2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012-2014 Ecole Normale Superieure. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials provided
15 * with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as
31 * representing official policies, either expressed or implied, of
39 #include <llvm/Support/raw_ostream.h>
40 #include <clang/AST/ASTContext.h>
41 #include <clang/AST/ASTDiagnostic.h>
42 #include <clang/AST/Expr.h>
43 #include <clang/AST/RecursiveASTVisitor.h>
46 #include <isl/space.h>
54 #include "scop_plus.h"
59 using namespace clang
;
61 #if defined(DECLREFEXPR_CREATE_REQUIRES_BOOL)
62 static DeclRefExpr
*create_DeclRefExpr(VarDecl
*var
)
64 return DeclRefExpr::Create(var
->getASTContext(), var
->getQualifierLoc(),
65 SourceLocation(), var
, false, var
->getInnerLocStart(),
66 var
->getType(), VK_LValue
);
68 #elif defined(DECLREFEXPR_CREATE_REQUIRES_SOURCELOCATION)
69 static DeclRefExpr
*create_DeclRefExpr(VarDecl
*var
)
71 return DeclRefExpr::Create(var
->getASTContext(), var
->getQualifierLoc(),
72 SourceLocation(), var
, var
->getInnerLocStart(), var
->getType(),
76 static DeclRefExpr
*create_DeclRefExpr(VarDecl
*var
)
78 return DeclRefExpr::Create(var
->getASTContext(), var
->getQualifierLoc(),
79 var
, var
->getInnerLocStart(), var
->getType(), VK_LValue
);
83 /* Check if the element type corresponding to the given array type
84 * has a const qualifier.
86 static bool const_base(QualType qt
)
88 const Type
*type
= qt
.getTypePtr();
90 if (type
->isPointerType())
91 return const_base(type
->getPointeeType());
92 if (type
->isArrayType()) {
93 const ArrayType
*atype
;
94 type
= type
->getCanonicalTypeInternal().getTypePtr();
95 atype
= cast
<ArrayType
>(type
);
96 return const_base(atype
->getElementType());
99 return qt
.isConstQualified();
102 /* Mark "decl" as having an unknown value in "assigned_value".
104 * If no (known or unknown) value was assigned to "decl" before,
105 * then it may have been treated as a parameter before and may
106 * therefore appear in a value assigned to another variable.
107 * If so, this assignment needs to be turned into an unknown value too.
109 static void clear_assignment(map
<ValueDecl
*, isl_pw_aff
*> &assigned_value
,
112 map
<ValueDecl
*, isl_pw_aff
*>::iterator it
;
114 it
= assigned_value
.find(decl
);
116 assigned_value
[decl
] = NULL
;
118 if (it
!= assigned_value
.end())
121 for (it
= assigned_value
.begin(); it
!= assigned_value
.end(); ++it
) {
122 isl_pw_aff
*pa
= it
->second
;
123 int nparam
= isl_pw_aff_dim(pa
, isl_dim_param
);
125 for (int i
= 0; i
< nparam
; ++i
) {
128 if (!isl_pw_aff_has_dim_id(pa
, isl_dim_param
, i
))
130 id
= isl_pw_aff_get_dim_id(pa
, isl_dim_param
, i
);
131 if (isl_id_get_user(id
) == decl
)
138 /* Look for any assignments to scalar variables in part of the parse
139 * tree and set assigned_value to NULL for each of them.
140 * Also reset assigned_value if the address of a scalar variable
141 * is being taken. As an exception, if the address is passed to a function
142 * that is declared to receive a const pointer, then assigned_value is
145 * This ensures that we won't use any previously stored value
146 * in the current subtree and its parents.
148 struct clear_assignments
: RecursiveASTVisitor
<clear_assignments
> {
149 map
<ValueDecl
*, isl_pw_aff
*> &assigned_value
;
150 set
<UnaryOperator
*> skip
;
152 clear_assignments(map
<ValueDecl
*, isl_pw_aff
*> &assigned_value
) :
153 assigned_value(assigned_value
) {}
155 /* Check for "address of" operators whose value is passed
156 * to a const pointer argument and add them to "skip", so that
157 * we can skip them in VisitUnaryOperator.
159 bool VisitCallExpr(CallExpr
*expr
) {
161 fd
= expr
->getDirectCallee();
164 for (int i
= 0; i
< expr
->getNumArgs(); ++i
) {
165 Expr
*arg
= expr
->getArg(i
);
167 if (arg
->getStmtClass() == Stmt::ImplicitCastExprClass
) {
168 ImplicitCastExpr
*ice
;
169 ice
= cast
<ImplicitCastExpr
>(arg
);
170 arg
= ice
->getSubExpr();
172 if (arg
->getStmtClass() != Stmt::UnaryOperatorClass
)
174 op
= cast
<UnaryOperator
>(arg
);
175 if (op
->getOpcode() != UO_AddrOf
)
177 if (const_base(fd
->getParamDecl(i
)->getType()))
183 bool VisitUnaryOperator(UnaryOperator
*expr
) {
188 switch (expr
->getOpcode()) {
198 if (skip
.find(expr
) != skip
.end())
201 arg
= expr
->getSubExpr();
202 if (arg
->getStmtClass() != Stmt::DeclRefExprClass
)
204 ref
= cast
<DeclRefExpr
>(arg
);
205 decl
= ref
->getDecl();
206 clear_assignment(assigned_value
, decl
);
210 bool VisitBinaryOperator(BinaryOperator
*expr
) {
215 if (!expr
->isAssignmentOp())
217 lhs
= expr
->getLHS();
218 if (lhs
->getStmtClass() != Stmt::DeclRefExprClass
)
220 ref
= cast
<DeclRefExpr
>(lhs
);
221 decl
= ref
->getDecl();
222 clear_assignment(assigned_value
, decl
);
227 /* Keep a copy of the currently assigned values.
229 * Any variable that is assigned a value inside the current scope
230 * is removed again when we leave the scope (either because it wasn't
231 * stored in the cache or because it has a different value in the cache).
233 struct assigned_value_cache
{
234 map
<ValueDecl
*, isl_pw_aff
*> &assigned_value
;
235 map
<ValueDecl
*, isl_pw_aff
*> cache
;
237 assigned_value_cache(map
<ValueDecl
*, isl_pw_aff
*> &assigned_value
) :
238 assigned_value(assigned_value
), cache(assigned_value
) {}
239 ~assigned_value_cache() {
240 map
<ValueDecl
*, isl_pw_aff
*>::iterator it
= cache
.begin();
241 for (it
= assigned_value
.begin(); it
!= assigned_value
.end();
244 (cache
.find(it
->first
) != cache
.end() &&
245 cache
[it
->first
] != it
->second
))
246 cache
[it
->first
] = NULL
;
248 assigned_value
= cache
;
252 /* Insert an expression into the collection of expressions,
253 * provided it is not already in there.
254 * The isl_pw_affs are freed in the destructor.
256 void PetScan::insert_expression(__isl_take isl_pw_aff
*expr
)
258 std::set
<isl_pw_aff
*>::iterator it
;
260 if (expressions
.find(expr
) == expressions
.end())
261 expressions
.insert(expr
);
263 isl_pw_aff_free(expr
);
268 std::set
<isl_pw_aff
*>::iterator it
;
270 for (it
= expressions
.begin(); it
!= expressions
.end(); ++it
)
271 isl_pw_aff_free(*it
);
273 isl_union_map_free(value_bounds
);
276 /* Report a diagnostic, unless autodetect is set.
278 void PetScan::report(Stmt
*stmt
, unsigned id
)
280 if (options
->autodetect
)
283 SourceLocation loc
= stmt
->getLocStart();
284 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
285 DiagnosticBuilder B
= diag
.Report(loc
, id
) << stmt
->getSourceRange();
288 /* Called if we found something we (currently) cannot handle.
289 * We'll provide more informative warnings later.
291 * We only actually complain if autodetect is false.
293 void PetScan::unsupported(Stmt
*stmt
)
295 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
296 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
301 /* Report a missing prototype, unless autodetect is set.
303 void PetScan::report_prototype_required(Stmt
*stmt
)
305 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
306 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
307 "prototype required");
311 /* Report a missing increment, unless autodetect is set.
313 void PetScan::report_missing_increment(Stmt
*stmt
)
315 DiagnosticsEngine
&diag
= PP
.getDiagnostics();
316 unsigned id
= diag
.getCustomDiagID(DiagnosticsEngine::Warning
,
317 "missing increment");
321 /* Extract an integer from "expr".
323 __isl_give isl_val
*PetScan::extract_int(isl_ctx
*ctx
, IntegerLiteral
*expr
)
325 const Type
*type
= expr
->getType().getTypePtr();
326 int is_signed
= type
->hasSignedIntegerRepresentation();
327 llvm::APInt val
= expr
->getValue();
328 int is_negative
= is_signed
&& val
.isNegative();
334 v
= extract_unsigned(ctx
, val
);
341 /* Extract an integer from "val", which is assumed to be non-negative.
343 __isl_give isl_val
*PetScan::extract_unsigned(isl_ctx
*ctx
,
344 const llvm::APInt
&val
)
347 const uint64_t *data
;
349 data
= val
.getRawData();
350 n
= val
.getNumWords();
351 return isl_val_int_from_chunks(ctx
, n
, sizeof(uint64_t), data
);
354 /* Extract an integer from "expr".
355 * Return NULL if "expr" does not (obviously) represent an integer.
357 __isl_give isl_val
*PetScan::extract_int(clang::ParenExpr
*expr
)
359 return extract_int(expr
->getSubExpr());
362 /* Extract an integer from "expr".
363 * Return NULL if "expr" does not (obviously) represent an integer.
365 __isl_give isl_val
*PetScan::extract_int(clang::Expr
*expr
)
367 if (expr
->getStmtClass() == Stmt::IntegerLiteralClass
)
368 return extract_int(ctx
, cast
<IntegerLiteral
>(expr
));
369 if (expr
->getStmtClass() == Stmt::ParenExprClass
)
370 return extract_int(cast
<ParenExpr
>(expr
));
376 /* Extract an affine expression from the IntegerLiteral "expr".
378 __isl_give isl_pw_aff
*PetScan::extract_affine(IntegerLiteral
*expr
)
380 isl_space
*dim
= isl_space_params_alloc(ctx
, 0);
381 isl_local_space
*ls
= isl_local_space_from_space(isl_space_copy(dim
));
382 isl_aff
*aff
= isl_aff_zero_on_domain(ls
);
383 isl_set
*dom
= isl_set_universe(dim
);
386 v
= extract_int(expr
);
387 aff
= isl_aff_add_constant_val(aff
, v
);
389 return isl_pw_aff_alloc(dom
, aff
);
392 /* Extract an affine expression from the APInt "val", which is assumed
393 * to be non-negative.
395 __isl_give isl_pw_aff
*PetScan::extract_affine(const llvm::APInt
&val
)
397 isl_space
*dim
= isl_space_params_alloc(ctx
, 0);
398 isl_local_space
*ls
= isl_local_space_from_space(isl_space_copy(dim
));
399 isl_aff
*aff
= isl_aff_zero_on_domain(ls
);
400 isl_set
*dom
= isl_set_universe(dim
);
403 v
= extract_unsigned(ctx
, val
);
404 aff
= isl_aff_add_constant_val(aff
, v
);
406 return isl_pw_aff_alloc(dom
, aff
);
409 __isl_give isl_pw_aff
*PetScan::extract_affine(ImplicitCastExpr
*expr
)
411 return extract_affine(expr
->getSubExpr());
414 static unsigned get_type_size(ValueDecl
*decl
)
416 return decl
->getASTContext().getIntWidth(decl
->getType());
419 /* Bound parameter "pos" of "set" to the possible values of "decl".
421 static __isl_give isl_set
*set_parameter_bounds(__isl_take isl_set
*set
,
422 unsigned pos
, ValueDecl
*decl
)
428 ctx
= isl_set_get_ctx(set
);
429 width
= get_type_size(decl
);
430 if (decl
->getType()->isUnsignedIntegerType()) {
431 set
= isl_set_lower_bound_si(set
, isl_dim_param
, pos
, 0);
432 bound
= isl_val_int_from_ui(ctx
, width
);
433 bound
= isl_val_2exp(bound
);
434 bound
= isl_val_sub_ui(bound
, 1);
435 set
= isl_set_upper_bound_val(set
, isl_dim_param
, pos
, bound
);
437 bound
= isl_val_int_from_ui(ctx
, width
- 1);
438 bound
= isl_val_2exp(bound
);
439 bound
= isl_val_sub_ui(bound
, 1);
440 set
= isl_set_upper_bound_val(set
, isl_dim_param
, pos
,
441 isl_val_copy(bound
));
442 bound
= isl_val_neg(bound
);
443 bound
= isl_val_sub_ui(bound
, 1);
444 set
= isl_set_lower_bound_val(set
, isl_dim_param
, pos
, bound
);
450 /* Extract an affine expression from the DeclRefExpr "expr".
452 * If the variable has been assigned a value, then we check whether
453 * we know what (affine) value was assigned.
454 * If so, we return this value. Otherwise we convert "expr"
455 * to an extra parameter (provided nesting_enabled is set).
457 * Otherwise, we simply return an expression that is equal
458 * to a parameter corresponding to the referenced variable.
460 __isl_give isl_pw_aff
*PetScan::extract_affine(DeclRefExpr
*expr
)
462 ValueDecl
*decl
= expr
->getDecl();
463 const Type
*type
= decl
->getType().getTypePtr();
469 if (!type
->isIntegerType()) {
474 if (assigned_value
.find(decl
) != assigned_value
.end()) {
475 if (assigned_value
[decl
])
476 return isl_pw_aff_copy(assigned_value
[decl
]);
478 return nested_access(expr
);
481 id
= isl_id_alloc(ctx
, decl
->getName().str().c_str(), decl
);
482 dim
= isl_space_params_alloc(ctx
, 1);
484 dim
= isl_space_set_dim_id(dim
, isl_dim_param
, 0, id
);
486 dom
= isl_set_universe(isl_space_copy(dim
));
487 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(dim
));
488 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_param
, 0, 1);
490 return isl_pw_aff_alloc(dom
, aff
);
493 /* Extract an affine expression from an integer division operation.
494 * In particular, if "expr" is lhs/rhs, then return
496 * lhs >= 0 ? floor(lhs/rhs) : ceil(lhs/rhs)
498 * The second argument (rhs) is required to be a (positive) integer constant.
500 __isl_give isl_pw_aff
*PetScan::extract_affine_div(BinaryOperator
*expr
)
503 isl_pw_aff
*rhs
, *lhs
;
505 rhs
= extract_affine(expr
->getRHS());
506 is_cst
= isl_pw_aff_is_cst(rhs
);
507 if (is_cst
< 0 || !is_cst
) {
508 isl_pw_aff_free(rhs
);
514 lhs
= extract_affine(expr
->getLHS());
516 return isl_pw_aff_tdiv_q(lhs
, rhs
);
519 /* Extract an affine expression from a modulo operation.
520 * In particular, if "expr" is lhs/rhs, then return
522 * lhs - rhs * (lhs >= 0 ? floor(lhs/rhs) : ceil(lhs/rhs))
524 * The second argument (rhs) is required to be a (positive) integer constant.
526 __isl_give isl_pw_aff
*PetScan::extract_affine_mod(BinaryOperator
*expr
)
529 isl_pw_aff
*rhs
, *lhs
;
531 rhs
= extract_affine(expr
->getRHS());
532 is_cst
= isl_pw_aff_is_cst(rhs
);
533 if (is_cst
< 0 || !is_cst
) {
534 isl_pw_aff_free(rhs
);
540 lhs
= extract_affine(expr
->getLHS());
542 return isl_pw_aff_tdiv_r(lhs
, rhs
);
545 /* Extract an affine expression from a multiplication operation.
546 * This is only allowed if at least one of the two arguments
547 * is a (piecewise) constant.
549 __isl_give isl_pw_aff
*PetScan::extract_affine_mul(BinaryOperator
*expr
)
554 lhs
= extract_affine(expr
->getLHS());
555 rhs
= extract_affine(expr
->getRHS());
557 if (!isl_pw_aff_is_cst(lhs
) && !isl_pw_aff_is_cst(rhs
)) {
558 isl_pw_aff_free(lhs
);
559 isl_pw_aff_free(rhs
);
564 return isl_pw_aff_mul(lhs
, rhs
);
567 /* Extract an affine expression from an addition or subtraction operation.
569 __isl_give isl_pw_aff
*PetScan::extract_affine_add(BinaryOperator
*expr
)
574 lhs
= extract_affine(expr
->getLHS());
575 rhs
= extract_affine(expr
->getRHS());
577 switch (expr
->getOpcode()) {
579 return isl_pw_aff_add(lhs
, rhs
);
581 return isl_pw_aff_sub(lhs
, rhs
);
583 isl_pw_aff_free(lhs
);
584 isl_pw_aff_free(rhs
);
594 static __isl_give isl_pw_aff
*wrap(__isl_take isl_pw_aff
*pwaff
,
600 ctx
= isl_pw_aff_get_ctx(pwaff
);
601 mod
= isl_val_int_from_ui(ctx
, width
);
602 mod
= isl_val_2exp(mod
);
604 pwaff
= isl_pw_aff_mod_val(pwaff
, mod
);
609 /* Limit the domain of "pwaff" to those elements where the function
612 * 2^{width-1} <= pwaff < 2^{width-1}
614 static __isl_give isl_pw_aff
*avoid_overflow(__isl_take isl_pw_aff
*pwaff
,
619 isl_space
*space
= isl_pw_aff_get_domain_space(pwaff
);
620 isl_local_space
*ls
= isl_local_space_from_space(space
);
625 ctx
= isl_pw_aff_get_ctx(pwaff
);
626 v
= isl_val_int_from_ui(ctx
, width
- 1);
629 bound
= isl_aff_zero_on_domain(ls
);
630 bound
= isl_aff_add_constant_val(bound
, v
);
631 b
= isl_pw_aff_from_aff(bound
);
633 dom
= isl_pw_aff_lt_set(isl_pw_aff_copy(pwaff
), isl_pw_aff_copy(b
));
634 pwaff
= isl_pw_aff_intersect_domain(pwaff
, dom
);
636 b
= isl_pw_aff_neg(b
);
637 dom
= isl_pw_aff_ge_set(isl_pw_aff_copy(pwaff
), b
);
638 pwaff
= isl_pw_aff_intersect_domain(pwaff
, dom
);
643 /* Handle potential overflows on signed computations.
645 * If options->signed_overflow is set to PET_OVERFLOW_AVOID,
646 * the we adjust the domain of "pa" to avoid overflows.
648 __isl_give isl_pw_aff
*PetScan::signed_overflow(__isl_take isl_pw_aff
*pa
,
651 if (options
->signed_overflow
== PET_OVERFLOW_AVOID
)
652 pa
= avoid_overflow(pa
, width
);
657 /* Return the piecewise affine expression "set ? 1 : 0" defined on "dom".
659 static __isl_give isl_pw_aff
*indicator_function(__isl_take isl_set
*set
,
660 __isl_take isl_set
*dom
)
663 pa
= isl_set_indicator_function(set
);
664 pa
= isl_pw_aff_intersect_domain(pa
, isl_set_coalesce(dom
));
668 /* Extract an affine expression from some binary operations.
669 * If the result of the expression is unsigned, then we wrap it
670 * based on the size of the type. Otherwise, we ensure that
671 * no overflow occurs.
673 __isl_give isl_pw_aff
*PetScan::extract_affine(BinaryOperator
*expr
)
678 switch (expr
->getOpcode()) {
681 res
= extract_affine_add(expr
);
684 res
= extract_affine_div(expr
);
687 res
= extract_affine_mod(expr
);
690 res
= extract_affine_mul(expr
);
700 return extract_condition(expr
);
706 width
= ast_context
.getIntWidth(expr
->getType());
707 if (expr
->getType()->isUnsignedIntegerType())
708 res
= wrap(res
, width
);
710 res
= signed_overflow(res
, width
);
715 /* Extract an affine expression from a negation operation.
717 __isl_give isl_pw_aff
*PetScan::extract_affine(UnaryOperator
*expr
)
719 if (expr
->getOpcode() == UO_Minus
)
720 return isl_pw_aff_neg(extract_affine(expr
->getSubExpr()));
721 if (expr
->getOpcode() == UO_LNot
)
722 return extract_condition(expr
);
728 __isl_give isl_pw_aff
*PetScan::extract_affine(ParenExpr
*expr
)
730 return extract_affine(expr
->getSubExpr());
733 /* Extract an affine expression from some special function calls.
734 * In particular, we handle "min", "max", "ceild", "floord",
735 * "intMod", "intFloor" and "intCeil".
736 * In case of the latter five, the second argument needs to be
737 * a (positive) integer constant.
739 __isl_give isl_pw_aff
*PetScan::extract_affine(CallExpr
*expr
)
743 isl_pw_aff
*aff1
, *aff2
;
745 fd
= expr
->getDirectCallee();
751 name
= fd
->getDeclName().getAsString();
752 if (!(expr
->getNumArgs() == 2 && name
== "min") &&
753 !(expr
->getNumArgs() == 2 && name
== "max") &&
754 !(expr
->getNumArgs() == 2 && name
== "intMod") &&
755 !(expr
->getNumArgs() == 2 && name
== "intFloor") &&
756 !(expr
->getNumArgs() == 2 && name
== "intCeil") &&
757 !(expr
->getNumArgs() == 2 && name
== "floord") &&
758 !(expr
->getNumArgs() == 2 && name
== "ceild")) {
763 if (name
== "min" || name
== "max") {
764 aff1
= extract_affine(expr
->getArg(0));
765 aff2
= extract_affine(expr
->getArg(1));
768 aff1
= isl_pw_aff_min(aff1
, aff2
);
770 aff1
= isl_pw_aff_max(aff1
, aff2
);
771 } else if (name
== "intMod") {
773 Expr
*arg2
= expr
->getArg(1);
775 if (arg2
->getStmtClass() != Stmt::IntegerLiteralClass
) {
779 aff1
= extract_affine(expr
->getArg(0));
780 v
= extract_int(cast
<IntegerLiteral
>(arg2
));
781 aff1
= isl_pw_aff_mod_val(aff1
, v
);
782 } else if (name
== "floord" || name
== "ceild" ||
783 name
== "intFloor" || name
== "intCeil") {
785 Expr
*arg2
= expr
->getArg(1);
787 if (arg2
->getStmtClass() != Stmt::IntegerLiteralClass
) {
791 aff1
= extract_affine(expr
->getArg(0));
792 v
= extract_int(cast
<IntegerLiteral
>(arg2
));
793 aff1
= isl_pw_aff_scale_down_val(aff1
, v
);
794 if (name
== "floord" || name
== "intFloor")
795 aff1
= isl_pw_aff_floor(aff1
);
797 aff1
= isl_pw_aff_ceil(aff1
);
806 /* This method is called when we come across an access that is
807 * nested in what is supposed to be an affine expression.
808 * If nesting is allowed, we return a new parameter that corresponds
809 * to this nested access. Otherwise, we simply complain.
811 * Note that we currently don't allow nested accesses themselves
812 * to contain any nested accesses, so we check if we can extract
813 * the access without any nesting and complain if we can't.
815 * The new parameter is resolved in resolve_nested.
817 isl_pw_aff
*PetScan::nested_access(Expr
*expr
)
823 isl_multi_pw_aff
*index
;
825 if (!nesting_enabled
) {
830 allow_nested
= false;
831 index
= extract_index(expr
);
837 isl_multi_pw_aff_free(index
);
839 id
= isl_id_alloc(ctx
, NULL
, expr
);
840 dim
= isl_space_params_alloc(ctx
, 1);
842 dim
= isl_space_set_dim_id(dim
, isl_dim_param
, 0, id
);
844 dom
= isl_set_universe(isl_space_copy(dim
));
845 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(dim
));
846 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_param
, 0, 1);
848 return isl_pw_aff_alloc(dom
, aff
);
851 /* Affine expressions are not supposed to contain array accesses,
852 * but if nesting is allowed, we return a parameter corresponding
853 * to the array access.
855 __isl_give isl_pw_aff
*PetScan::extract_affine(ArraySubscriptExpr
*expr
)
857 return nested_access(expr
);
860 /* Affine expressions are not supposed to contain member accesses,
861 * but if nesting is allowed, we return a parameter corresponding
862 * to the member access.
864 __isl_give isl_pw_aff
*PetScan::extract_affine(MemberExpr
*expr
)
866 return nested_access(expr
);
869 /* Extract an affine expression from a conditional operation.
871 __isl_give isl_pw_aff
*PetScan::extract_affine(ConditionalOperator
*expr
)
873 isl_pw_aff
*cond
, *lhs
, *rhs
;
875 cond
= extract_condition(expr
->getCond());
876 lhs
= extract_affine(expr
->getTrueExpr());
877 rhs
= extract_affine(expr
->getFalseExpr());
879 return isl_pw_aff_cond(cond
, lhs
, rhs
);
882 /* Extract an affine expression, if possible, from "expr".
883 * Otherwise return NULL.
885 __isl_give isl_pw_aff
*PetScan::extract_affine(Expr
*expr
)
887 switch (expr
->getStmtClass()) {
888 case Stmt::ImplicitCastExprClass
:
889 return extract_affine(cast
<ImplicitCastExpr
>(expr
));
890 case Stmt::IntegerLiteralClass
:
891 return extract_affine(cast
<IntegerLiteral
>(expr
));
892 case Stmt::DeclRefExprClass
:
893 return extract_affine(cast
<DeclRefExpr
>(expr
));
894 case Stmt::BinaryOperatorClass
:
895 return extract_affine(cast
<BinaryOperator
>(expr
));
896 case Stmt::UnaryOperatorClass
:
897 return extract_affine(cast
<UnaryOperator
>(expr
));
898 case Stmt::ParenExprClass
:
899 return extract_affine(cast
<ParenExpr
>(expr
));
900 case Stmt::CallExprClass
:
901 return extract_affine(cast
<CallExpr
>(expr
));
902 case Stmt::ArraySubscriptExprClass
:
903 return extract_affine(cast
<ArraySubscriptExpr
>(expr
));
904 case Stmt::MemberExprClass
:
905 return extract_affine(cast
<MemberExpr
>(expr
));
906 case Stmt::ConditionalOperatorClass
:
907 return extract_affine(cast
<ConditionalOperator
>(expr
));
914 __isl_give isl_multi_pw_aff
*PetScan::extract_index(ImplicitCastExpr
*expr
)
916 return extract_index(expr
->getSubExpr());
919 /* Return the depth of an array of the given type.
921 static int array_depth(const Type
*type
)
923 if (type
->isPointerType())
924 return 1 + array_depth(type
->getPointeeType().getTypePtr());
925 if (type
->isArrayType()) {
926 const ArrayType
*atype
;
927 type
= type
->getCanonicalTypeInternal().getTypePtr();
928 atype
= cast
<ArrayType
>(type
);
929 return 1 + array_depth(atype
->getElementType().getTypePtr());
934 /* Return the depth of the array accessed by the index expression "index".
935 * If "index" is an affine expression, i.e., if it does not access
936 * any array, then return 1.
937 * If "index" represent a member access, i.e., if its range is a wrapped
938 * relation, then return the sum of the depth of the array of structures
939 * and that of the member inside the structure.
941 static int extract_depth(__isl_keep isl_multi_pw_aff
*index
)
949 if (isl_multi_pw_aff_range_is_wrapping(index
)) {
950 int domain_depth
, range_depth
;
951 isl_multi_pw_aff
*domain
, *range
;
953 domain
= isl_multi_pw_aff_copy(index
);
954 domain
= isl_multi_pw_aff_range_factor_domain(domain
);
955 domain_depth
= extract_depth(domain
);
956 isl_multi_pw_aff_free(domain
);
957 range
= isl_multi_pw_aff_copy(index
);
958 range
= isl_multi_pw_aff_range_factor_range(range
);
959 range_depth
= extract_depth(range
);
960 isl_multi_pw_aff_free(range
);
962 return domain_depth
+ range_depth
;
965 if (!isl_multi_pw_aff_has_tuple_id(index
, isl_dim_out
))
968 id
= isl_multi_pw_aff_get_tuple_id(index
, isl_dim_out
);
971 decl
= (ValueDecl
*) isl_id_get_user(id
);
974 return array_depth(decl
->getType().getTypePtr());
977 /* Extract an index expression from a reference to a variable.
978 * If the variable has name "A", then the returned index expression
983 __isl_give isl_multi_pw_aff
*PetScan::extract_index(DeclRefExpr
*expr
)
985 return extract_index(expr
->getDecl());
988 /* Extract an index expression from a variable.
989 * If the variable has name "A", then the returned index expression
994 __isl_give isl_multi_pw_aff
*PetScan::extract_index(ValueDecl
*decl
)
996 isl_id
*id
= isl_id_alloc(ctx
, decl
->getName().str().c_str(), decl
);
997 isl_space
*space
= isl_space_alloc(ctx
, 0, 0, 0);
999 space
= isl_space_set_tuple_id(space
, isl_dim_out
, id
);
1001 return isl_multi_pw_aff_zero(space
);
1004 /* Extract an index expression from an integer contant.
1005 * If the value of the constant is "v", then the returned access relation
1010 __isl_give isl_multi_pw_aff
*PetScan::extract_index(IntegerLiteral
*expr
)
1012 isl_multi_pw_aff
*mpa
;
1014 mpa
= isl_multi_pw_aff_from_pw_aff(extract_affine(expr
));
1015 mpa
= isl_multi_pw_aff_from_range(mpa
);
1019 /* Try and extract an index expression from the given Expr.
1020 * Return NULL if it doesn't work out.
1022 __isl_give isl_multi_pw_aff
*PetScan::extract_index(Expr
*expr
)
1024 switch (expr
->getStmtClass()) {
1025 case Stmt::ImplicitCastExprClass
:
1026 return extract_index(cast
<ImplicitCastExpr
>(expr
));
1027 case Stmt::DeclRefExprClass
:
1028 return extract_index(cast
<DeclRefExpr
>(expr
));
1029 case Stmt::ArraySubscriptExprClass
:
1030 return extract_index(cast
<ArraySubscriptExpr
>(expr
));
1031 case Stmt::IntegerLiteralClass
:
1032 return extract_index(cast
<IntegerLiteral
>(expr
));
1033 case Stmt::MemberExprClass
:
1034 return extract_index(cast
<MemberExpr
>(expr
));
1041 /* Given a partial index expression "base" and an extra index "index",
1042 * append the extra index to "base" and return the result.
1043 * Additionally, add the constraints that the extra index is non-negative.
1044 * If "index" represent a member access, i.e., if its range is a wrapped
1045 * relation, then we recursively extend the range of this nested relation.
1047 static __isl_give isl_multi_pw_aff
*subscript(__isl_take isl_multi_pw_aff
*base
,
1048 __isl_take isl_pw_aff
*index
)
1052 isl_multi_pw_aff
*access
;
1055 member_access
= isl_multi_pw_aff_range_is_wrapping(base
);
1056 if (member_access
< 0)
1058 if (member_access
) {
1059 isl_multi_pw_aff
*domain
, *range
;
1062 id
= isl_multi_pw_aff_get_tuple_id(base
, isl_dim_out
);
1063 domain
= isl_multi_pw_aff_copy(base
);
1064 domain
= isl_multi_pw_aff_range_factor_domain(domain
);
1065 range
= isl_multi_pw_aff_range_factor_range(base
);
1066 range
= subscript(range
, index
);
1067 access
= isl_multi_pw_aff_range_product(domain
, range
);
1068 access
= isl_multi_pw_aff_set_tuple_id(access
, isl_dim_out
, id
);
1072 id
= isl_multi_pw_aff_get_tuple_id(base
, isl_dim_set
);
1073 index
= isl_pw_aff_from_range(index
);
1074 domain
= isl_pw_aff_nonneg_set(isl_pw_aff_copy(index
));
1075 index
= isl_pw_aff_intersect_domain(index
, domain
);
1076 access
= isl_multi_pw_aff_from_pw_aff(index
);
1077 access
= isl_multi_pw_aff_flat_range_product(base
, access
);
1078 access
= isl_multi_pw_aff_set_tuple_id(access
, isl_dim_set
, id
);
1082 isl_multi_pw_aff_free(base
);
1083 isl_pw_aff_free(index
);
1087 /* Extract an index expression from the given array subscript expression.
1088 * If nesting is allowed in general, then we turn it on while
1089 * examining the index expression.
1091 * We first extract an index expression from the base.
1092 * This will result in an index expression with a range that corresponds
1093 * to the earlier indices.
1094 * We then extract the current index, restrict its domain
1095 * to those values that result in a non-negative index and
1096 * append the index to the base index expression.
1098 __isl_give isl_multi_pw_aff
*PetScan::extract_index(ArraySubscriptExpr
*expr
)
1100 Expr
*base
= expr
->getBase();
1101 Expr
*idx
= expr
->getIdx();
1103 isl_multi_pw_aff
*base_access
;
1104 isl_multi_pw_aff
*access
;
1105 bool save_nesting
= nesting_enabled
;
1107 nesting_enabled
= allow_nested
;
1109 base_access
= extract_index(base
);
1110 index
= extract_affine(idx
);
1112 nesting_enabled
= save_nesting
;
1114 access
= subscript(base_access
, index
);
1119 /* Construct a name for a member access by concatenating the name
1120 * of the array of structures and the member, separated by an underscore.
1122 * The caller is responsible for freeing the result.
1124 static char *member_access_name(isl_ctx
*ctx
, const char *base
,
1130 len
= strlen(base
) + 1 + strlen(field
);
1131 name
= isl_alloc_array(ctx
, char, len
+ 1);
1134 snprintf(name
, len
+ 1, "%s_%s", base
, field
);
1139 /* Given an index expression "base" for an element of an array of structures
1140 * and an expression "field" for the field member being accessed, construct
1141 * an index expression for an access to that member of the given structure.
1142 * In particular, take the range product of "base" and "field" and
1143 * attach a name to the result.
1145 static __isl_give isl_multi_pw_aff
*member(__isl_take isl_multi_pw_aff
*base
,
1146 __isl_take isl_multi_pw_aff
*field
)
1149 isl_multi_pw_aff
*access
;
1150 const char *base_name
, *field_name
;
1153 ctx
= isl_multi_pw_aff_get_ctx(base
);
1155 base_name
= isl_multi_pw_aff_get_tuple_name(base
, isl_dim_out
);
1156 field_name
= isl_multi_pw_aff_get_tuple_name(field
, isl_dim_out
);
1157 name
= member_access_name(ctx
, base_name
, field_name
);
1159 access
= isl_multi_pw_aff_range_product(base
, field
);
1161 access
= isl_multi_pw_aff_set_tuple_name(access
, isl_dim_out
, name
);
1167 /* Extract an index expression from a member expression.
1169 * If the base access (to the structure containing the member)
1174 * and the member is called "f", then the member access is of
1177 * [] -> A_f[A[..] -> f[]]
1179 * If the member access is to an anonymous struct, then simply return
1183 * If the member access in the source code is of the form
1187 * then it is treated as
1191 __isl_give isl_multi_pw_aff
*PetScan::extract_index(MemberExpr
*expr
)
1193 Expr
*base
= expr
->getBase();
1194 FieldDecl
*field
= cast
<FieldDecl
>(expr
->getMemberDecl());
1195 isl_multi_pw_aff
*base_access
, *field_access
;
1199 base_access
= extract_index(base
);
1201 if (expr
->isArrow()) {
1202 isl_space
*space
= isl_space_params_alloc(ctx
, 0);
1203 isl_local_space
*ls
= isl_local_space_from_space(space
);
1204 isl_aff
*aff
= isl_aff_zero_on_domain(ls
);
1205 isl_pw_aff
*index
= isl_pw_aff_from_aff(aff
);
1206 base_access
= subscript(base_access
, index
);
1209 if (field
->isAnonymousStructOrUnion())
1212 id
= isl_id_alloc(ctx
, field
->getName().str().c_str(), field
);
1213 space
= isl_multi_pw_aff_get_domain_space(base_access
);
1214 space
= isl_space_from_domain(space
);
1215 space
= isl_space_set_tuple_id(space
, isl_dim_out
, id
);
1216 field_access
= isl_multi_pw_aff_zero(space
);
1218 return member(base_access
, field_access
);
1221 /* Check if "expr" calls function "minmax" with two arguments and if so
1222 * make lhs and rhs refer to these two arguments.
1224 static bool is_minmax(Expr
*expr
, const char *minmax
, Expr
*&lhs
, Expr
*&rhs
)
1230 if (expr
->getStmtClass() != Stmt::CallExprClass
)
1233 call
= cast
<CallExpr
>(expr
);
1234 fd
= call
->getDirectCallee();
1238 if (call
->getNumArgs() != 2)
1241 name
= fd
->getDeclName().getAsString();
1245 lhs
= call
->getArg(0);
1246 rhs
= call
->getArg(1);
1251 /* Check if "expr" is of the form min(lhs, rhs) and if so make
1252 * lhs and rhs refer to the two arguments.
1254 static bool is_min(Expr
*expr
, Expr
*&lhs
, Expr
*&rhs
)
1256 return is_minmax(expr
, "min", lhs
, rhs
);
1259 /* Check if "expr" is of the form max(lhs, rhs) and if so make
1260 * lhs and rhs refer to the two arguments.
1262 static bool is_max(Expr
*expr
, Expr
*&lhs
, Expr
*&rhs
)
1264 return is_minmax(expr
, "max", lhs
, rhs
);
1267 /* Return "lhs && rhs", defined on the shared definition domain.
1269 static __isl_give isl_pw_aff
*pw_aff_and(__isl_take isl_pw_aff
*lhs
,
1270 __isl_take isl_pw_aff
*rhs
)
1275 dom
= isl_set_intersect(isl_pw_aff_domain(isl_pw_aff_copy(lhs
)),
1276 isl_pw_aff_domain(isl_pw_aff_copy(rhs
)));
1277 cond
= isl_set_intersect(isl_pw_aff_non_zero_set(lhs
),
1278 isl_pw_aff_non_zero_set(rhs
));
1279 return indicator_function(cond
, dom
);
1282 /* Return "lhs && rhs", with shortcut semantics.
1283 * That is, if lhs is false, then the result is defined even if rhs is not.
1284 * In practice, we compute lhs ? rhs : lhs.
1286 static __isl_give isl_pw_aff
*pw_aff_and_then(__isl_take isl_pw_aff
*lhs
,
1287 __isl_take isl_pw_aff
*rhs
)
1289 return isl_pw_aff_cond(isl_pw_aff_copy(lhs
), rhs
, lhs
);
1292 /* Return "lhs || rhs", with shortcut semantics.
1293 * That is, if lhs is true, then the result is defined even if rhs is not.
1294 * In practice, we compute lhs ? lhs : rhs.
1296 static __isl_give isl_pw_aff
*pw_aff_or_else(__isl_take isl_pw_aff
*lhs
,
1297 __isl_take isl_pw_aff
*rhs
)
1299 return isl_pw_aff_cond(isl_pw_aff_copy(lhs
), lhs
, rhs
);
1302 /* Extract an affine expressions representing the comparison "LHS op RHS"
1303 * "comp" is the original statement that "LHS op RHS" is derived from
1304 * and is used for diagnostics.
1306 * If the comparison is of the form
1310 * then the expression is constructed as the conjunction of
1315 * A similar optimization is performed for max(a,b) <= c.
1316 * We do this because that will lead to simpler representations
1317 * of the expression.
1318 * If isl is ever enhanced to explicitly deal with min and max expressions,
1319 * this optimization can be removed.
1321 __isl_give isl_pw_aff
*PetScan::extract_comparison(BinaryOperatorKind op
,
1322 Expr
*LHS
, Expr
*RHS
, Stmt
*comp
)
1331 return extract_comparison(BO_LT
, RHS
, LHS
, comp
);
1333 return extract_comparison(BO_LE
, RHS
, LHS
, comp
);
1335 if (op
== BO_LT
|| op
== BO_LE
) {
1336 Expr
*expr1
, *expr2
;
1337 if (is_min(RHS
, expr1
, expr2
)) {
1338 lhs
= extract_comparison(op
, LHS
, expr1
, comp
);
1339 rhs
= extract_comparison(op
, LHS
, expr2
, comp
);
1340 return pw_aff_and(lhs
, rhs
);
1342 if (is_max(LHS
, expr1
, expr2
)) {
1343 lhs
= extract_comparison(op
, expr1
, RHS
, comp
);
1344 rhs
= extract_comparison(op
, expr2
, RHS
, comp
);
1345 return pw_aff_and(lhs
, rhs
);
1349 lhs
= extract_affine(LHS
);
1350 rhs
= extract_affine(RHS
);
1352 dom
= isl_pw_aff_domain(isl_pw_aff_copy(lhs
));
1353 dom
= isl_set_intersect(dom
, isl_pw_aff_domain(isl_pw_aff_copy(rhs
)));
1357 cond
= isl_pw_aff_lt_set(lhs
, rhs
);
1360 cond
= isl_pw_aff_le_set(lhs
, rhs
);
1363 cond
= isl_pw_aff_eq_set(lhs
, rhs
);
1366 cond
= isl_pw_aff_ne_set(lhs
, rhs
);
1369 isl_pw_aff_free(lhs
);
1370 isl_pw_aff_free(rhs
);
1376 cond
= isl_set_coalesce(cond
);
1377 res
= indicator_function(cond
, dom
);
1382 __isl_give isl_pw_aff
*PetScan::extract_comparison(BinaryOperator
*comp
)
1384 return extract_comparison(comp
->getOpcode(), comp
->getLHS(),
1385 comp
->getRHS(), comp
);
1388 /* Extract an affine expression representing the negation (logical not)
1389 * of a subexpression.
1391 __isl_give isl_pw_aff
*PetScan::extract_boolean(UnaryOperator
*op
)
1393 isl_set
*set_cond
, *dom
;
1394 isl_pw_aff
*cond
, *res
;
1396 cond
= extract_condition(op
->getSubExpr());
1398 dom
= isl_pw_aff_domain(isl_pw_aff_copy(cond
));
1400 set_cond
= isl_pw_aff_zero_set(cond
);
1402 res
= indicator_function(set_cond
, dom
);
1407 /* Extract an affine expression representing the disjunction (logical or)
1408 * or conjunction (logical and) of two subexpressions.
1410 __isl_give isl_pw_aff
*PetScan::extract_boolean(BinaryOperator
*comp
)
1412 isl_pw_aff
*lhs
, *rhs
;
1414 lhs
= extract_condition(comp
->getLHS());
1415 rhs
= extract_condition(comp
->getRHS());
1417 switch (comp
->getOpcode()) {
1419 return pw_aff_and_then(lhs
, rhs
);
1421 return pw_aff_or_else(lhs
, rhs
);
1423 isl_pw_aff_free(lhs
);
1424 isl_pw_aff_free(rhs
);
1431 __isl_give isl_pw_aff
*PetScan::extract_condition(UnaryOperator
*expr
)
1433 switch (expr
->getOpcode()) {
1435 return extract_boolean(expr
);
1442 /* Extract the affine expression "expr != 0 ? 1 : 0".
1444 __isl_give isl_pw_aff
*PetScan::extract_implicit_condition(Expr
*expr
)
1449 res
= extract_affine(expr
);
1451 dom
= isl_pw_aff_domain(isl_pw_aff_copy(res
));
1452 set
= isl_pw_aff_non_zero_set(res
);
1454 res
= indicator_function(set
, dom
);
1459 /* Extract an affine expression from a boolean expression.
1460 * In particular, return the expression "expr ? 1 : 0".
1462 * If the expression doesn't look like a condition, we assume it
1463 * is an affine expression and return the condition "expr != 0 ? 1 : 0".
1465 __isl_give isl_pw_aff
*PetScan::extract_condition(Expr
*expr
)
1467 BinaryOperator
*comp
;
1470 isl_set
*u
= isl_set_universe(isl_space_params_alloc(ctx
, 0));
1471 return indicator_function(u
, isl_set_copy(u
));
1474 if (expr
->getStmtClass() == Stmt::ParenExprClass
)
1475 return extract_condition(cast
<ParenExpr
>(expr
)->getSubExpr());
1477 if (expr
->getStmtClass() == Stmt::UnaryOperatorClass
)
1478 return extract_condition(cast
<UnaryOperator
>(expr
));
1480 if (expr
->getStmtClass() != Stmt::BinaryOperatorClass
)
1481 return extract_implicit_condition(expr
);
1483 comp
= cast
<BinaryOperator
>(expr
);
1484 switch (comp
->getOpcode()) {
1491 return extract_comparison(comp
);
1494 return extract_boolean(comp
);
1496 return extract_implicit_condition(expr
);
1500 static enum pet_op_type
UnaryOperatorKind2pet_op_type(UnaryOperatorKind kind
)
1504 return pet_op_minus
;
1510 return pet_op_post_inc
;
1512 return pet_op_post_dec
;
1514 return pet_op_pre_inc
;
1516 return pet_op_pre_dec
;
1522 static enum pet_op_type
BinaryOperatorKind2pet_op_type(BinaryOperatorKind kind
)
1526 return pet_op_add_assign
;
1528 return pet_op_sub_assign
;
1530 return pet_op_mul_assign
;
1532 return pet_op_div_assign
;
1534 return pet_op_assign
;
1576 /* Construct a pet_expr representing a unary operator expression.
1578 struct pet_expr
*PetScan::extract_expr(UnaryOperator
*expr
)
1580 struct pet_expr
*arg
;
1581 enum pet_op_type op
;
1583 op
= UnaryOperatorKind2pet_op_type(expr
->getOpcode());
1584 if (op
== pet_op_last
) {
1589 arg
= extract_expr(expr
->getSubExpr());
1591 if (expr
->isIncrementDecrementOp() &&
1592 arg
&& arg
->type
== pet_expr_access
) {
1597 return pet_expr_new_unary(ctx
, op
, arg
);
1600 /* Mark the given access pet_expr as a write.
1601 * If a scalar is being accessed, then mark its value
1602 * as unknown in assigned_value.
1604 void PetScan::mark_write(struct pet_expr
*access
)
1612 access
->acc
.write
= 1;
1613 access
->acc
.read
= 0;
1615 if (!pet_expr_is_scalar_access(access
))
1618 id
= pet_expr_access_get_id(access
);
1619 decl
= (ValueDecl
*) isl_id_get_user(id
);
1620 clear_assignment(assigned_value
, decl
);
1624 /* Assign "rhs" to "lhs".
1626 * In particular, if "lhs" is a scalar variable, then mark
1627 * the variable as having been assigned. If, furthermore, "rhs"
1628 * is an affine expression, then keep track of this value in assigned_value
1629 * so that we can plug it in when we later come across the same variable.
1631 void PetScan::assign(struct pet_expr
*lhs
, Expr
*rhs
)
1639 if (!pet_expr_is_scalar_access(lhs
))
1642 id
= pet_expr_access_get_id(lhs
);
1643 decl
= (ValueDecl
*) isl_id_get_user(id
);
1646 pa
= try_extract_affine(rhs
);
1647 clear_assignment(assigned_value
, decl
);
1650 assigned_value
[decl
] = pa
;
1651 insert_expression(pa
);
1654 /* Construct a pet_expr representing a binary operator expression.
1656 * If the top level operator is an assignment and the LHS is an access,
1657 * then we mark that access as a write. If the operator is a compound
1658 * assignment, the access is marked as both a read and a write.
1660 * If "expr" assigns something to a scalar variable, then we mark
1661 * the variable as having been assigned. If, furthermore, the expression
1662 * is affine, then keep track of this value in assigned_value
1663 * so that we can plug it in when we later come across the same variable.
1665 struct pet_expr
*PetScan::extract_expr(BinaryOperator
*expr
)
1667 struct pet_expr
*lhs
, *rhs
;
1668 enum pet_op_type op
;
1670 op
= BinaryOperatorKind2pet_op_type(expr
->getOpcode());
1671 if (op
== pet_op_last
) {
1676 lhs
= extract_expr(expr
->getLHS());
1677 rhs
= extract_expr(expr
->getRHS());
1679 if (expr
->isAssignmentOp() && lhs
&& lhs
->type
== pet_expr_access
) {
1681 if (expr
->isCompoundAssignmentOp())
1685 if (expr
->getOpcode() == BO_Assign
)
1686 assign(lhs
, expr
->getRHS());
1688 return pet_expr_new_binary(ctx
, op
, lhs
, rhs
);
1691 /* Construct a pet_scop with a single statement killing the entire
1694 struct pet_scop
*PetScan::kill(Stmt
*stmt
, struct pet_array
*array
)
1698 isl_multi_pw_aff
*index
;
1700 struct pet_expr
*expr
;
1704 access
= isl_map_from_range(isl_set_copy(array
->extent
));
1705 id
= isl_set_get_tuple_id(array
->extent
);
1706 space
= isl_space_alloc(ctx
, 0, 0, 0);
1707 space
= isl_space_set_tuple_id(space
, isl_dim_out
, id
);
1708 index
= isl_multi_pw_aff_zero(space
);
1709 expr
= pet_expr_kill_from_access_and_index(access
, index
);
1710 return extract(stmt
, expr
);
1713 /* Construct a pet_scop for a (single) variable declaration.
1715 * The scop contains the variable being declared (as an array)
1716 * and a statement killing the array.
1718 * If the variable is initialized in the AST, then the scop
1719 * also contains an assignment to the variable.
1721 struct pet_scop
*PetScan::extract(DeclStmt
*stmt
)
1725 struct pet_expr
*lhs
, *rhs
, *pe
;
1726 struct pet_scop
*scop_decl
, *scop
;
1727 struct pet_array
*array
;
1729 if (!stmt
->isSingleDecl()) {
1734 decl
= stmt
->getSingleDecl();
1735 vd
= cast
<VarDecl
>(decl
);
1737 array
= extract_array(ctx
, vd
, NULL
);
1739 array
->declared
= 1;
1740 scop_decl
= kill(stmt
, array
);
1741 scop_decl
= pet_scop_add_array(scop_decl
, array
);
1746 lhs
= extract_access_expr(vd
);
1747 rhs
= extract_expr(vd
->getInit());
1750 assign(lhs
, vd
->getInit());
1752 pe
= pet_expr_new_binary(ctx
, pet_op_assign
, lhs
, rhs
);
1753 scop
= extract(stmt
, pe
);
1755 scop_decl
= pet_scop_prefix(scop_decl
, 0);
1756 scop
= pet_scop_prefix(scop
, 1);
1758 scop
= pet_scop_add_seq(ctx
, scop_decl
, scop
);
1763 /* Construct a pet_expr representing a conditional operation.
1765 * We first try to extract the condition as an affine expression.
1766 * If that fails, we construct a pet_expr tree representing the condition.
1768 struct pet_expr
*PetScan::extract_expr(ConditionalOperator
*expr
)
1770 struct pet_expr
*cond
, *lhs
, *rhs
;
1773 pa
= try_extract_affine(expr
->getCond());
1775 isl_multi_pw_aff
*test
= isl_multi_pw_aff_from_pw_aff(pa
);
1776 test
= isl_multi_pw_aff_from_range(test
);
1777 cond
= pet_expr_from_index(test
);
1779 cond
= extract_expr(expr
->getCond());
1780 lhs
= extract_expr(expr
->getTrueExpr());
1781 rhs
= extract_expr(expr
->getFalseExpr());
1783 return pet_expr_new_ternary(ctx
, cond
, lhs
, rhs
);
1786 struct pet_expr
*PetScan::extract_expr(ImplicitCastExpr
*expr
)
1788 return extract_expr(expr
->getSubExpr());
1791 /* Construct a pet_expr representing a floating point value.
1793 * If the floating point literal does not appear in a macro,
1794 * then we use the original representation in the source code
1795 * as the string representation. Otherwise, we use the pretty
1796 * printer to produce a string representation.
1798 struct pet_expr
*PetScan::extract_expr(FloatingLiteral
*expr
)
1802 const LangOptions
&LO
= PP
.getLangOpts();
1803 SourceLocation loc
= expr
->getLocation();
1805 if (!loc
.isMacroID()) {
1806 SourceManager
&SM
= PP
.getSourceManager();
1807 unsigned len
= Lexer::MeasureTokenLength(loc
, SM
, LO
);
1808 s
= string(SM
.getCharacterData(loc
), len
);
1810 llvm::raw_string_ostream
S(s
);
1811 expr
->printPretty(S
, 0, PrintingPolicy(LO
));
1814 d
= expr
->getValueAsApproximateDouble();
1815 return pet_expr_new_double(ctx
, d
, s
.c_str());
1818 /* Extract an index expression from "expr" and then convert it into
1819 * an access pet_expr.
1821 struct pet_expr
*PetScan::extract_access_expr(Expr
*expr
)
1823 isl_multi_pw_aff
*index
;
1824 struct pet_expr
*pe
;
1827 index
= extract_index(expr
);
1828 depth
= extract_depth(index
);
1830 pe
= pet_expr_from_index_and_depth(index
, depth
);
1835 /* Extract an index expression from "decl" and then convert it into
1836 * an access pet_expr.
1838 struct pet_expr
*PetScan::extract_access_expr(ValueDecl
*decl
)
1840 isl_multi_pw_aff
*index
;
1841 struct pet_expr
*pe
;
1844 index
= extract_index(decl
);
1845 depth
= extract_depth(index
);
1847 pe
= pet_expr_from_index_and_depth(index
, depth
);
1852 struct pet_expr
*PetScan::extract_expr(ParenExpr
*expr
)
1854 return extract_expr(expr
->getSubExpr());
1857 /* Extract an assume statement from the argument "expr"
1858 * of a __pencil_assume statement.
1860 struct pet_expr
*PetScan::extract_assume(Expr
*expr
)
1863 struct pet_expr
*res
;
1865 cond
= try_extract_affine_condition(expr
);
1867 res
= extract_expr(expr
);
1869 isl_multi_pw_aff
*index
;
1870 index
= isl_multi_pw_aff_from_pw_aff(cond
);
1871 index
= isl_multi_pw_aff_from_range(index
);
1872 res
= pet_expr_from_index(index
);
1874 return pet_expr_new_unary(ctx
, pet_op_assume
, res
);
1877 /* Construct a pet_expr corresponding to the function call argument "expr".
1878 * The argument appears in position "pos" of a call to function "fd".
1880 * If we are passing along a pointer to an array element
1881 * or an entire row or even higher dimensional slice of an array,
1882 * then the function being called may write into the array.
1884 * We assume here that if the function is declared to take a pointer
1885 * to a const type, then the function will perform a read
1886 * and that otherwise, it will perform a write.
1888 struct pet_expr
*PetScan::extract_argument(FunctionDecl
*fd
, int pos
,
1891 struct pet_expr
*res
;
1896 if (expr
->getStmtClass() == Stmt::ImplicitCastExprClass
) {
1897 ImplicitCastExpr
*ice
= cast
<ImplicitCastExpr
>(expr
);
1898 expr
= ice
->getSubExpr();
1900 if (expr
->getStmtClass() == Stmt::UnaryOperatorClass
) {
1901 UnaryOperator
*op
= cast
<UnaryOperator
>(expr
);
1902 if (op
->getOpcode() == UO_AddrOf
) {
1904 expr
= op
->getSubExpr();
1907 res
= extract_expr(expr
);
1910 res
= pet_expr_new_unary(ctx
, pet_op_address_of
, res
);
1913 sc
= expr
->getStmtClass();
1914 if ((sc
== Stmt::ArraySubscriptExprClass
||
1915 sc
== Stmt::MemberExprClass
) &&
1916 array_depth(expr
->getType().getTypePtr()) > 0)
1918 if (is_addr
&& main_arg
->type
== pet_expr_access
) {
1920 if (!fd
->hasPrototype()) {
1921 report_prototype_required(expr
);
1922 return pet_expr_free(res
);
1924 parm
= fd
->getParamDecl(pos
);
1925 if (!const_base(parm
->getType()))
1926 mark_write(main_arg
);
1932 /* Construct a pet_expr representing a function call.
1934 * In the special case of a "call" to __pencil_assume,
1935 * construct an assume expression instead.
1937 struct pet_expr
*PetScan::extract_expr(CallExpr
*expr
)
1939 struct pet_expr
*res
= NULL
;
1944 fd
= expr
->getDirectCallee();
1950 name
= fd
->getDeclName().getAsString();
1951 n_arg
= expr
->getNumArgs();
1953 if (n_arg
== 1 && name
== "__pencil_assume")
1954 return extract_assume(expr
->getArg(0));
1956 res
= pet_expr_new_call(ctx
, name
.c_str(), n_arg
);
1960 for (int i
= 0; i
< n_arg
; ++i
) {
1961 Expr
*arg
= expr
->getArg(i
);
1962 res
->args
[i
] = PetScan::extract_argument(fd
, i
, arg
);
1973 /* Construct a pet_expr representing a (C style) cast.
1975 struct pet_expr
*PetScan::extract_expr(CStyleCastExpr
*expr
)
1977 struct pet_expr
*arg
;
1980 arg
= extract_expr(expr
->getSubExpr());
1984 type
= expr
->getTypeAsWritten();
1985 return pet_expr_new_cast(ctx
, type
.getAsString().c_str(), arg
);
1988 /* Construct a pet_expr representing an integer.
1990 struct pet_expr
*PetScan::extract_expr(IntegerLiteral
*expr
)
1992 return pet_expr_new_int(extract_int(expr
));
1995 /* Try and construct a pet_expr representing "expr".
1997 struct pet_expr
*PetScan::extract_expr(Expr
*expr
)
1999 switch (expr
->getStmtClass()) {
2000 case Stmt::UnaryOperatorClass
:
2001 return extract_expr(cast
<UnaryOperator
>(expr
));
2002 case Stmt::CompoundAssignOperatorClass
:
2003 case Stmt::BinaryOperatorClass
:
2004 return extract_expr(cast
<BinaryOperator
>(expr
));
2005 case Stmt::ImplicitCastExprClass
:
2006 return extract_expr(cast
<ImplicitCastExpr
>(expr
));
2007 case Stmt::ArraySubscriptExprClass
:
2008 case Stmt::DeclRefExprClass
:
2009 case Stmt::MemberExprClass
:
2010 return extract_access_expr(expr
);
2011 case Stmt::IntegerLiteralClass
:
2012 return extract_expr(cast
<IntegerLiteral
>(expr
));
2013 case Stmt::FloatingLiteralClass
:
2014 return extract_expr(cast
<FloatingLiteral
>(expr
));
2015 case Stmt::ParenExprClass
:
2016 return extract_expr(cast
<ParenExpr
>(expr
));
2017 case Stmt::ConditionalOperatorClass
:
2018 return extract_expr(cast
<ConditionalOperator
>(expr
));
2019 case Stmt::CallExprClass
:
2020 return extract_expr(cast
<CallExpr
>(expr
));
2021 case Stmt::CStyleCastExprClass
:
2022 return extract_expr(cast
<CStyleCastExpr
>(expr
));
2029 /* Check if the given initialization statement is an assignment.
2030 * If so, return that assignment. Otherwise return NULL.
2032 BinaryOperator
*PetScan::initialization_assignment(Stmt
*init
)
2034 BinaryOperator
*ass
;
2036 if (init
->getStmtClass() != Stmt::BinaryOperatorClass
)
2039 ass
= cast
<BinaryOperator
>(init
);
2040 if (ass
->getOpcode() != BO_Assign
)
2046 /* Check if the given initialization statement is a declaration
2047 * of a single variable.
2048 * If so, return that declaration. Otherwise return NULL.
2050 Decl
*PetScan::initialization_declaration(Stmt
*init
)
2054 if (init
->getStmtClass() != Stmt::DeclStmtClass
)
2057 decl
= cast
<DeclStmt
>(init
);
2059 if (!decl
->isSingleDecl())
2062 return decl
->getSingleDecl();
2065 /* Given the assignment operator in the initialization of a for loop,
2066 * extract the induction variable, i.e., the (integer)variable being
2069 ValueDecl
*PetScan::extract_induction_variable(BinaryOperator
*init
)
2076 lhs
= init
->getLHS();
2077 if (lhs
->getStmtClass() != Stmt::DeclRefExprClass
) {
2082 ref
= cast
<DeclRefExpr
>(lhs
);
2083 decl
= ref
->getDecl();
2084 type
= decl
->getType().getTypePtr();
2086 if (!type
->isIntegerType()) {
2094 /* Given the initialization statement of a for loop and the single
2095 * declaration in this initialization statement,
2096 * extract the induction variable, i.e., the (integer) variable being
2099 VarDecl
*PetScan::extract_induction_variable(Stmt
*init
, Decl
*decl
)
2103 vd
= cast
<VarDecl
>(decl
);
2105 const QualType type
= vd
->getType();
2106 if (!type
->isIntegerType()) {
2111 if (!vd
->getInit()) {
2119 /* Check that op is of the form iv++ or iv--.
2120 * Return an affine expression "1" or "-1" accordingly.
2122 __isl_give isl_pw_aff
*PetScan::extract_unary_increment(
2123 clang::UnaryOperator
*op
, clang::ValueDecl
*iv
)
2130 if (!op
->isIncrementDecrementOp()) {
2135 sub
= op
->getSubExpr();
2136 if (sub
->getStmtClass() != Stmt::DeclRefExprClass
) {
2141 ref
= cast
<DeclRefExpr
>(sub
);
2142 if (ref
->getDecl() != iv
) {
2147 space
= isl_space_params_alloc(ctx
, 0);
2148 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(space
));
2150 if (op
->isIncrementOp())
2151 aff
= isl_aff_add_constant_si(aff
, 1);
2153 aff
= isl_aff_add_constant_si(aff
, -1);
2155 return isl_pw_aff_from_aff(aff
);
2158 /* If the isl_pw_aff on which isl_pw_aff_foreach_piece is called
2159 * has a single constant expression, then put this constant in *user.
2160 * The caller is assumed to have checked that this function will
2161 * be called exactly once.
2163 static int extract_cst(__isl_take isl_set
*set
, __isl_take isl_aff
*aff
,
2166 isl_val
**inc
= (isl_val
**)user
;
2169 if (isl_aff_is_cst(aff
))
2170 *inc
= isl_aff_get_constant_val(aff
);
2180 /* Check if op is of the form
2184 * and return inc as an affine expression.
2186 * We extract an affine expression from the RHS, subtract iv and return
2189 __isl_give isl_pw_aff
*PetScan::extract_binary_increment(BinaryOperator
*op
,
2190 clang::ValueDecl
*iv
)
2199 if (op
->getOpcode() != BO_Assign
) {
2205 if (lhs
->getStmtClass() != Stmt::DeclRefExprClass
) {
2210 ref
= cast
<DeclRefExpr
>(lhs
);
2211 if (ref
->getDecl() != iv
) {
2216 val
= extract_affine(op
->getRHS());
2218 id
= isl_id_alloc(ctx
, iv
->getName().str().c_str(), iv
);
2220 dim
= isl_space_params_alloc(ctx
, 1);
2221 dim
= isl_space_set_dim_id(dim
, isl_dim_param
, 0, id
);
2222 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(dim
));
2223 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_param
, 0, 1);
2225 val
= isl_pw_aff_sub(val
, isl_pw_aff_from_aff(aff
));
2230 /* Check that op is of the form iv += cst or iv -= cst
2231 * and return an affine expression corresponding oto cst or -cst accordingly.
2233 __isl_give isl_pw_aff
*PetScan::extract_compound_increment(
2234 CompoundAssignOperator
*op
, clang::ValueDecl
*iv
)
2240 BinaryOperatorKind opcode
;
2242 opcode
= op
->getOpcode();
2243 if (opcode
!= BO_AddAssign
&& opcode
!= BO_SubAssign
) {
2247 if (opcode
== BO_SubAssign
)
2251 if (lhs
->getStmtClass() != Stmt::DeclRefExprClass
) {
2256 ref
= cast
<DeclRefExpr
>(lhs
);
2257 if (ref
->getDecl() != iv
) {
2262 val
= extract_affine(op
->getRHS());
2264 val
= isl_pw_aff_neg(val
);
2269 /* Check that the increment of the given for loop increments
2270 * (or decrements) the induction variable "iv" and return
2271 * the increment as an affine expression if successful.
2273 __isl_give isl_pw_aff
*PetScan::extract_increment(clang::ForStmt
*stmt
,
2276 Stmt
*inc
= stmt
->getInc();
2279 report_missing_increment(stmt
);
2283 if (inc
->getStmtClass() == Stmt::UnaryOperatorClass
)
2284 return extract_unary_increment(cast
<UnaryOperator
>(inc
), iv
);
2285 if (inc
->getStmtClass() == Stmt::CompoundAssignOperatorClass
)
2286 return extract_compound_increment(
2287 cast
<CompoundAssignOperator
>(inc
), iv
);
2288 if (inc
->getStmtClass() == Stmt::BinaryOperatorClass
)
2289 return extract_binary_increment(cast
<BinaryOperator
>(inc
), iv
);
2295 /* Embed the given iteration domain in an extra outer loop
2296 * with induction variable "var".
2297 * If this variable appeared as a parameter in the constraints,
2298 * it is replaced by the new outermost dimension.
2300 static __isl_give isl_set
*embed(__isl_take isl_set
*set
,
2301 __isl_take isl_id
*var
)
2305 set
= isl_set_insert_dims(set
, isl_dim_set
, 0, 1);
2306 pos
= isl_set_find_dim_by_id(set
, isl_dim_param
, var
);
2308 set
= isl_set_equate(set
, isl_dim_param
, pos
, isl_dim_set
, 0);
2309 set
= isl_set_project_out(set
, isl_dim_param
, pos
, 1);
2316 /* Return those elements in the space of "cond" that come after
2317 * (based on "sign") an element in "cond".
2319 static __isl_give isl_set
*after(__isl_take isl_set
*cond
, int sign
)
2321 isl_map
*previous_to_this
;
2324 previous_to_this
= isl_map_lex_lt(isl_set_get_space(cond
));
2326 previous_to_this
= isl_map_lex_gt(isl_set_get_space(cond
));
2328 cond
= isl_set_apply(cond
, previous_to_this
);
2333 /* Create the infinite iteration domain
2335 * { [id] : id >= 0 }
2337 * If "scop" has an affine skip of type pet_skip_later,
2338 * then remove those iterations i that have an earlier iteration
2339 * where the skip condition is satisfied, meaning that iteration i
2341 * Since we are dealing with a loop without loop iterator,
2342 * the skip condition cannot refer to the current loop iterator and
2343 * so effectively, the returned set is of the form
2345 * { [0]; [id] : id >= 1 and not skip }
2347 static __isl_give isl_set
*infinite_domain(__isl_take isl_id
*id
,
2348 struct pet_scop
*scop
)
2350 isl_ctx
*ctx
= isl_id_get_ctx(id
);
2354 domain
= isl_set_nat_universe(isl_space_set_alloc(ctx
, 0, 1));
2355 domain
= isl_set_set_dim_id(domain
, isl_dim_set
, 0, id
);
2357 if (!pet_scop_has_affine_skip(scop
, pet_skip_later
))
2360 skip
= pet_scop_get_affine_skip_domain(scop
, pet_skip_later
);
2361 skip
= embed(skip
, isl_id_copy(id
));
2362 skip
= isl_set_intersect(skip
, isl_set_copy(domain
));
2363 domain
= isl_set_subtract(domain
, after(skip
, 1));
2368 /* Create an identity affine expression on the space containing "domain",
2369 * which is assumed to be one-dimensional.
2371 static __isl_give isl_aff
*identity_aff(__isl_keep isl_set
*domain
)
2373 isl_local_space
*ls
;
2375 ls
= isl_local_space_from_space(isl_set_get_space(domain
));
2376 return isl_aff_var_on_domain(ls
, isl_dim_set
, 0);
2379 /* Create an affine expression that maps elements
2380 * of a single-dimensional array "id_test" to the previous element
2381 * (according to "inc"), provided this element belongs to "domain".
2382 * That is, create the affine expression
2384 * { id[x] -> id[x - inc] : x - inc in domain }
2386 static __isl_give isl_multi_pw_aff
*map_to_previous(__isl_take isl_id
*id_test
,
2387 __isl_take isl_set
*domain
, __isl_take isl_val
*inc
)
2390 isl_local_space
*ls
;
2392 isl_multi_pw_aff
*prev
;
2394 space
= isl_set_get_space(domain
);
2395 ls
= isl_local_space_from_space(space
);
2396 aff
= isl_aff_var_on_domain(ls
, isl_dim_set
, 0);
2397 aff
= isl_aff_add_constant_val(aff
, isl_val_neg(inc
));
2398 prev
= isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff
));
2399 domain
= isl_set_preimage_multi_pw_aff(domain
,
2400 isl_multi_pw_aff_copy(prev
));
2401 prev
= isl_multi_pw_aff_intersect_domain(prev
, domain
);
2402 prev
= isl_multi_pw_aff_set_tuple_id(prev
, isl_dim_out
, id_test
);
2407 /* Add an implication to "scop" expressing that if an element of
2408 * virtual array "id_test" has value "satisfied" then all previous elements
2409 * of this array also have that value. The set of previous elements
2410 * is bounded by "domain". If "sign" is negative then the iterator
2411 * is decreasing and we express that all subsequent array elements
2412 * (but still defined previously) have the same value.
2414 static struct pet_scop
*add_implication(struct pet_scop
*scop
,
2415 __isl_take isl_id
*id_test
, __isl_take isl_set
*domain
, int sign
,
2421 domain
= isl_set_set_tuple_id(domain
, id_test
);
2422 space
= isl_set_get_space(domain
);
2424 map
= isl_map_lex_ge(space
);
2426 map
= isl_map_lex_le(space
);
2427 map
= isl_map_intersect_range(map
, domain
);
2428 scop
= pet_scop_add_implication(scop
, map
, satisfied
);
2433 /* Add a filter to "scop" that imposes that it is only executed
2434 * when the variable identified by "id_test" has a zero value
2435 * for all previous iterations of "domain".
2437 * In particular, add a filter that imposes that the array
2438 * has a zero value at the previous iteration of domain and
2439 * add an implication that implies that it then has that
2440 * value for all previous iterations.
2442 static struct pet_scop
*scop_add_break(struct pet_scop
*scop
,
2443 __isl_take isl_id
*id_test
, __isl_take isl_set
*domain
,
2444 __isl_take isl_val
*inc
)
2446 isl_multi_pw_aff
*prev
;
2447 int sign
= isl_val_sgn(inc
);
2449 prev
= map_to_previous(isl_id_copy(id_test
), isl_set_copy(domain
), inc
);
2450 scop
= add_implication(scop
, id_test
, domain
, sign
, 0);
2451 scop
= pet_scop_filter(scop
, prev
, 0);
2456 /* Construct a pet_scop for an infinite loop around the given body.
2458 * We extract a pet_scop for the body and then embed it in a loop with
2467 * If the body contains any break, then it is taken into
2468 * account in infinite_domain (if the skip condition is affine)
2469 * or in scop_add_break (if the skip condition is not affine).
2471 * If we were only able to extract part of the body, then simply
2474 struct pet_scop
*PetScan::extract_infinite_loop(Stmt
*body
)
2476 isl_id
*id
, *id_test
;
2479 struct pet_scop
*scop
;
2482 scop
= extract(body
);
2488 id
= isl_id_alloc(ctx
, "t", NULL
);
2489 domain
= infinite_domain(isl_id_copy(id
), scop
);
2490 ident
= identity_aff(domain
);
2492 has_var_break
= pet_scop_has_var_skip(scop
, pet_skip_later
);
2494 id_test
= pet_scop_get_skip_id(scop
, pet_skip_later
);
2496 scop
= pet_scop_embed(scop
, isl_set_copy(domain
),
2497 isl_aff_copy(ident
), ident
, id
);
2499 scop
= scop_add_break(scop
, id_test
, domain
, isl_val_one(ctx
));
2501 isl_set_free(domain
);
2506 /* Construct a pet_scop for an infinite loop, i.e., a loop of the form
2512 struct pet_scop
*PetScan::extract_infinite_for(ForStmt
*stmt
)
2514 clear_assignments
clear(assigned_value
);
2515 clear
.TraverseStmt(stmt
->getBody());
2517 return extract_infinite_loop(stmt
->getBody());
2520 /* Create an index expression for an access to a virtual array
2521 * representing the result of a condition.
2522 * Unlike other accessed data, the id of the array is NULL as
2523 * there is no ValueDecl in the program corresponding to the virtual
2525 * The array starts out as a scalar, but grows along with the
2526 * statement writing to the array in pet_scop_embed.
2528 static __isl_give isl_multi_pw_aff
*create_test_index(isl_ctx
*ctx
, int test_nr
)
2530 isl_space
*dim
= isl_space_alloc(ctx
, 0, 0, 0);
2534 snprintf(name
, sizeof(name
), "__pet_test_%d", test_nr
);
2535 id
= isl_id_alloc(ctx
, name
, NULL
);
2536 dim
= isl_space_set_tuple_id(dim
, isl_dim_out
, id
);
2537 return isl_multi_pw_aff_zero(dim
);
2540 /* Add an array with the given extent (range of "index") to the list
2541 * of arrays in "scop" and return the extended pet_scop.
2542 * The array is marked as attaining values 0 and 1 only and
2543 * as each element being assigned at most once.
2545 static struct pet_scop
*scop_add_array(struct pet_scop
*scop
,
2546 __isl_keep isl_multi_pw_aff
*index
, clang::ASTContext
&ast_ctx
)
2548 isl_ctx
*ctx
= isl_multi_pw_aff_get_ctx(index
);
2550 struct pet_array
*array
;
2558 array
= isl_calloc_type(ctx
, struct pet_array
);
2562 access
= isl_map_from_multi_pw_aff(isl_multi_pw_aff_copy(index
));
2563 array
->extent
= isl_map_range(access
);
2564 dim
= isl_space_params_alloc(ctx
, 0);
2565 array
->context
= isl_set_universe(dim
);
2566 dim
= isl_space_set_alloc(ctx
, 0, 1);
2567 array
->value_bounds
= isl_set_universe(dim
);
2568 array
->value_bounds
= isl_set_lower_bound_si(array
->value_bounds
,
2570 array
->value_bounds
= isl_set_upper_bound_si(array
->value_bounds
,
2572 array
->element_type
= strdup("int");
2573 array
->element_size
= ast_ctx
.getTypeInfo(ast_ctx
.IntTy
).first
/ 8;
2574 array
->uniquely_defined
= 1;
2576 if (!array
->extent
|| !array
->context
)
2577 array
= pet_array_free(array
);
2579 scop
= pet_scop_add_array(scop
, array
);
2583 pet_scop_free(scop
);
2587 /* Construct a pet_scop for a while loop of the form
2592 * In particular, construct a scop for an infinite loop around body and
2593 * intersect the domain with the affine expression.
2594 * Note that this intersection may result in an empty loop.
2596 struct pet_scop
*PetScan::extract_affine_while(__isl_take isl_pw_aff
*pa
,
2599 struct pet_scop
*scop
;
2603 valid
= isl_pw_aff_domain(isl_pw_aff_copy(pa
));
2604 dom
= isl_pw_aff_non_zero_set(pa
);
2605 scop
= extract_infinite_loop(body
);
2606 scop
= pet_scop_restrict(scop
, dom
);
2607 scop
= pet_scop_restrict_context(scop
, valid
);
2612 /* Construct a scop for a while, given the scops for the condition
2613 * and the body, the filter identifier and the iteration domain of
2616 * In particular, the scop for the condition is filtered to depend
2617 * on "id_test" evaluating to true for all previous iterations
2618 * of the loop, while the scop for the body is filtered to depend
2619 * on "id_test" evaluating to true for all iterations up to the
2620 * current iteration.
2621 * The actual filter only imposes that this virtual array has
2622 * value one on the previous or the current iteration.
2623 * The fact that this condition also applies to the previous
2624 * iterations is enforced by an implication.
2626 * These filtered scops are then combined into a single scop.
2628 * "sign" is positive if the iterator increases and negative
2631 static struct pet_scop
*scop_add_while(struct pet_scop
*scop_cond
,
2632 struct pet_scop
*scop_body
, __isl_take isl_id
*id_test
,
2633 __isl_take isl_set
*domain
, __isl_take isl_val
*inc
)
2635 isl_ctx
*ctx
= isl_set_get_ctx(domain
);
2637 isl_multi_pw_aff
*test_index
;
2638 isl_multi_pw_aff
*prev
;
2639 int sign
= isl_val_sgn(inc
);
2640 struct pet_scop
*scop
;
2642 prev
= map_to_previous(isl_id_copy(id_test
), isl_set_copy(domain
), inc
);
2643 scop_cond
= pet_scop_filter(scop_cond
, prev
, 1);
2645 space
= isl_space_map_from_set(isl_set_get_space(domain
));
2646 test_index
= isl_multi_pw_aff_identity(space
);
2647 test_index
= isl_multi_pw_aff_set_tuple_id(test_index
, isl_dim_out
,
2648 isl_id_copy(id_test
));
2649 scop_body
= pet_scop_filter(scop_body
, test_index
, 1);
2651 scop
= pet_scop_add_seq(ctx
, scop_cond
, scop_body
);
2652 scop
= add_implication(scop
, id_test
, domain
, sign
, 1);
2657 /* Check if the while loop is of the form
2659 * while (affine expression)
2662 * If so, call extract_affine_while to construct a scop.
2664 * Otherwise, construct a generic while scop, with iteration domain
2665 * { [t] : t >= 0 }. The scop consists of two parts, one for
2666 * evaluating the condition and one for the body.
2667 * The schedule is adjusted to reflect that the condition is evaluated
2668 * before the body is executed and the body is filtered to depend
2669 * on the result of the condition evaluating to true on all iterations
2670 * up to the current iteration, while the evaluation of the condition itself
2671 * is filtered to depend on the result of the condition evaluating to true
2672 * on all previous iterations.
2673 * The context of the scop representing the body is dropped
2674 * because we don't know how many times the body will be executed,
2677 * If the body contains any break, then it is taken into
2678 * account in infinite_domain (if the skip condition is affine)
2679 * or in scop_add_break (if the skip condition is not affine).
2681 * If we were only able to extract part of the body, then simply
2684 struct pet_scop
*PetScan::extract(WhileStmt
*stmt
)
2687 int test_nr
, stmt_nr
;
2688 isl_id
*id
, *id_test
, *id_break_test
;
2689 isl_multi_pw_aff
*test_index
;
2693 struct pet_scop
*scop
, *scop_body
;
2696 cond
= stmt
->getCond();
2702 clear_assignments
clear(assigned_value
);
2703 clear
.TraverseStmt(stmt
->getBody());
2705 pa
= try_extract_affine_condition(cond
);
2707 return extract_affine_while(pa
, stmt
->getBody());
2709 if (!allow_nested
) {
2716 scop_body
= extract(stmt
->getBody());
2720 test_index
= create_test_index(ctx
, test_nr
);
2721 scop
= extract_non_affine_condition(cond
, stmt_nr
,
2722 isl_multi_pw_aff_copy(test_index
));
2723 scop
= scop_add_array(scop
, test_index
, ast_context
);
2724 id_test
= isl_multi_pw_aff_get_tuple_id(test_index
, isl_dim_out
);
2725 isl_multi_pw_aff_free(test_index
);
2727 id
= isl_id_alloc(ctx
, "t", NULL
);
2728 domain
= infinite_domain(isl_id_copy(id
), scop_body
);
2729 ident
= identity_aff(domain
);
2731 has_var_break
= pet_scop_has_var_skip(scop_body
, pet_skip_later
);
2733 id_break_test
= pet_scop_get_skip_id(scop_body
, pet_skip_later
);
2735 scop
= pet_scop_prefix(scop
, 0);
2736 scop
= pet_scop_embed(scop
, isl_set_copy(domain
), isl_aff_copy(ident
),
2737 isl_aff_copy(ident
), isl_id_copy(id
));
2738 scop_body
= pet_scop_reset_context(scop_body
);
2739 scop_body
= pet_scop_prefix(scop_body
, 1);
2740 scop_body
= pet_scop_embed(scop_body
, isl_set_copy(domain
),
2741 isl_aff_copy(ident
), ident
, id
);
2743 if (has_var_break
) {
2744 scop
= scop_add_break(scop
, isl_id_copy(id_break_test
),
2745 isl_set_copy(domain
), isl_val_one(ctx
));
2746 scop_body
= scop_add_break(scop_body
, id_break_test
,
2747 isl_set_copy(domain
), isl_val_one(ctx
));
2749 scop
= scop_add_while(scop
, scop_body
, id_test
, domain
,
2755 /* Check whether "cond" expresses a simple loop bound
2756 * on the only set dimension.
2757 * In particular, if "up" is set then "cond" should contain only
2758 * upper bounds on the set dimension.
2759 * Otherwise, it should contain only lower bounds.
2761 static bool is_simple_bound(__isl_keep isl_set
*cond
, __isl_keep isl_val
*inc
)
2763 if (isl_val_is_pos(inc
))
2764 return !isl_set_dim_has_any_lower_bound(cond
, isl_dim_set
, 0);
2766 return !isl_set_dim_has_any_upper_bound(cond
, isl_dim_set
, 0);
2769 /* Extend a condition on a given iteration of a loop to one that
2770 * imposes the same condition on all previous iterations.
2771 * "domain" expresses the lower [upper] bound on the iterations
2772 * when inc is positive [negative].
2774 * In particular, we construct the condition (when inc is positive)
2776 * forall i' : (domain(i') and i' <= i) => cond(i')
2778 * which is equivalent to
2780 * not exists i' : domain(i') and i' <= i and not cond(i')
2782 * We construct this set by negating cond, applying a map
2784 * { [i'] -> [i] : domain(i') and i' <= i }
2786 * and then negating the result again.
2788 static __isl_give isl_set
*valid_for_each_iteration(__isl_take isl_set
*cond
,
2789 __isl_take isl_set
*domain
, __isl_take isl_val
*inc
)
2791 isl_map
*previous_to_this
;
2793 if (isl_val_is_pos(inc
))
2794 previous_to_this
= isl_map_lex_le(isl_set_get_space(domain
));
2796 previous_to_this
= isl_map_lex_ge(isl_set_get_space(domain
));
2798 previous_to_this
= isl_map_intersect_domain(previous_to_this
, domain
);
2800 cond
= isl_set_complement(cond
);
2801 cond
= isl_set_apply(cond
, previous_to_this
);
2802 cond
= isl_set_complement(cond
);
2809 /* Construct a domain of the form
2811 * [id] -> { : exists a: id = init + a * inc and a >= 0 }
2813 static __isl_give isl_set
*strided_domain(__isl_take isl_id
*id
,
2814 __isl_take isl_pw_aff
*init
, __isl_take isl_val
*inc
)
2820 init
= isl_pw_aff_insert_dims(init
, isl_dim_in
, 0, 1);
2821 dim
= isl_pw_aff_get_domain_space(init
);
2822 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(dim
));
2823 aff
= isl_aff_add_coefficient_val(aff
, isl_dim_in
, 0, inc
);
2824 init
= isl_pw_aff_add(init
, isl_pw_aff_from_aff(aff
));
2826 dim
= isl_space_set_alloc(isl_pw_aff_get_ctx(init
), 1, 1);
2827 dim
= isl_space_set_dim_id(dim
, isl_dim_param
, 0, id
);
2828 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(dim
));
2829 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_param
, 0, 1);
2831 set
= isl_pw_aff_eq_set(isl_pw_aff_from_aff(aff
), init
);
2833 set
= isl_set_lower_bound_si(set
, isl_dim_set
, 0, 0);
2835 return isl_set_params(set
);
2838 /* Assuming "cond" represents a bound on a loop where the loop
2839 * iterator "iv" is incremented (or decremented) by one, check if wrapping
2842 * Under the given assumptions, wrapping is only possible if "cond" allows
2843 * for the last value before wrapping, i.e., 2^width - 1 in case of an
2844 * increasing iterator and 0 in case of a decreasing iterator.
2846 static bool can_wrap(__isl_keep isl_set
*cond
, ValueDecl
*iv
,
2847 __isl_keep isl_val
*inc
)
2854 test
= isl_set_copy(cond
);
2856 ctx
= isl_set_get_ctx(test
);
2857 if (isl_val_is_neg(inc
))
2858 limit
= isl_val_zero(ctx
);
2860 limit
= isl_val_int_from_ui(ctx
, get_type_size(iv
));
2861 limit
= isl_val_2exp(limit
);
2862 limit
= isl_val_sub_ui(limit
, 1);
2865 test
= isl_set_fix_val(cond
, isl_dim_set
, 0, limit
);
2866 cw
= !isl_set_is_empty(test
);
2872 /* Given a one-dimensional space, construct the following affine expression
2875 * { [v] -> [v mod 2^width] }
2877 * where width is the number of bits used to represent the values
2878 * of the unsigned variable "iv".
2880 static __isl_give isl_aff
*compute_wrapping(__isl_take isl_space
*dim
,
2887 ctx
= isl_space_get_ctx(dim
);
2888 mod
= isl_val_int_from_ui(ctx
, get_type_size(iv
));
2889 mod
= isl_val_2exp(mod
);
2891 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(dim
));
2892 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_in
, 0, 1);
2893 aff
= isl_aff_mod_val(aff
, mod
);
2898 /* Project out the parameter "id" from "set".
2900 static __isl_give isl_set
*set_project_out_by_id(__isl_take isl_set
*set
,
2901 __isl_keep isl_id
*id
)
2905 pos
= isl_set_find_dim_by_id(set
, isl_dim_param
, id
);
2907 set
= isl_set_project_out(set
, isl_dim_param
, pos
, 1);
2912 /* Compute the set of parameters for which "set1" is a subset of "set2".
2914 * set1 is a subset of set2 if
2916 * forall i in set1 : i in set2
2920 * not exists i in set1 and i not in set2
2924 * not exists i in set1 \ set2
2926 static __isl_give isl_set
*enforce_subset(__isl_take isl_set
*set1
,
2927 __isl_take isl_set
*set2
)
2929 return isl_set_complement(isl_set_params(isl_set_subtract(set1
, set2
)));
2932 /* Compute the set of parameter values for which "cond" holds
2933 * on the next iteration for each element of "dom".
2935 * We first construct mapping { [i] -> [i + inc] }, apply that to "dom"
2936 * and then compute the set of parameters for which the result is a subset
2939 static __isl_give isl_set
*valid_on_next(__isl_take isl_set
*cond
,
2940 __isl_take isl_set
*dom
, __isl_take isl_val
*inc
)
2946 space
= isl_set_get_space(dom
);
2947 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(space
));
2948 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_in
, 0, 1);
2949 aff
= isl_aff_add_constant_val(aff
, inc
);
2950 next
= isl_map_from_basic_map(isl_basic_map_from_aff(aff
));
2952 dom
= isl_set_apply(dom
, next
);
2954 return enforce_subset(dom
, cond
);
2957 /* Does "id" refer to a nested access?
2959 static bool is_nested_parameter(__isl_keep isl_id
*id
)
2961 return id
&& isl_id_get_user(id
) && !isl_id_get_name(id
);
2964 /* Does parameter "pos" of "space" refer to a nested access?
2966 static bool is_nested_parameter(__isl_keep isl_space
*space
, int pos
)
2971 id
= isl_space_get_dim_id(space
, isl_dim_param
, pos
);
2972 nested
= is_nested_parameter(id
);
2978 /* Does "space" involve any parameters that refer to nested
2979 * accesses, i.e., parameters with no name?
2981 static bool has_nested(__isl_keep isl_space
*space
)
2985 nparam
= isl_space_dim(space
, isl_dim_param
);
2986 for (int i
= 0; i
< nparam
; ++i
)
2987 if (is_nested_parameter(space
, i
))
2993 /* Does "pa" involve any parameters that refer to nested
2994 * accesses, i.e., parameters with no name?
2996 static bool has_nested(__isl_keep isl_pw_aff
*pa
)
3001 space
= isl_pw_aff_get_space(pa
);
3002 nested
= has_nested(space
);
3003 isl_space_free(space
);
3008 /* Construct a pet_scop for a for statement.
3009 * The for loop is required to be of the form
3011 * for (i = init; condition; ++i)
3015 * for (i = init; condition; --i)
3017 * The initialization of the for loop should either be an assignment
3018 * to an integer variable, or a declaration of such a variable with
3021 * The condition is allowed to contain nested accesses, provided
3022 * they are not being written to inside the body of the loop.
3023 * Otherwise, or if the condition is otherwise non-affine, the for loop is
3024 * essentially treated as a while loop, with iteration domain
3025 * { [i] : i >= init }.
3027 * We extract a pet_scop for the body and then embed it in a loop with
3028 * iteration domain and schedule
3030 * { [i] : i >= init and condition' }
3035 * { [i] : i <= init and condition' }
3038 * Where condition' is equal to condition if the latter is
3039 * a simple upper [lower] bound and a condition that is extended
3040 * to apply to all previous iterations otherwise.
3042 * If the condition is non-affine, then we drop the condition from the
3043 * iteration domain and instead create a separate statement
3044 * for evaluating the condition. The body is then filtered to depend
3045 * on the result of the condition evaluating to true on all iterations
3046 * up to the current iteration, while the evaluation the condition itself
3047 * is filtered to depend on the result of the condition evaluating to true
3048 * on all previous iterations.
3049 * The context of the scop representing the body is dropped
3050 * because we don't know how many times the body will be executed,
3053 * If the stride of the loop is not 1, then "i >= init" is replaced by
3055 * (exists a: i = init + stride * a and a >= 0)
3057 * If the loop iterator i is unsigned, then wrapping may occur.
3058 * We therefore use a virtual iterator instead that does not wrap.
3059 * However, the condition in the code applies
3060 * to the wrapped value, so we need to change condition(i)
3061 * into condition([i % 2^width]). Similarly, we replace all accesses
3062 * to the original iterator by the wrapping of the virtual iterator.
3063 * Note that there may be no need to perform this final wrapping
3064 * if the loop condition (after wrapping) satisfies certain conditions.
3065 * However, the is_simple_bound condition is not enough since it doesn't
3066 * check if there even is an upper bound.
3068 * Wrapping on unsigned iterators can be avoided entirely if
3069 * loop condition is simple, the loop iterator is incremented
3070 * [decremented] by one and the last value before wrapping cannot
3071 * possibly satisfy the loop condition.
3073 * Before extracting a pet_scop from the body we remove all
3074 * assignments in assigned_value to variables that are assigned
3075 * somewhere in the body of the loop.
3077 * Valid parameters for a for loop are those for which the initial
3078 * value itself, the increment on each domain iteration and
3079 * the condition on both the initial value and
3080 * the result of incrementing the iterator for each iteration of the domain
3082 * If the loop condition is non-affine, then we only consider validity
3083 * of the initial value.
3085 * If the body contains any break, then we keep track of it in "skip"
3086 * (if the skip condition is affine) or it is handled in scop_add_break
3087 * (if the skip condition is not affine).
3088 * Note that the affine break condition needs to be considered with
3089 * respect to previous iterations in the virtual domain (if any).
3091 * If we were only able to extract part of the body, then simply
3094 struct pet_scop
*PetScan::extract_for(ForStmt
*stmt
)
3096 BinaryOperator
*ass
;
3101 isl_local_space
*ls
;
3104 isl_set
*cond
= NULL
;
3105 isl_set
*skip
= NULL
;
3106 isl_id
*id
, *id_test
= NULL
, *id_break_test
;
3107 struct pet_scop
*scop
, *scop_cond
= NULL
;
3108 assigned_value_cache
cache(assigned_value
);
3115 bool has_affine_break
;
3117 isl_aff
*wrap
= NULL
;
3118 isl_pw_aff
*pa
, *pa_inc
, *init_val
;
3119 isl_set
*valid_init
;
3120 isl_set
*valid_cond
;
3121 isl_set
*valid_cond_init
;
3122 isl_set
*valid_cond_next
;
3126 if (!stmt
->getInit() && !stmt
->getCond() && !stmt
->getInc())
3127 return extract_infinite_for(stmt
);
3129 init
= stmt
->getInit();
3134 if ((ass
= initialization_assignment(init
)) != NULL
) {
3135 iv
= extract_induction_variable(ass
);
3138 lhs
= ass
->getLHS();
3139 rhs
= ass
->getRHS();
3140 } else if ((decl
= initialization_declaration(init
)) != NULL
) {
3141 VarDecl
*var
= extract_induction_variable(init
, decl
);
3145 rhs
= var
->getInit();
3146 lhs
= create_DeclRefExpr(var
);
3148 unsupported(stmt
->getInit());
3152 assigned_value
.erase(iv
);
3153 clear_assignments
clear(assigned_value
);
3154 clear
.TraverseStmt(stmt
->getBody());
3156 was_assigned
= assigned_value
.find(iv
) != assigned_value
.end();
3157 clear_assignment(assigned_value
, iv
);
3158 init_val
= extract_affine(rhs
);
3160 assigned_value
.erase(iv
);
3164 pa_inc
= extract_increment(stmt
, iv
);
3166 isl_pw_aff_free(init_val
);
3171 if (isl_pw_aff_n_piece(pa_inc
) != 1 ||
3172 isl_pw_aff_foreach_piece(pa_inc
, &extract_cst
, &inc
) < 0) {
3173 isl_pw_aff_free(init_val
);
3174 isl_pw_aff_free(pa_inc
);
3175 unsupported(stmt
->getInc());
3180 pa
= try_extract_nested_condition(stmt
->getCond());
3181 if (allow_nested
&& (!pa
|| has_nested(pa
)))
3184 scop
= extract(stmt
->getBody());
3186 isl_pw_aff_free(init_val
);
3187 isl_pw_aff_free(pa_inc
);
3188 isl_pw_aff_free(pa
);
3193 valid_inc
= isl_pw_aff_domain(pa_inc
);
3195 is_unsigned
= iv
->getType()->isUnsignedIntegerType();
3197 id
= isl_id_alloc(ctx
, iv
->getName().str().c_str(), iv
);
3199 has_affine_break
= scop
&&
3200 pet_scop_has_affine_skip(scop
, pet_skip_later
);
3201 if (has_affine_break
)
3202 skip
= pet_scop_get_affine_skip_domain(scop
, pet_skip_later
);
3203 has_var_break
= scop
&& pet_scop_has_var_skip(scop
, pet_skip_later
);
3205 id_break_test
= pet_scop_get_skip_id(scop
, pet_skip_later
);
3207 if (pa
&& !is_nested_allowed(pa
, scop
)) {
3208 isl_pw_aff_free(pa
);
3212 if (!allow_nested
&& !pa
)
3213 pa
= try_extract_affine_condition(stmt
->getCond());
3214 valid_cond
= isl_pw_aff_domain(isl_pw_aff_copy(pa
));
3215 cond
= isl_pw_aff_non_zero_set(pa
);
3216 if (allow_nested
&& !cond
) {
3217 isl_multi_pw_aff
*test_index
;
3218 int save_n_stmt
= n_stmt
;
3219 test_index
= create_test_index(ctx
, n_test
++);
3221 scop_cond
= extract_non_affine_condition(stmt
->getCond(),
3222 n_stmt
++, isl_multi_pw_aff_copy(test_index
));
3223 n_stmt
= save_n_stmt
;
3224 scop_cond
= scop_add_array(scop_cond
, test_index
, ast_context
);
3225 id_test
= isl_multi_pw_aff_get_tuple_id(test_index
,
3227 isl_multi_pw_aff_free(test_index
);
3228 scop_cond
= pet_scop_prefix(scop_cond
, 0);
3229 scop
= pet_scop_reset_context(scop
);
3230 scop
= pet_scop_prefix(scop
, 1);
3231 cond
= isl_set_universe(isl_space_set_alloc(ctx
, 0, 0));
3234 cond
= embed(cond
, isl_id_copy(id
));
3235 skip
= embed(skip
, isl_id_copy(id
));
3236 valid_cond
= isl_set_coalesce(valid_cond
);
3237 valid_cond
= embed(valid_cond
, isl_id_copy(id
));
3238 valid_inc
= embed(valid_inc
, isl_id_copy(id
));
3239 is_one
= isl_val_is_one(inc
) || isl_val_is_negone(inc
);
3240 is_virtual
= is_unsigned
&& (!is_one
|| can_wrap(cond
, iv
, inc
));
3242 valid_cond_init
= enforce_subset(
3243 isl_set_from_pw_aff(isl_pw_aff_copy(init_val
)),
3244 isl_set_copy(valid_cond
));
3245 if (is_one
&& !is_virtual
) {
3246 isl_pw_aff_free(init_val
);
3247 pa
= extract_comparison(isl_val_is_pos(inc
) ? BO_GE
: BO_LE
,
3249 valid_init
= isl_pw_aff_domain(isl_pw_aff_copy(pa
));
3250 valid_init
= set_project_out_by_id(valid_init
, id
);
3251 domain
= isl_pw_aff_non_zero_set(pa
);
3253 valid_init
= isl_pw_aff_domain(isl_pw_aff_copy(init_val
));
3254 domain
= strided_domain(isl_id_copy(id
), init_val
,
3258 domain
= embed(domain
, isl_id_copy(id
));
3261 wrap
= compute_wrapping(isl_set_get_space(cond
), iv
);
3262 rev_wrap
= isl_map_from_aff(isl_aff_copy(wrap
));
3263 rev_wrap
= isl_map_reverse(rev_wrap
);
3264 cond
= isl_set_apply(cond
, isl_map_copy(rev_wrap
));
3265 skip
= isl_set_apply(skip
, isl_map_copy(rev_wrap
));
3266 valid_cond
= isl_set_apply(valid_cond
, isl_map_copy(rev_wrap
));
3267 valid_inc
= isl_set_apply(valid_inc
, rev_wrap
);
3269 is_simple
= is_simple_bound(cond
, inc
);
3271 cond
= isl_set_gist(cond
, isl_set_copy(domain
));
3272 is_simple
= is_simple_bound(cond
, inc
);
3275 cond
= valid_for_each_iteration(cond
,
3276 isl_set_copy(domain
), isl_val_copy(inc
));
3277 domain
= isl_set_intersect(domain
, cond
);
3278 if (has_affine_break
) {
3279 skip
= isl_set_intersect(skip
, isl_set_copy(domain
));
3280 skip
= after(skip
, isl_val_sgn(inc
));
3281 domain
= isl_set_subtract(domain
, skip
);
3283 domain
= isl_set_set_dim_id(domain
, isl_dim_set
, 0, isl_id_copy(id
));
3284 ls
= isl_local_space_from_space(isl_set_get_space(domain
));
3285 sched
= isl_aff_var_on_domain(ls
, isl_dim_set
, 0);
3286 if (isl_val_is_neg(inc
))
3287 sched
= isl_aff_neg(sched
);
3289 valid_cond_next
= valid_on_next(valid_cond
, isl_set_copy(domain
),
3291 valid_inc
= enforce_subset(isl_set_copy(domain
), valid_inc
);
3294 wrap
= identity_aff(domain
);
3296 scop_cond
= pet_scop_embed(scop_cond
, isl_set_copy(domain
),
3297 isl_aff_copy(sched
), isl_aff_copy(wrap
), isl_id_copy(id
));
3298 scop
= pet_scop_embed(scop
, isl_set_copy(domain
), sched
, wrap
, id
);
3299 scop
= resolve_nested(scop
);
3301 scop
= scop_add_break(scop
, id_break_test
, isl_set_copy(domain
),
3304 scop
= scop_add_while(scop_cond
, scop
, id_test
, domain
,
3306 isl_set_free(valid_inc
);
3308 scop
= pet_scop_restrict_context(scop
, valid_inc
);
3309 scop
= pet_scop_restrict_context(scop
, valid_cond_next
);
3310 scop
= pet_scop_restrict_context(scop
, valid_cond_init
);
3311 isl_set_free(domain
);
3313 clear_assignment(assigned_value
, iv
);
3317 scop
= pet_scop_restrict_context(scop
, valid_init
);
3322 /* Try and construct a pet_scop corresponding to a compound statement.
3324 * "skip_declarations" is set if we should skip initial declarations
3325 * in the children of the compound statements. This then implies
3326 * that this sequence of children should not be treated as a block
3327 * since the initial statements may be skipped.
3329 struct pet_scop
*PetScan::extract(CompoundStmt
*stmt
, bool skip_declarations
)
3331 return extract(stmt
->children(), !skip_declarations
, skip_declarations
);
3334 /* Does parameter "pos" of "map" refer to a nested access?
3336 static bool is_nested_parameter(__isl_keep isl_map
*map
, int pos
)
3341 id
= isl_map_get_dim_id(map
, isl_dim_param
, pos
);
3342 nested
= is_nested_parameter(id
);
3348 /* How many parameters of "space" refer to nested accesses, i.e., have no name?
3350 static int n_nested_parameter(__isl_keep isl_space
*space
)
3355 nparam
= isl_space_dim(space
, isl_dim_param
);
3356 for (int i
= 0; i
< nparam
; ++i
)
3357 if (is_nested_parameter(space
, i
))
3363 /* How many parameters of "map" refer to nested accesses, i.e., have no name?
3365 static int n_nested_parameter(__isl_keep isl_map
*map
)
3370 space
= isl_map_get_space(map
);
3371 n
= n_nested_parameter(space
);
3372 isl_space_free(space
);
3377 /* For each nested access parameter in "space",
3378 * construct a corresponding pet_expr, place it in args and
3379 * record its position in "param2pos".
3380 * "n_arg" is the number of elements that are already in args.
3381 * The position recorded in "param2pos" takes this number into account.
3382 * If the pet_expr corresponding to a parameter is identical to
3383 * the pet_expr corresponding to an earlier parameter, then these two
3384 * parameters are made to refer to the same element in args.
3386 * Return the final number of elements in args or -1 if an error has occurred.
3388 int PetScan::extract_nested(__isl_keep isl_space
*space
,
3389 int n_arg
, struct pet_expr
**args
, std::map
<int,int> ¶m2pos
)
3393 nparam
= isl_space_dim(space
, isl_dim_param
);
3394 for (int i
= 0; i
< nparam
; ++i
) {
3396 isl_id
*id
= isl_space_get_dim_id(space
, isl_dim_param
, i
);
3399 if (!is_nested_parameter(id
)) {
3404 nested
= (Expr
*) isl_id_get_user(id
);
3405 args
[n_arg
] = extract_expr(nested
);
3410 for (j
= 0; j
< n_arg
; ++j
)
3411 if (pet_expr_is_equal(args
[j
], args
[n_arg
]))
3415 pet_expr_free(args
[n_arg
]);
3419 param2pos
[i
] = n_arg
++;
3425 /* For each nested access parameter in the access relations in "expr",
3426 * construct a corresponding pet_expr, place it in expr->args and
3427 * record its position in "param2pos".
3428 * n is the number of nested access parameters.
3430 struct pet_expr
*PetScan::extract_nested(struct pet_expr
*expr
, int n
,
3431 std::map
<int,int> ¶m2pos
)
3435 expr
->args
= isl_calloc_array(ctx
, struct pet_expr
*, n
);
3440 space
= isl_map_get_space(expr
->acc
.access
);
3441 n
= extract_nested(space
, 0, expr
->args
, param2pos
);
3442 isl_space_free(space
);
3450 pet_expr_free(expr
);
3454 /* Look for parameters in any access relation in "expr" that
3455 * refer to nested accesses. In particular, these are
3456 * parameters with no name.
3458 * If there are any such parameters, then the domain of the index
3459 * expression and the access relation, which is still [] at this point,
3460 * is replaced by [[] -> [t_1,...,t_n]], with n the number of these parameters
3461 * (after identifying identical nested accesses).
3463 * This transformation is performed in several steps.
3464 * We first extract the arguments in extract_nested.
3465 * param2pos maps the original parameter position to the position
3467 * Then we move these parameters to input dimensions.
3468 * t2pos maps the positions of these temporary input dimensions
3469 * to the positions of the corresponding arguments.
3470 * Finally, we express these temporary dimensions in terms of the domain
3471 * [[] -> [t_1,...,t_n]] and precompose index expression and access
3472 * relations with this function.
3474 struct pet_expr
*PetScan::resolve_nested(struct pet_expr
*expr
)
3479 isl_local_space
*ls
;
3482 std::map
<int,int> param2pos
;
3483 std::map
<int,int> t2pos
;
3488 for (int i
= 0; i
< expr
->n_arg
; ++i
) {
3489 expr
->args
[i
] = resolve_nested(expr
->args
[i
]);
3490 if (!expr
->args
[i
]) {
3491 pet_expr_free(expr
);
3496 if (expr
->type
!= pet_expr_access
)
3499 n
= n_nested_parameter(expr
->acc
.access
);
3503 expr
= extract_nested(expr
, n
, param2pos
);
3507 expr
= pet_expr_access_align_params(expr
);
3510 nparam
= isl_map_dim(expr
->acc
.access
, isl_dim_param
);
3513 for (int i
= nparam
- 1; i
>= 0; --i
) {
3514 isl_id
*id
= isl_map_get_dim_id(expr
->acc
.access
,
3516 if (!is_nested_parameter(id
)) {
3521 expr
->acc
.access
= isl_map_move_dims(expr
->acc
.access
,
3522 isl_dim_in
, n
, isl_dim_param
, i
, 1);
3523 expr
->acc
.index
= isl_multi_pw_aff_move_dims(expr
->acc
.index
,
3524 isl_dim_in
, n
, isl_dim_param
, i
, 1);
3525 t2pos
[n
] = param2pos
[i
];
3531 space
= isl_multi_pw_aff_get_space(expr
->acc
.index
);
3532 space
= isl_space_set_from_params(isl_space_params(space
));
3533 space
= isl_space_add_dims(space
, isl_dim_set
, expr
->n_arg
);
3534 space
= isl_space_wrap(isl_space_from_range(space
));
3535 ls
= isl_local_space_from_space(isl_space_copy(space
));
3536 space
= isl_space_from_domain(space
);
3537 space
= isl_space_add_dims(space
, isl_dim_out
, n
);
3538 ma
= isl_multi_aff_zero(space
);
3540 for (int i
= 0; i
< n
; ++i
) {
3541 aff
= isl_aff_var_on_domain(isl_local_space_copy(ls
),
3542 isl_dim_set
, t2pos
[i
]);
3543 ma
= isl_multi_aff_set_aff(ma
, i
, aff
);
3545 isl_local_space_free(ls
);
3547 expr
->acc
.access
= isl_map_preimage_domain_multi_aff(expr
->acc
.access
,
3548 isl_multi_aff_copy(ma
));
3549 expr
->acc
.index
= isl_multi_pw_aff_pullback_multi_aff(expr
->acc
.index
,
3555 /* Return the file offset of the expansion location of "Loc".
3557 static unsigned getExpansionOffset(SourceManager
&SM
, SourceLocation Loc
)
3559 return SM
.getFileOffset(SM
.getExpansionLoc(Loc
));
3562 #ifdef HAVE_FINDLOCATIONAFTERTOKEN
3564 /* Return a SourceLocation for the location after the first semicolon
3565 * after "loc". If Lexer::findLocationAfterToken is available, we simply
3566 * call it and also skip trailing spaces and newline.
3568 static SourceLocation
location_after_semi(SourceLocation loc
, SourceManager
&SM
,
3569 const LangOptions
&LO
)
3571 return Lexer::findLocationAfterToken(loc
, tok::semi
, SM
, LO
, true);
3576 /* Return a SourceLocation for the location after the first semicolon
3577 * after "loc". If Lexer::findLocationAfterToken is not available,
3578 * we look in the underlying character data for the first semicolon.
3580 static SourceLocation
location_after_semi(SourceLocation loc
, SourceManager
&SM
,
3581 const LangOptions
&LO
)
3584 const char *s
= SM
.getCharacterData(loc
);
3586 semi
= strchr(s
, ';');
3588 return SourceLocation();
3589 return loc
.getFileLocWithOffset(semi
+ 1 - s
);
3594 /* If the token at "loc" is the first token on the line, then return
3595 * a location referring to the start of the line.
3596 * Otherwise, return "loc".
3598 * This function is used to extend a scop to the start of the line
3599 * if the first token of the scop is also the first token on the line.
3601 * We look for the first token on the line. If its location is equal to "loc",
3602 * then the latter is the location of the first token on the line.
3604 static SourceLocation
move_to_start_of_line_if_first_token(SourceLocation loc
,
3605 SourceManager
&SM
, const LangOptions
&LO
)
3607 std::pair
<FileID
, unsigned> file_offset_pair
;
3608 llvm::StringRef file
;
3611 SourceLocation token_loc
, line_loc
;
3614 loc
= SM
.getExpansionLoc(loc
);
3615 col
= SM
.getExpansionColumnNumber(loc
);
3616 line_loc
= loc
.getLocWithOffset(1 - col
);
3617 file_offset_pair
= SM
.getDecomposedLoc(line_loc
);
3618 file
= SM
.getBufferData(file_offset_pair
.first
, NULL
);
3619 pos
= file
.data() + file_offset_pair
.second
;
3621 Lexer
lexer(SM
.getLocForStartOfFile(file_offset_pair
.first
), LO
,
3622 file
.begin(), pos
, file
.end());
3623 lexer
.LexFromRawLexer(tok
);
3624 token_loc
= tok
.getLocation();
3626 if (token_loc
== loc
)
3632 /* Update start and end of "scop" to include the region covered by "range".
3633 * If "skip_semi" is set, then we assume "range" is followed by
3634 * a semicolon and also include this semicolon.
3636 struct pet_scop
*PetScan::update_scop_start_end(struct pet_scop
*scop
,
3637 SourceRange range
, bool skip_semi
)
3639 SourceLocation loc
= range
.getBegin();
3640 SourceManager
&SM
= PP
.getSourceManager();
3641 const LangOptions
&LO
= PP
.getLangOpts();
3642 unsigned start
, end
;
3644 loc
= move_to_start_of_line_if_first_token(loc
, SM
, LO
);
3645 start
= getExpansionOffset(SM
, loc
);
3646 loc
= range
.getEnd();
3648 loc
= location_after_semi(loc
, SM
, LO
);
3650 loc
= PP
.getLocForEndOfToken(loc
);
3651 end
= getExpansionOffset(SM
, loc
);
3653 scop
= pet_scop_update_start_end(scop
, start
, end
);
3657 /* Convert a top-level pet_expr to a pet_scop with one statement.
3658 * This mainly involves resolving nested expression parameters
3659 * and setting the name of the iteration space.
3660 * The name is given by "label" if it is non-NULL. Otherwise,
3661 * it is of the form S_<n_stmt>.
3662 * start and end of the pet_scop are derived from those of "stmt".
3663 * If "stmt" is an expression statement, then its range does not
3664 * include the semicolon, while it should be included in the pet_scop.
3666 struct pet_scop
*PetScan::extract(Stmt
*stmt
, struct pet_expr
*expr
,
3667 __isl_take isl_id
*label
)
3669 struct pet_stmt
*ps
;
3670 struct pet_scop
*scop
;
3671 SourceLocation loc
= stmt
->getLocStart();
3672 int line
= PP
.getSourceManager().getExpansionLineNumber(loc
);
3675 expr
= resolve_nested(expr
);
3676 ps
= pet_stmt_from_pet_expr(ctx
, line
, label
, n_stmt
++, expr
);
3677 scop
= pet_scop_from_pet_stmt(ctx
, ps
);
3679 skip_semi
= isa
<Expr
>(stmt
);
3680 scop
= update_scop_start_end(scop
, stmt
->getSourceRange(), skip_semi
);
3684 /* Check if we can extract an affine expression from "expr".
3685 * Return the expressions as an isl_pw_aff if we can and NULL otherwise.
3686 * We turn on autodetection so that we won't generate any warnings
3687 * and turn off nesting, so that we won't accept any non-affine constructs.
3689 __isl_give isl_pw_aff
*PetScan::try_extract_affine(Expr
*expr
)
3692 int save_autodetect
= options
->autodetect
;
3693 bool save_nesting
= nesting_enabled
;
3695 options
->autodetect
= 1;
3696 nesting_enabled
= false;
3698 pwaff
= extract_affine(expr
);
3700 options
->autodetect
= save_autodetect
;
3701 nesting_enabled
= save_nesting
;
3706 /* Check if we can extract an affine constraint from "expr".
3707 * Return the constraint as an isl_set if we can and NULL otherwise.
3708 * We turn on autodetection so that we won't generate any warnings
3709 * and turn off nesting, so that we won't accept any non-affine constructs.
3711 __isl_give isl_pw_aff
*PetScan::try_extract_affine_condition(Expr
*expr
)
3714 int save_autodetect
= options
->autodetect
;
3715 bool save_nesting
= nesting_enabled
;
3717 options
->autodetect
= 1;
3718 nesting_enabled
= false;
3720 cond
= extract_condition(expr
);
3722 options
->autodetect
= save_autodetect
;
3723 nesting_enabled
= save_nesting
;
3728 /* Check whether "expr" is an affine constraint.
3730 bool PetScan::is_affine_condition(Expr
*expr
)
3734 cond
= try_extract_affine_condition(expr
);
3735 isl_pw_aff_free(cond
);
3737 return cond
!= NULL
;
3740 /* Check if we can extract a condition from "expr".
3741 * Return the condition as an isl_pw_aff if we can and NULL otherwise.
3742 * If allow_nested is set, then the condition may involve parameters
3743 * corresponding to nested accesses.
3744 * We turn on autodetection so that we won't generate any warnings.
3746 __isl_give isl_pw_aff
*PetScan::try_extract_nested_condition(Expr
*expr
)
3749 int save_autodetect
= options
->autodetect
;
3750 bool save_nesting
= nesting_enabled
;
3752 options
->autodetect
= 1;
3753 nesting_enabled
= allow_nested
;
3754 cond
= extract_condition(expr
);
3756 options
->autodetect
= save_autodetect
;
3757 nesting_enabled
= save_nesting
;
3762 /* If the top-level expression of "stmt" is an assignment, then
3763 * return that assignment as a BinaryOperator.
3764 * Otherwise return NULL.
3766 static BinaryOperator
*top_assignment_or_null(Stmt
*stmt
)
3768 BinaryOperator
*ass
;
3772 if (stmt
->getStmtClass() != Stmt::BinaryOperatorClass
)
3775 ass
= cast
<BinaryOperator
>(stmt
);
3776 if(ass
->getOpcode() != BO_Assign
)
3782 /* Check if the given if statement is a conditional assignement
3783 * with a non-affine condition. If so, construct a pet_scop
3784 * corresponding to this conditional assignment. Otherwise return NULL.
3786 * In particular we check if "stmt" is of the form
3793 * where a is some array or scalar access.
3794 * The constructed pet_scop then corresponds to the expression
3796 * a = condition ? f(...) : g(...)
3798 * All access relations in f(...) are intersected with condition
3799 * while all access relation in g(...) are intersected with the complement.
3801 struct pet_scop
*PetScan::extract_conditional_assignment(IfStmt
*stmt
)
3803 BinaryOperator
*ass_then
, *ass_else
;
3804 isl_multi_pw_aff
*write_then
, *write_else
;
3805 isl_set
*cond
, *comp
;
3806 isl_multi_pw_aff
*index
;
3809 struct pet_expr
*pe_cond
, *pe_then
, *pe_else
, *pe
, *pe_write
;
3810 bool save_nesting
= nesting_enabled
;
3812 if (!options
->detect_conditional_assignment
)
3815 ass_then
= top_assignment_or_null(stmt
->getThen());
3816 ass_else
= top_assignment_or_null(stmt
->getElse());
3818 if (!ass_then
|| !ass_else
)
3821 if (is_affine_condition(stmt
->getCond()))
3824 write_then
= extract_index(ass_then
->getLHS());
3825 write_else
= extract_index(ass_else
->getLHS());
3827 equal
= isl_multi_pw_aff_plain_is_equal(write_then
, write_else
);
3828 isl_multi_pw_aff_free(write_else
);
3829 if (equal
< 0 || !equal
) {
3830 isl_multi_pw_aff_free(write_then
);
3834 nesting_enabled
= allow_nested
;
3835 pa
= extract_condition(stmt
->getCond());
3836 nesting_enabled
= save_nesting
;
3837 cond
= isl_pw_aff_non_zero_set(isl_pw_aff_copy(pa
));
3838 comp
= isl_pw_aff_zero_set(isl_pw_aff_copy(pa
));
3839 index
= isl_multi_pw_aff_from_range(isl_multi_pw_aff_from_pw_aff(pa
));
3841 pe_cond
= pet_expr_from_index(index
);
3843 pe_then
= extract_expr(ass_then
->getRHS());
3844 pe_then
= pet_expr_restrict(pe_then
, cond
);
3845 pe_else
= extract_expr(ass_else
->getRHS());
3846 pe_else
= pet_expr_restrict(pe_else
, comp
);
3848 pe
= pet_expr_new_ternary(ctx
, pe_cond
, pe_then
, pe_else
);
3849 pe_write
= pet_expr_from_index_and_depth(write_then
,
3850 extract_depth(write_then
));
3852 pe_write
->acc
.write
= 1;
3853 pe_write
->acc
.read
= 0;
3855 pe
= pet_expr_new_binary(ctx
, pet_op_assign
, pe_write
, pe
);
3856 return extract(stmt
, pe
);
3859 /* Create a pet_scop with a single statement with name S_<stmt_nr>,
3860 * evaluating "cond" and writing the result to a virtual scalar,
3861 * as expressed by "index".
3863 struct pet_scop
*PetScan::extract_non_affine_condition(Expr
*cond
, int stmt_nr
,
3864 __isl_take isl_multi_pw_aff
*index
)
3866 struct pet_expr
*expr
, *write
;
3867 struct pet_stmt
*ps
;
3868 SourceLocation loc
= cond
->getLocStart();
3869 int line
= PP
.getSourceManager().getExpansionLineNumber(loc
);
3871 write
= pet_expr_from_index(index
);
3873 write
->acc
.write
= 1;
3874 write
->acc
.read
= 0;
3876 expr
= extract_expr(cond
);
3877 expr
= resolve_nested(expr
);
3878 expr
= pet_expr_new_binary(ctx
, pet_op_assign
, write
, expr
);
3879 ps
= pet_stmt_from_pet_expr(ctx
, line
, NULL
, stmt_nr
, expr
);
3880 return pet_scop_from_pet_stmt(ctx
, ps
);
3884 static struct pet_expr
*embed_access(struct pet_expr
*expr
, void *user
);
3887 /* Precompose the access relation and the index expression associated
3888 * to "expr" with the function pointed to by "user",
3889 * thereby embedding the access relation in the domain of this function.
3890 * The initial domain of the access relation and the index expression
3891 * is the zero-dimensional domain.
3893 static struct pet_expr
*embed_access(struct pet_expr
*expr
, void *user
)
3895 isl_multi_aff
*ma
= (isl_multi_aff
*) user
;
3897 expr
->acc
.access
= isl_map_preimage_domain_multi_aff(expr
->acc
.access
,
3898 isl_multi_aff_copy(ma
));
3899 expr
->acc
.index
= isl_multi_pw_aff_pullback_multi_aff(expr
->acc
.index
,
3900 isl_multi_aff_copy(ma
));
3901 if (!expr
->acc
.access
|| !expr
->acc
.index
)
3906 pet_expr_free(expr
);
3910 /* Precompose all access relations in "expr" with "ma", thereby
3911 * embedding them in the domain of "ma".
3913 static struct pet_expr
*embed(struct pet_expr
*expr
,
3914 __isl_keep isl_multi_aff
*ma
)
3916 return pet_expr_map_access(expr
, &embed_access
, ma
);
3919 /* How many parameters of "set" refer to nested accesses, i.e., have no name?
3921 static int n_nested_parameter(__isl_keep isl_set
*set
)
3926 space
= isl_set_get_space(set
);
3927 n
= n_nested_parameter(space
);
3928 isl_space_free(space
);
3933 /* Remove all parameters from "map" that refer to nested accesses.
3935 static __isl_give isl_map
*remove_nested_parameters(__isl_take isl_map
*map
)
3940 space
= isl_map_get_space(map
);
3941 nparam
= isl_space_dim(space
, isl_dim_param
);
3942 for (int i
= nparam
- 1; i
>= 0; --i
)
3943 if (is_nested_parameter(space
, i
))
3944 map
= isl_map_project_out(map
, isl_dim_param
, i
, 1);
3945 isl_space_free(space
);
3950 /* Remove all parameters from "mpa" that refer to nested accesses.
3952 static __isl_give isl_multi_pw_aff
*remove_nested_parameters(
3953 __isl_take isl_multi_pw_aff
*mpa
)
3958 space
= isl_multi_pw_aff_get_space(mpa
);
3959 nparam
= isl_space_dim(space
, isl_dim_param
);
3960 for (int i
= nparam
- 1; i
>= 0; --i
) {
3961 if (!is_nested_parameter(space
, i
))
3963 mpa
= isl_multi_pw_aff_drop_dims(mpa
, isl_dim_param
, i
, 1);
3965 isl_space_free(space
);
3970 /* Remove all parameters from the index expression and access relation of "expr"
3971 * that refer to nested accesses.
3973 static struct pet_expr
*remove_nested_parameters(struct pet_expr
*expr
)
3975 expr
->acc
.access
= remove_nested_parameters(expr
->acc
.access
);
3976 expr
->acc
.index
= remove_nested_parameters(expr
->acc
.index
);
3977 if (!expr
->acc
.access
|| !expr
->acc
.index
)
3982 pet_expr_free(expr
);
3987 static struct pet_expr
*expr_remove_nested_parameters(
3988 struct pet_expr
*expr
, void *user
);
3991 static struct pet_expr
*expr_remove_nested_parameters(
3992 struct pet_expr
*expr
, void *user
)
3994 return remove_nested_parameters(expr
);
3997 /* Remove all nested access parameters from the schedule and all
3998 * accesses of "stmt".
3999 * There is no need to remove them from the domain as these parameters
4000 * have already been removed from the domain when this function is called.
4002 static struct pet_stmt
*remove_nested_parameters(struct pet_stmt
*stmt
)
4006 stmt
->schedule
= remove_nested_parameters(stmt
->schedule
);
4007 stmt
->body
= pet_expr_map_access(stmt
->body
,
4008 &expr_remove_nested_parameters
, NULL
);
4009 if (!stmt
->schedule
|| !stmt
->body
)
4011 for (int i
= 0; i
< stmt
->n_arg
; ++i
) {
4012 stmt
->args
[i
] = pet_expr_map_access(stmt
->args
[i
],
4013 &expr_remove_nested_parameters
, NULL
);
4020 pet_stmt_free(stmt
);
4024 /* For each nested access parameter in the domain of "stmt",
4025 * construct a corresponding pet_expr, place it before the original
4026 * elements in stmt->args and record its position in "param2pos".
4027 * n is the number of nested access parameters.
4029 struct pet_stmt
*PetScan::extract_nested(struct pet_stmt
*stmt
, int n
,
4030 std::map
<int,int> ¶m2pos
)
4035 struct pet_expr
**args
;
4037 n_arg
= stmt
->n_arg
;
4038 args
= isl_calloc_array(ctx
, struct pet_expr
*, n
+ n_arg
);
4042 space
= isl_set_get_space(stmt
->domain
);
4043 n_arg
= extract_nested(space
, 0, args
, param2pos
);
4044 isl_space_free(space
);
4049 for (i
= 0; i
< stmt
->n_arg
; ++i
)
4050 args
[n_arg
+ i
] = stmt
->args
[i
];
4053 stmt
->n_arg
+= n_arg
;
4058 for (i
= 0; i
< n
; ++i
)
4059 pet_expr_free(args
[i
]);
4062 pet_stmt_free(stmt
);
4066 /* Check whether any of the arguments i of "stmt" starting at position "n"
4067 * is equal to one of the first "n" arguments j.
4068 * If so, combine the constraints on arguments i and j and remove
4071 static struct pet_stmt
*remove_duplicate_arguments(struct pet_stmt
*stmt
, int n
)
4080 if (n
== stmt
->n_arg
)
4083 map
= isl_set_unwrap(stmt
->domain
);
4085 for (i
= stmt
->n_arg
- 1; i
>= n
; --i
) {
4086 for (j
= 0; j
< n
; ++j
)
4087 if (pet_expr_is_equal(stmt
->args
[i
], stmt
->args
[j
]))
4092 map
= isl_map_equate(map
, isl_dim_out
, i
, isl_dim_out
, j
);
4093 map
= isl_map_project_out(map
, isl_dim_out
, i
, 1);
4095 pet_expr_free(stmt
->args
[i
]);
4096 for (j
= i
; j
+ 1 < stmt
->n_arg
; ++j
)
4097 stmt
->args
[j
] = stmt
->args
[j
+ 1];
4101 stmt
->domain
= isl_map_wrap(map
);
4106 pet_stmt_free(stmt
);
4110 /* Look for parameters in the iteration domain of "stmt" that
4111 * refer to nested accesses. In particular, these are
4112 * parameters with no name.
4114 * If there are any such parameters, then as many extra variables
4115 * (after identifying identical nested accesses) are inserted in the
4116 * range of the map wrapped inside the domain, before the original variables.
4117 * If the original domain is not a wrapped map, then a new wrapped
4118 * map is created with zero output dimensions.
4119 * The parameters are then equated to the corresponding output dimensions
4120 * and subsequently projected out, from the iteration domain,
4121 * the schedule and the access relations.
4122 * For each of the output dimensions, a corresponding argument
4123 * expression is inserted. Initially they are created with
4124 * a zero-dimensional domain, so they have to be embedded
4125 * in the current iteration domain.
4126 * param2pos maps the position of the parameter to the position
4127 * of the corresponding output dimension in the wrapped map.
4129 struct pet_stmt
*PetScan::resolve_nested(struct pet_stmt
*stmt
)
4137 std::map
<int,int> param2pos
;
4142 n
= n_nested_parameter(stmt
->domain
);
4146 n_arg
= stmt
->n_arg
;
4147 stmt
= extract_nested(stmt
, n
, param2pos
);
4151 n
= stmt
->n_arg
- n_arg
;
4152 nparam
= isl_set_dim(stmt
->domain
, isl_dim_param
);
4153 if (isl_set_is_wrapping(stmt
->domain
))
4154 map
= isl_set_unwrap(stmt
->domain
);
4156 map
= isl_map_from_domain(stmt
->domain
);
4157 map
= isl_map_insert_dims(map
, isl_dim_out
, 0, n
);
4159 for (int i
= nparam
- 1; i
>= 0; --i
) {
4162 if (!is_nested_parameter(map
, i
))
4165 id
= pet_expr_access_get_id(stmt
->args
[param2pos
[i
]]);
4166 map
= isl_map_set_dim_id(map
, isl_dim_out
, param2pos
[i
], id
);
4167 map
= isl_map_equate(map
, isl_dim_param
, i
, isl_dim_out
,
4169 map
= isl_map_project_out(map
, isl_dim_param
, i
, 1);
4172 stmt
->domain
= isl_map_wrap(map
);
4174 space
= isl_space_unwrap(isl_set_get_space(stmt
->domain
));
4175 space
= isl_space_from_domain(isl_space_domain(space
));
4176 ma
= isl_multi_aff_zero(space
);
4177 for (int pos
= 0; pos
< n
; ++pos
)
4178 stmt
->args
[pos
] = embed(stmt
->args
[pos
], ma
);
4179 isl_multi_aff_free(ma
);
4181 stmt
= remove_nested_parameters(stmt
);
4182 stmt
= remove_duplicate_arguments(stmt
, n
);
4187 /* For each statement in "scop", move the parameters that correspond
4188 * to nested access into the ranges of the domains and create
4189 * corresponding argument expressions.
4191 struct pet_scop
*PetScan::resolve_nested(struct pet_scop
*scop
)
4196 for (int i
= 0; i
< scop
->n_stmt
; ++i
) {
4197 scop
->stmts
[i
] = resolve_nested(scop
->stmts
[i
]);
4198 if (!scop
->stmts
[i
])
4204 pet_scop_free(scop
);
4208 /* Given an access expression "expr", is the variable accessed by
4209 * "expr" assigned anywhere inside "scop"?
4211 static bool is_assigned(pet_expr
*expr
, pet_scop
*scop
)
4213 bool assigned
= false;
4216 id
= pet_expr_access_get_id(expr
);
4217 assigned
= pet_scop_writes(scop
, id
);
4223 /* Are all nested access parameters in "pa" allowed given "scop".
4224 * In particular, is none of them written by anywhere inside "scop".
4226 * If "scop" has any skip conditions, then no nested access parameters
4227 * are allowed. In particular, if there is any nested access in a guard
4228 * for a piece of code containing a "continue", then we want to introduce
4229 * a separate statement for evaluating this guard so that we can express
4230 * that the result is false for all previous iterations.
4232 bool PetScan::is_nested_allowed(__isl_keep isl_pw_aff
*pa
, pet_scop
*scop
)
4239 if (!has_nested(pa
))
4242 if (pet_scop_has_skip(scop
, pet_skip_now
))
4245 nparam
= isl_pw_aff_dim(pa
, isl_dim_param
);
4246 for (int i
= 0; i
< nparam
; ++i
) {
4248 isl_id
*id
= isl_pw_aff_get_dim_id(pa
, isl_dim_param
, i
);
4252 if (!is_nested_parameter(id
)) {
4257 nested
= (Expr
*) isl_id_get_user(id
);
4258 expr
= extract_expr(nested
);
4259 allowed
= expr
&& expr
->type
== pet_expr_access
&&
4260 !is_assigned(expr
, scop
);
4262 pet_expr_free(expr
);
4272 /* Do we need to construct a skip condition of the given type
4273 * on an if statement, given that the if condition is non-affine?
4275 * pet_scop_filter_skip can only handle the case where the if condition
4276 * holds (the then branch) and the skip condition is universal.
4277 * In any other case, we need to construct a new skip condition.
4279 static bool need_skip(struct pet_scop
*scop_then
, struct pet_scop
*scop_else
,
4280 bool have_else
, enum pet_skip type
)
4282 if (have_else
&& scop_else
&& pet_scop_has_skip(scop_else
, type
))
4284 if (scop_then
&& pet_scop_has_skip(scop_then
, type
) &&
4285 !pet_scop_has_universal_skip(scop_then
, type
))
4290 /* Do we need to construct a skip condition of the given type
4291 * on an if statement, given that the if condition is affine?
4293 * There is no need to construct a new skip condition if all
4294 * the skip conditions are affine.
4296 static bool need_skip_aff(struct pet_scop
*scop_then
,
4297 struct pet_scop
*scop_else
, bool have_else
, enum pet_skip type
)
4299 if (scop_then
&& pet_scop_has_var_skip(scop_then
, type
))
4301 if (have_else
&& scop_else
&& pet_scop_has_var_skip(scop_else
, type
))
4306 /* Do we need to construct a skip condition of the given type
4307 * on an if statement?
4309 static bool need_skip(struct pet_scop
*scop_then
, struct pet_scop
*scop_else
,
4310 bool have_else
, enum pet_skip type
, bool affine
)
4313 return need_skip_aff(scop_then
, scop_else
, have_else
, type
);
4315 return need_skip(scop_then
, scop_else
, have_else
, type
);
4318 /* Construct an affine expression pet_expr that evaluates
4319 * to the constant "val".
4321 static struct pet_expr
*universally(isl_ctx
*ctx
, int val
)
4323 isl_local_space
*ls
;
4325 isl_multi_pw_aff
*mpa
;
4327 ls
= isl_local_space_from_space(isl_space_set_alloc(ctx
, 0, 0));
4328 aff
= isl_aff_val_on_domain(ls
, isl_val_int_from_si(ctx
, val
));
4329 mpa
= isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff
));
4331 return pet_expr_from_index(mpa
);
4334 /* Construct an affine expression pet_expr that evaluates
4335 * to the constant 1.
4337 static struct pet_expr
*universally_true(isl_ctx
*ctx
)
4339 return universally(ctx
, 1);
4342 /* Construct an affine expression pet_expr that evaluates
4343 * to the constant 0.
4345 static struct pet_expr
*universally_false(isl_ctx
*ctx
)
4347 return universally(ctx
, 0);
4350 /* Given an index expression "test_index" for the if condition,
4351 * an index expression "skip_index" for the skip condition and
4352 * scops for the then and else branches, construct a scop for
4353 * computing "skip_index".
4355 * The computed scop contains a single statement that essentially does
4357 * skip_index = test_cond ? skip_cond_then : skip_cond_else
4359 * If the skip conditions of the then and/or else branch are not affine,
4360 * then they need to be filtered by test_index.
4361 * If they are missing, then this means the skip condition is false.
4363 * Since we are constructing a skip condition for the if statement,
4364 * the skip conditions on the then and else branches are removed.
4366 static struct pet_scop
*extract_skip(PetScan
*scan
,
4367 __isl_take isl_multi_pw_aff
*test_index
,
4368 __isl_take isl_multi_pw_aff
*skip_index
,
4369 struct pet_scop
*scop_then
, struct pet_scop
*scop_else
, bool have_else
,
4372 struct pet_expr
*expr_then
, *expr_else
, *expr
, *expr_skip
;
4373 struct pet_stmt
*stmt
;
4374 struct pet_scop
*scop
;
4375 isl_ctx
*ctx
= scan
->ctx
;
4379 if (have_else
&& !scop_else
)
4382 if (pet_scop_has_skip(scop_then
, type
)) {
4383 expr_then
= pet_scop_get_skip_expr(scop_then
, type
);
4384 pet_scop_reset_skip(scop_then
, type
);
4385 if (!pet_expr_is_affine(expr_then
))
4386 expr_then
= pet_expr_filter(expr_then
,
4387 isl_multi_pw_aff_copy(test_index
), 1);
4389 expr_then
= universally_false(ctx
);
4391 if (have_else
&& pet_scop_has_skip(scop_else
, type
)) {
4392 expr_else
= pet_scop_get_skip_expr(scop_else
, type
);
4393 pet_scop_reset_skip(scop_else
, type
);
4394 if (!pet_expr_is_affine(expr_else
))
4395 expr_else
= pet_expr_filter(expr_else
,
4396 isl_multi_pw_aff_copy(test_index
), 0);
4398 expr_else
= universally_false(ctx
);
4400 expr
= pet_expr_from_index(test_index
);
4401 expr
= pet_expr_new_ternary(ctx
, expr
, expr_then
, expr_else
);
4402 expr_skip
= pet_expr_from_index(isl_multi_pw_aff_copy(skip_index
));
4404 expr_skip
->acc
.write
= 1;
4405 expr_skip
->acc
.read
= 0;
4407 expr
= pet_expr_new_binary(ctx
, pet_op_assign
, expr_skip
, expr
);
4408 stmt
= pet_stmt_from_pet_expr(ctx
, -1, NULL
, scan
->n_stmt
++, expr
);
4410 scop
= pet_scop_from_pet_stmt(ctx
, stmt
);
4411 scop
= scop_add_array(scop
, skip_index
, scan
->ast_context
);
4412 isl_multi_pw_aff_free(skip_index
);
4416 isl_multi_pw_aff_free(test_index
);
4417 isl_multi_pw_aff_free(skip_index
);
4421 /* Is scop's skip_now condition equal to its skip_later condition?
4422 * In particular, this means that it either has no skip_now condition
4423 * or both a skip_now and a skip_later condition (that are equal to each other).
4425 static bool skip_equals_skip_later(struct pet_scop
*scop
)
4427 int has_skip_now
, has_skip_later
;
4429 isl_multi_pw_aff
*skip_now
, *skip_later
;
4433 has_skip_now
= pet_scop_has_skip(scop
, pet_skip_now
);
4434 has_skip_later
= pet_scop_has_skip(scop
, pet_skip_later
);
4435 if (has_skip_now
!= has_skip_later
)
4440 skip_now
= pet_scop_get_skip(scop
, pet_skip_now
);
4441 skip_later
= pet_scop_get_skip(scop
, pet_skip_later
);
4442 equal
= isl_multi_pw_aff_is_equal(skip_now
, skip_later
);
4443 isl_multi_pw_aff_free(skip_now
);
4444 isl_multi_pw_aff_free(skip_later
);
4449 /* Drop the skip conditions of type pet_skip_later from scop1 and scop2.
4451 static void drop_skip_later(struct pet_scop
*scop1
, struct pet_scop
*scop2
)
4453 pet_scop_reset_skip(scop1
, pet_skip_later
);
4454 pet_scop_reset_skip(scop2
, pet_skip_later
);
4457 /* Structure that handles the construction of skip conditions.
4459 * scop_then and scop_else represent the then and else branches
4460 * of the if statement
4462 * skip[type] is true if we need to construct a skip condition of that type
4463 * equal is set if the skip conditions of types pet_skip_now and pet_skip_later
4464 * are equal to each other
4465 * index[type] is an index expression from a zero-dimension domain
4466 * to the virtual array representing the skip condition
4467 * scop[type] is a scop for computing the skip condition
4469 struct pet_skip_info
{
4474 isl_multi_pw_aff
*index
[2];
4475 struct pet_scop
*scop
[2];
4477 pet_skip_info(isl_ctx
*ctx
) : ctx(ctx
) {}
4479 operator bool() { return skip
[pet_skip_now
] || skip
[pet_skip_later
]; }
4482 /* Structure that handles the construction of skip conditions on if statements.
4484 * scop_then and scop_else represent the then and else branches
4485 * of the if statement
4487 struct pet_skip_info_if
: public pet_skip_info
{
4488 struct pet_scop
*scop_then
, *scop_else
;
4491 pet_skip_info_if(isl_ctx
*ctx
, struct pet_scop
*scop_then
,
4492 struct pet_scop
*scop_else
, bool have_else
, bool affine
);
4493 void extract(PetScan
*scan
, __isl_keep isl_multi_pw_aff
*index
,
4494 enum pet_skip type
);
4495 void extract(PetScan
*scan
, __isl_keep isl_multi_pw_aff
*index
);
4496 void extract(PetScan
*scan
, __isl_keep isl_pw_aff
*cond
);
4497 struct pet_scop
*add(struct pet_scop
*scop
, enum pet_skip type
,
4499 struct pet_scop
*add(struct pet_scop
*scop
, int offset
);
4502 /* Initialize a pet_skip_info_if structure based on the then and else branches
4503 * and based on whether the if condition is affine or not.
4505 pet_skip_info_if::pet_skip_info_if(isl_ctx
*ctx
, struct pet_scop
*scop_then
,
4506 struct pet_scop
*scop_else
, bool have_else
, bool affine
) :
4507 pet_skip_info(ctx
), scop_then(scop_then
), scop_else(scop_else
),
4508 have_else(have_else
)
4510 skip
[pet_skip_now
] =
4511 need_skip(scop_then
, scop_else
, have_else
, pet_skip_now
, affine
);
4512 equal
= skip
[pet_skip_now
] && skip_equals_skip_later(scop_then
) &&
4513 (!have_else
|| skip_equals_skip_later(scop_else
));
4514 skip
[pet_skip_later
] = skip
[pet_skip_now
] && !equal
&&
4515 need_skip(scop_then
, scop_else
, have_else
, pet_skip_later
, affine
);
4518 /* If we need to construct a skip condition of the given type,
4521 * "mpa" represents the if condition.
4523 void pet_skip_info_if::extract(PetScan
*scan
,
4524 __isl_keep isl_multi_pw_aff
*mpa
, enum pet_skip type
)
4531 ctx
= isl_multi_pw_aff_get_ctx(mpa
);
4532 index
[type
] = create_test_index(ctx
, scan
->n_test
++);
4533 scop
[type
] = extract_skip(scan
, isl_multi_pw_aff_copy(mpa
),
4534 isl_multi_pw_aff_copy(index
[type
]),
4535 scop_then
, scop_else
, have_else
, type
);
4538 /* Construct the required skip conditions, given the if condition "index".
4540 void pet_skip_info_if::extract(PetScan
*scan
,
4541 __isl_keep isl_multi_pw_aff
*index
)
4543 extract(scan
, index
, pet_skip_now
);
4544 extract(scan
, index
, pet_skip_later
);
4546 drop_skip_later(scop_then
, scop_else
);
4549 /* Construct the required skip conditions, given the if condition "cond".
4551 void pet_skip_info_if::extract(PetScan
*scan
, __isl_keep isl_pw_aff
*cond
)
4553 isl_multi_pw_aff
*test
;
4555 if (!skip
[pet_skip_now
] && !skip
[pet_skip_later
])
4558 test
= isl_multi_pw_aff_from_pw_aff(isl_pw_aff_copy(cond
));
4559 test
= isl_multi_pw_aff_from_range(test
);
4560 extract(scan
, test
);
4561 isl_multi_pw_aff_free(test
);
4564 /* Add the computed skip condition of the give type to "main" and
4565 * add the scop for computing the condition at the given offset.
4567 * If equal is set, then we only computed a skip condition for pet_skip_now,
4568 * but we also need to set it as main's pet_skip_later.
4570 struct pet_scop
*pet_skip_info_if::add(struct pet_scop
*main
,
4571 enum pet_skip type
, int offset
)
4576 scop
[type
] = pet_scop_prefix(scop
[type
], offset
);
4577 main
= pet_scop_add_par(ctx
, main
, scop
[type
]);
4581 main
= pet_scop_set_skip(main
, pet_skip_later
,
4582 isl_multi_pw_aff_copy(index
[type
]));
4584 main
= pet_scop_set_skip(main
, type
, index
[type
]);
4590 /* Add the computed skip conditions to "main" and
4591 * add the scops for computing the conditions at the given offset.
4593 struct pet_scop
*pet_skip_info_if::add(struct pet_scop
*scop
, int offset
)
4595 scop
= add(scop
, pet_skip_now
, offset
);
4596 scop
= add(scop
, pet_skip_later
, offset
);
4601 /* Construct a pet_scop for a non-affine if statement.
4603 * We create a separate statement that writes the result
4604 * of the non-affine condition to a virtual scalar.
4605 * A constraint requiring the value of this virtual scalar to be one
4606 * is added to the iteration domains of the then branch.
4607 * Similarly, a constraint requiring the value of this virtual scalar
4608 * to be zero is added to the iteration domains of the else branch, if any.
4609 * We adjust the schedules to ensure that the virtual scalar is written
4610 * before it is read.
4612 * If there are any breaks or continues in the then and/or else
4613 * branches, then we may have to compute a new skip condition.
4614 * This is handled using a pet_skip_info_if object.
4615 * On initialization, the object checks if skip conditions need
4616 * to be computed. If so, it does so in "extract" and adds them in "add".
4618 struct pet_scop
*PetScan::extract_non_affine_if(Expr
*cond
,
4619 struct pet_scop
*scop_then
, struct pet_scop
*scop_else
,
4620 bool have_else
, int stmt_id
)
4622 struct pet_scop
*scop
;
4623 isl_multi_pw_aff
*test_index
;
4624 int save_n_stmt
= n_stmt
;
4626 test_index
= create_test_index(ctx
, n_test
++);
4628 scop
= extract_non_affine_condition(cond
, n_stmt
++,
4629 isl_multi_pw_aff_copy(test_index
));
4630 n_stmt
= save_n_stmt
;
4631 scop
= scop_add_array(scop
, test_index
, ast_context
);
4633 pet_skip_info_if
skip(ctx
, scop_then
, scop_else
, have_else
, false);
4634 skip
.extract(this, test_index
);
4636 scop
= pet_scop_prefix(scop
, 0);
4637 scop_then
= pet_scop_prefix(scop_then
, 1);
4638 scop_then
= pet_scop_filter(scop_then
,
4639 isl_multi_pw_aff_copy(test_index
), 1);
4641 scop_else
= pet_scop_prefix(scop_else
, 1);
4642 scop_else
= pet_scop_filter(scop_else
, test_index
, 0);
4643 scop_then
= pet_scop_add_par(ctx
, scop_then
, scop_else
);
4645 isl_multi_pw_aff_free(test_index
);
4647 scop
= pet_scop_add_seq(ctx
, scop
, scop_then
);
4649 scop
= skip
.add(scop
, 2);
4654 /* Construct a pet_scop for an if statement.
4656 * If the condition fits the pattern of a conditional assignment,
4657 * then it is handled by extract_conditional_assignment.
4658 * Otherwise, we do the following.
4660 * If the condition is affine, then the condition is added
4661 * to the iteration domains of the then branch, while the
4662 * opposite of the condition in added to the iteration domains
4663 * of the else branch, if any.
4664 * We allow the condition to be dynamic, i.e., to refer to
4665 * scalars or array elements that may be written to outside
4666 * of the given if statement. These nested accesses are then represented
4667 * as output dimensions in the wrapping iteration domain.
4668 * If it is also written _inside_ the then or else branch, then
4669 * we treat the condition as non-affine.
4670 * As explained in extract_non_affine_if, this will introduce
4671 * an extra statement.
4672 * For aesthetic reasons, we want this statement to have a statement
4673 * number that is lower than those of the then and else branches.
4674 * In order to evaluate if we will need such a statement, however, we
4675 * first construct scops for the then and else branches.
4676 * We therefore reserve a statement number if we might have to
4677 * introduce such an extra statement.
4679 * If the condition is not affine, then the scop is created in
4680 * extract_non_affine_if.
4682 * If there are any breaks or continues in the then and/or else
4683 * branches, then we may have to compute a new skip condition.
4684 * This is handled using a pet_skip_info_if object.
4685 * On initialization, the object checks if skip conditions need
4686 * to be computed. If so, it does so in "extract" and adds them in "add".
4688 struct pet_scop
*PetScan::extract(IfStmt
*stmt
)
4690 struct pet_scop
*scop_then
, *scop_else
= NULL
, *scop
;
4696 clear_assignments
clear(assigned_value
);
4697 clear
.TraverseStmt(stmt
->getThen());
4698 if (stmt
->getElse())
4699 clear
.TraverseStmt(stmt
->getElse());
4701 scop
= extract_conditional_assignment(stmt
);
4705 cond
= try_extract_nested_condition(stmt
->getCond());
4706 if (allow_nested
&& (!cond
|| has_nested(cond
)))
4710 assigned_value_cache
cache(assigned_value
);
4711 scop_then
= extract(stmt
->getThen());
4714 if (stmt
->getElse()) {
4715 assigned_value_cache
cache(assigned_value
);
4716 scop_else
= extract(stmt
->getElse());
4717 if (options
->autodetect
) {
4718 if (scop_then
&& !scop_else
) {
4720 isl_pw_aff_free(cond
);
4723 if (!scop_then
&& scop_else
) {
4725 isl_pw_aff_free(cond
);
4732 (!is_nested_allowed(cond
, scop_then
) ||
4733 (stmt
->getElse() && !is_nested_allowed(cond
, scop_else
)))) {
4734 isl_pw_aff_free(cond
);
4737 if (allow_nested
&& !cond
)
4738 return extract_non_affine_if(stmt
->getCond(), scop_then
,
4739 scop_else
, stmt
->getElse(), stmt_id
);
4742 cond
= extract_condition(stmt
->getCond());
4744 pet_skip_info_if
skip(ctx
, scop_then
, scop_else
, stmt
->getElse(), true);
4745 skip
.extract(this, cond
);
4747 valid
= isl_pw_aff_domain(isl_pw_aff_copy(cond
));
4748 set
= isl_pw_aff_non_zero_set(cond
);
4749 scop
= pet_scop_restrict(scop_then
, isl_set_copy(set
));
4751 if (stmt
->getElse()) {
4752 set
= isl_set_subtract(isl_set_copy(valid
), set
);
4753 scop_else
= pet_scop_restrict(scop_else
, set
);
4754 scop
= pet_scop_add_par(ctx
, scop
, scop_else
);
4757 scop
= resolve_nested(scop
);
4758 scop
= pet_scop_restrict_context(scop
, valid
);
4761 scop
= pet_scop_prefix(scop
, 0);
4762 scop
= skip
.add(scop
, 1);
4767 /* Try and construct a pet_scop for a label statement.
4768 * We currently only allow labels on expression statements.
4770 struct pet_scop
*PetScan::extract(LabelStmt
*stmt
)
4775 sub
= stmt
->getSubStmt();
4776 if (!isa
<Expr
>(sub
)) {
4781 label
= isl_id_alloc(ctx
, stmt
->getName(), NULL
);
4783 return extract(sub
, extract_expr(cast
<Expr
>(sub
)), label
);
4786 /* Return a one-dimensional multi piecewise affine expression that is equal
4787 * to the constant 1 and is defined over a zero-dimensional domain.
4789 static __isl_give isl_multi_pw_aff
*one_mpa(isl_ctx
*ctx
)
4792 isl_local_space
*ls
;
4795 space
= isl_space_set_alloc(ctx
, 0, 0);
4796 ls
= isl_local_space_from_space(space
);
4797 aff
= isl_aff_zero_on_domain(ls
);
4798 aff
= isl_aff_set_constant_si(aff
, 1);
4800 return isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff
));
4803 /* Construct a pet_scop for a continue statement.
4805 * We simply create an empty scop with a universal pet_skip_now
4806 * skip condition. This skip condition will then be taken into
4807 * account by the enclosing loop construct, possibly after
4808 * being incorporated into outer skip conditions.
4810 struct pet_scop
*PetScan::extract(ContinueStmt
*stmt
)
4814 scop
= pet_scop_empty(ctx
);
4818 scop
= pet_scop_set_skip(scop
, pet_skip_now
, one_mpa(ctx
));
4823 /* Construct a pet_scop for a break statement.
4825 * We simply create an empty scop with both a universal pet_skip_now
4826 * skip condition and a universal pet_skip_later skip condition.
4827 * These skip conditions will then be taken into
4828 * account by the enclosing loop construct, possibly after
4829 * being incorporated into outer skip conditions.
4831 struct pet_scop
*PetScan::extract(BreakStmt
*stmt
)
4834 isl_multi_pw_aff
*skip
;
4836 scop
= pet_scop_empty(ctx
);
4840 skip
= one_mpa(ctx
);
4841 scop
= pet_scop_set_skip(scop
, pet_skip_now
,
4842 isl_multi_pw_aff_copy(skip
));
4843 scop
= pet_scop_set_skip(scop
, pet_skip_later
, skip
);
4848 /* Try and construct a pet_scop corresponding to "stmt".
4850 * If "stmt" is a compound statement, then "skip_declarations"
4851 * indicates whether we should skip initial declarations in the
4852 * compound statement.
4854 * If the constructed pet_scop is not a (possibly) partial representation
4855 * of "stmt", we update start and end of the pet_scop to those of "stmt".
4856 * In particular, if skip_declarations is set, then we may have skipped
4857 * declarations inside "stmt" and so the pet_scop may not represent
4858 * the entire "stmt".
4859 * Note that this function may be called with "stmt" referring to the entire
4860 * body of the function, including the outer braces. In such cases,
4861 * skip_declarations will be set and the braces will not be taken into
4862 * account in scop->start and scop->end.
4864 struct pet_scop
*PetScan::extract(Stmt
*stmt
, bool skip_declarations
)
4866 struct pet_scop
*scop
;
4868 if (isa
<Expr
>(stmt
))
4869 return extract(stmt
, extract_expr(cast
<Expr
>(stmt
)));
4871 switch (stmt
->getStmtClass()) {
4872 case Stmt::WhileStmtClass
:
4873 scop
= extract(cast
<WhileStmt
>(stmt
));
4875 case Stmt::ForStmtClass
:
4876 scop
= extract_for(cast
<ForStmt
>(stmt
));
4878 case Stmt::IfStmtClass
:
4879 scop
= extract(cast
<IfStmt
>(stmt
));
4881 case Stmt::CompoundStmtClass
:
4882 scop
= extract(cast
<CompoundStmt
>(stmt
), skip_declarations
);
4884 case Stmt::LabelStmtClass
:
4885 scop
= extract(cast
<LabelStmt
>(stmt
));
4887 case Stmt::ContinueStmtClass
:
4888 scop
= extract(cast
<ContinueStmt
>(stmt
));
4890 case Stmt::BreakStmtClass
:
4891 scop
= extract(cast
<BreakStmt
>(stmt
));
4893 case Stmt::DeclStmtClass
:
4894 scop
= extract(cast
<DeclStmt
>(stmt
));
4901 if (partial
|| skip_declarations
)
4904 scop
= update_scop_start_end(scop
, stmt
->getSourceRange(), false);
4909 /* Do we need to construct a skip condition of the given type
4910 * on a sequence of statements?
4912 * There is no need to construct a new skip condition if only
4913 * only of the two statements has a skip condition or if both
4914 * of their skip conditions are affine.
4916 * In principle we also don't need a new continuation variable if
4917 * the continuation of scop2 is affine, but then we would need
4918 * to allow more complicated forms of continuations.
4920 static bool need_skip_seq(struct pet_scop
*scop1
, struct pet_scop
*scop2
,
4923 if (!scop1
|| !pet_scop_has_skip(scop1
, type
))
4925 if (!scop2
|| !pet_scop_has_skip(scop2
, type
))
4927 if (pet_scop_has_affine_skip(scop1
, type
) &&
4928 pet_scop_has_affine_skip(scop2
, type
))
4933 /* Construct a scop for computing the skip condition of the given type and
4934 * with index expression "skip_index" for a sequence of two scops "scop1"
4937 * The computed scop contains a single statement that essentially does
4939 * skip_index = skip_cond_1 ? 1 : skip_cond_2
4941 * or, in other words, skip_cond1 || skip_cond2.
4942 * In this expression, skip_cond_2 is filtered to reflect that it is
4943 * only evaluated when skip_cond_1 is false.
4945 * The skip condition on scop1 is not removed because it still needs
4946 * to be applied to scop2 when these two scops are combined.
4948 static struct pet_scop
*extract_skip_seq(PetScan
*ps
,
4949 __isl_take isl_multi_pw_aff
*skip_index
,
4950 struct pet_scop
*scop1
, struct pet_scop
*scop2
, enum pet_skip type
)
4952 struct pet_expr
*expr1
, *expr2
, *expr
, *expr_skip
;
4953 struct pet_stmt
*stmt
;
4954 struct pet_scop
*scop
;
4955 isl_ctx
*ctx
= ps
->ctx
;
4957 if (!scop1
|| !scop2
)
4960 expr1
= pet_scop_get_skip_expr(scop1
, type
);
4961 expr2
= pet_scop_get_skip_expr(scop2
, type
);
4962 pet_scop_reset_skip(scop2
, type
);
4964 expr2
= pet_expr_filter(expr2
,
4965 isl_multi_pw_aff_copy(expr1
->acc
.index
), 0);
4967 expr
= universally_true(ctx
);
4968 expr
= pet_expr_new_ternary(ctx
, expr1
, expr
, expr2
);
4969 expr_skip
= pet_expr_from_index(isl_multi_pw_aff_copy(skip_index
));
4971 expr_skip
->acc
.write
= 1;
4972 expr_skip
->acc
.read
= 0;
4974 expr
= pet_expr_new_binary(ctx
, pet_op_assign
, expr_skip
, expr
);
4975 stmt
= pet_stmt_from_pet_expr(ctx
, -1, NULL
, ps
->n_stmt
++, expr
);
4977 scop
= pet_scop_from_pet_stmt(ctx
, stmt
);
4978 scop
= scop_add_array(scop
, skip_index
, ps
->ast_context
);
4979 isl_multi_pw_aff_free(skip_index
);
4983 isl_multi_pw_aff_free(skip_index
);
4987 /* Structure that handles the construction of skip conditions
4988 * on sequences of statements.
4990 * scop1 and scop2 represent the two statements that are combined
4992 struct pet_skip_info_seq
: public pet_skip_info
{
4993 struct pet_scop
*scop1
, *scop2
;
4995 pet_skip_info_seq(isl_ctx
*ctx
, struct pet_scop
*scop1
,
4996 struct pet_scop
*scop2
);
4997 void extract(PetScan
*scan
, enum pet_skip type
);
4998 void extract(PetScan
*scan
);
4999 struct pet_scop
*add(struct pet_scop
*scop
, enum pet_skip type
,
5001 struct pet_scop
*add(struct pet_scop
*scop
, int offset
);
5004 /* Initialize a pet_skip_info_seq structure based on
5005 * on the two statements that are going to be combined.
5007 pet_skip_info_seq::pet_skip_info_seq(isl_ctx
*ctx
, struct pet_scop
*scop1
,
5008 struct pet_scop
*scop2
) : pet_skip_info(ctx
), scop1(scop1
), scop2(scop2
)
5010 skip
[pet_skip_now
] = need_skip_seq(scop1
, scop2
, pet_skip_now
);
5011 equal
= skip
[pet_skip_now
] && skip_equals_skip_later(scop1
) &&
5012 skip_equals_skip_later(scop2
);
5013 skip
[pet_skip_later
] = skip
[pet_skip_now
] && !equal
&&
5014 need_skip_seq(scop1
, scop2
, pet_skip_later
);
5017 /* If we need to construct a skip condition of the given type,
5020 void pet_skip_info_seq::extract(PetScan
*scan
, enum pet_skip type
)
5025 index
[type
] = create_test_index(ctx
, scan
->n_test
++);
5026 scop
[type
] = extract_skip_seq(scan
, isl_multi_pw_aff_copy(index
[type
]),
5027 scop1
, scop2
, type
);
5030 /* Construct the required skip conditions.
5032 void pet_skip_info_seq::extract(PetScan
*scan
)
5034 extract(scan
, pet_skip_now
);
5035 extract(scan
, pet_skip_later
);
5037 drop_skip_later(scop1
, scop2
);
5040 /* Add the computed skip condition of the given type to "main" and
5041 * add the scop for computing the condition at the given offset (the statement
5042 * number). Within this offset, the condition is computed at position 1
5043 * to ensure that it is computed after the corresponding statement.
5045 * If equal is set, then we only computed a skip condition for pet_skip_now,
5046 * but we also need to set it as main's pet_skip_later.
5048 struct pet_scop
*pet_skip_info_seq::add(struct pet_scop
*main
,
5049 enum pet_skip type
, int offset
)
5054 scop
[type
] = pet_scop_prefix(scop
[type
], 1);
5055 scop
[type
] = pet_scop_prefix(scop
[type
], offset
);
5056 main
= pet_scop_add_par(ctx
, main
, scop
[type
]);
5060 main
= pet_scop_set_skip(main
, pet_skip_later
,
5061 isl_multi_pw_aff_copy(index
[type
]));
5063 main
= pet_scop_set_skip(main
, type
, index
[type
]);
5069 /* Add the computed skip conditions to "main" and
5070 * add the scops for computing the conditions at the given offset.
5072 struct pet_scop
*pet_skip_info_seq::add(struct pet_scop
*scop
, int offset
)
5074 scop
= add(scop
, pet_skip_now
, offset
);
5075 scop
= add(scop
, pet_skip_later
, offset
);
5080 /* Extract a clone of the kill statement in "scop".
5081 * "scop" is expected to have been created from a DeclStmt
5082 * and should have the kill as its first statement.
5084 struct pet_stmt
*PetScan::extract_kill(struct pet_scop
*scop
)
5086 struct pet_expr
*kill
;
5087 struct pet_stmt
*stmt
;
5088 isl_multi_pw_aff
*index
;
5093 if (scop
->n_stmt
< 1)
5094 isl_die(ctx
, isl_error_internal
,
5095 "expecting at least one statement", return NULL
);
5096 stmt
= scop
->stmts
[0];
5097 if (!pet_stmt_is_kill(stmt
))
5098 isl_die(ctx
, isl_error_internal
,
5099 "expecting kill statement", return NULL
);
5101 index
= isl_multi_pw_aff_copy(stmt
->body
->args
[0]->acc
.index
);
5102 access
= isl_map_copy(stmt
->body
->args
[0]->acc
.access
);
5103 index
= isl_multi_pw_aff_reset_tuple_id(index
, isl_dim_in
);
5104 access
= isl_map_reset_tuple_id(access
, isl_dim_in
);
5105 kill
= pet_expr_kill_from_access_and_index(access
, index
);
5106 return pet_stmt_from_pet_expr(ctx
, stmt
->line
, NULL
, n_stmt
++, kill
);
5109 /* Mark all arrays in "scop" as being exposed.
5111 static struct pet_scop
*mark_exposed(struct pet_scop
*scop
)
5115 for (int i
= 0; i
< scop
->n_array
; ++i
)
5116 scop
->arrays
[i
]->exposed
= 1;
5120 /* Try and construct a pet_scop corresponding to (part of)
5121 * a sequence of statements.
5123 * "block" is set if the sequence respresents the children of
5124 * a compound statement.
5125 * "skip_declarations" is set if we should skip initial declarations
5126 * in the sequence of statements.
5128 * If there are any breaks or continues in the individual statements,
5129 * then we may have to compute a new skip condition.
5130 * This is handled using a pet_skip_info_seq object.
5131 * On initialization, the object checks if skip conditions need
5132 * to be computed. If so, it does so in "extract" and adds them in "add".
5134 * If "block" is set, then we need to insert kill statements at
5135 * the end of the block for any array that has been declared by
5136 * one of the statements in the sequence. Each of these declarations
5137 * results in the construction of a kill statement at the place
5138 * of the declaration, so we simply collect duplicates of
5139 * those kill statements and append these duplicates to the constructed scop.
5141 * If "block" is not set, then any array declared by one of the statements
5142 * in the sequence is marked as being exposed.
5144 * If autodetect is set, then we allow the extraction of only a subrange
5145 * of the sequence of statements. However, if there is at least one statement
5146 * for which we could not construct a scop and the final range contains
5147 * either no statements or at least one kill, then we discard the entire
5150 struct pet_scop
*PetScan::extract(StmtRange stmt_range
, bool block
,
5151 bool skip_declarations
)
5156 bool partial_range
= false;
5157 set
<struct pet_stmt
*> kills
;
5158 set
<struct pet_stmt
*>::iterator it
;
5160 scop
= pet_scop_empty(ctx
);
5161 for (i
= stmt_range
.first
, j
= 0; i
!= stmt_range
.second
; ++i
, ++j
) {
5163 struct pet_scop
*scop_i
;
5165 if (scop
->n_stmt
== 0 && skip_declarations
&&
5166 child
->getStmtClass() == Stmt::DeclStmtClass
)
5169 scop_i
= extract(child
);
5170 if (scop
->n_stmt
!= 0 && partial
) {
5171 pet_scop_free(scop_i
);
5174 pet_skip_info_seq
skip(ctx
, scop
, scop_i
);
5177 scop_i
= pet_scop_prefix(scop_i
, 0);
5178 if (scop_i
&& child
->getStmtClass() == Stmt::DeclStmtClass
) {
5180 kills
.insert(extract_kill(scop_i
));
5182 scop_i
= mark_exposed(scop_i
);
5184 scop_i
= pet_scop_prefix(scop_i
, j
);
5185 if (options
->autodetect
) {
5187 scop
= pet_scop_add_seq(ctx
, scop
, scop_i
);
5189 partial_range
= true;
5190 if (scop
->n_stmt
!= 0 && !scop_i
)
5193 scop
= pet_scop_add_seq(ctx
, scop
, scop_i
);
5196 scop
= skip
.add(scop
, j
);
5198 if (partial
|| !scop
)
5202 for (it
= kills
.begin(); it
!= kills
.end(); ++it
) {
5204 scop_j
= pet_scop_from_pet_stmt(ctx
, *it
);
5205 scop_j
= pet_scop_prefix(scop_j
, j
);
5206 scop
= pet_scop_add_seq(ctx
, scop
, scop_j
);
5209 if (scop
&& partial_range
) {
5210 if (scop
->n_stmt
== 0 || kills
.size() != 0) {
5211 pet_scop_free(scop
);
5220 /* Check if the scop marked by the user is exactly this Stmt
5221 * or part of this Stmt.
5222 * If so, return a pet_scop corresponding to the marked region.
5223 * Otherwise, return NULL.
5225 struct pet_scop
*PetScan::scan(Stmt
*stmt
)
5227 SourceManager
&SM
= PP
.getSourceManager();
5228 unsigned start_off
, end_off
;
5230 start_off
= getExpansionOffset(SM
, stmt
->getLocStart());
5231 end_off
= getExpansionOffset(SM
, stmt
->getLocEnd());
5233 if (start_off
> loc
.end
)
5235 if (end_off
< loc
.start
)
5237 if (start_off
>= loc
.start
&& end_off
<= loc
.end
) {
5238 return extract(stmt
);
5242 for (start
= stmt
->child_begin(); start
!= stmt
->child_end(); ++start
) {
5243 Stmt
*child
= *start
;
5246 start_off
= getExpansionOffset(SM
, child
->getLocStart());
5247 end_off
= getExpansionOffset(SM
, child
->getLocEnd());
5248 if (start_off
< loc
.start
&& end_off
>= loc
.end
)
5250 if (start_off
>= loc
.start
)
5255 for (end
= start
; end
!= stmt
->child_end(); ++end
) {
5257 start_off
= SM
.getFileOffset(child
->getLocStart());
5258 if (start_off
>= loc
.end
)
5262 return extract(StmtRange(start
, end
), false, false);
5265 /* Set the size of index "pos" of "array" to "size".
5266 * In particular, add a constraint of the form
5270 * to array->extent and a constraint of the form
5274 * to array->context.
5276 static struct pet_array
*update_size(struct pet_array
*array
, int pos
,
5277 __isl_take isl_pw_aff
*size
)
5287 valid
= isl_pw_aff_nonneg_set(isl_pw_aff_copy(size
));
5288 array
->context
= isl_set_intersect(array
->context
, valid
);
5290 dim
= isl_set_get_space(array
->extent
);
5291 aff
= isl_aff_zero_on_domain(isl_local_space_from_space(dim
));
5292 aff
= isl_aff_add_coefficient_si(aff
, isl_dim_in
, pos
, 1);
5293 univ
= isl_set_universe(isl_aff_get_domain_space(aff
));
5294 index
= isl_pw_aff_alloc(univ
, aff
);
5296 size
= isl_pw_aff_add_dims(size
, isl_dim_in
,
5297 isl_set_dim(array
->extent
, isl_dim_set
));
5298 id
= isl_set_get_tuple_id(array
->extent
);
5299 size
= isl_pw_aff_set_tuple_id(size
, isl_dim_in
, id
);
5300 bound
= isl_pw_aff_lt_set(index
, size
);
5302 array
->extent
= isl_set_intersect(array
->extent
, bound
);
5304 if (!array
->context
|| !array
->extent
)
5309 pet_array_free(array
);
5313 /* Figure out the size of the array at position "pos" and all
5314 * subsequent positions from "type" and update "array" accordingly.
5316 struct pet_array
*PetScan::set_upper_bounds(struct pet_array
*array
,
5317 const Type
*type
, int pos
)
5319 const ArrayType
*atype
;
5325 if (type
->isPointerType()) {
5326 type
= type
->getPointeeType().getTypePtr();
5327 return set_upper_bounds(array
, type
, pos
+ 1);
5329 if (!type
->isArrayType())
5332 type
= type
->getCanonicalTypeInternal().getTypePtr();
5333 atype
= cast
<ArrayType
>(type
);
5335 if (type
->isConstantArrayType()) {
5336 const ConstantArrayType
*ca
= cast
<ConstantArrayType
>(atype
);
5337 size
= extract_affine(ca
->getSize());
5338 array
= update_size(array
, pos
, size
);
5339 } else if (type
->isVariableArrayType()) {
5340 const VariableArrayType
*vla
= cast
<VariableArrayType
>(atype
);
5341 size
= extract_affine(vla
->getSizeExpr());
5342 array
= update_size(array
, pos
, size
);
5345 type
= atype
->getElementType().getTypePtr();
5347 return set_upper_bounds(array
, type
, pos
+ 1);
5350 /* Is "T" the type of a variable length array with static size?
5352 static bool is_vla_with_static_size(QualType T
)
5354 const VariableArrayType
*vlatype
;
5356 if (!T
->isVariableArrayType())
5358 vlatype
= cast
<VariableArrayType
>(T
);
5359 return vlatype
->getSizeModifier() == VariableArrayType::Static
;
5362 /* Return the type of "decl" as an array.
5364 * In particular, if "decl" is a parameter declaration that
5365 * is a variable length array with a static size, then
5366 * return the original type (i.e., the variable length array).
5367 * Otherwise, return the type of decl.
5369 static QualType
get_array_type(ValueDecl
*decl
)
5374 parm
= dyn_cast
<ParmVarDecl
>(decl
);
5376 return decl
->getType();
5378 T
= parm
->getOriginalType();
5379 if (!is_vla_with_static_size(T
))
5380 return decl
->getType();
5384 /* Does "decl" have definition that we can keep track of in a pet_type?
5386 static bool has_printable_definition(RecordDecl
*decl
)
5388 if (!decl
->getDeclName())
5390 return decl
->getLexicalDeclContext() == decl
->getDeclContext();
5393 /* Construct and return a pet_array corresponding to the variable "decl".
5394 * In particular, initialize array->extent to
5396 * { name[i_1,...,i_d] : i_1,...,i_d >= 0 }
5398 * and then call set_upper_bounds to set the upper bounds on the indices
5399 * based on the type of the variable.
5401 * If the base type is that of a record with a top-level definition and
5402 * if "types" is not null, then the RecordDecl corresponding to the type
5403 * is added to "types".
5405 * If the base type is that of a record with no top-level definition,
5406 * then we replace it by "<subfield>".
5408 struct pet_array
*PetScan::extract_array(isl_ctx
*ctx
, ValueDecl
*decl
,
5409 lex_recorddecl_set
*types
)
5411 struct pet_array
*array
;
5412 QualType qt
= get_array_type(decl
);
5413 const Type
*type
= qt
.getTypePtr();
5414 int depth
= array_depth(type
);
5415 QualType base
= pet_clang_base_type(qt
);
5420 array
= isl_calloc_type(ctx
, struct pet_array
);
5424 id
= isl_id_alloc(ctx
, decl
->getName().str().c_str(), decl
);
5425 dim
= isl_space_set_alloc(ctx
, 0, depth
);
5426 dim
= isl_space_set_tuple_id(dim
, isl_dim_set
, id
);
5428 array
->extent
= isl_set_nat_universe(dim
);
5430 dim
= isl_space_params_alloc(ctx
, 0);
5431 array
->context
= isl_set_universe(dim
);
5433 array
= set_upper_bounds(array
, type
, 0);
5437 name
= base
.getAsString();
5439 if (types
&& base
->isRecordType()) {
5440 RecordDecl
*decl
= pet_clang_record_decl(base
);
5441 if (has_printable_definition(decl
))
5442 types
->insert(decl
);
5444 name
= "<subfield>";
5447 array
->element_type
= strdup(name
.c_str());
5448 array
->element_is_record
= base
->isRecordType();
5449 array
->element_size
= decl
->getASTContext().getTypeInfo(base
).first
/ 8;
5454 /* Construct and return a pet_array corresponding to the sequence
5455 * of declarations "decls".
5456 * If the sequence contains a single declaration, then it corresponds
5457 * to a simple array access. Otherwise, it corresponds to a member access,
5458 * with the declaration for the substructure following that of the containing
5459 * structure in the sequence of declarations.
5460 * We start with the outermost substructure and then combine it with
5461 * information from the inner structures.
5463 * Additionally, keep track of all required types in "types".
5465 struct pet_array
*PetScan::extract_array(isl_ctx
*ctx
,
5466 vector
<ValueDecl
*> decls
, lex_recorddecl_set
*types
)
5468 struct pet_array
*array
;
5469 vector
<ValueDecl
*>::iterator it
;
5473 array
= extract_array(ctx
, *it
, types
);
5475 for (++it
; it
!= decls
.end(); ++it
) {
5476 struct pet_array
*parent
;
5477 const char *base_name
, *field_name
;
5481 array
= extract_array(ctx
, *it
, types
);
5483 return pet_array_free(parent
);
5485 base_name
= isl_set_get_tuple_name(parent
->extent
);
5486 field_name
= isl_set_get_tuple_name(array
->extent
);
5487 product_name
= member_access_name(ctx
, base_name
, field_name
);
5489 array
->extent
= isl_set_product(isl_set_copy(parent
->extent
),
5492 array
->extent
= isl_set_set_tuple_name(array
->extent
,
5494 array
->context
= isl_set_intersect(array
->context
,
5495 isl_set_copy(parent
->context
));
5497 pet_array_free(parent
);
5500 if (!array
->extent
|| !array
->context
|| !product_name
)
5501 return pet_array_free(array
);
5507 /* Add a pet_type corresponding to "decl" to "scop, provided
5508 * it is a member of "types" and it has not been added before
5509 * (i.e., it is not a member of "types_done".
5511 * Since we want the user to be able to print the types
5512 * in the order in which they appear in the scop, we need to
5513 * make sure that types of fields in a structure appear before
5514 * that structure. We therefore call ourselves recursively
5515 * on the types of all record subfields.
5517 static struct pet_scop
*add_type(isl_ctx
*ctx
, struct pet_scop
*scop
,
5518 RecordDecl
*decl
, Preprocessor
&PP
, lex_recorddecl_set
&types
,
5519 lex_recorddecl_set
&types_done
)
5522 llvm::raw_string_ostream
S(s
);
5523 RecordDecl::field_iterator it
;
5525 if (types
.find(decl
) == types
.end())
5527 if (types_done
.find(decl
) != types_done
.end())
5530 for (it
= decl
->field_begin(); it
!= decl
->field_end(); ++it
) {
5532 QualType type
= it
->getType();
5534 if (!type
->isRecordType())
5536 record
= pet_clang_record_decl(type
);
5537 scop
= add_type(ctx
, scop
, record
, PP
, types
, types_done
);
5540 if (strlen(decl
->getName().str().c_str()) == 0)
5543 decl
->print(S
, PrintingPolicy(PP
.getLangOpts()));
5546 scop
->types
[scop
->n_type
] = pet_type_alloc(ctx
,
5547 decl
->getName().str().c_str(), s
.c_str());
5548 if (!scop
->types
[scop
->n_type
])
5549 return pet_scop_free(scop
);
5551 types_done
.insert(decl
);
5558 /* Construct a list of pet_arrays, one for each array (or scalar)
5559 * accessed inside "scop", add this list to "scop" and return the result.
5561 * The context of "scop" is updated with the intersection of
5562 * the contexts of all arrays, i.e., constraints on the parameters
5563 * that ensure that the arrays have a valid (non-negative) size.
5565 * If the any of the extracted arrays refers to a member access,
5566 * then also add the required types to "scop".
5568 struct pet_scop
*PetScan::scan_arrays(struct pet_scop
*scop
)
5571 set
<vector
<ValueDecl
*> > arrays
;
5572 set
<vector
<ValueDecl
*> >::iterator it
;
5573 lex_recorddecl_set types
;
5574 lex_recorddecl_set types_done
;
5575 lex_recorddecl_set::iterator types_it
;
5577 struct pet_array
**scop_arrays
;
5582 pet_scop_collect_arrays(scop
, arrays
);
5583 if (arrays
.size() == 0)
5586 n_array
= scop
->n_array
;
5588 scop_arrays
= isl_realloc_array(ctx
, scop
->arrays
, struct pet_array
*,
5589 n_array
+ arrays
.size());
5592 scop
->arrays
= scop_arrays
;
5594 for (it
= arrays
.begin(), i
= 0; it
!= arrays
.end(); ++it
, ++i
) {
5595 struct pet_array
*array
;
5596 array
= extract_array(ctx
, *it
, &types
);
5597 scop
->arrays
[n_array
+ i
] = array
;
5598 if (!scop
->arrays
[n_array
+ i
])
5601 scop
->context
= isl_set_intersect(scop
->context
,
5602 isl_set_copy(array
->context
));
5607 if (types
.size() == 0)
5610 scop
->types
= isl_alloc_array(ctx
, struct pet_type
*, types
.size());
5614 for (types_it
= types
.begin(); types_it
!= types
.end(); ++types_it
)
5615 scop
= add_type(ctx
, scop
, *types_it
, PP
, types
, types_done
);
5619 pet_scop_free(scop
);
5623 /* Bound all parameters in scop->context to the possible values
5624 * of the corresponding C variable.
5626 static struct pet_scop
*add_parameter_bounds(struct pet_scop
*scop
)
5633 n
= isl_set_dim(scop
->context
, isl_dim_param
);
5634 for (int i
= 0; i
< n
; ++i
) {
5638 id
= isl_set_get_dim_id(scop
->context
, isl_dim_param
, i
);
5639 if (is_nested_parameter(id
)) {
5641 isl_die(isl_set_get_ctx(scop
->context
),
5643 "unresolved nested parameter", goto error
);
5645 decl
= (ValueDecl
*) isl_id_get_user(id
);
5648 scop
->context
= set_parameter_bounds(scop
->context
, i
, decl
);
5656 pet_scop_free(scop
);
5660 /* Construct a pet_scop from the given function.
5662 * If the scop was delimited by scop and endscop pragmas, then we override
5663 * the file offsets by those derived from the pragmas.
5665 struct pet_scop
*PetScan::scan(FunctionDecl
*fd
)
5670 stmt
= fd
->getBody();
5672 if (options
->autodetect
)
5673 scop
= extract(stmt
, true);
5676 scop
= pet_scop_update_start_end(scop
, loc
.start
, loc
.end
);
5678 scop
= pet_scop_detect_parameter_accesses(scop
);
5679 scop
= scan_arrays(scop
);
5680 scop
= add_parameter_bounds(scop
);
5681 scop
= pet_scop_gist(scop
, value_bounds
);