3067 static struct pet_scop
*add_field_types(isl_ctx
*ctx
, struct pet_scop
*scop
,
3068 RecordDecl
*decl
, Preprocessor
&PP
, PetTypes
&types
,
3069 std::set
<TypeDecl
*> &types_done
)
3071 RecordDecl::field_iterator it
;
3073 for (it
= decl
->field_begin(); it
!= decl
->field_end(); ++it
) {
3074 QualType type
= it
->getType();
3076 if (isa
<TypedefType
>(type
)) {
3077 TypedefNameDecl
*typedefdecl
;
3079 typedefdecl
= cast
<TypedefType
>(type
)->getDecl();
3080 scop
= add_type(ctx
, scop
, typedefdecl
,
3081 PP
, types
, types_done
);
3082 } else if (type
->isRecordType()) {
3085 record
= pet_clang_record_decl(type
);
3086 scop
= add_type(ctx
, scop
, record
,
3087 PP
, types
, types_done
);
3094 /* Add a pet_type corresponding to "decl" to "scop", provided
3095 * it is a member of types.records and it has not been added before
3096 * (i.e., it is not a member of "types_done").
3098 * Since we want the user to be able to print the types
3099 * in the order in which they appear in the scop, we need to
3100 * make sure that types of fields in a structure appear before
3101 * that structure. We therefore call ourselves recursively
3102 * through add_field_types on the types of all record subfields.
3104 static struct pet_scop
*add_type(isl_ctx
*ctx
, struct pet_scop
*scop
,
3105 RecordDecl
*decl
, Preprocessor
&PP
, PetTypes
&types
,
3106 std::set
<TypeDecl
*> &types_done
)
3109 llvm::raw_string_ostream
S(s
);
3111 if (types
.records
.find(decl
) == types
.records
.end())
3113 if (types_done
.find(decl
) != types_done
.end())
3116 add_field_types(ctx
, scop
, decl
, PP
, types
, types_done
);
3118 if (strlen(decl
->getName().str().c_str()) == 0)
3121 decl
->print(S
, PrintingPolicy(PP
.getLangOpts()));
3124 scop
->types
[scop
->n_type
] = pet_type_alloc(ctx
,
3125 decl
->getName().str().c_str(), s
.c_str());
3126 if (!scop
->types
[scop
->n_type
])
3127 return pet_scop_free(scop
);
3129 types_done
.insert(decl
);
3136 /* Add a pet_type corresponding to "decl" to "scop", provided
3137 * it is a member of types.typedefs and it has not been added before
3138 * (i.e., it is not a member of "types_done").
3140 * If the underlying type is a structure, then we print the typedef
3141 * ourselves since clang does not print the definition of the structure
3142 * in the typedef. We also make sure in this case that the types of
3143 * the fields in the structure are added first.
3145 static struct pet_scop
*add_type(isl_ctx
*ctx
, struct pet_scop
*scop
,
3146 TypedefNameDecl
*decl
, Preprocessor
&PP
, PetTypes
&types
,
3147 std::set
<TypeDecl
*> &types_done
)
3150 llvm::raw_string_ostream
S(s
);
3151 QualType qt
= decl
->getUnderlyingType();
3153 if (types
.typedefs
.find(decl
) == types
.typedefs
.end())
3155 if (types_done
.find(decl
) != types_done
.end())
3158 if (qt
->isRecordType()) {
3159 RecordDecl
*rec
= pet_clang_record_decl(qt
);
3161 add_field_types(ctx
, scop
, rec
, PP
, types
, types_done
);
3163 rec
->print(S
, PrintingPolicy(PP
.getLangOpts()));
3165 S
<< decl
->getName();
3167 decl
->print(S
, PrintingPolicy(PP
.getLangOpts()));
3171 scop
->types
[scop
->n_type
] = pet_type_alloc(ctx
,
3172 decl
->getName().str().c_str(), s
.c_str());
3173 if (!scop
->types
[scop
->n_type
])
3174 return pet_scop_free(scop
);
3176 types_done
.insert(decl
);
3183 /* Construct a list of pet_arrays, one for each array (or scalar)
3184 * accessed inside "scop", add this list to "scop" and return the result.
3185 * The upper bounds of the arrays are converted to affine expressions
3186 * within the context "pc".
3188 * The context of "scop" is updated with the intersection of
3189 * the contexts of all arrays, i.e., constraints on the parameters
3190 * that ensure that the arrays have a valid (non-negative) size.
3192 * If any of the extracted arrays refers to a member access or
3193 * has a typedef'd type as base type,
3194 * then also add the required types to "scop".
3196 struct pet_scop
*PetScan::scan_arrays(struct pet_scop
*scop
,
3197 __isl_keep pet_context
*pc
)
3200 array_desc_set arrays
;
3201 array_desc_set::iterator it
;
3203 std::set
<TypeDecl
*> types_done
;
3204 std::set
<clang::RecordDecl
*, less_name
>::iterator records_it
;
3205 std::set
<clang::TypedefNameDecl
*, less_name
>::iterator typedefs_it
;
3207 struct pet_array
**scop_arrays
;
3212 pet_scop_collect_arrays(scop
, arrays
);
3213 if (arrays
.size() == 0)
3216 n_array
= scop
->n_array
;
3218 scop_arrays
= isl_realloc_array(ctx
, scop
->arrays
, struct pet_array
*,
3219 n_array
+ arrays
.size());
3222 scop
->arrays
= scop_arrays
;
3224 for (it
= arrays
.begin(), i
= 0; it
!= arrays
.end(); ++it
, ++i
) {
3225 struct pet_array
*array
;
3226 array
= extract_array(*it
, &types
, pc
);
3227 scop
->arrays
[n_array
+ i
] = array
;
3228 if (!scop
->arrays
[n_array
+ i
])
3231 scop
->context
= isl_set_intersect(scop
->context
,
3232 isl_set_copy(array
->context
));
3237 n
= types
.records
.size() + types
.typedefs
.size();
3241 scop
->types
= isl_alloc_array(ctx
, struct pet_type
*, n
);
3245 for (records_it
= types
.records
.begin();
3246 records_it
!= types
.records
.end(); ++records_it
)
3247 scop
= add_type(ctx
, scop
, *records_it
, PP
, types
, types_done
);
3249 for (typedefs_it
= types
.typedefs
.begin();
3250 typedefs_it
!= types
.typedefs
.end(); ++typedefs_it
)
3251 scop
= add_type(ctx
, scop
, *typedefs_it
, PP
, types
, types_done
);
3255 pet_scop_free(scop
);
3259 /* Bound all parameters in scop->context to the possible values
3260 * of the corresponding C variable.
3262 static struct pet_scop
*add_parameter_bounds(struct pet_scop
*scop
)
3269 n
= isl_set_dim(scop
->context
, isl_dim_param
);
3270 for (int i
= 0; i
< n
; ++i
) {
3274 id
= isl_set_get_dim_id(scop
->context
, isl_dim_param
, i
);
3275 if (pet_nested_in_id(id
)) {
3277 isl_die(isl_set_get_ctx(scop
->context
),
3279 "unresolved nested parameter", goto error
);
3281 decl
= pet_id_get_decl(id
);
3284 scop
->context
= set_parameter_bounds(scop
->context
, i
, decl
);
3292 pet_scop_free(scop
);
3296 /* Construct a pet_scop from the given function.
3298 * If the scop was delimited by scop and endscop pragmas, then we override
3299 * the file offsets by those derived from the pragmas.
3301 struct pet_scop
*PetScan::scan(FunctionDecl
*fd
)
3306 stmt
= fd
->getBody();
3308 if (options
->autodetect
) {
3309 set_current_stmt(stmt
);
3310 scop
= extract_scop(extract(stmt
, true));
3312 current_line
= loc
.start_line
;
3314 scop
= pet_scop_update_start_end(scop
, loc
.start
, loc
.end
);
3316 scop
= add_parameter_bounds(scop
);
3317 scop
= pet_scop_gist(scop
, value_bounds
);
3322 /* Update this->last_line and this->current_line based on the fact
3323 * that we are about to consider "stmt".
3325 void PetScan::set_current_stmt(Stmt
*stmt
)
3327 SourceLocation loc
= stmt
->getLocStart();
3328 SourceManager
&SM
= PP
.getSourceManager();
3330 last_line
= current_line
;
3331 current_line
= SM
.getExpansionLineNumber(loc
);
3334 /* Is the current statement marked by an independent pragma?
3335 * That is, is there an independent pragma on a line between
3336 * the line of the current statement and the line of the previous statement.
3337 * The search is not implemented very efficiently. We currently
3338 * assume that there are only a few independent pragmas, if any.
3340 bool PetScan::is_current_stmt_marked_independent()
3342 for (unsigned i
= 0; i
< independent
.size(); ++i
) {
3343 unsigned line
= independent
[i
].line
;
3345 if (last_line
< line
&& line
< current_line
)