2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012-2014 Ecole Normale Superieure. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials provided
15 * with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as
31 * representing official policies, either expressed or implied, of
38 #include <isl/id_to_pw_aff.h>
39 #include <isl/union_set.h>
48 #include "tree2scop.h"
50 /* If "stmt" is an affine assumption, then record the assumption in "pc".
52 static __isl_give pet_context
*add_affine_assumption(struct pet_stmt
*stmt
,
53 __isl_take pet_context
*pc
)
58 affine
= pet_stmt_is_affine_assume(stmt
);
60 return pet_context_free(pc
);
63 cond
= pet_stmt_assume_get_affine_condition(stmt
);
64 cond
= isl_set_reset_tuple_id(cond
);
65 pc
= pet_context_intersect_domain(pc
, cond
);
69 /* Given a scop "scop" derived from an assumption statement,
70 * record the assumption in "pc", if it is affine.
71 * Note that "scop" should consist of exactly one statement.
73 static __isl_give pet_context
*scop_add_affine_assumption(
74 __isl_keep pet_scop
*scop
, __isl_take pet_context
*pc
)
79 return pet_context_free(pc
);
80 for (i
= 0; i
< scop
->n_stmt
; ++i
)
81 pc
= add_affine_assumption(scop
->stmts
[i
], pc
);
86 /* Update "pc" by taking into account the writes in "stmt".
87 * That is, clear any previously assigned values to variables
88 * that are written by "stmt".
90 static __isl_give pet_context
*handle_writes(struct pet_stmt
*stmt
,
91 __isl_take pet_context
*pc
)
93 return pet_context_clear_writes_in_tree(pc
, stmt
->body
);
96 /* Update "pc" based on the write accesses in "scop".
98 static __isl_give pet_context
*scop_handle_writes(struct pet_scop
*scop
,
99 __isl_take pet_context
*pc
)
104 return pet_context_free(pc
);
105 for (i
= 0; i
< scop
->n_stmt
; ++i
)
106 pc
= handle_writes(scop
->stmts
[i
], pc
);
111 /* Wrapper around pet_expr_resolve_assume
112 * for use as a callback to pet_tree_map_expr.
114 static __isl_give pet_expr
*resolve_assume(__isl_take pet_expr
*expr
,
117 pet_context
*pc
= user
;
119 return pet_expr_resolve_assume(expr
, pc
);
122 /* Check if any expression inside "tree" is an assume expression and
123 * if its single argument can be converted to an affine expression
124 * in the context of "pc".
125 * If so, replace the argument by the affine expression.
127 __isl_give pet_tree
*pet_tree_resolve_assume(__isl_take pet_tree
*tree
,
128 __isl_keep pet_context
*pc
)
130 return pet_tree_map_expr(tree
, &resolve_assume
, pc
);
133 /* Convert a pet_tree to a pet_scop with one statement within the context "pc".
134 * "tree" has already been evaluated in the context of "pc".
135 * This mainly involves resolving nested expression parameters
136 * and setting the name of the iteration space.
137 * The name is given by tree->label if it is non-NULL. Otherwise,
138 * it is of the form S_<stmt_nr>.
140 static struct pet_scop
*scop_from_evaluated_tree(__isl_take pet_tree
*tree
,
141 int stmt_nr
, __isl_keep pet_context
*pc
)
147 space
= pet_context_get_space(pc
);
149 tree
= pet_tree_resolve_nested(tree
, space
);
150 tree
= pet_tree_resolve_assume(tree
, pc
);
152 domain
= pet_context_get_domain(pc
);
153 ps
= pet_stmt_from_pet_tree(domain
, stmt_nr
, tree
);
154 return pet_scop_from_pet_stmt(space
, ps
);
157 /* Convert a top-level pet_expr to a pet_scop with one statement
158 * within the context "pc".
159 * "expr" has already been evaluated in the context of "pc".
160 * We construct a pet_tree from "expr" and continue with
161 * scop_from_evaluated_tree.
162 * The name is of the form S_<stmt_nr>.
163 * The location of the statement is set to "loc".
165 static struct pet_scop
*scop_from_evaluated_expr(__isl_take pet_expr
*expr
,
166 int stmt_nr
, __isl_take pet_loc
*loc
, __isl_keep pet_context
*pc
)
170 tree
= pet_tree_new_expr(expr
);
171 tree
= pet_tree_set_loc(tree
, loc
);
172 return scop_from_evaluated_tree(tree
, stmt_nr
, pc
);
175 /* Convert a pet_tree to a pet_scop with one statement within the context "pc".
176 * "tree" has not yet been evaluated in the context of "pc".
177 * We evaluate "tree" in the context of "pc" and continue with
178 * scop_from_evaluated_tree.
179 * The statement name is given by tree->label if it is non-NULL. Otherwise,
180 * it is of the form S_<stmt_nr>.
182 static struct pet_scop
*scop_from_unevaluated_tree(__isl_take pet_tree
*tree
,
183 int stmt_nr
, __isl_keep pet_context
*pc
)
185 tree
= pet_context_evaluate_tree(pc
, tree
);
186 return scop_from_evaluated_tree(tree
, stmt_nr
, pc
);
189 /* Convert a top-level pet_expr to a pet_scop with one statement
190 * within the context "pc", where "expr" has not yet been evaluated
191 * in the context of "pc".
192 * We construct a pet_tree from "expr" and continue with
193 * scop_from_unevaluated_tree.
194 * The statement name is of the form S_<stmt_nr>.
195 * The location of the statement is set to "loc".
197 static struct pet_scop
*scop_from_expr(__isl_take pet_expr
*expr
,
198 int stmt_nr
, __isl_take pet_loc
*loc
, __isl_keep pet_context
*pc
)
202 tree
= pet_tree_new_expr(expr
);
203 tree
= pet_tree_set_loc(tree
, loc
);
204 return scop_from_unevaluated_tree(tree
, stmt_nr
, pc
);
207 /* Construct a pet_scop with a single statement killing the entire
209 * The location of the statement is set to "loc".
211 static struct pet_scop
*kill(__isl_take pet_loc
*loc
, struct pet_array
*array
,
212 __isl_keep pet_context
*pc
, struct pet_state
*state
)
217 isl_multi_pw_aff
*index
;
220 struct pet_scop
*scop
;
224 ctx
= isl_set_get_ctx(array
->extent
);
225 access
= isl_map_from_range(isl_set_copy(array
->extent
));
226 id
= isl_set_get_tuple_id(array
->extent
);
227 space
= isl_space_alloc(ctx
, 0, 0, 0);
228 space
= isl_space_set_tuple_id(space
, isl_dim_out
, id
);
229 index
= isl_multi_pw_aff_zero(space
);
230 expr
= pet_expr_kill_from_access_and_index(access
, index
);
231 return scop_from_expr(expr
, state
->n_stmt
++, loc
, pc
);
237 /* Construct and return a pet_array corresponding to the variable
238 * accessed by "access" by calling the extract_array callback.
240 static struct pet_array
*extract_array(__isl_keep pet_expr
*access
,
241 __isl_keep pet_context
*pc
, struct pet_state
*state
)
243 return state
->extract_array(access
, pc
, state
->user
);
246 /* Construct a pet_scop for a (single) variable declaration
247 * within the context "pc".
249 * The scop contains the variable being declared (as an array)
250 * and a statement killing the array.
252 * If the declaration comes with an initialization, then the scop
253 * also contains an assignment to the variable.
255 static struct pet_scop
*scop_from_decl(__isl_keep pet_tree
*tree
,
256 __isl_keep pet_context
*pc
, struct pet_state
*state
)
260 struct pet_array
*array
;
261 struct pet_scop
*scop_decl
, *scop
;
262 pet_expr
*lhs
, *rhs
, *pe
;
264 array
= extract_array(tree
->u
.d
.var
, pc
, state
);
267 scop_decl
= kill(pet_tree_get_loc(tree
), array
, pc
, state
);
268 scop_decl
= pet_scop_add_array(scop_decl
, array
);
270 if (tree
->type
!= pet_tree_decl_init
)
273 lhs
= pet_expr_copy(tree
->u
.d
.var
);
274 rhs
= pet_expr_copy(tree
->u
.d
.init
);
275 type_size
= pet_expr_get_type_size(lhs
);
276 pe
= pet_expr_new_binary(type_size
, pet_op_assign
, lhs
, rhs
);
277 scop
= scop_from_expr(pe
, state
->n_stmt
++, pet_tree_get_loc(tree
), pc
);
279 ctx
= pet_tree_get_ctx(tree
);
280 scop
= pet_scop_add_seq(ctx
, scop_decl
, scop
);
285 /* Does "tree" represent a kill statement?
286 * That is, is it an expression statement that "calls" __pencil_kill?
288 static int is_pencil_kill(__isl_keep pet_tree
*tree
)
295 if (tree
->type
!= pet_tree_expr
)
297 expr
= tree
->u
.e
.expr
;
298 if (pet_expr_get_type(expr
) != pet_expr_call
)
300 name
= pet_expr_call_get_name(expr
);
303 return !strcmp(name
, "__pencil_kill");
306 /* Add a kill to "scop" that kills what is accessed by
307 * the access expression "expr".
309 * Mark the access as a write prior to evaluation to avoid
310 * the access being replaced by a possible known value
311 * during the evaluation.
313 * If the access expression has any arguments (after evaluation
314 * in the context of "pc"), then we ignore it, since we cannot
315 * tell which elements are definitely killed.
317 * Otherwise, we extend the index expression to the dimension
318 * of the accessed array and intersect with the extent of the array and
319 * add a kill expression that kills these array elements is added to "scop".
321 static struct pet_scop
*scop_add_kill(struct pet_scop
*scop
,
322 __isl_take pet_expr
*expr
, __isl_take pet_loc
*loc
,
323 __isl_keep pet_context
*pc
, struct pet_state
*state
)
327 isl_multi_pw_aff
*index
;
330 struct pet_array
*array
;
331 struct pet_scop
*scop_i
;
333 expr
= pet_expr_access_set_write(expr
, 1);
334 expr
= pet_context_evaluate_expr(pc
, expr
);
337 if (expr
->n_arg
!= 0) {
342 array
= extract_array(expr
, pc
, state
);
345 index
= pet_expr_access_get_index(expr
);
347 map
= isl_map_from_multi_pw_aff(isl_multi_pw_aff_copy(index
));
348 id
= isl_map_get_tuple_id(map
, isl_dim_out
);
349 dim1
= isl_set_dim(array
->extent
, isl_dim_set
);
350 dim2
= isl_map_dim(map
, isl_dim_out
);
351 map
= isl_map_add_dims(map
, isl_dim_out
, dim1
- dim2
);
352 map
= isl_map_set_tuple_id(map
, isl_dim_out
, id
);
353 map
= isl_map_intersect_range(map
, isl_set_copy(array
->extent
));
354 pet_array_free(array
);
355 kill
= pet_expr_kill_from_access_and_index(map
, index
);
356 scop_i
= scop_from_evaluated_expr(kill
, state
->n_stmt
++, loc
, pc
);
357 scop
= pet_scop_add_par(state
->ctx
, scop
, scop_i
);
363 return pet_scop_free(scop
);
366 /* For each argument of the __pencil_kill call in "tree" that
367 * represents an access, add a kill statement to "scop" killing the accessed
370 static struct pet_scop
*scop_from_pencil_kill(__isl_keep pet_tree
*tree
,
371 __isl_keep pet_context
*pc
, struct pet_state
*state
)
374 struct pet_scop
*scop
;
377 call
= tree
->u
.e
.expr
;
379 scop
= pet_scop_empty(pet_context_get_space(pc
));
381 n
= pet_expr_get_n_arg(call
);
382 for (i
= 0; i
< n
; ++i
) {
386 arg
= pet_expr_get_arg(call
, i
);
388 return pet_scop_free(scop
);
389 if (pet_expr_get_type(arg
) != pet_expr_access
) {
393 loc
= pet_tree_get_loc(tree
);
394 scop
= scop_add_kill(scop
, arg
, loc
, pc
, state
);
400 /* Construct a pet_scop for an expression statement within the context "pc".
402 * If the expression calls __pencil_kill, then it needs to be converted
403 * into zero or more kill statements.
404 * Otherwise, a scop is extracted directly from the tree.
406 static struct pet_scop
*scop_from_tree_expr(__isl_keep pet_tree
*tree
,
407 __isl_keep pet_context
*pc
, struct pet_state
*state
)
411 is_kill
= is_pencil_kill(tree
);
415 return scop_from_pencil_kill(tree
, pc
, state
);
416 return scop_from_unevaluated_tree(pet_tree_copy(tree
),
417 state
->n_stmt
++, pc
);
420 /* Return those elements in the space of "cond" that come after
421 * (based on "sign") an element in "cond" in the final dimension.
423 static __isl_give isl_set
*after(__isl_take isl_set
*cond
, int sign
)
426 isl_map
*previous_to_this
;
429 dim
= isl_set_dim(cond
, isl_dim_set
);
430 space
= isl_space_map_from_set(isl_set_get_space(cond
));
431 previous_to_this
= isl_map_universe(space
);
432 for (i
= 0; i
+ 1 < dim
; ++i
)
433 previous_to_this
= isl_map_equate(previous_to_this
,
434 isl_dim_in
, i
, isl_dim_out
, i
);
436 previous_to_this
= isl_map_order_lt(previous_to_this
,
437 isl_dim_in
, dim
- 1, isl_dim_out
, dim
- 1);
439 previous_to_this
= isl_map_order_gt(previous_to_this
,
440 isl_dim_in
, dim
- 1, isl_dim_out
, dim
- 1);
442 cond
= isl_set_apply(cond
, previous_to_this
);
447 /* Remove those iterations of "domain" that have an earlier iteration
448 * (based on "sign") in the final dimension where "skip" is satisfied.
449 * If "apply_skip_map" is set, then "skip_map" is first applied
450 * to the embedded skip condition before removing it from the domain.
452 static __isl_give isl_set
*apply_affine_break(__isl_take isl_set
*domain
,
453 __isl_take isl_set
*skip
, int sign
,
454 int apply_skip_map
, __isl_keep isl_map
*skip_map
)
457 skip
= isl_set_apply(skip
, isl_map_copy(skip_map
));
458 skip
= isl_set_intersect(skip
, isl_set_copy(domain
));
459 return isl_set_subtract(domain
, after(skip
, sign
));
462 /* Create a single-dimensional multi-affine expression on the domain space
463 * of "pc" that is equal to the final dimension of this domain.
464 * "loop_nr" is the sequence number of the corresponding loop.
465 * If "id" is not NULL, then it is used as the output tuple name.
466 * Otherwise, the name is constructed as L_<loop_nr>.
468 static __isl_give isl_multi_aff
*map_to_last(__isl_keep pet_context
*pc
,
469 int loop_nr
, __isl_keep isl_id
*id
)
479 space
= pet_context_get_space(pc
);
480 pos
= isl_space_dim(space
, isl_dim_set
) - 1;
481 ls
= isl_local_space_from_space(space
);
482 aff
= isl_aff_var_on_domain(ls
, isl_dim_set
, pos
);
483 ma
= isl_multi_aff_from_aff(aff
);
486 label
= isl_id_copy(id
);
488 snprintf(name
, sizeof(name
), "L_%d", loop_nr
);
489 label
= isl_id_alloc(pet_context_get_ctx(pc
), name
, NULL
);
491 ma
= isl_multi_aff_set_tuple_id(ma
, isl_dim_out
, label
);
496 /* Create an affine expression that maps elements
497 * of an array "id_test" to the previous element in the final dimension
498 * (according to "inc"), provided this element belongs to "domain".
499 * That is, create the affine expression
501 * { id[outer,x] -> id[outer,x - inc] : (outer,x - inc) in domain }
503 static __isl_give isl_multi_pw_aff
*map_to_previous(__isl_take isl_id
*id_test
,
504 __isl_take isl_set
*domain
, __isl_take isl_val
*inc
)
511 isl_multi_pw_aff
*prev
;
513 pos
= isl_set_dim(domain
, isl_dim_set
) - 1;
514 space
= isl_set_get_space(domain
);
515 space
= isl_space_map_from_set(space
);
516 ma
= isl_multi_aff_identity(space
);
517 aff
= isl_multi_aff_get_aff(ma
, pos
);
518 aff
= isl_aff_add_constant_val(aff
, isl_val_neg(inc
));
519 ma
= isl_multi_aff_set_aff(ma
, pos
, aff
);
520 domain
= isl_set_preimage_multi_aff(domain
, isl_multi_aff_copy(ma
));
521 prev
= isl_multi_pw_aff_from_multi_aff(ma
);
522 pa
= isl_multi_pw_aff_get_pw_aff(prev
, pos
);
523 pa
= isl_pw_aff_intersect_domain(pa
, domain
);
524 prev
= isl_multi_pw_aff_set_pw_aff(prev
, pos
, pa
);
525 prev
= isl_multi_pw_aff_set_tuple_id(prev
, isl_dim_out
, id_test
);
530 /* Add an implication to "scop" expressing that if an element of
531 * virtual array "id_test" has value "satisfied" then all previous elements
532 * of this array (in the final dimension) also have that value.
533 * The set of previous elements is bounded by "domain".
534 * If "sign" is negative then the iterator
535 * is decreasing and we express that all subsequent array elements
536 * (but still defined previously) have the same value.
538 static struct pet_scop
*add_implication(struct pet_scop
*scop
,
539 __isl_take isl_id
*id_test
, __isl_take isl_set
*domain
, int sign
,
546 dim
= isl_set_dim(domain
, isl_dim_set
);
547 domain
= isl_set_set_tuple_id(domain
, id_test
);
548 space
= isl_space_map_from_set(isl_set_get_space(domain
));
549 map
= isl_map_universe(space
);
550 for (i
= 0; i
+ 1 < dim
; ++i
)
551 map
= isl_map_equate(map
, isl_dim_in
, i
, isl_dim_out
, i
);
553 map
= isl_map_order_ge(map
,
554 isl_dim_in
, dim
- 1, isl_dim_out
, dim
- 1);
556 map
= isl_map_order_le(map
,
557 isl_dim_in
, dim
- 1, isl_dim_out
, dim
- 1);
558 map
= isl_map_intersect_range(map
, domain
);
559 scop
= pet_scop_add_implication(scop
, map
, satisfied
);
564 /* Add a filter to "scop" that imposes that it is only executed
565 * when the variable identified by "id_test" has a zero value
566 * for all previous iterations of "domain".
568 * In particular, add a filter that imposes that the array
569 * has a zero value at the previous iteration of domain and
570 * add an implication that implies that it then has that
571 * value for all previous iterations.
573 static struct pet_scop
*scop_add_break(struct pet_scop
*scop
,
574 __isl_take isl_id
*id_test
, __isl_take isl_set
*domain
,
575 __isl_take isl_val
*inc
)
577 isl_multi_pw_aff
*prev
;
578 int sign
= isl_val_sgn(inc
);
580 prev
= map_to_previous(isl_id_copy(id_test
), isl_set_copy(domain
), inc
);
581 scop
= add_implication(scop
, id_test
, domain
, sign
, 0);
582 scop
= pet_scop_filter(scop
, prev
, 0);
587 static struct pet_scop
*scop_from_tree(__isl_keep pet_tree
*tree
,
588 __isl_keep pet_context
*pc
, struct pet_state
*state
);
590 /* Construct a pet_scop for an infinite loop around the given body
591 * within the context "pc".
592 * "loop_id" is the label on the loop or NULL if there is no such label.
594 * The domain of "pc" has already been extended with an infinite loop
598 * We extract a pet_scop for the body and then embed it in a loop with
601 * { [outer,t] -> [t] }
603 * If the body contains any break, then it is taken into
604 * account in apply_affine_break (if the skip condition is affine)
605 * or in scop_add_break (if the skip condition is not affine).
607 * Note that in case of an affine skip condition,
608 * since we are dealing with a loop without loop iterator,
609 * the skip condition cannot refer to the current loop iterator and
610 * so effectively, the effect on the iteration domain is of the form
612 * { [outer,0]; [outer,t] : t >= 1 and not skip }
614 static struct pet_scop
*scop_from_infinite_loop(__isl_keep pet_tree
*body
,
615 __isl_keep isl_id
*loop_id
, __isl_keep pet_context
*pc
,
616 struct pet_state
*state
)
622 isl_multi_aff
*sched
;
623 struct pet_scop
*scop
;
624 int has_affine_break
;
627 ctx
= pet_tree_get_ctx(body
);
628 domain
= pet_context_get_domain(pc
);
629 sched
= map_to_last(pc
, state
->n_loop
++, loop_id
);
631 scop
= scop_from_tree(body
, pc
, state
);
633 has_affine_break
= pet_scop_has_affine_skip(scop
, pet_skip_later
);
634 if (has_affine_break
)
635 skip
= pet_scop_get_affine_skip_domain(scop
, pet_skip_later
);
636 has_var_break
= pet_scop_has_var_skip(scop
, pet_skip_later
);
638 id_test
= pet_scop_get_skip_id(scop
, pet_skip_later
);
640 scop
= pet_scop_reset_skips(scop
);
641 scop
= pet_scop_embed(scop
, isl_set_copy(domain
), sched
);
642 if (has_affine_break
) {
643 domain
= apply_affine_break(domain
, skip
, 1, 0, NULL
);
644 scop
= pet_scop_intersect_domain_prefix(scop
,
645 isl_set_copy(domain
));
648 scop
= scop_add_break(scop
, id_test
, domain
, isl_val_one(ctx
));
650 isl_set_free(domain
);
655 /* Construct a pet_scop for an infinite loop, i.e., a loop of the form
660 * within the context "pc".
662 * Extend the domain of "pc" with an extra inner loop
666 * and construct the scop in scop_from_infinite_loop.
668 static struct pet_scop
*scop_from_infinite_for(__isl_keep pet_tree
*tree
,
669 __isl_keep pet_context
*pc
, struct pet_state
*state
)
671 struct pet_scop
*scop
;
673 pc
= pet_context_copy(pc
);
674 pc
= pet_context_clear_writes_in_tree(pc
, tree
->u
.l
.body
);
676 pc
= pet_context_add_infinite_loop(pc
);
678 scop
= scop_from_infinite_loop(tree
->u
.l
.body
, tree
->label
, pc
, state
);
680 pet_context_free(pc
);
685 /* Construct a pet_scop for a while loop of the form
690 * within the context "pc".
692 * The domain of "pc" has already been extended with an infinite loop
696 * Here, we add the constraints on the outer loop iterators
697 * implied by "pa" and construct the scop in scop_from_infinite_loop.
698 * Note that the intersection with these constraints
699 * may result in an empty loop.
701 static struct pet_scop
*scop_from_affine_while(__isl_keep pet_tree
*tree
,
702 __isl_take isl_pw_aff
*pa
, __isl_take pet_context
*pc
,
703 struct pet_state
*state
)
705 struct pet_scop
*scop
;
706 isl_set
*dom
, *local
;
709 valid
= isl_pw_aff_domain(isl_pw_aff_copy(pa
));
710 dom
= isl_pw_aff_non_zero_set(pa
);
711 local
= isl_set_add_dims(isl_set_copy(dom
), isl_dim_set
, 1);
712 pc
= pet_context_intersect_domain(pc
, local
);
713 scop
= scop_from_infinite_loop(tree
->u
.l
.body
, tree
->label
, pc
, state
);
714 scop
= pet_scop_restrict(scop
, dom
);
715 scop
= pet_scop_restrict_context(scop
, valid
);
717 pet_context_free(pc
);
721 /* Construct a scop for a while, given the scops for the condition
722 * and the body, the filter identifier and the iteration domain of
725 * In particular, the scop for the condition is filtered to depend
726 * on "id_test" evaluating to true for all previous iterations
727 * of the loop, while the scop for the body is filtered to depend
728 * on "id_test" evaluating to true for all iterations up to the
730 * The actual filter only imposes that this virtual array has
731 * value one on the previous or the current iteration.
732 * The fact that this condition also applies to the previous
733 * iterations is enforced by an implication.
735 * These filtered scops are then combined into a single scop,
736 * with the condition scop scheduled before the body scop.
738 * "sign" is positive if the iterator increases and negative
741 static struct pet_scop
*scop_add_while(struct pet_scop
*scop_cond
,
742 struct pet_scop
*scop_body
, __isl_take isl_id
*id_test
,
743 __isl_take isl_set
*domain
, __isl_take isl_val
*inc
)
745 isl_ctx
*ctx
= isl_set_get_ctx(domain
);
747 isl_multi_pw_aff
*test_index
;
748 isl_multi_pw_aff
*prev
;
749 int sign
= isl_val_sgn(inc
);
750 struct pet_scop
*scop
;
752 prev
= map_to_previous(isl_id_copy(id_test
), isl_set_copy(domain
), inc
);
753 scop_cond
= pet_scop_filter(scop_cond
, prev
, 1);
755 space
= isl_space_map_from_set(isl_set_get_space(domain
));
756 test_index
= isl_multi_pw_aff_identity(space
);
757 test_index
= isl_multi_pw_aff_set_tuple_id(test_index
, isl_dim_out
,
758 isl_id_copy(id_test
));
759 scop_body
= pet_scop_filter(scop_body
, test_index
, 1);
761 scop
= pet_scop_add_seq(ctx
, scop_cond
, scop_body
);
762 scop
= add_implication(scop
, id_test
, domain
, sign
, 1);
767 /* Create a pet_scop with a single statement with name S_<stmt_nr>,
768 * evaluating "cond" and writing the result to a virtual scalar,
769 * as expressed by "index".
770 * The expression "cond" has not yet been evaluated in the context of "pc".
771 * Do so within the context "pc".
772 * The location of the statement is set to "loc".
774 static struct pet_scop
*scop_from_non_affine_condition(
775 __isl_take pet_expr
*cond
, int stmt_nr
,
776 __isl_take isl_multi_pw_aff
*index
,
777 __isl_take pet_loc
*loc
, __isl_keep pet_context
*pc
)
779 pet_expr
*expr
, *write
;
781 cond
= pet_context_evaluate_expr(pc
, cond
);
783 write
= pet_expr_from_index(index
);
784 write
= pet_expr_access_set_write(write
, 1);
785 write
= pet_expr_access_set_read(write
, 0);
786 expr
= pet_expr_new_binary(1, pet_op_assign
, write
, cond
);
788 return scop_from_evaluated_expr(expr
, stmt_nr
, loc
, pc
);
791 /* Given that "scop" has an affine skip condition of type pet_skip_now,
792 * apply this skip condition to the domain of "pc".
793 * That is, remove the elements satisfying the skip condition from
794 * the domain of "pc".
796 static __isl_give pet_context
*apply_affine_continue(__isl_take pet_context
*pc
,
797 struct pet_scop
*scop
)
799 isl_set
*domain
, *skip
;
801 skip
= pet_scop_get_affine_skip_domain(scop
, pet_skip_now
);
802 domain
= pet_context_get_domain(pc
);
803 domain
= isl_set_subtract(domain
, skip
);
804 pc
= pet_context_intersect_domain(pc
, domain
);
809 /* Add a scop for evaluating the loop increment "inc" at the end
810 * of a loop body "scop" within the context "pc".
812 * The skip conditions resulting from continue statements inside
813 * the body do not apply to "inc", but those resulting from break
814 * statements do need to get applied.
816 static struct pet_scop
*scop_add_inc(struct pet_scop
*scop
,
817 __isl_take pet_expr
*inc
, __isl_take pet_loc
*loc
,
818 __isl_keep pet_context
*pc
, struct pet_state
*state
)
820 struct pet_scop
*scop_inc
;
822 pc
= pet_context_copy(pc
);
824 if (pet_scop_has_skip(scop
, pet_skip_later
)) {
825 isl_multi_pw_aff
*skip
;
826 skip
= pet_scop_get_skip(scop
, pet_skip_later
);
827 scop
= pet_scop_set_skip(scop
, pet_skip_now
, skip
);
828 if (pet_scop_has_affine_skip(scop
, pet_skip_now
))
829 pc
= apply_affine_continue(pc
, scop
);
831 pet_scop_reset_skip(scop
, pet_skip_now
);
832 scop_inc
= scop_from_expr(inc
, state
->n_stmt
++, loc
, pc
);
833 scop
= pet_scop_add_seq(state
->ctx
, scop
, scop_inc
);
835 pet_context_free(pc
);
840 /* Construct a generic while scop, with iteration domain
841 * { [t] : t >= 0 } around the scop for "tree_body" within the context "pc".
842 * "loop_id" is the label on the loop or NULL if there is no such label.
843 * The domain of "pc" has already been extended with this infinite loop
847 * The scop consists of two parts,
848 * one for evaluating the condition "cond" and one for the body.
849 * If "expr_inc" is not NULL, then a scop for evaluating this expression
850 * is added at the end of the body,
851 * after replacing any skip conditions resulting from continue statements
852 * by the skip conditions resulting from break statements (if any).
854 * The schedules are combined as a sequence to reflect that the condition is
855 * evaluated before the body is executed and the body is filtered to depend
856 * on the result of the condition evaluating to true on all iterations
857 * up to the current iteration, while the evaluation of the condition itself
858 * is filtered to depend on the result of the condition evaluating to true
859 * on all previous iterations.
860 * The context of the scop representing the body is dropped
861 * because we don't know how many times the body will be executed,
864 * If the body contains any break, then it is taken into
865 * account in apply_affine_break (if the skip condition is affine)
866 * or in scop_add_break (if the skip condition is not affine).
868 * Note that in case of an affine skip condition,
869 * since we are dealing with a loop without loop iterator,
870 * the skip condition cannot refer to the current loop iterator and
871 * so effectively, the effect on the iteration domain is of the form
873 * { [outer,0]; [outer,t] : t >= 1 and not skip }
875 static struct pet_scop
*scop_from_non_affine_while(__isl_take pet_expr
*cond
,
876 __isl_take pet_loc
*loc
, __isl_keep pet_tree
*tree_body
,
877 __isl_keep isl_id
*loop_id
, __isl_take pet_expr
*expr_inc
,
878 __isl_take pet_context
*pc
, struct pet_state
*state
)
881 isl_id
*id_test
, *id_break_test
;
883 isl_multi_pw_aff
*test_index
;
886 isl_multi_aff
*sched
;
887 struct pet_scop
*scop
, *scop_body
;
888 int has_affine_break
;
892 space
= pet_context_get_space(pc
);
893 test_index
= pet_create_test_index(space
, state
->n_test
++);
894 scop
= scop_from_non_affine_condition(cond
, state
->n_stmt
++,
895 isl_multi_pw_aff_copy(test_index
),
896 pet_loc_copy(loc
), pc
);
897 id_test
= isl_multi_pw_aff_get_tuple_id(test_index
, isl_dim_out
);
898 domain
= pet_context_get_domain(pc
);
899 scop
= pet_scop_add_boolean_array(scop
, isl_set_copy(domain
),
900 test_index
, state
->int_size
);
902 sched
= map_to_last(pc
, state
->n_loop
++, loop_id
);
904 scop_body
= scop_from_tree(tree_body
, pc
, state
);
906 has_affine_break
= pet_scop_has_affine_skip(scop_body
, pet_skip_later
);
907 if (has_affine_break
)
908 skip
= pet_scop_get_affine_skip_domain(scop_body
,
910 has_var_break
= pet_scop_has_var_skip(scop_body
, pet_skip_later
);
912 id_break_test
= pet_scop_get_skip_id(scop_body
, pet_skip_later
);
914 scop_body
= pet_scop_reset_context(scop_body
);
916 scop_body
= scop_add_inc(scop_body
, expr_inc
, loc
, pc
, state
);
919 scop_body
= pet_scop_reset_skips(scop_body
);
921 if (has_affine_break
) {
922 domain
= apply_affine_break(domain
, skip
, 1, 0, NULL
);
923 scop
= pet_scop_intersect_domain_prefix(scop
,
924 isl_set_copy(domain
));
925 scop_body
= pet_scop_intersect_domain_prefix(scop_body
,
926 isl_set_copy(domain
));
929 scop
= scop_add_break(scop
, isl_id_copy(id_break_test
),
930 isl_set_copy(domain
), isl_val_one(ctx
));
931 scop_body
= scop_add_break(scop_body
, id_break_test
,
932 isl_set_copy(domain
), isl_val_one(ctx
));
934 scop
= scop_add_while(scop
, scop_body
, id_test
, isl_set_copy(domain
),
937 scop
= pet_scop_embed(scop
, domain
, sched
);
939 pet_context_free(pc
);
943 /* Check if the while loop is of the form
945 * while (affine expression)
948 * If so, call scop_from_affine_while to construct a scop.
950 * Otherwise, pass control to scop_from_non_affine_while.
952 * "pc" is the context in which the affine expressions in the scop are created.
953 * The domain of "pc" is extended with an infinite loop
957 * before passing control to scop_from_affine_while or
958 * scop_from_non_affine_while.
960 static struct pet_scop
*scop_from_while(__isl_keep pet_tree
*tree
,
961 __isl_keep pet_context
*pc
, struct pet_state
*state
)
969 pc
= pet_context_copy(pc
);
970 pc
= pet_context_clear_writes_in_tree(pc
, tree
->u
.l
.body
);
972 cond_expr
= pet_expr_copy(tree
->u
.l
.cond
);
973 cond_expr
= pet_context_evaluate_expr(pc
, cond_expr
);
974 pa
= pet_expr_extract_affine_condition(cond_expr
, pc
);
975 pet_expr_free(cond_expr
);
977 pc
= pet_context_add_infinite_loop(pc
);
982 if (!isl_pw_aff_involves_nan(pa
))
983 return scop_from_affine_while(tree
, pa
, pc
, state
);
985 return scop_from_non_affine_while(pet_expr_copy(tree
->u
.l
.cond
),
986 pet_tree_get_loc(tree
), tree
->u
.l
.body
,
987 tree
->label
, NULL
, pc
, state
);
989 pet_context_free(pc
);
993 /* Check whether "cond" expresses a simple loop bound
994 * on the final set dimension.
995 * In particular, if "up" is set then "cond" should contain only
996 * upper bounds on the final set dimension.
997 * Otherwise, it should contain only lower bounds.
999 static int is_simple_bound(__isl_keep isl_set
*cond
, __isl_keep isl_val
*inc
)
1003 pos
= isl_set_dim(cond
, isl_dim_set
) - 1;
1004 if (isl_val_is_pos(inc
))
1005 return !isl_set_dim_has_any_lower_bound(cond
, isl_dim_set
, pos
);
1007 return !isl_set_dim_has_any_upper_bound(cond
, isl_dim_set
, pos
);
1010 /* Extend a condition on a given iteration of a loop to one that
1011 * imposes the same condition on all previous iterations.
1012 * "domain" expresses the lower [upper] bound on the iterations
1013 * when inc is positive [negative] in its final dimension.
1015 * In particular, we construct the condition (when inc is positive)
1017 * forall i' : (domain(i') and i' <= i) => cond(i')
1019 * (where "<=" applies to the final dimension)
1020 * which is equivalent to
1022 * not exists i' : domain(i') and i' <= i and not cond(i')
1024 * We construct this set by subtracting the satisfying cond from domain,
1027 * { [i'] -> [i] : i' <= i }
1029 * and then subtracting the result from domain again.
1031 static __isl_give isl_set
*valid_for_each_iteration(__isl_take isl_set
*cond
,
1032 __isl_take isl_set
*domain
, __isl_take isl_val
*inc
)
1035 isl_map
*previous_to_this
;
1038 dim
= isl_set_dim(cond
, isl_dim_set
);
1039 space
= isl_space_map_from_set(isl_set_get_space(cond
));
1040 previous_to_this
= isl_map_universe(space
);
1041 for (i
= 0; i
+ 1 < dim
; ++i
)
1042 previous_to_this
= isl_map_equate(previous_to_this
,
1043 isl_dim_in
, i
, isl_dim_out
, i
);
1044 if (isl_val_is_pos(inc
))
1045 previous_to_this
= isl_map_order_le(previous_to_this
,
1046 isl_dim_in
, dim
- 1, isl_dim_out
, dim
- 1);
1048 previous_to_this
= isl_map_order_ge(previous_to_this
,
1049 isl_dim_in
, dim
- 1, isl_dim_out
, dim
- 1);
1051 cond
= isl_set_subtract(isl_set_copy(domain
), cond
);
1052 cond
= isl_set_apply(cond
, previous_to_this
);
1053 cond
= isl_set_subtract(domain
, cond
);
1060 /* Given an initial value of the form
1062 * { [outer,i] -> init(outer) }
1064 * construct a domain of the form
1066 * { [outer,i] : exists a: i = init(outer) + a * inc and a >= 0 }
1068 static __isl_give isl_set
*strided_domain(__isl_take isl_pw_aff
*init
,
1069 __isl_take isl_val
*inc
)
1074 isl_local_space
*ls
;
1077 dim
= isl_pw_aff_dim(init
, isl_dim_in
);
1079 init
= isl_pw_aff_add_dims(init
, isl_dim_in
, 1);
1080 space
= isl_pw_aff_get_domain_space(init
);
1081 ls
= isl_local_space_from_space(space
);
1082 aff
= isl_aff_zero_on_domain(isl_local_space_copy(ls
));
1083 aff
= isl_aff_add_coefficient_val(aff
, isl_dim_in
, dim
, inc
);
1084 init
= isl_pw_aff_add(init
, isl_pw_aff_from_aff(aff
));
1086 aff
= isl_aff_var_on_domain(ls
, isl_dim_set
, dim
- 1);
1087 set
= isl_pw_aff_eq_set(isl_pw_aff_from_aff(aff
), init
);
1089 set
= isl_set_lower_bound_si(set
, isl_dim_set
, dim
, 0);
1090 set
= isl_set_project_out(set
, isl_dim_set
, dim
, 1);
1095 /* Assuming "cond" represents a bound on a loop where the loop
1096 * iterator "iv" is incremented (or decremented) by one, check if wrapping
1099 * Under the given assumptions, wrapping is only possible if "cond" allows
1100 * for the last value before wrapping, i.e., 2^width - 1 in case of an
1101 * increasing iterator and 0 in case of a decreasing iterator.
1103 static int can_wrap(__isl_keep isl_set
*cond
, __isl_keep pet_expr
*iv
,
1104 __isl_keep isl_val
*inc
)
1111 test
= isl_set_copy(cond
);
1113 ctx
= isl_set_get_ctx(test
);
1114 if (isl_val_is_neg(inc
))
1115 limit
= isl_val_zero(ctx
);
1117 limit
= isl_val_int_from_ui(ctx
, pet_expr_get_type_size(iv
));
1118 limit
= isl_val_2exp(limit
);
1119 limit
= isl_val_sub_ui(limit
, 1);
1122 test
= isl_set_fix_val(cond
, isl_dim_set
, 0, limit
);
1123 cw
= !isl_set_is_empty(test
);
1133 * construct the following affine expression on this space
1135 * { [outer, v] -> [outer, v mod 2^width] }
1137 * where width is the number of bits used to represent the values
1138 * of the unsigned variable "iv".
1140 static __isl_give isl_multi_aff
*compute_wrapping(__isl_take isl_space
*space
,
1141 __isl_keep pet_expr
*iv
)
1147 dim
= isl_space_dim(space
, isl_dim_set
);
1149 space
= isl_space_map_from_set(space
);
1150 ma
= isl_multi_aff_identity(space
);
1152 aff
= isl_multi_aff_get_aff(ma
, dim
- 1);
1153 aff
= pet_wrap_aff(aff
, pet_expr_get_type_size(iv
));
1154 ma
= isl_multi_aff_set_aff(ma
, dim
- 1, aff
);
1159 /* Given two sets in the space
1163 * where l represents the outer loop iterators, compute the set
1164 * of values of l that ensure that "set1" is a subset of "set2".
1166 * set1 is a subset of set2 if
1168 * forall i: set1(l,i) => set2(l,i)
1172 * not exists i: set1(l,i) and not set2(l,i)
1176 * not exists i: (set1 \ set2)(l,i)
1178 static __isl_give isl_set
*enforce_subset(__isl_take isl_set
*set1
,
1179 __isl_take isl_set
*set2
)
1183 pos
= isl_set_dim(set1
, isl_dim_set
) - 1;
1184 set1
= isl_set_subtract(set1
, set2
);
1185 set1
= isl_set_eliminate(set1
, isl_dim_set
, pos
, 1);
1186 return isl_set_complement(set1
);
1189 /* Compute the set of outer iterator values for which "cond" holds
1190 * on the next iteration of the inner loop for each element of "dom".
1192 * We first construct mapping { [l,i] -> [l,i + inc] } (where l refers
1193 * to the outer loop iterators), plug that into "cond"
1194 * and then compute the set of outer iterators for which "dom" is a subset
1197 static __isl_give isl_set
*valid_on_next(__isl_take isl_set
*cond
,
1198 __isl_take isl_set
*dom
, __isl_take isl_val
*inc
)
1205 pos
= isl_set_dim(dom
, isl_dim_set
) - 1;
1206 space
= isl_set_get_space(dom
);
1207 space
= isl_space_map_from_set(space
);
1208 ma
= isl_multi_aff_identity(space
);
1209 aff
= isl_multi_aff_get_aff(ma
, pos
);
1210 aff
= isl_aff_add_constant_val(aff
, inc
);
1211 ma
= isl_multi_aff_set_aff(ma
, pos
, aff
);
1212 cond
= isl_set_preimage_multi_aff(cond
, ma
);
1214 return enforce_subset(dom
, cond
);
1217 /* Construct a pet_scop for the initialization of the iterator
1218 * of the for loop "tree" within the context "pc" (i.e., the context
1221 static __isl_give pet_scop
*scop_from_for_init(__isl_keep pet_tree
*tree
,
1222 __isl_keep pet_context
*pc
, struct pet_state
*state
)
1224 pet_expr
*expr_iv
, *init
;
1227 expr_iv
= pet_expr_copy(tree
->u
.l
.iv
);
1228 type_size
= pet_expr_get_type_size(expr_iv
);
1229 init
= pet_expr_copy(tree
->u
.l
.init
);
1230 init
= pet_expr_new_binary(type_size
, pet_op_assign
, expr_iv
, init
);
1231 return scop_from_expr(init
, state
->n_stmt
++,
1232 pet_tree_get_loc(tree
), pc
);
1235 /* Extract the for loop "tree" as a while loop within the context "pc_init".
1236 * In particular, "pc_init" represents the context of the loop,
1237 * whereas "pc" represents the context of the body of the loop and
1238 * has already had its domain extended with an infinite loop
1242 * The for loop has the form
1244 * for (iv = init; cond; iv += inc)
1255 * except that the skips resulting from any continue statements
1256 * in body do not apply to the increment, but are replaced by the skips
1257 * resulting from break statements.
1259 * If the loop iterator is declared in the for loop, then it is killed before
1260 * and after the loop.
1262 static struct pet_scop
*scop_from_non_affine_for(__isl_keep pet_tree
*tree
,
1263 __isl_keep pet_context
*pc_init
, __isl_take pet_context
*pc
,
1264 struct pet_state
*state
)
1268 pet_expr
*expr_iv
, *inc
;
1269 struct pet_scop
*scop_init
, *scop
;
1271 struct pet_array
*array
;
1272 struct pet_scop
*scop_kill
;
1274 iv
= pet_expr_access_get_id(tree
->u
.l
.iv
);
1275 pc
= pet_context_clear_value(pc
, iv
);
1277 declared
= tree
->u
.l
.declared
;
1279 scop_init
= scop_from_for_init(tree
, pc_init
, state
);
1281 expr_iv
= pet_expr_copy(tree
->u
.l
.iv
);
1282 type_size
= pet_expr_get_type_size(expr_iv
);
1283 inc
= pet_expr_copy(tree
->u
.l
.inc
);
1284 inc
= pet_expr_new_binary(type_size
, pet_op_add_assign
, expr_iv
, inc
);
1286 scop
= scop_from_non_affine_while(pet_expr_copy(tree
->u
.l
.cond
),
1287 pet_tree_get_loc(tree
), tree
->u
.l
.body
, tree
->label
,
1288 inc
, pet_context_copy(pc
), state
);
1290 scop
= pet_scop_add_seq(state
->ctx
, scop_init
, scop
);
1292 pet_context_free(pc
);
1297 array
= extract_array(tree
->u
.l
.iv
, pc_init
, state
);
1299 array
->declared
= 1;
1300 scop_kill
= kill(pet_tree_get_loc(tree
), array
, pc_init
, state
);
1301 scop
= pet_scop_add_seq(state
->ctx
, scop_kill
, scop
);
1302 scop_kill
= kill(pet_tree_get_loc(tree
), array
, pc_init
, state
);
1303 scop_kill
= pet_scop_add_array(scop_kill
, array
);
1304 scop
= pet_scop_add_seq(state
->ctx
, scop
, scop_kill
);
1309 /* Given an access expression "expr", is the variable accessed by
1310 * "expr" assigned anywhere inside "tree"?
1312 static int is_assigned(__isl_keep pet_expr
*expr
, __isl_keep pet_tree
*tree
)
1317 id
= pet_expr_access_get_id(expr
);
1318 assigned
= pet_tree_writes(tree
, id
);
1324 /* Are all nested access parameters in "pa" allowed given "tree".
1325 * In particular, is none of them written by anywhere inside "tree".
1327 * If "tree" has any continue or break nodes in the current loop level,
1328 * then no nested access parameters are allowed.
1329 * In particular, if there is any nested access in a guard
1330 * for a piece of code containing a "continue", then we want to introduce
1331 * a separate statement for evaluating this guard so that we can express
1332 * that the result is false for all previous iterations.
1334 static int is_nested_allowed(__isl_keep isl_pw_aff
*pa
,
1335 __isl_keep pet_tree
*tree
)
1342 if (!pet_nested_any_in_pw_aff(pa
))
1345 if (pet_tree_has_continue_or_break(tree
))
1348 nparam
= isl_pw_aff_dim(pa
, isl_dim_param
);
1349 for (i
= 0; i
< nparam
; ++i
) {
1350 isl_id
*id
= isl_pw_aff_get_dim_id(pa
, isl_dim_param
, i
);
1354 if (!pet_nested_in_id(id
)) {
1359 expr
= pet_nested_extract_expr(id
);
1360 allowed
= pet_expr_get_type(expr
) == pet_expr_access
&&
1361 !is_assigned(expr
, tree
);
1363 pet_expr_free(expr
);
1373 /* Internal data structure for collect_local.
1374 * "pc" and "state" are needed to extract pet_arrays for the local variables.
1375 * "local" collects the results.
1377 struct pet_tree_collect_local_data
{
1379 struct pet_state
*state
;
1380 isl_union_set
*local
;
1383 /* Add the variable accessed by "var" to data->local.
1384 * We extract a representation of the variable from
1385 * the pet_array constructed using extract_array
1386 * to ensure consistency with the rest of the scop.
1388 static int add_local(struct pet_tree_collect_local_data
*data
,
1389 __isl_keep pet_expr
*var
)
1391 struct pet_array
*array
;
1394 array
= extract_array(var
, data
->pc
, data
->state
);
1398 universe
= isl_set_universe(isl_set_get_space(array
->extent
));
1399 data
->local
= isl_union_set_add_set(data
->local
, universe
);
1400 pet_array_free(array
);
1405 /* If the node "tree" declares a variable, then add it to
1408 static int extract_local_var(__isl_keep pet_tree
*tree
, void *user
)
1410 enum pet_tree_type type
;
1411 struct pet_tree_collect_local_data
*data
= user
;
1413 type
= pet_tree_get_type(tree
);
1414 if (type
== pet_tree_decl
|| type
== pet_tree_decl_init
)
1415 return add_local(data
, tree
->u
.d
.var
);
1420 /* If the node "tree" is a for loop that declares its induction variable,
1421 * then add it this induction variable to data->local.
1423 static int extract_local_iterator(__isl_keep pet_tree
*tree
, void *user
)
1425 struct pet_tree_collect_local_data
*data
= user
;
1427 if (pet_tree_get_type(tree
) == pet_tree_for
&& tree
->u
.l
.declared
)
1428 return add_local(data
, tree
->u
.l
.iv
);
1433 /* Collect and return all local variables of the for loop represented
1434 * by "tree", with "scop" the corresponding pet_scop.
1435 * "pc" and "state" are needed to extract pet_arrays for the local variables.
1437 * We collect not only the variables that are declared inside "tree",
1438 * but also the loop iterators that are declared anywhere inside
1439 * any possible macro statements in "scop".
1440 * The latter also appear as declared variable in the scop,
1441 * whereas other declared loop iterators only appear implicitly
1442 * in the iteration domains.
1444 static __isl_give isl_union_set
*collect_local(struct pet_scop
*scop
,
1445 __isl_keep pet_tree
*tree
, __isl_keep pet_context
*pc
,
1446 struct pet_state
*state
)
1450 struct pet_tree_collect_local_data data
= { pc
, state
};
1452 ctx
= pet_tree_get_ctx(tree
);
1453 data
.local
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
1455 if (pet_tree_foreach_sub_tree(tree
, &extract_local_var
, &data
) < 0)
1456 return isl_union_set_free(data
.local
);
1458 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
1459 pet_tree
*body
= scop
->stmts
[i
]->body
;
1460 if (pet_tree_foreach_sub_tree(body
, &extract_local_iterator
,
1462 return isl_union_set_free(data
.local
);
1468 /* Add an independence to "scop" if the for node "tree" was marked
1470 * "domain" is the set of loop iterators, with the current for loop
1471 * innermost. If "sign" is positive, then the inner iterator increases.
1472 * Otherwise it decreases.
1473 * "pc" and "state" are needed to extract pet_arrays for the local variables.
1475 * If the tree was marked, then collect all local variables and
1476 * add an independence.
1478 static struct pet_scop
*set_independence(struct pet_scop
*scop
,
1479 __isl_keep pet_tree
*tree
, __isl_keep isl_set
*domain
, int sign
,
1480 __isl_keep pet_context
*pc
, struct pet_state
*state
)
1482 isl_union_set
*local
;
1484 if (!tree
->u
.l
.independent
)
1487 local
= collect_local(scop
, tree
, pc
, state
);
1488 scop
= pet_scop_set_independent(scop
, domain
, local
, sign
);
1493 /* Add a scop for assigning to the variable corresponding to the loop
1494 * iterator the result of adding the increment to the loop iterator
1495 * at the end of a loop body "scop" within the context "pc".
1496 * "tree" represents the for loop.
1498 * The increment is of the form
1502 * Note that "iv" on the right hand side will be evaluated in terms
1503 * of the (possibly virtual) loop iterator, i.e., the inner dimension
1504 * of the domain, while "iv" on the left hand side will not be evaluated
1505 * (because it is a write) and will continue to refer to the original
1508 static __isl_give pet_scop
*add_iterator_assignment(__isl_take pet_scop
*scop
,
1509 __isl_keep pet_tree
*tree
, __isl_keep pet_context
*pc
,
1510 struct pet_state
*state
)
1513 pet_expr
*expr
, *iv
, *inc
;
1515 iv
= pet_expr_copy(tree
->u
.l
.iv
);
1516 type_size
= pet_expr_get_type_size(iv
);
1517 iv
= pet_expr_access_set_write(iv
, 0);
1518 iv
= pet_expr_access_set_read(iv
, 1);
1519 inc
= pet_expr_copy(tree
->u
.l
.inc
);
1520 expr
= pet_expr_new_binary(type_size
, pet_op_add
, iv
, inc
);
1521 iv
= pet_expr_copy(tree
->u
.l
.iv
);
1522 expr
= pet_expr_new_binary(type_size
, pet_op_assign
, iv
, expr
);
1524 scop
= scop_add_inc(scop
, expr
, pet_tree_get_loc(tree
), pc
, state
);
1529 /* Construct a pet_scop for a for tree with static affine initialization
1530 * and constant increment within the context "pc".
1531 * The domain of "pc" has already been extended with an (at this point
1532 * unbounded) inner loop iterator corresponding to the current for loop.
1534 * The condition is allowed to contain nested accesses, provided
1535 * they are not being written to inside the body of the loop.
1536 * Otherwise, or if the condition is otherwise non-affine, the for loop is
1537 * essentially treated as a while loop, with iteration domain
1538 * { [l,i] : i >= init }, where l refers to the outer loop iterators.
1540 * We extract a pet_scop for the body after intersecting the domain of "pc"
1542 * { [l,i] : i >= init and condition' }
1546 * { [l,i] : i <= init and condition' }
1548 * Where condition' is equal to condition if the latter is
1549 * a simple upper [lower] bound and a condition that is extended
1550 * to apply to all previous iterations otherwise.
1551 * Afterwards, the schedule of the pet_scop is extended with
1559 * If the condition is non-affine, then we drop the condition from the
1560 * iteration domain and instead create a separate statement
1561 * for evaluating the condition. The body is then filtered to depend
1562 * on the result of the condition evaluating to true on all iterations
1563 * up to the current iteration, while the evaluation the condition itself
1564 * is filtered to depend on the result of the condition evaluating to true
1565 * on all previous iterations.
1566 * The context of the scop representing the body is dropped
1567 * because we don't know how many times the body will be executed,
1570 * If the stride of the loop is not 1, then "i >= init" is replaced by
1572 * (exists a: i = init + stride * a and a >= 0)
1574 * If the loop iterator i is unsigned, then wrapping may occur.
1575 * We therefore use a virtual iterator instead that does not wrap.
1576 * However, the condition in the code applies
1577 * to the wrapped value, so we need to change condition(l,i)
1578 * into condition([l,i % 2^width]). Similarly, we replace all accesses
1579 * to the original iterator by the wrapping of the virtual iterator.
1580 * Note that there may be no need to perform this final wrapping
1581 * if the loop condition (after wrapping) satisfies certain conditions.
1582 * However, the is_simple_bound condition is not enough since it doesn't
1583 * check if there even is an upper bound.
1585 * Wrapping on unsigned iterators can be avoided entirely if
1586 * the loop condition is simple, the loop iterator is incremented
1587 * [decremented] by one and the last value before wrapping cannot
1588 * possibly satisfy the loop condition.
1590 * Valid outer iterators for a for loop are those for which the initial
1591 * value itself, the increment on each domain iteration and
1592 * the condition on both the initial value and
1593 * the result of incrementing the iterator for each iteration of the domain
1595 * If the loop condition is non-affine, then we only consider validity
1596 * of the initial value.
1598 * If the loop iterator was not declared inside the loop header,
1599 * then the variable corresponding to this loop iterator is assigned
1600 * the result of adding the increment at the end of the loop body.
1601 * The assignment of the initial value is taken care of by
1602 * scop_from_affine_for_init.
1604 * If the body contains any break, then we keep track of it in "skip"
1605 * (if the skip condition is affine) or it is handled in scop_add_break
1606 * (if the skip condition is not affine).
1607 * Note that the affine break condition needs to be considered with
1608 * respect to previous iterations in the virtual domain (if any).
1610 static struct pet_scop
*scop_from_affine_for(__isl_keep pet_tree
*tree
,
1611 __isl_take isl_pw_aff
*init_val
, __isl_take isl_pw_aff
*pa_inc
,
1612 __isl_take isl_val
*inc
, __isl_take pet_context
*pc
,
1613 struct pet_state
*state
)
1616 isl_multi_aff
*sched
;
1617 isl_set
*cond
= NULL
;
1618 isl_set
*skip
= NULL
;
1619 isl_id
*id_test
= NULL
, *id_break_test
;
1620 struct pet_scop
*scop
, *scop_cond
= NULL
;
1627 int has_affine_break
;
1629 isl_map
*rev_wrap
= NULL
;
1630 isl_map
*init_val_map
;
1632 isl_set
*valid_init
;
1633 isl_set
*valid_cond
;
1634 isl_set
*valid_cond_init
;
1635 isl_set
*valid_cond_next
;
1637 pet_expr
*cond_expr
;
1638 pet_context
*pc_nested
;
1640 pos
= pet_context_dim(pc
) - 1;
1642 domain
= pet_context_get_domain(pc
);
1643 cond_expr
= pet_expr_copy(tree
->u
.l
.cond
);
1644 cond_expr
= pet_context_evaluate_expr(pc
, cond_expr
);
1645 pc_nested
= pet_context_copy(pc
);
1646 pc_nested
= pet_context_set_allow_nested(pc_nested
, 1);
1647 pa
= pet_expr_extract_affine_condition(cond_expr
, pc_nested
);
1648 pet_context_free(pc_nested
);
1649 pet_expr_free(cond_expr
);
1651 valid_inc
= isl_pw_aff_domain(pa_inc
);
1653 is_unsigned
= pet_expr_get_type_size(tree
->u
.l
.iv
) > 0;
1655 is_non_affine
= isl_pw_aff_involves_nan(pa
) ||
1656 !is_nested_allowed(pa
, tree
->u
.l
.body
);
1658 pa
= isl_pw_aff_free(pa
);
1660 valid_cond
= isl_pw_aff_domain(isl_pw_aff_copy(pa
));
1661 cond
= isl_pw_aff_non_zero_set(pa
);
1663 cond
= isl_set_universe(isl_set_get_space(domain
));
1665 valid_cond
= isl_set_coalesce(valid_cond
);
1666 is_one
= isl_val_is_one(inc
) || isl_val_is_negone(inc
);
1667 is_virtual
= is_unsigned
&&
1668 (!is_one
|| can_wrap(cond
, tree
->u
.l
.iv
, inc
));
1670 init_val_map
= isl_map_from_pw_aff(isl_pw_aff_copy(init_val
));
1671 init_val_map
= isl_map_equate(init_val_map
, isl_dim_in
, pos
,
1673 valid_cond_init
= enforce_subset(isl_map_domain(init_val_map
),
1674 isl_set_copy(valid_cond
));
1675 if (is_one
&& !is_virtual
) {
1678 isl_pw_aff_free(init_val
);
1679 pa
= pet_expr_extract_comparison(
1680 isl_val_is_pos(inc
) ? pet_op_ge
: pet_op_le
,
1681 tree
->u
.l
.iv
, tree
->u
.l
.init
, pc
);
1682 valid_init
= isl_pw_aff_domain(isl_pw_aff_copy(pa
));
1683 valid_init
= isl_set_eliminate(valid_init
, isl_dim_set
,
1684 isl_set_dim(domain
, isl_dim_set
) - 1, 1);
1685 cond
= isl_pw_aff_non_zero_set(pa
);
1686 domain
= isl_set_intersect(domain
, cond
);
1690 valid_init
= isl_pw_aff_domain(isl_pw_aff_copy(init_val
));
1691 strided
= strided_domain(init_val
, isl_val_copy(inc
));
1692 domain
= isl_set_intersect(domain
, strided
);
1696 isl_multi_aff
*wrap
;
1697 wrap
= compute_wrapping(isl_set_get_space(cond
), tree
->u
.l
.iv
);
1698 pc
= pet_context_preimage_domain(pc
, wrap
);
1699 rev_wrap
= isl_map_from_multi_aff(wrap
);
1700 rev_wrap
= isl_map_reverse(rev_wrap
);
1701 cond
= isl_set_apply(cond
, isl_map_copy(rev_wrap
));
1702 valid_cond
= isl_set_apply(valid_cond
, isl_map_copy(rev_wrap
));
1703 valid_inc
= isl_set_apply(valid_inc
, isl_map_copy(rev_wrap
));
1705 is_simple
= is_simple_bound(cond
, inc
);
1707 cond
= isl_set_gist(cond
, isl_set_copy(domain
));
1708 is_simple
= is_simple_bound(cond
, inc
);
1711 cond
= valid_for_each_iteration(cond
,
1712 isl_set_copy(domain
), isl_val_copy(inc
));
1713 cond
= isl_set_align_params(cond
, isl_set_get_space(domain
));
1714 domain
= isl_set_intersect(domain
, cond
);
1715 sched
= map_to_last(pc
, state
->n_loop
++, tree
->label
);
1716 if (isl_val_is_neg(inc
))
1717 sched
= isl_multi_aff_neg(sched
);
1719 valid_cond_next
= valid_on_next(valid_cond
, isl_set_copy(domain
),
1721 valid_inc
= enforce_subset(isl_set_copy(domain
), valid_inc
);
1723 pc
= pet_context_intersect_domain(pc
, isl_set_copy(domain
));
1725 if (is_non_affine
) {
1727 isl_multi_pw_aff
*test_index
;
1728 space
= isl_set_get_space(domain
);
1729 test_index
= pet_create_test_index(space
, state
->n_test
++);
1730 scop_cond
= scop_from_non_affine_condition(
1731 pet_expr_copy(tree
->u
.l
.cond
), state
->n_stmt
++,
1732 isl_multi_pw_aff_copy(test_index
),
1733 pet_tree_get_loc(tree
), pc
);
1734 id_test
= isl_multi_pw_aff_get_tuple_id(test_index
,
1736 scop_cond
= pet_scop_add_boolean_array(scop_cond
,
1737 isl_set_copy(domain
), test_index
,
1741 scop
= scop_from_tree(tree
->u
.l
.body
, pc
, state
);
1742 has_affine_break
= scop
&&
1743 pet_scop_has_affine_skip(scop
, pet_skip_later
);
1744 if (has_affine_break
)
1745 skip
= pet_scop_get_affine_skip_domain(scop
, pet_skip_later
);
1746 has_var_break
= scop
&& pet_scop_has_var_skip(scop
, pet_skip_later
);
1748 id_break_test
= pet_scop_get_skip_id(scop
, pet_skip_later
);
1749 if (is_non_affine
) {
1750 scop
= pet_scop_reset_context(scop
);
1752 if (!tree
->u
.l
.declared
)
1753 scop
= add_iterator_assignment(scop
, tree
, pc
, state
);
1754 scop
= pet_scop_reset_skips(scop
);
1755 scop
= pet_scop_resolve_nested(scop
);
1756 if (has_affine_break
) {
1757 domain
= apply_affine_break(domain
, skip
, isl_val_sgn(inc
),
1758 is_virtual
, rev_wrap
);
1759 scop
= pet_scop_intersect_domain_prefix(scop
,
1760 isl_set_copy(domain
));
1762 isl_map_free(rev_wrap
);
1764 scop
= scop_add_break(scop
, id_break_test
, isl_set_copy(domain
),
1767 scop
= scop_add_while(scop_cond
, scop
, id_test
,
1768 isl_set_copy(domain
),
1771 scop
= set_independence(scop
, tree
, domain
, isl_val_sgn(inc
),
1773 scop
= pet_scop_embed(scop
, domain
, sched
);
1774 if (is_non_affine
) {
1775 isl_set_free(valid_inc
);
1777 valid_inc
= isl_set_intersect(valid_inc
, valid_cond_next
);
1778 valid_inc
= isl_set_intersect(valid_inc
, valid_cond_init
);
1779 valid_inc
= isl_set_project_out(valid_inc
, isl_dim_set
, pos
, 1);
1780 scop
= pet_scop_restrict_context(scop
, valid_inc
);
1785 valid_init
= isl_set_project_out(valid_init
, isl_dim_set
, pos
, 1);
1786 scop
= pet_scop_restrict_context(scop
, valid_init
);
1788 pet_context_free(pc
);
1792 /* Construct a pet_scop for a for tree with static affine initialization
1793 * and constant increment within the context "pc_init".
1794 * In particular, "pc_init" represents the context of the loop,
1795 * whereas the domain of "pc" has already been extended with an (at this point
1796 * unbounded) inner loop iterator corresponding to the current for loop.
1798 * If the loop iterator was not declared inside the loop header,
1799 * then add an assignment of the initial value to the loop iterator
1800 * before the loop. The construction of a pet_scop for the loop itself,
1801 * including updates to the loop iterator, is handled by scop_from_affine_for.
1803 static __isl_give pet_scop
*scop_from_affine_for_init(__isl_keep pet_tree
*tree
,
1804 __isl_take isl_pw_aff
*init_val
, __isl_take isl_pw_aff
*pa_inc
,
1805 __isl_take isl_val
*inc
, __isl_keep pet_context
*pc_init
,
1806 __isl_take pet_context
*pc
, struct pet_state
*state
)
1808 pet_scop
*scop_init
, *scop
;
1810 if (!tree
->u
.l
.declared
)
1811 scop_init
= scop_from_for_init(tree
, pc_init
, state
);
1813 scop
= scop_from_affine_for(tree
, init_val
, pa_inc
, inc
, pc
, state
);
1815 if (!tree
->u
.l
.declared
)
1816 scop
= pet_scop_add_seq(state
->ctx
, scop_init
, scop
);
1821 /* Construct a pet_scop for a for statement within the context of "pc".
1823 * We update the context to reflect the writes to the loop variable and
1824 * the writes inside the body.
1826 * Then we check if the initialization of the for loop
1827 * is a static affine value and the increment is a constant.
1828 * If so, we construct the pet_scop using scop_from_affine_for_init.
1829 * Otherwise, we treat the for loop as a while loop
1830 * in scop_from_non_affine_for.
1832 * Note that the initialization and the increment are extracted
1833 * in a context where the current loop iterator has been added
1834 * to the context. If these turn out not be affine, then we
1835 * have reconstruct the body context without an assignment
1836 * to this loop iterator, as this variable will then not be
1837 * treated as a dimension of the iteration domain, but as any
1840 static struct pet_scop
*scop_from_for(__isl_keep pet_tree
*tree
,
1841 __isl_keep pet_context
*init_pc
, struct pet_state
*state
)
1845 isl_pw_aff
*pa_inc
, *init_val
;
1846 pet_context
*pc
, *pc_init_val
;
1851 iv
= pet_expr_access_get_id(tree
->u
.l
.iv
);
1852 pc
= pet_context_copy(init_pc
);
1853 pc
= pet_context_add_inner_iterator(pc
, iv
);
1854 pc
= pet_context_clear_writes_in_tree(pc
, tree
->u
.l
.body
);
1856 pc_init_val
= pet_context_copy(pc
);
1857 pc_init_val
= pet_context_clear_value(pc_init_val
, isl_id_copy(iv
));
1858 init_val
= pet_expr_extract_affine(tree
->u
.l
.init
, pc_init_val
);
1859 pet_context_free(pc_init_val
);
1860 pa_inc
= pet_expr_extract_affine(tree
->u
.l
.inc
, pc
);
1861 inc
= pet_extract_cst(pa_inc
);
1862 if (!pa_inc
|| !init_val
|| !inc
)
1864 if (!isl_pw_aff_involves_nan(pa_inc
) &&
1865 !isl_pw_aff_involves_nan(init_val
) && !isl_val_is_nan(inc
))
1866 return scop_from_affine_for_init(tree
, init_val
, pa_inc
, inc
,
1867 init_pc
, pc
, state
);
1869 isl_pw_aff_free(pa_inc
);
1870 isl_pw_aff_free(init_val
);
1872 pet_context_free(pc
);
1874 pc
= pet_context_copy(init_pc
);
1875 pc
= pet_context_add_infinite_loop(pc
);
1876 pc
= pet_context_clear_writes_in_tree(pc
, tree
->u
.l
.body
);
1877 return scop_from_non_affine_for(tree
, init_pc
, pc
, state
);
1879 isl_pw_aff_free(pa_inc
);
1880 isl_pw_aff_free(init_val
);
1882 pet_context_free(pc
);
1886 /* Check whether "expr" is an affine constraint within the context "pc".
1888 static int is_affine_condition(__isl_keep pet_expr
*expr
,
1889 __isl_keep pet_context
*pc
)
1894 pa
= pet_expr_extract_affine_condition(expr
, pc
);
1897 is_affine
= !isl_pw_aff_involves_nan(pa
);
1898 isl_pw_aff_free(pa
);
1903 /* Check if the given if statement is a conditional assignement
1904 * with a non-affine condition.
1906 * In particular we check if "stmt" is of the form
1913 * where the condition is non-affine and a is some array or scalar access.
1915 static int is_conditional_assignment(__isl_keep pet_tree
*tree
,
1916 __isl_keep pet_context
*pc
)
1920 pet_expr
*expr1
, *expr2
;
1922 ctx
= pet_tree_get_ctx(tree
);
1923 if (!pet_options_get_detect_conditional_assignment(ctx
))
1925 if (tree
->type
!= pet_tree_if_else
)
1927 if (tree
->u
.i
.then_body
->type
!= pet_tree_expr
)
1929 if (tree
->u
.i
.else_body
->type
!= pet_tree_expr
)
1931 expr1
= tree
->u
.i
.then_body
->u
.e
.expr
;
1932 expr2
= tree
->u
.i
.else_body
->u
.e
.expr
;
1933 if (pet_expr_get_type(expr1
) != pet_expr_op
)
1935 if (pet_expr_get_type(expr2
) != pet_expr_op
)
1937 if (pet_expr_op_get_type(expr1
) != pet_op_assign
)
1939 if (pet_expr_op_get_type(expr2
) != pet_op_assign
)
1941 expr1
= pet_expr_get_arg(expr1
, 0);
1942 expr2
= pet_expr_get_arg(expr2
, 0);
1943 equal
= pet_expr_is_equal(expr1
, expr2
);
1944 pet_expr_free(expr1
);
1945 pet_expr_free(expr2
);
1946 if (equal
< 0 || !equal
)
1948 if (is_affine_condition(tree
->u
.i
.cond
, pc
))
1954 /* Given that "tree" is of the form
1961 * where a is some array or scalar access, construct a pet_scop
1962 * corresponding to this conditional assignment within the context "pc".
1963 * "cond_pa" is an affine expression with nested accesses representing
1966 * The constructed pet_scop then corresponds to the expression
1968 * a = condition ? f(...) : g(...)
1970 * All access relations in f(...) are intersected with condition
1971 * while all access relation in g(...) are intersected with the complement.
1973 static struct pet_scop
*scop_from_conditional_assignment(
1974 __isl_keep pet_tree
*tree
, __isl_take isl_pw_aff
*cond_pa
,
1975 __isl_take pet_context
*pc
, struct pet_state
*state
)
1978 isl_set
*cond
, *comp
;
1979 isl_multi_pw_aff
*index
;
1980 pet_expr
*expr1
, *expr2
;
1981 pet_expr
*pe_cond
, *pe_then
, *pe_else
, *pe
, *pe_write
;
1982 struct pet_scop
*scop
;
1984 cond
= isl_pw_aff_non_zero_set(isl_pw_aff_copy(cond_pa
));
1985 comp
= isl_pw_aff_zero_set(isl_pw_aff_copy(cond_pa
));
1986 index
= isl_multi_pw_aff_from_pw_aff(cond_pa
);
1988 expr1
= tree
->u
.i
.then_body
->u
.e
.expr
;
1989 expr2
= tree
->u
.i
.else_body
->u
.e
.expr
;
1991 pe_cond
= pet_expr_from_index(index
);
1993 pe_then
= pet_expr_get_arg(expr1
, 1);
1994 pe_then
= pet_context_evaluate_expr(pc
, pe_then
);
1995 pe_then
= pet_expr_restrict(pe_then
, cond
);
1996 pe_else
= pet_expr_get_arg(expr2
, 1);
1997 pe_else
= pet_context_evaluate_expr(pc
, pe_else
);
1998 pe_else
= pet_expr_restrict(pe_else
, comp
);
1999 pe_write
= pet_expr_get_arg(expr1
, 0);
2000 pe_write
= pet_context_evaluate_expr(pc
, pe_write
);
2002 pe
= pet_expr_new_ternary(pe_cond
, pe_then
, pe_else
);
2003 type_size
= pet_expr_get_type_size(pe_write
);
2004 pe
= pet_expr_new_binary(type_size
, pet_op_assign
, pe_write
, pe
);
2006 scop
= scop_from_evaluated_expr(pe
, state
->n_stmt
++,
2007 pet_tree_get_loc(tree
), pc
);
2009 pet_context_free(pc
);
2014 /* Construct a pet_scop for a non-affine if statement within the context "pc".
2016 * We create a separate statement that writes the result
2017 * of the non-affine condition to a virtual scalar.
2018 * A constraint requiring the value of this virtual scalar to be one
2019 * is added to the iteration domains of the then branch.
2020 * Similarly, a constraint requiring the value of this virtual scalar
2021 * to be zero is added to the iteration domains of the else branch, if any.
2022 * We combine the schedules as a sequence to ensure that the virtual scalar
2023 * is written before it is read.
2025 * If there are any breaks or continues in the then and/or else
2026 * branches, then we may have to compute a new skip condition.
2027 * This is handled using a pet_skip_info object.
2028 * On initialization, the object checks if skip conditions need
2029 * to be computed. If so, it does so in pet_skip_info_if_extract_index and
2030 * adds them in pet_skip_info_add.
2032 static struct pet_scop
*scop_from_non_affine_if(__isl_keep pet_tree
*tree
,
2033 __isl_take pet_context
*pc
, struct pet_state
*state
)
2038 isl_multi_pw_aff
*test_index
;
2039 struct pet_skip_info skip
;
2040 struct pet_scop
*scop
, *scop_then
, *scop_else
= NULL
;
2042 has_else
= tree
->type
== pet_tree_if_else
;
2044 space
= pet_context_get_space(pc
);
2045 test_index
= pet_create_test_index(space
, state
->n_test
++);
2046 scop
= scop_from_non_affine_condition(pet_expr_copy(tree
->u
.i
.cond
),
2047 state
->n_stmt
++, isl_multi_pw_aff_copy(test_index
),
2048 pet_tree_get_loc(tree
), pc
);
2049 domain
= pet_context_get_domain(pc
);
2050 scop
= pet_scop_add_boolean_array(scop
, domain
,
2051 isl_multi_pw_aff_copy(test_index
), state
->int_size
);
2053 scop_then
= scop_from_tree(tree
->u
.i
.then_body
, pc
, state
);
2055 scop_else
= scop_from_tree(tree
->u
.i
.else_body
, pc
, state
);
2057 pet_skip_info_if_init(&skip
, state
->ctx
, scop_then
, scop_else
,
2059 pet_skip_info_if_extract_index(&skip
, test_index
, pc
, state
);
2061 scop_then
= pet_scop_filter(scop_then
,
2062 isl_multi_pw_aff_copy(test_index
), 1);
2064 scop_else
= pet_scop_filter(scop_else
, test_index
, 0);
2065 scop_then
= pet_scop_add_par(state
->ctx
, scop_then
, scop_else
);
2067 isl_multi_pw_aff_free(test_index
);
2069 scop
= pet_scop_add_seq(state
->ctx
, scop
, scop_then
);
2071 scop
= pet_skip_info_add(&skip
, scop
);
2073 pet_context_free(pc
);
2077 /* Construct a pet_scop for an affine if statement within the context "pc".
2079 * The condition is added to the iteration domains of the then branch,
2080 * while the opposite of the condition in added to the iteration domains
2081 * of the else branch, if any.
2083 * If there are any breaks or continues in the then and/or else
2084 * branches, then we may have to compute a new skip condition.
2085 * This is handled using a pet_skip_info_if object.
2086 * On initialization, the object checks if skip conditions need
2087 * to be computed. If so, it does so in pet_skip_info_if_extract_cond and
2088 * adds them in pet_skip_info_add.
2090 static struct pet_scop
*scop_from_affine_if(__isl_keep pet_tree
*tree
,
2091 __isl_take isl_pw_aff
*cond
, __isl_take pet_context
*pc
,
2092 struct pet_state
*state
)
2096 isl_set
*set
, *complement
;
2098 struct pet_skip_info skip
;
2099 struct pet_scop
*scop
, *scop_then
, *scop_else
= NULL
;
2100 pet_context
*pc_body
;
2102 ctx
= pet_tree_get_ctx(tree
);
2104 has_else
= tree
->type
== pet_tree_if_else
;
2106 valid
= isl_pw_aff_domain(isl_pw_aff_copy(cond
));
2107 set
= isl_pw_aff_non_zero_set(isl_pw_aff_copy(cond
));
2109 pc_body
= pet_context_copy(pc
);
2110 pc_body
= pet_context_intersect_domain(pc_body
, isl_set_copy(set
));
2111 scop_then
= scop_from_tree(tree
->u
.i
.then_body
, pc_body
, state
);
2112 pet_context_free(pc_body
);
2114 pc_body
= pet_context_copy(pc
);
2115 complement
= isl_set_copy(valid
);
2116 complement
= isl_set_subtract(valid
, isl_set_copy(set
));
2117 pc_body
= pet_context_intersect_domain(pc_body
,
2118 isl_set_copy(complement
));
2119 scop_else
= scop_from_tree(tree
->u
.i
.else_body
, pc_body
, state
);
2120 pet_context_free(pc_body
);
2123 pet_skip_info_if_init(&skip
, ctx
, scop_then
, scop_else
, has_else
, 1);
2124 pet_skip_info_if_extract_cond(&skip
, cond
, pc
, state
);
2125 isl_pw_aff_free(cond
);
2127 scop
= pet_scop_restrict(scop_then
, set
);
2130 scop_else
= pet_scop_restrict(scop_else
, complement
);
2131 scop
= pet_scop_add_par(ctx
, scop
, scop_else
);
2133 scop
= pet_scop_resolve_nested(scop
);
2134 scop
= pet_scop_restrict_context(scop
, valid
);
2136 scop
= pet_skip_info_add(&skip
, scop
);
2138 pet_context_free(pc
);
2142 /* Construct a pet_scop for an if statement within the context "pc".
2144 * If the condition fits the pattern of a conditional assignment,
2145 * then it is handled by scop_from_conditional_assignment.
2146 * Note that the condition is only considered for a conditional assignment
2147 * if it is not static-affine. However, it should still convert
2148 * to an affine expression when nesting is allowed.
2150 * Otherwise, we check if the condition is affine.
2151 * If so, we construct the scop in scop_from_affine_if.
2152 * Otherwise, we construct the scop in scop_from_non_affine_if.
2154 * We allow the condition to be dynamic, i.e., to refer to
2155 * scalars or array elements that may be written to outside
2156 * of the given if statement. These nested accesses are then represented
2157 * as output dimensions in the wrapping iteration domain.
2158 * If it is also written _inside_ the then or else branch, then
2159 * we treat the condition as non-affine.
2160 * As explained in extract_non_affine_if, this will introduce
2161 * an extra statement.
2162 * For aesthetic reasons, we want this statement to have a statement
2163 * number that is lower than those of the then and else branches.
2164 * In order to evaluate if we will need such a statement, however, we
2165 * first construct scops for the then and else branches.
2166 * We therefore reserve a statement number if we might have to
2167 * introduce such an extra statement.
2169 static struct pet_scop
*scop_from_if(__isl_keep pet_tree
*tree
,
2170 __isl_keep pet_context
*pc
, struct pet_state
*state
)
2174 pet_expr
*cond_expr
;
2175 pet_context
*pc_nested
;
2180 has_else
= tree
->type
== pet_tree_if_else
;
2182 pc
= pet_context_copy(pc
);
2183 pc
= pet_context_clear_writes_in_tree(pc
, tree
->u
.i
.then_body
);
2185 pc
= pet_context_clear_writes_in_tree(pc
, tree
->u
.i
.else_body
);
2187 cond_expr
= pet_expr_copy(tree
->u
.i
.cond
);
2188 cond_expr
= pet_context_evaluate_expr(pc
, cond_expr
);
2189 pc_nested
= pet_context_copy(pc
);
2190 pc_nested
= pet_context_set_allow_nested(pc_nested
, 1);
2191 cond
= pet_expr_extract_affine_condition(cond_expr
, pc_nested
);
2192 pet_context_free(pc_nested
);
2193 pet_expr_free(cond_expr
);
2196 pet_context_free(pc
);
2200 if (isl_pw_aff_involves_nan(cond
)) {
2201 isl_pw_aff_free(cond
);
2202 return scop_from_non_affine_if(tree
, pc
, state
);
2205 if (is_conditional_assignment(tree
, pc
))
2206 return scop_from_conditional_assignment(tree
, cond
, pc
, state
);
2208 if ((!is_nested_allowed(cond
, tree
->u
.i
.then_body
) ||
2209 (has_else
&& !is_nested_allowed(cond
, tree
->u
.i
.else_body
)))) {
2210 isl_pw_aff_free(cond
);
2211 return scop_from_non_affine_if(tree
, pc
, state
);
2214 return scop_from_affine_if(tree
, cond
, pc
, state
);
2217 /* Return a one-dimensional multi piecewise affine expression that is equal
2218 * to the constant 1 and is defined over the given domain.
2220 static __isl_give isl_multi_pw_aff
*one_mpa(__isl_take isl_space
*space
)
2222 isl_local_space
*ls
;
2225 ls
= isl_local_space_from_space(space
);
2226 aff
= isl_aff_zero_on_domain(ls
);
2227 aff
= isl_aff_set_constant_si(aff
, 1);
2229 return isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff
));
2232 /* Construct a pet_scop for a continue statement with the given domain space.
2234 * We simply create an empty scop with a universal pet_skip_now
2235 * skip condition. This skip condition will then be taken into
2236 * account by the enclosing loop construct, possibly after
2237 * being incorporated into outer skip conditions.
2239 static struct pet_scop
*scop_from_continue(__isl_keep pet_tree
*tree
,
2240 __isl_take isl_space
*space
)
2242 struct pet_scop
*scop
;
2244 scop
= pet_scop_empty(isl_space_copy(space
));
2246 scop
= pet_scop_set_skip(scop
, pet_skip_now
, one_mpa(space
));
2251 /* Construct a pet_scop for a break statement with the given domain space.
2253 * We simply create an empty scop with both a universal pet_skip_now
2254 * skip condition and a universal pet_skip_later skip condition.
2255 * These skip conditions will then be taken into
2256 * account by the enclosing loop construct, possibly after
2257 * being incorporated into outer skip conditions.
2259 static struct pet_scop
*scop_from_break(__isl_keep pet_tree
*tree
,
2260 __isl_take isl_space
*space
)
2262 struct pet_scop
*scop
;
2263 isl_multi_pw_aff
*skip
;
2265 scop
= pet_scop_empty(isl_space_copy(space
));
2267 skip
= one_mpa(space
);
2268 scop
= pet_scop_set_skip(scop
, pet_skip_now
,
2269 isl_multi_pw_aff_copy(skip
));
2270 scop
= pet_scop_set_skip(scop
, pet_skip_later
, skip
);
2275 /* Extract a clone of the kill statement "stmt".
2276 * The domain of the clone is given by "domain".
2278 static struct pet_scop
*extract_kill(__isl_keep isl_set
*domain
,
2279 struct pet_stmt
*stmt
, struct pet_state
*state
)
2283 isl_multi_pw_aff
*mpa
;
2286 if (!domain
|| !stmt
)
2289 kill
= pet_tree_expr_get_expr(stmt
->body
);
2290 space
= pet_stmt_get_space(stmt
);
2291 space
= isl_space_map_from_set(space
);
2292 mpa
= isl_multi_pw_aff_identity(space
);
2293 mpa
= isl_multi_pw_aff_reset_tuple_id(mpa
, isl_dim_in
);
2294 kill
= pet_expr_update_domain(kill
, mpa
);
2295 tree
= pet_tree_new_expr(kill
);
2296 tree
= pet_tree_set_loc(tree
, pet_loc_copy(stmt
->loc
));
2297 stmt
= pet_stmt_from_pet_tree(isl_set_copy(domain
),
2298 state
->n_stmt
++, tree
);
2299 return pet_scop_from_pet_stmt(isl_set_get_space(domain
), stmt
);
2302 /* Extract a clone of the kill statements in "scop".
2303 * The domain of each clone is given by "domain".
2304 * "scop" is expected to have been created from a DeclStmt
2305 * and should have (one of) the kill(s) as its first statement.
2306 * If "scop" was created from a declaration group, then there
2307 * may be multiple kill statements inside.
2309 static struct pet_scop
*extract_kills(__isl_keep isl_set
*domain
,
2310 struct pet_scop
*scop
, struct pet_state
*state
)
2313 struct pet_stmt
*stmt
;
2314 struct pet_scop
*kill
;
2317 if (!domain
|| !scop
)
2319 ctx
= isl_set_get_ctx(domain
);
2320 if (scop
->n_stmt
< 1)
2321 isl_die(ctx
, isl_error_internal
,
2322 "expecting at least one statement", return NULL
);
2323 stmt
= scop
->stmts
[0];
2324 if (!pet_stmt_is_kill(stmt
))
2325 isl_die(ctx
, isl_error_internal
,
2326 "expecting kill statement", return NULL
);
2328 kill
= extract_kill(domain
, stmt
, state
);
2330 for (i
= 1; i
< scop
->n_stmt
; ++i
) {
2331 struct pet_scop
*kill_i
;
2333 stmt
= scop
->stmts
[i
];
2334 if (!pet_stmt_is_kill(stmt
))
2337 kill_i
= extract_kill(domain
, stmt
, state
);
2338 kill
= pet_scop_add_par(ctx
, kill
, kill_i
);
2344 /* Has "tree" been created from a DeclStmt?
2345 * That is, is it either a declaration or a group of declarations?
2347 static int tree_is_decl(__isl_keep pet_tree
*tree
)
2354 is_decl
= pet_tree_is_decl(tree
);
2355 if (is_decl
< 0 || is_decl
)
2358 if (tree
->type
!= pet_tree_block
)
2360 if (pet_tree_block_get_block(tree
))
2362 if (tree
->u
.b
.n
== 0)
2365 for (i
= 0; i
< tree
->u
.b
.n
; ++i
) {
2366 is_decl
= tree_is_decl(tree
->u
.b
.child
[i
]);
2367 if (is_decl
< 0 || !is_decl
)
2374 /* Does "tree" represent an assignment to a variable?
2376 * The assignment may be one of
2377 * - a declaration with initialization
2378 * - an expression with a top-level assignment operator
2380 static int is_assignment(__isl_keep pet_tree
*tree
)
2384 if (tree
->type
== pet_tree_decl_init
)
2386 return pet_tree_is_assign(tree
);
2389 /* Update "pc" by taking into account the assignment performed by "tree",
2390 * where "tree" satisfies is_assignment.
2392 * In particular, if the lhs of the assignment is a scalar variable and
2393 * if the rhs is an affine expression, then keep track of this value in "pc"
2394 * so that we can plug it in when we later come across the same variable.
2396 * Any previously assigned value to the variable has already been removed
2397 * by scop_handle_writes.
2399 static __isl_give pet_context
*handle_assignment(__isl_take pet_context
*pc
,
2400 __isl_keep pet_tree
*tree
)
2402 pet_expr
*var
, *val
;
2406 if (pet_tree_get_type(tree
) == pet_tree_decl_init
) {
2407 var
= pet_tree_decl_get_var(tree
);
2408 val
= pet_tree_decl_get_init(tree
);
2411 expr
= pet_tree_expr_get_expr(tree
);
2412 var
= pet_expr_get_arg(expr
, 0);
2413 val
= pet_expr_get_arg(expr
, 1);
2414 pet_expr_free(expr
);
2417 if (!pet_expr_is_scalar_access(var
)) {
2423 pa
= pet_expr_extract_affine(val
, pc
);
2425 pc
= pet_context_free(pc
);
2427 if (!isl_pw_aff_involves_nan(pa
)) {
2428 id
= pet_expr_access_get_id(var
);
2429 pc
= pet_context_set_value(pc
, id
, pa
);
2431 isl_pw_aff_free(pa
);
2439 /* Mark all arrays in "scop" as being exposed.
2441 static struct pet_scop
*mark_exposed(struct pet_scop
*scop
)
2447 for (i
= 0; i
< scop
->n_array
; ++i
)
2448 scop
->arrays
[i
]->exposed
= 1;
2452 /* Try and construct a pet_scop corresponding to (part of)
2453 * a sequence of statements within the context "pc".
2455 * After extracting a statement, we update "pc"
2456 * based on the top-level assignments in the statement
2457 * so that we can exploit them in subsequent statements in the same block.
2458 * Top-level affine assumptions are also recorded in the context.
2460 * If there are any breaks or continues in the individual statements,
2461 * then we may have to compute a new skip condition.
2462 * This is handled using a pet_skip_info object.
2463 * On initialization, the object checks if skip conditions need
2464 * to be computed. If so, it does so in pet_skip_info_seq_extract and
2465 * adds them in pet_skip_info_add.
2467 * If "block" is set, then we need to insert kill statements at
2468 * the end of the block for any array that has been declared by
2469 * one of the statements in the sequence. Each of these declarations
2470 * results in the construction of a kill statement at the place
2471 * of the declaration, so we simply collect duplicates of
2472 * those kill statements and append these duplicates to the constructed scop.
2474 * If "block" is not set, then any array declared by one of the statements
2475 * in the sequence is marked as being exposed.
2477 * If autodetect is set, then we allow the extraction of only a subrange
2478 * of the sequence of statements. However, if there is at least one statement
2479 * for which we could not construct a scop and the final range contains
2480 * either no statements or at least one kill, then we discard the entire
2483 static struct pet_scop
*scop_from_block(__isl_keep pet_tree
*tree
,
2484 __isl_keep pet_context
*pc
, struct pet_state
*state
)
2490 struct pet_scop
*scop
, *kills
;
2492 ctx
= pet_tree_get_ctx(tree
);
2494 space
= pet_context_get_space(pc
);
2495 domain
= pet_context_get_domain(pc
);
2496 pc
= pet_context_copy(pc
);
2497 scop
= pet_scop_empty(isl_space_copy(space
));
2498 kills
= pet_scop_empty(space
);
2499 for (i
= 0; i
< tree
->u
.b
.n
; ++i
) {
2500 struct pet_scop
*scop_i
;
2502 if (pet_scop_has_affine_skip(scop
, pet_skip_now
))
2503 pc
= apply_affine_continue(pc
, scop
);
2504 scop_i
= scop_from_tree(tree
->u
.b
.child
[i
], pc
, state
);
2505 if (pet_tree_is_assume(tree
->u
.b
.child
[i
]))
2506 pc
= scop_add_affine_assumption(scop_i
, pc
);
2507 pc
= scop_handle_writes(scop_i
, pc
);
2508 if (is_assignment(tree
->u
.b
.child
[i
]))
2509 pc
= handle_assignment(pc
, tree
->u
.b
.child
[i
]);
2510 struct pet_skip_info skip
;
2511 pet_skip_info_seq_init(&skip
, ctx
, scop
, scop_i
);
2512 pet_skip_info_seq_extract(&skip
, pc
, state
);
2513 if (scop_i
&& tree_is_decl(tree
->u
.b
.child
[i
])) {
2514 if (tree
->u
.b
.block
) {
2515 struct pet_scop
*kill
;
2516 kill
= extract_kills(domain
, scop_i
, state
);
2517 kills
= pet_scop_add_par(ctx
, kills
, kill
);
2519 scop_i
= mark_exposed(scop_i
);
2521 scop
= pet_scop_add_seq(ctx
, scop
, scop_i
);
2523 scop
= pet_skip_info_add(&skip
, scop
);
2528 isl_set_free(domain
);
2530 scop
= pet_scop_add_seq(ctx
, scop
, kills
);
2532 pet_context_free(pc
);
2537 /* Internal data structure for extract_declared_arrays.
2539 * "pc" and "state" are used to create pet_array objects and kill statements.
2540 * "any" is initialized to 0 by the caller and set to 1 as soon as we have
2541 * found any declared array.
2542 * "scop" has been initialized by the caller and is used to attach
2543 * the created pet_array objects.
2544 * "kill_before" and "kill_after" are created and updated by
2545 * extract_declared_arrays to collect the kills of the arrays.
2547 struct pet_tree_extract_declared_arrays_data
{
2549 struct pet_state
*state
;
2554 struct pet_scop
*scop
;
2555 struct pet_scop
*kill_before
;
2556 struct pet_scop
*kill_after
;
2559 /* Check if the node "node" declares any array or scalar.
2560 * If so, create the corresponding pet_array and attach it to data->scop.
2561 * Additionally, create two kill statements for the array and add them
2562 * to data->kill_before and data->kill_after.
2564 static int extract_declared_arrays(__isl_keep pet_tree
*node
, void *user
)
2566 enum pet_tree_type type
;
2567 struct pet_tree_extract_declared_arrays_data
*data
= user
;
2568 struct pet_array
*array
;
2569 struct pet_scop
*scop_kill
;
2572 type
= pet_tree_get_type(node
);
2573 if (type
== pet_tree_decl
|| type
== pet_tree_decl_init
)
2574 var
= node
->u
.d
.var
;
2575 else if (type
== pet_tree_for
&& node
->u
.l
.declared
)
2580 array
= extract_array(var
, data
->pc
, data
->state
);
2582 array
->declared
= 1;
2583 data
->scop
= pet_scop_add_array(data
->scop
, array
);
2585 scop_kill
= kill(pet_tree_get_loc(node
), array
, data
->pc
, data
->state
);
2587 data
->kill_before
= scop_kill
;
2589 data
->kill_before
= pet_scop_add_par(data
->ctx
,
2590 data
->kill_before
, scop_kill
);
2592 scop_kill
= kill(pet_tree_get_loc(node
), array
, data
->pc
, data
->state
);
2594 data
->kill_after
= scop_kill
;
2596 data
->kill_after
= pet_scop_add_par(data
->ctx
,
2597 data
->kill_after
, scop_kill
);
2604 /* Convert a pet_tree that consists of more than a single leaf
2605 * to a pet_scop with a single statement encapsulating the entire pet_tree.
2606 * Do so within the context of "pc", taking into account the writes inside
2607 * "tree". That is, first clear any previously assigned values to variables
2608 * that are written by "tree".
2610 * After constructing the core scop, we also look for any arrays (or scalars)
2611 * that are declared inside "tree". Each of those arrays is marked as
2612 * having been declared and kill statements for these arrays
2613 * are introduced before and after the core scop.
2614 * Note that the input tree is not a leaf so that the declaration
2615 * cannot occur at the outer level.
2617 static struct pet_scop
*scop_from_tree_macro(__isl_take pet_tree
*tree
,
2618 __isl_keep pet_context
*pc
, struct pet_state
*state
)
2620 struct pet_tree_extract_declared_arrays_data data
= { pc
, state
};
2622 data
.pc
= pet_context_copy(data
.pc
);
2623 data
.pc
= pet_context_clear_writes_in_tree(data
.pc
, tree
);
2624 data
.scop
= scop_from_unevaluated_tree(pet_tree_copy(tree
),
2625 state
->n_stmt
++, data
.pc
);
2628 data
.ctx
= pet_context_get_ctx(data
.pc
);
2629 if (pet_tree_foreach_sub_tree(tree
, &extract_declared_arrays
,
2631 data
.scop
= pet_scop_free(data
.scop
);
2632 pet_tree_free(tree
);
2633 pet_context_free(data
.pc
);
2638 data
.scop
= pet_scop_add_seq(data
.ctx
, data
.kill_before
, data
.scop
);
2639 data
.scop
= pet_scop_add_seq(data
.ctx
, data
.scop
, data
.kill_after
);
2644 /* Construct a pet_scop that corresponds to the pet_tree "tree"
2645 * within the context "pc" by calling the appropriate function
2646 * based on the type of "tree".
2648 * If the initially constructed pet_scop turns out to involve
2649 * dynamic control and if the user has requested an encapsulation
2650 * of all dynamic control, then this pet_scop is discarded and
2651 * a new pet_scop is created with a single statement representing
2652 * the entire "tree".
2653 * However, if the scop contains any active continue or break,
2654 * then we need to include the loop containing the continue or break
2655 * in the encapsulation. We therefore postpone the encapsulation
2656 * until we have constructed a pet_scop for this enclosing loop.
2658 static struct pet_scop
*scop_from_tree(__isl_keep pet_tree
*tree
,
2659 __isl_keep pet_context
*pc
, struct pet_state
*state
)
2662 struct pet_scop
*scop
= NULL
;
2667 ctx
= pet_tree_get_ctx(tree
);
2668 switch (tree
->type
) {
2669 case pet_tree_error
:
2671 case pet_tree_block
:
2672 return scop_from_block(tree
, pc
, state
);
2673 case pet_tree_break
:
2674 return scop_from_break(tree
, pet_context_get_space(pc
));
2675 case pet_tree_continue
:
2676 return scop_from_continue(tree
, pet_context_get_space(pc
));
2678 case pet_tree_decl_init
:
2679 return scop_from_decl(tree
, pc
, state
);
2681 return scop_from_tree_expr(tree
, pc
, state
);
2683 case pet_tree_if_else
:
2684 scop
= scop_from_if(tree
, pc
, state
);
2687 scop
= scop_from_for(tree
, pc
, state
);
2689 case pet_tree_while
:
2690 scop
= scop_from_while(tree
, pc
, state
);
2692 case pet_tree_infinite_loop
:
2693 scop
= scop_from_infinite_for(tree
, pc
, state
);
2700 if (!pet_options_get_encapsulate_dynamic_control(ctx
) ||
2701 !pet_scop_has_data_dependent_conditions(scop
) ||
2702 pet_scop_has_var_skip(scop
, pet_skip_now
))
2705 pet_scop_free(scop
);
2706 return scop_from_tree_macro(pet_tree_copy(tree
), pc
, state
);
2709 /* If "tree" has a label that is of the form S_<nr>, then make
2710 * sure that state->n_stmt is greater than nr to ensure that
2711 * we will not generate S_<nr> ourselves.
2713 static int set_first_stmt(__isl_keep pet_tree
*tree
, void *user
)
2715 struct pet_state
*state
= user
;
2723 name
= isl_id_get_name(tree
->label
);
2724 if (strncmp(name
, "S_", 2) != 0)
2726 nr
= atoi(name
+ 2);
2727 if (nr
>= state
->n_stmt
)
2728 state
->n_stmt
= nr
+ 1;
2733 /* Construct a pet_scop that corresponds to the pet_tree "tree".
2734 * "int_size" is the number of bytes need to represent an integer.
2735 * "extract_array" is a callback that we can use to create a pet_array
2736 * that corresponds to the variable accessed by an expression.
2738 * Initialize the global state, construct a context and then
2739 * construct the pet_scop by recursively visiting the tree.
2741 * state.n_stmt is initialized to point beyond any explicit S_<nr> label.
2743 struct pet_scop
*pet_scop_from_pet_tree(__isl_take pet_tree
*tree
, int int_size
,
2744 struct pet_array
*(*extract_array
)(__isl_keep pet_expr
*access
,
2745 __isl_keep pet_context
*pc
, void *user
), void *user
,
2746 __isl_keep pet_context
*pc
)
2748 struct pet_scop
*scop
;
2749 struct pet_state state
= { 0 };
2754 state
.ctx
= pet_tree_get_ctx(tree
);
2755 state
.int_size
= int_size
;
2756 state
.extract_array
= extract_array
;
2758 if (pet_tree_foreach_sub_tree(tree
, &set_first_stmt
, &state
) < 0)
2759 tree
= pet_tree_free(tree
);
2761 scop
= scop_from_tree(tree
, pc
, &state
);
2762 scop
= pet_scop_set_loc(scop
, pet_tree_get_loc(tree
));
2764 pet_tree_free(tree
);
2767 scop
->context
= isl_set_params(scop
->context
);