2 * Copyright 2011 Leiden University. All rights reserved.
3 * Copyright 2012-2014 Ecole Normale Superieure. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials provided
15 * with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY LEIDEN UNIVERSITY ''AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LEIDEN UNIVERSITY OR
21 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
24 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as
31 * representing official policies, either expressed or implied, of
40 #include <isl/space.h>
41 #include <isl/local_space.h>
43 #include <isl/id_to_pw_aff.h>
46 #include <isl/union_set.h>
55 #include "tree2scop.h"
57 /* If "stmt" is an affine assumption, then record the assumption in "pc".
59 static __isl_give pet_context
*add_affine_assumption(struct pet_stmt
*stmt
,
60 __isl_take pet_context
*pc
)
65 affine
= pet_stmt_is_affine_assume(stmt
);
67 return pet_context_free(pc
);
70 cond
= pet_stmt_assume_get_affine_condition(stmt
);
71 cond
= isl_set_reset_tuple_id(cond
);
72 pc
= pet_context_intersect_domain(pc
, cond
);
76 /* Given a scop "scop" derived from an assumption statement,
77 * record the assumption in "pc", if it is affine.
78 * Note that "scop" should consist of exactly one statement.
80 static __isl_give pet_context
*scop_add_affine_assumption(
81 __isl_keep pet_scop
*scop
, __isl_take pet_context
*pc
)
86 return pet_context_free(pc
);
87 for (i
= 0; i
< scop
->n_stmt
; ++i
)
88 pc
= add_affine_assumption(scop
->stmts
[i
], pc
);
93 /* Update "pc" by taking into account the writes in "stmt".
94 * That is, clear any previously assigned values to variables
95 * that are written by "stmt".
97 static __isl_give pet_context
*handle_writes(struct pet_stmt
*stmt
,
98 __isl_take pet_context
*pc
)
100 return pet_context_clear_writes_in_tree(pc
, stmt
->body
);
103 /* Update "pc" based on the write accesses in "scop".
105 static __isl_give pet_context
*scop_handle_writes(struct pet_scop
*scop
,
106 __isl_take pet_context
*pc
)
111 return pet_context_free(pc
);
112 for (i
= 0; i
< scop
->n_stmt
; ++i
)
113 pc
= handle_writes(scop
->stmts
[i
], pc
);
118 /* Wrapper around pet_expr_resolve_assume
119 * for use as a callback to pet_tree_map_expr.
121 static __isl_give pet_expr
*resolve_assume(__isl_take pet_expr
*expr
,
124 pet_context
*pc
= user
;
126 return pet_expr_resolve_assume(expr
, pc
);
129 /* Check if any expression inside "tree" is an assume expression and
130 * if its single argument can be converted to an affine expression
131 * in the context of "pc".
132 * If so, replace the argument by the affine expression.
134 __isl_give pet_tree
*pet_tree_resolve_assume(__isl_take pet_tree
*tree
,
135 __isl_keep pet_context
*pc
)
137 return pet_tree_map_expr(tree
, &resolve_assume
, pc
);
140 /* Convert a pet_tree to a pet_scop with one statement within the context "pc".
141 * "tree" has already been evaluated in the context of "pc".
142 * This mainly involves resolving nested expression parameters
143 * and setting the name of the iteration space.
144 * The name is given by tree->label if it is non-NULL. Otherwise,
145 * it is of the form S_<stmt_nr>.
147 static struct pet_scop
*scop_from_evaluated_tree(__isl_take pet_tree
*tree
,
148 int stmt_nr
, __isl_keep pet_context
*pc
)
154 space
= pet_context_get_space(pc
);
156 tree
= pet_tree_resolve_nested(tree
, space
);
157 tree
= pet_tree_resolve_assume(tree
, pc
);
159 domain
= pet_context_get_domain(pc
);
160 ps
= pet_stmt_from_pet_tree(domain
, stmt_nr
, tree
);
161 return pet_scop_from_pet_stmt(space
, ps
);
164 /* Convert a top-level pet_expr to a pet_scop with one statement
165 * within the context "pc".
166 * "expr" has already been evaluated in the context of "pc".
167 * We construct a pet_tree from "expr" and continue with
168 * scop_from_evaluated_tree.
169 * The name is of the form S_<stmt_nr>.
170 * The location of the statement is set to "loc".
172 static struct pet_scop
*scop_from_evaluated_expr(__isl_take pet_expr
*expr
,
173 int stmt_nr
, __isl_take pet_loc
*loc
, __isl_keep pet_context
*pc
)
177 tree
= pet_tree_new_expr(expr
);
178 tree
= pet_tree_set_loc(tree
, loc
);
179 return scop_from_evaluated_tree(tree
, stmt_nr
, pc
);
182 /* Convert a pet_tree to a pet_scop with one statement within the context "pc".
183 * "tree" has not yet been evaluated in the context of "pc".
184 * We evaluate "tree" in the context of "pc" and continue with
185 * scop_from_evaluated_tree.
186 * The statement name is given by tree->label if it is non-NULL. Otherwise,
187 * it is of the form S_<stmt_nr>.
189 static struct pet_scop
*scop_from_unevaluated_tree(__isl_take pet_tree
*tree
,
190 int stmt_nr
, __isl_keep pet_context
*pc
)
192 tree
= pet_context_evaluate_tree(pc
, tree
);
193 return scop_from_evaluated_tree(tree
, stmt_nr
, pc
);
196 /* Convert a top-level pet_expr to a pet_scop with one statement
197 * within the context "pc", where "expr" has not yet been evaluated
198 * in the context of "pc".
199 * We construct a pet_tree from "expr" and continue with
200 * scop_from_unevaluated_tree.
201 * The statement name is of the form S_<stmt_nr>.
202 * The location of the statement is set to "loc".
204 static struct pet_scop
*scop_from_expr(__isl_take pet_expr
*expr
,
205 int stmt_nr
, __isl_take pet_loc
*loc
, __isl_keep pet_context
*pc
)
209 tree
= pet_tree_new_expr(expr
);
210 tree
= pet_tree_set_loc(tree
, loc
);
211 return scop_from_unevaluated_tree(tree
, stmt_nr
, pc
);
214 /* Construct a pet_scop with a single statement killing the entire
216 * The location of the statement is set to "loc".
218 static struct pet_scop
*kill(__isl_take pet_loc
*loc
, struct pet_array
*array
,
219 __isl_keep pet_context
*pc
, struct pet_state
*state
)
224 isl_multi_pw_aff
*index
;
227 struct pet_scop
*scop
;
231 ctx
= isl_set_get_ctx(array
->extent
);
232 access
= isl_map_from_range(isl_set_copy(array
->extent
));
233 id
= isl_set_get_tuple_id(array
->extent
);
234 space
= isl_space_alloc(ctx
, 0, 0, 0);
235 space
= isl_space_set_tuple_id(space
, isl_dim_out
, id
);
236 index
= isl_multi_pw_aff_zero(space
);
237 expr
= pet_expr_kill_from_access_and_index(access
, index
);
238 return scop_from_expr(expr
, state
->n_stmt
++, loc
, pc
);
244 /* Construct and return a pet_array corresponding to the variable
245 * accessed by "access" by calling the extract_array callback.
247 static struct pet_array
*extract_array(__isl_keep pet_expr
*access
,
248 __isl_keep pet_context
*pc
, struct pet_state
*state
)
250 return state
->extract_array(access
, pc
, state
->user
);
253 /* Construct a pet_scop for a (single) variable declaration
254 * within the context "pc".
256 * The scop contains the variable being declared (as an array)
257 * and a statement killing the array.
259 * If the declaration comes with an initialization, then the scop
260 * also contains an assignment to the variable.
262 static struct pet_scop
*scop_from_decl(__isl_keep pet_tree
*tree
,
263 __isl_keep pet_context
*pc
, struct pet_state
*state
)
267 struct pet_array
*array
;
268 struct pet_scop
*scop_decl
, *scop
;
269 pet_expr
*lhs
, *rhs
, *pe
;
271 array
= extract_array(tree
->u
.d
.var
, pc
, state
);
274 scop_decl
= kill(pet_tree_get_loc(tree
), array
, pc
, state
);
275 scop_decl
= pet_scop_add_array(scop_decl
, array
);
277 if (tree
->type
!= pet_tree_decl_init
)
280 lhs
= pet_expr_copy(tree
->u
.d
.var
);
281 rhs
= pet_expr_copy(tree
->u
.d
.init
);
282 type_size
= pet_expr_get_type_size(lhs
);
283 pe
= pet_expr_new_binary(type_size
, pet_op_assign
, lhs
, rhs
);
284 scop
= scop_from_expr(pe
, state
->n_stmt
++, pet_tree_get_loc(tree
), pc
);
286 ctx
= pet_tree_get_ctx(tree
);
287 scop
= pet_scop_add_seq(ctx
, scop_decl
, scop
);
292 /* Does "tree" represent a kill statement?
293 * That is, is it an expression statement that "calls" __pencil_kill?
295 static int is_pencil_kill(__isl_keep pet_tree
*tree
)
302 if (tree
->type
!= pet_tree_expr
)
304 expr
= tree
->u
.e
.expr
;
305 if (pet_expr_get_type(expr
) != pet_expr_call
)
307 name
= pet_expr_call_get_name(expr
);
310 return !strcmp(name
, "__pencil_kill");
313 /* Add a kill to "scop" that kills what is accessed by
314 * the access expression "expr".
316 * Mark the access as a write prior to evaluation to avoid
317 * the access being replaced by a possible known value
318 * during the evaluation.
320 * If the access expression has any arguments (after evaluation
321 * in the context of "pc"), then we ignore it, since we cannot
322 * tell which elements are definitely killed.
324 * Otherwise, we extend the index expression to the dimension
325 * of the accessed array and intersect with the extent of the array and
326 * add a kill expression that kills these array elements is added to "scop".
328 static struct pet_scop
*scop_add_kill(struct pet_scop
*scop
,
329 __isl_take pet_expr
*expr
, __isl_take pet_loc
*loc
,
330 __isl_keep pet_context
*pc
, struct pet_state
*state
)
334 isl_multi_pw_aff
*index
;
337 struct pet_array
*array
;
338 struct pet_scop
*scop_i
;
340 expr
= pet_expr_access_set_write(expr
, 1);
341 expr
= pet_context_evaluate_expr(pc
, expr
);
344 if (expr
->n_arg
!= 0) {
349 array
= extract_array(expr
, pc
, state
);
352 index
= pet_expr_access_get_index(expr
);
354 map
= isl_map_from_multi_pw_aff(isl_multi_pw_aff_copy(index
));
355 id
= isl_map_get_tuple_id(map
, isl_dim_out
);
356 dim1
= isl_set_dim(array
->extent
, isl_dim_set
);
357 dim2
= isl_map_dim(map
, isl_dim_out
);
358 map
= isl_map_add_dims(map
, isl_dim_out
, dim1
- dim2
);
359 map
= isl_map_set_tuple_id(map
, isl_dim_out
, id
);
360 map
= isl_map_intersect_range(map
, isl_set_copy(array
->extent
));
361 pet_array_free(array
);
362 kill
= pet_expr_kill_from_access_and_index(map
, index
);
363 scop_i
= scop_from_evaluated_expr(kill
, state
->n_stmt
++, loc
, pc
);
364 scop
= pet_scop_add_par(state
->ctx
, scop
, scop_i
);
370 return pet_scop_free(scop
);
373 /* For each argument of the __pencil_kill call in "tree" that
374 * represents an access, add a kill statement to "scop" killing the accessed
377 static struct pet_scop
*scop_from_pencil_kill(__isl_keep pet_tree
*tree
,
378 __isl_keep pet_context
*pc
, struct pet_state
*state
)
381 struct pet_scop
*scop
;
384 call
= tree
->u
.e
.expr
;
386 scop
= pet_scop_empty(pet_context_get_space(pc
));
388 n
= pet_expr_get_n_arg(call
);
389 for (i
= 0; i
< n
; ++i
) {
393 arg
= pet_expr_get_arg(call
, i
);
395 return pet_scop_free(scop
);
396 if (pet_expr_get_type(arg
) != pet_expr_access
) {
400 loc
= pet_tree_get_loc(tree
);
401 scop
= scop_add_kill(scop
, arg
, loc
, pc
, state
);
407 /* Construct a pet_scop for an expression statement within the context "pc".
409 * If the expression calls __pencil_kill, then it needs to be converted
410 * into zero or more kill statements.
411 * Otherwise, a scop is extracted directly from the tree.
413 static struct pet_scop
*scop_from_tree_expr(__isl_keep pet_tree
*tree
,
414 __isl_keep pet_context
*pc
, struct pet_state
*state
)
418 is_kill
= is_pencil_kill(tree
);
422 return scop_from_pencil_kill(tree
, pc
, state
);
423 return scop_from_unevaluated_tree(pet_tree_copy(tree
),
424 state
->n_stmt
++, pc
);
427 /* Return those elements in the space of "cond" that come after
428 * (based on "sign") an element in "cond" in the final dimension.
430 static __isl_give isl_set
*after(__isl_take isl_set
*cond
, int sign
)
433 isl_map
*previous_to_this
;
436 dim
= isl_set_dim(cond
, isl_dim_set
);
437 space
= isl_space_map_from_set(isl_set_get_space(cond
));
438 previous_to_this
= isl_map_universe(space
);
439 for (i
= 0; i
+ 1 < dim
; ++i
)
440 previous_to_this
= isl_map_equate(previous_to_this
,
441 isl_dim_in
, i
, isl_dim_out
, i
);
443 previous_to_this
= isl_map_order_lt(previous_to_this
,
444 isl_dim_in
, dim
- 1, isl_dim_out
, dim
- 1);
446 previous_to_this
= isl_map_order_gt(previous_to_this
,
447 isl_dim_in
, dim
- 1, isl_dim_out
, dim
- 1);
449 cond
= isl_set_apply(cond
, previous_to_this
);
454 /* Remove those iterations of "domain" that have an earlier iteration
455 * (based on "sign") in the final dimension where "skip" is satisfied.
456 * If "apply_skip_map" is set, then "skip_map" is first applied
457 * to the embedded skip condition before removing it from the domain.
459 static __isl_give isl_set
*apply_affine_break(__isl_take isl_set
*domain
,
460 __isl_take isl_set
*skip
, int sign
,
461 int apply_skip_map
, __isl_keep isl_map
*skip_map
)
464 skip
= isl_set_apply(skip
, isl_map_copy(skip_map
));
465 skip
= isl_set_intersect(skip
, isl_set_copy(domain
));
466 return isl_set_subtract(domain
, after(skip
, sign
));
469 /* Create a single-dimensional multi-affine expression on the domain space
470 * of "pc" that is equal to the final dimension of this domain.
471 * "loop_nr" is the sequence number of the corresponding loop.
472 * If "id" is not NULL, then it is used as the output tuple name.
473 * Otherwise, the name is constructed as L_<loop_nr>.
475 static __isl_give isl_multi_aff
*map_to_last(__isl_keep pet_context
*pc
,
476 int loop_nr
, __isl_keep isl_id
*id
)
486 space
= pet_context_get_space(pc
);
487 pos
= isl_space_dim(space
, isl_dim_set
) - 1;
488 ls
= isl_local_space_from_space(space
);
489 aff
= isl_aff_var_on_domain(ls
, isl_dim_set
, pos
);
490 ma
= isl_multi_aff_from_aff(aff
);
493 label
= isl_id_copy(id
);
495 snprintf(name
, sizeof(name
), "L_%d", loop_nr
);
496 label
= isl_id_alloc(pet_context_get_ctx(pc
), name
, NULL
);
498 ma
= isl_multi_aff_set_tuple_id(ma
, isl_dim_out
, label
);
503 /* Create an affine expression that maps elements
504 * of an array "id_test" to the previous element in the final dimension
505 * (according to "inc"), provided this element belongs to "domain".
506 * That is, create the affine expression
508 * { id[outer,x] -> id[outer,x - inc] : (outer,x - inc) in domain }
510 static __isl_give isl_multi_pw_aff
*map_to_previous(__isl_take isl_id
*id_test
,
511 __isl_take isl_set
*domain
, __isl_take isl_val
*inc
)
518 isl_multi_pw_aff
*prev
;
520 pos
= isl_set_dim(domain
, isl_dim_set
) - 1;
521 space
= isl_set_get_space(domain
);
522 space
= isl_space_map_from_set(space
);
523 ma
= isl_multi_aff_identity(space
);
524 aff
= isl_multi_aff_get_aff(ma
, pos
);
525 aff
= isl_aff_add_constant_val(aff
, isl_val_neg(inc
));
526 ma
= isl_multi_aff_set_aff(ma
, pos
, aff
);
527 domain
= isl_set_preimage_multi_aff(domain
, isl_multi_aff_copy(ma
));
528 prev
= isl_multi_pw_aff_from_multi_aff(ma
);
529 pa
= isl_multi_pw_aff_get_pw_aff(prev
, pos
);
530 pa
= isl_pw_aff_intersect_domain(pa
, domain
);
531 prev
= isl_multi_pw_aff_set_pw_aff(prev
, pos
, pa
);
532 prev
= isl_multi_pw_aff_set_tuple_id(prev
, isl_dim_out
, id_test
);
537 /* Add an implication to "scop" expressing that if an element of
538 * virtual array "id_test" has value "satisfied" then all previous elements
539 * of this array (in the final dimension) also have that value.
540 * The set of previous elements is bounded by "domain".
541 * If "sign" is negative then the iterator
542 * is decreasing and we express that all subsequent array elements
543 * (but still defined previously) have the same value.
545 static struct pet_scop
*add_implication(struct pet_scop
*scop
,
546 __isl_take isl_id
*id_test
, __isl_take isl_set
*domain
, int sign
,
553 dim
= isl_set_dim(domain
, isl_dim_set
);
554 domain
= isl_set_set_tuple_id(domain
, id_test
);
555 space
= isl_space_map_from_set(isl_set_get_space(domain
));
556 map
= isl_map_universe(space
);
557 for (i
= 0; i
+ 1 < dim
; ++i
)
558 map
= isl_map_equate(map
, isl_dim_in
, i
, isl_dim_out
, i
);
560 map
= isl_map_order_ge(map
,
561 isl_dim_in
, dim
- 1, isl_dim_out
, dim
- 1);
563 map
= isl_map_order_le(map
,
564 isl_dim_in
, dim
- 1, isl_dim_out
, dim
- 1);
565 map
= isl_map_intersect_range(map
, domain
);
566 scop
= pet_scop_add_implication(scop
, map
, satisfied
);
571 /* Add a filter to "scop" that imposes that it is only executed
572 * when the variable identified by "id_test" has a zero value
573 * for all previous iterations of "domain".
575 * In particular, add a filter that imposes that the array
576 * has a zero value at the previous iteration of domain and
577 * add an implication that implies that it then has that
578 * value for all previous iterations.
580 static struct pet_scop
*scop_add_break(struct pet_scop
*scop
,
581 __isl_take isl_id
*id_test
, __isl_take isl_set
*domain
,
582 __isl_take isl_val
*inc
)
584 isl_multi_pw_aff
*prev
;
585 int sign
= isl_val_sgn(inc
);
587 prev
= map_to_previous(isl_id_copy(id_test
), isl_set_copy(domain
), inc
);
588 scop
= add_implication(scop
, id_test
, domain
, sign
, 0);
589 scop
= pet_scop_filter(scop
, prev
, 0);
594 static struct pet_scop
*scop_from_tree(__isl_keep pet_tree
*tree
,
595 __isl_keep pet_context
*pc
, struct pet_state
*state
);
597 /* Construct a pet_scop for an infinite loop around the given body
598 * within the context "pc".
599 * "loop_id" is the label on the loop or NULL if there is no such label.
601 * The domain of "pc" has already been extended with an infinite loop
605 * We extract a pet_scop for the body and then embed it in a loop with
608 * { [outer,t] -> [t] }
610 * If the body contains any break, then it is taken into
611 * account in apply_affine_break (if the skip condition is affine)
612 * or in scop_add_break (if the skip condition is not affine).
614 * Note that in case of an affine skip condition,
615 * since we are dealing with a loop without loop iterator,
616 * the skip condition cannot refer to the current loop iterator and
617 * so effectively, the effect on the iteration domain is of the form
619 * { [outer,0]; [outer,t] : t >= 1 and not skip }
621 static struct pet_scop
*scop_from_infinite_loop(__isl_keep pet_tree
*body
,
622 __isl_keep isl_id
*loop_id
, __isl_keep pet_context
*pc
,
623 struct pet_state
*state
)
629 isl_multi_aff
*sched
;
630 struct pet_scop
*scop
;
631 int has_affine_break
;
634 ctx
= pet_tree_get_ctx(body
);
635 domain
= pet_context_get_domain(pc
);
636 sched
= map_to_last(pc
, state
->n_loop
++, loop_id
);
638 scop
= scop_from_tree(body
, pc
, state
);
640 has_affine_break
= pet_scop_has_affine_skip(scop
, pet_skip_later
);
641 if (has_affine_break
)
642 skip
= pet_scop_get_affine_skip_domain(scop
, pet_skip_later
);
643 has_var_break
= pet_scop_has_var_skip(scop
, pet_skip_later
);
645 id_test
= pet_scop_get_skip_id(scop
, pet_skip_later
);
647 scop
= pet_scop_reset_skips(scop
);
648 scop
= pet_scop_embed(scop
, isl_set_copy(domain
), sched
);
649 if (has_affine_break
) {
650 domain
= apply_affine_break(domain
, skip
, 1, 0, NULL
);
651 scop
= pet_scop_intersect_domain_prefix(scop
,
652 isl_set_copy(domain
));
655 scop
= scop_add_break(scop
, id_test
, domain
, isl_val_one(ctx
));
657 isl_set_free(domain
);
662 /* Construct a pet_scop for an infinite loop, i.e., a loop of the form
667 * within the context "pc".
669 * Extend the domain of "pc" with an extra inner loop
673 * and construct the scop in scop_from_infinite_loop.
675 static struct pet_scop
*scop_from_infinite_for(__isl_keep pet_tree
*tree
,
676 __isl_keep pet_context
*pc
, struct pet_state
*state
)
678 struct pet_scop
*scop
;
680 pc
= pet_context_copy(pc
);
681 pc
= pet_context_clear_writes_in_tree(pc
, tree
->u
.l
.body
);
683 pc
= pet_context_add_infinite_loop(pc
);
685 scop
= scop_from_infinite_loop(tree
->u
.l
.body
, tree
->label
, pc
, state
);
687 pet_context_free(pc
);
692 /* Construct a pet_scop for a while loop of the form
697 * within the context "pc".
699 * The domain of "pc" has already been extended with an infinite loop
703 * Here, we add the constraints on the outer loop iterators
704 * implied by "pa" and construct the scop in scop_from_infinite_loop.
705 * Note that the intersection with these constraints
706 * may result in an empty loop.
708 static struct pet_scop
*scop_from_affine_while(__isl_keep pet_tree
*tree
,
709 __isl_take isl_pw_aff
*pa
, __isl_take pet_context
*pc
,
710 struct pet_state
*state
)
712 struct pet_scop
*scop
;
713 isl_set
*dom
, *local
;
716 valid
= isl_pw_aff_domain(isl_pw_aff_copy(pa
));
717 dom
= isl_pw_aff_non_zero_set(pa
);
718 local
= isl_set_add_dims(isl_set_copy(dom
), isl_dim_set
, 1);
719 pc
= pet_context_intersect_domain(pc
, local
);
720 scop
= scop_from_infinite_loop(tree
->u
.l
.body
, tree
->label
, pc
, state
);
721 scop
= pet_scop_restrict(scop
, dom
);
722 scop
= pet_scop_restrict_context(scop
, valid
);
724 pet_context_free(pc
);
728 /* Construct a scop for a while, given the scops for the condition
729 * and the body, the filter identifier and the iteration domain of
732 * In particular, the scop for the condition is filtered to depend
733 * on "id_test" evaluating to true for all previous iterations
734 * of the loop, while the scop for the body is filtered to depend
735 * on "id_test" evaluating to true for all iterations up to the
737 * The actual filter only imposes that this virtual array has
738 * value one on the previous or the current iteration.
739 * The fact that this condition also applies to the previous
740 * iterations is enforced by an implication.
742 * These filtered scops are then combined into a single scop,
743 * with the condition scop scheduled before the body scop.
745 * "sign" is positive if the iterator increases and negative
748 static struct pet_scop
*scop_add_while(struct pet_scop
*scop_cond
,
749 struct pet_scop
*scop_body
, __isl_take isl_id
*id_test
,
750 __isl_take isl_set
*domain
, __isl_take isl_val
*inc
)
752 isl_ctx
*ctx
= isl_set_get_ctx(domain
);
754 isl_multi_pw_aff
*test_index
;
755 isl_multi_pw_aff
*prev
;
756 int sign
= isl_val_sgn(inc
);
757 struct pet_scop
*scop
;
759 prev
= map_to_previous(isl_id_copy(id_test
), isl_set_copy(domain
), inc
);
760 scop_cond
= pet_scop_filter(scop_cond
, prev
, 1);
762 space
= isl_space_map_from_set(isl_set_get_space(domain
));
763 test_index
= isl_multi_pw_aff_identity(space
);
764 test_index
= isl_multi_pw_aff_set_tuple_id(test_index
, isl_dim_out
,
765 isl_id_copy(id_test
));
766 scop_body
= pet_scop_filter(scop_body
, test_index
, 1);
768 scop
= pet_scop_add_seq(ctx
, scop_cond
, scop_body
);
769 scop
= add_implication(scop
, id_test
, domain
, sign
, 1);
774 /* Create a pet_scop with a single statement with name S_<stmt_nr>,
775 * evaluating "cond" and writing the result to a virtual scalar,
776 * as expressed by "index".
777 * The expression "cond" has not yet been evaluated in the context of "pc".
778 * Do so within the context "pc".
779 * The location of the statement is set to "loc".
781 static struct pet_scop
*scop_from_non_affine_condition(
782 __isl_take pet_expr
*cond
, int stmt_nr
,
783 __isl_take isl_multi_pw_aff
*index
,
784 __isl_take pet_loc
*loc
, __isl_keep pet_context
*pc
)
786 pet_expr
*expr
, *write
;
788 cond
= pet_context_evaluate_expr(pc
, cond
);
790 write
= pet_expr_from_index(index
);
791 write
= pet_expr_access_set_write(write
, 1);
792 write
= pet_expr_access_set_read(write
, 0);
793 expr
= pet_expr_new_binary(1, pet_op_assign
, write
, cond
);
795 return scop_from_evaluated_expr(expr
, stmt_nr
, loc
, pc
);
798 /* Given that "scop" has an affine skip condition of type pet_skip_now,
799 * apply this skip condition to the domain of "pc".
800 * That is, remove the elements satisfying the skip condition from
801 * the domain of "pc".
803 static __isl_give pet_context
*apply_affine_continue(__isl_take pet_context
*pc
,
804 struct pet_scop
*scop
)
806 isl_set
*domain
, *skip
;
808 skip
= pet_scop_get_affine_skip_domain(scop
, pet_skip_now
);
809 domain
= pet_context_get_domain(pc
);
810 domain
= isl_set_subtract(domain
, skip
);
811 pc
= pet_context_intersect_domain(pc
, domain
);
816 /* Add a scop for evaluating the loop increment "inc" at the end
817 * of a loop body "scop" within the context "pc".
819 * The skip conditions resulting from continue statements inside
820 * the body do not apply to "inc", but those resulting from break
821 * statements do need to get applied.
823 static struct pet_scop
*scop_add_inc(struct pet_scop
*scop
,
824 __isl_take pet_expr
*inc
, __isl_take pet_loc
*loc
,
825 __isl_keep pet_context
*pc
, struct pet_state
*state
)
827 struct pet_scop
*scop_inc
;
829 pc
= pet_context_copy(pc
);
831 if (pet_scop_has_skip(scop
, pet_skip_later
)) {
832 isl_multi_pw_aff
*skip
;
833 skip
= pet_scop_get_skip(scop
, pet_skip_later
);
834 scop
= pet_scop_set_skip(scop
, pet_skip_now
, skip
);
835 if (pet_scop_has_affine_skip(scop
, pet_skip_now
))
836 pc
= apply_affine_continue(pc
, scop
);
838 pet_scop_reset_skip(scop
, pet_skip_now
);
839 scop_inc
= scop_from_expr(inc
, state
->n_stmt
++, loc
, pc
);
840 scop
= pet_scop_add_seq(state
->ctx
, scop
, scop_inc
);
842 pet_context_free(pc
);
847 /* Construct a generic while scop, with iteration domain
848 * { [t] : t >= 0 } around the scop for "tree_body" within the context "pc".
849 * "loop_id" is the label on the loop or NULL if there is no such label.
850 * The domain of "pc" has already been extended with this infinite loop
854 * The scop consists of two parts,
855 * one for evaluating the condition "cond" and one for the body.
856 * If "expr_inc" is not NULL, then a scop for evaluating this expression
857 * is added at the end of the body,
858 * after replacing any skip conditions resulting from continue statements
859 * by the skip conditions resulting from break statements (if any).
861 * The schedules are combined as a sequence to reflect that the condition is
862 * evaluated before the body is executed and the body is filtered to depend
863 * on the result of the condition evaluating to true on all iterations
864 * up to the current iteration, while the evaluation of the condition itself
865 * is filtered to depend on the result of the condition evaluating to true
866 * on all previous iterations.
867 * The context of the scop representing the body is dropped
868 * because we don't know how many times the body will be executed,
871 * If the body contains any break, then it is taken into
872 * account in apply_affine_break (if the skip condition is affine)
873 * or in scop_add_break (if the skip condition is not affine).
875 * Note that in case of an affine skip condition,
876 * since we are dealing with a loop without loop iterator,
877 * the skip condition cannot refer to the current loop iterator and
878 * so effectively, the effect on the iteration domain is of the form
880 * { [outer,0]; [outer,t] : t >= 1 and not skip }
882 static struct pet_scop
*scop_from_non_affine_while(__isl_take pet_expr
*cond
,
883 __isl_take pet_loc
*loc
, __isl_keep pet_tree
*tree_body
,
884 __isl_keep isl_id
*loop_id
, __isl_take pet_expr
*expr_inc
,
885 __isl_take pet_context
*pc
, struct pet_state
*state
)
888 isl_id
*id_test
, *id_break_test
;
890 isl_multi_pw_aff
*test_index
;
893 isl_multi_aff
*sched
;
894 struct pet_scop
*scop
, *scop_body
;
895 int has_affine_break
;
899 space
= pet_context_get_space(pc
);
900 test_index
= pet_create_test_index(space
, state
->n_test
++);
901 scop
= scop_from_non_affine_condition(cond
, state
->n_stmt
++,
902 isl_multi_pw_aff_copy(test_index
),
903 pet_loc_copy(loc
), pc
);
904 id_test
= isl_multi_pw_aff_get_tuple_id(test_index
, isl_dim_out
);
905 domain
= pet_context_get_domain(pc
);
906 scop
= pet_scop_add_boolean_array(scop
, isl_set_copy(domain
),
907 test_index
, state
->int_size
);
909 sched
= map_to_last(pc
, state
->n_loop
++, loop_id
);
911 scop_body
= scop_from_tree(tree_body
, pc
, state
);
913 has_affine_break
= pet_scop_has_affine_skip(scop_body
, pet_skip_later
);
914 if (has_affine_break
)
915 skip
= pet_scop_get_affine_skip_domain(scop_body
,
917 has_var_break
= pet_scop_has_var_skip(scop_body
, pet_skip_later
);
919 id_break_test
= pet_scop_get_skip_id(scop_body
, pet_skip_later
);
921 scop_body
= pet_scop_reset_context(scop_body
);
923 scop_body
= scop_add_inc(scop_body
, expr_inc
, loc
, pc
, state
);
926 scop_body
= pet_scop_reset_skips(scop_body
);
928 if (has_affine_break
) {
929 domain
= apply_affine_break(domain
, skip
, 1, 0, NULL
);
930 scop
= pet_scop_intersect_domain_prefix(scop
,
931 isl_set_copy(domain
));
932 scop_body
= pet_scop_intersect_domain_prefix(scop_body
,
933 isl_set_copy(domain
));
936 scop
= scop_add_break(scop
, isl_id_copy(id_break_test
),
937 isl_set_copy(domain
), isl_val_one(ctx
));
938 scop_body
= scop_add_break(scop_body
, id_break_test
,
939 isl_set_copy(domain
), isl_val_one(ctx
));
941 scop
= scop_add_while(scop
, scop_body
, id_test
, isl_set_copy(domain
),
944 scop
= pet_scop_embed(scop
, domain
, sched
);
946 pet_context_free(pc
);
950 /* Check if the while loop is of the form
952 * while (affine expression)
955 * If so, call scop_from_affine_while to construct a scop.
957 * Otherwise, pass control to scop_from_non_affine_while.
959 * "pc" is the context in which the affine expressions in the scop are created.
960 * The domain of "pc" is extended with an infinite loop
964 * before passing control to scop_from_affine_while or
965 * scop_from_non_affine_while.
967 static struct pet_scop
*scop_from_while(__isl_keep pet_tree
*tree
,
968 __isl_keep pet_context
*pc
, struct pet_state
*state
)
976 pc
= pet_context_copy(pc
);
977 pc
= pet_context_clear_writes_in_tree(pc
, tree
->u
.l
.body
);
979 cond_expr
= pet_expr_copy(tree
->u
.l
.cond
);
980 cond_expr
= pet_context_evaluate_expr(pc
, cond_expr
);
981 pa
= pet_expr_extract_affine_condition(cond_expr
, pc
);
982 pet_expr_free(cond_expr
);
984 pc
= pet_context_add_infinite_loop(pc
);
989 if (!isl_pw_aff_involves_nan(pa
))
990 return scop_from_affine_while(tree
, pa
, pc
, state
);
992 return scop_from_non_affine_while(pet_expr_copy(tree
->u
.l
.cond
),
993 pet_tree_get_loc(tree
), tree
->u
.l
.body
,
994 tree
->label
, NULL
, pc
, state
);
996 pet_context_free(pc
);
1000 /* Check whether "cond" expresses a simple loop bound
1001 * on the final set dimension.
1002 * In particular, if "up" is set then "cond" should contain only
1003 * upper bounds on the final set dimension.
1004 * Otherwise, it should contain only lower bounds.
1006 static int is_simple_bound(__isl_keep isl_set
*cond
, __isl_keep isl_val
*inc
)
1010 pos
= isl_set_dim(cond
, isl_dim_set
) - 1;
1011 if (isl_val_is_pos(inc
))
1012 return !isl_set_dim_has_any_lower_bound(cond
, isl_dim_set
, pos
);
1014 return !isl_set_dim_has_any_upper_bound(cond
, isl_dim_set
, pos
);
1017 /* Extend a condition on a given iteration of a loop to one that
1018 * imposes the same condition on all previous iterations.
1019 * "domain" expresses the lower [upper] bound on the iterations
1020 * when inc is positive [negative] in its final dimension.
1022 * In particular, we construct the condition (when inc is positive)
1024 * forall i' : (domain(i') and i' <= i) => cond(i')
1026 * (where "<=" applies to the final dimension)
1027 * which is equivalent to
1029 * not exists i' : domain(i') and i' <= i and not cond(i')
1031 * We construct this set by subtracting the satisfying cond from domain,
1034 * { [i'] -> [i] : i' <= i }
1036 * and then subtracting the result from domain again.
1038 static __isl_give isl_set
*valid_for_each_iteration(__isl_take isl_set
*cond
,
1039 __isl_take isl_set
*domain
, __isl_take isl_val
*inc
)
1042 isl_map
*previous_to_this
;
1045 dim
= isl_set_dim(cond
, isl_dim_set
);
1046 space
= isl_space_map_from_set(isl_set_get_space(cond
));
1047 previous_to_this
= isl_map_universe(space
);
1048 for (i
= 0; i
+ 1 < dim
; ++i
)
1049 previous_to_this
= isl_map_equate(previous_to_this
,
1050 isl_dim_in
, i
, isl_dim_out
, i
);
1051 if (isl_val_is_pos(inc
))
1052 previous_to_this
= isl_map_order_le(previous_to_this
,
1053 isl_dim_in
, dim
- 1, isl_dim_out
, dim
- 1);
1055 previous_to_this
= isl_map_order_ge(previous_to_this
,
1056 isl_dim_in
, dim
- 1, isl_dim_out
, dim
- 1);
1058 cond
= isl_set_subtract(isl_set_copy(domain
), cond
);
1059 cond
= isl_set_apply(cond
, previous_to_this
);
1060 cond
= isl_set_subtract(domain
, cond
);
1067 /* Given an initial value of the form
1069 * { [outer,i] -> init(outer) }
1071 * construct a domain of the form
1073 * { [outer,i] : exists a: i = init(outer) + a * inc and a >= 0 }
1075 static __isl_give isl_set
*strided_domain(__isl_take isl_pw_aff
*init
,
1076 __isl_take isl_val
*inc
)
1081 isl_local_space
*ls
;
1084 dim
= isl_pw_aff_dim(init
, isl_dim_in
);
1086 init
= isl_pw_aff_add_dims(init
, isl_dim_in
, 1);
1087 space
= isl_pw_aff_get_domain_space(init
);
1088 ls
= isl_local_space_from_space(space
);
1089 aff
= isl_aff_zero_on_domain(isl_local_space_copy(ls
));
1090 aff
= isl_aff_add_coefficient_val(aff
, isl_dim_in
, dim
, inc
);
1091 init
= isl_pw_aff_add(init
, isl_pw_aff_from_aff(aff
));
1093 aff
= isl_aff_var_on_domain(ls
, isl_dim_set
, dim
- 1);
1094 set
= isl_pw_aff_eq_set(isl_pw_aff_from_aff(aff
), init
);
1096 set
= isl_set_lower_bound_si(set
, isl_dim_set
, dim
, 0);
1097 set
= isl_set_project_out(set
, isl_dim_set
, dim
, 1);
1102 /* Assuming "cond" represents a bound on a loop where the loop
1103 * iterator "iv" is incremented (or decremented) by one, check if wrapping
1106 * Under the given assumptions, wrapping is only possible if "cond" allows
1107 * for the last value before wrapping, i.e., 2^width - 1 in case of an
1108 * increasing iterator and 0 in case of a decreasing iterator.
1110 static int can_wrap(__isl_keep isl_set
*cond
, __isl_keep pet_expr
*iv
,
1111 __isl_keep isl_val
*inc
)
1118 test
= isl_set_copy(cond
);
1120 ctx
= isl_set_get_ctx(test
);
1121 if (isl_val_is_neg(inc
))
1122 limit
= isl_val_zero(ctx
);
1124 limit
= isl_val_int_from_ui(ctx
, pet_expr_get_type_size(iv
));
1125 limit
= isl_val_2exp(limit
);
1126 limit
= isl_val_sub_ui(limit
, 1);
1129 test
= isl_set_fix_val(cond
, isl_dim_set
, 0, limit
);
1130 cw
= !isl_set_is_empty(test
);
1140 * construct the following affine expression on this space
1142 * { [outer, v] -> [outer, v mod 2^width] }
1144 * where width is the number of bits used to represent the values
1145 * of the unsigned variable "iv".
1147 static __isl_give isl_multi_aff
*compute_wrapping(__isl_take isl_space
*space
,
1148 __isl_keep pet_expr
*iv
)
1154 dim
= isl_space_dim(space
, isl_dim_set
);
1156 space
= isl_space_map_from_set(space
);
1157 ma
= isl_multi_aff_identity(space
);
1159 aff
= isl_multi_aff_get_aff(ma
, dim
- 1);
1160 aff
= pet_wrap_aff(aff
, pet_expr_get_type_size(iv
));
1161 ma
= isl_multi_aff_set_aff(ma
, dim
- 1, aff
);
1166 /* Given two sets in the space
1170 * where l represents the outer loop iterators, compute the set
1171 * of values of l that ensure that "set1" is a subset of "set2".
1173 * set1 is a subset of set2 if
1175 * forall i: set1(l,i) => set2(l,i)
1179 * not exists i: set1(l,i) and not set2(l,i)
1183 * not exists i: (set1 \ set2)(l,i)
1185 static __isl_give isl_set
*enforce_subset(__isl_take isl_set
*set1
,
1186 __isl_take isl_set
*set2
)
1190 pos
= isl_set_dim(set1
, isl_dim_set
) - 1;
1191 set1
= isl_set_subtract(set1
, set2
);
1192 set1
= isl_set_eliminate(set1
, isl_dim_set
, pos
, 1);
1193 return isl_set_complement(set1
);
1196 /* Compute the set of outer iterator values for which "cond" holds
1197 * on the next iteration of the inner loop for each element of "dom".
1199 * We first construct mapping { [l,i] -> [l,i + inc] } (where l refers
1200 * to the outer loop iterators), plug that into "cond"
1201 * and then compute the set of outer iterators for which "dom" is a subset
1204 static __isl_give isl_set
*valid_on_next(__isl_take isl_set
*cond
,
1205 __isl_take isl_set
*dom
, __isl_take isl_val
*inc
)
1212 pos
= isl_set_dim(dom
, isl_dim_set
) - 1;
1213 space
= isl_set_get_space(dom
);
1214 space
= isl_space_map_from_set(space
);
1215 ma
= isl_multi_aff_identity(space
);
1216 aff
= isl_multi_aff_get_aff(ma
, pos
);
1217 aff
= isl_aff_add_constant_val(aff
, inc
);
1218 ma
= isl_multi_aff_set_aff(ma
, pos
, aff
);
1219 cond
= isl_set_preimage_multi_aff(cond
, ma
);
1221 return enforce_subset(dom
, cond
);
1224 /* Construct a pet_scop for the initialization of the iterator
1225 * of the for loop "tree" within the context "pc" (i.e., the context
1228 static __isl_give pet_scop
*scop_from_for_init(__isl_keep pet_tree
*tree
,
1229 __isl_keep pet_context
*pc
, struct pet_state
*state
)
1231 pet_expr
*expr_iv
, *init
;
1234 expr_iv
= pet_expr_copy(tree
->u
.l
.iv
);
1235 type_size
= pet_expr_get_type_size(expr_iv
);
1236 init
= pet_expr_copy(tree
->u
.l
.init
);
1237 init
= pet_expr_new_binary(type_size
, pet_op_assign
, expr_iv
, init
);
1238 return scop_from_expr(init
, state
->n_stmt
++,
1239 pet_tree_get_loc(tree
), pc
);
1242 /* Extract the for loop "tree" as a while loop within the context "pc_init".
1243 * In particular, "pc_init" represents the context of the loop,
1244 * whereas "pc" represents the context of the body of the loop and
1245 * has already had its domain extended with an infinite loop
1249 * The for loop has the form
1251 * for (iv = init; cond; iv += inc)
1262 * except that the skips resulting from any continue statements
1263 * in body do not apply to the increment, but are replaced by the skips
1264 * resulting from break statements.
1266 * If the loop iterator is declared in the for loop, then it is killed before
1267 * and after the loop.
1269 static struct pet_scop
*scop_from_non_affine_for(__isl_keep pet_tree
*tree
,
1270 __isl_keep pet_context
*pc_init
, __isl_take pet_context
*pc
,
1271 struct pet_state
*state
)
1275 pet_expr
*expr_iv
, *inc
;
1276 struct pet_scop
*scop_init
, *scop
;
1278 struct pet_array
*array
;
1279 struct pet_scop
*scop_kill
;
1281 iv
= pet_expr_access_get_id(tree
->u
.l
.iv
);
1282 pc
= pet_context_clear_value(pc
, iv
);
1284 declared
= tree
->u
.l
.declared
;
1286 scop_init
= scop_from_for_init(tree
, pc_init
, state
);
1288 expr_iv
= pet_expr_copy(tree
->u
.l
.iv
);
1289 type_size
= pet_expr_get_type_size(expr_iv
);
1290 inc
= pet_expr_copy(tree
->u
.l
.inc
);
1291 inc
= pet_expr_new_binary(type_size
, pet_op_add_assign
, expr_iv
, inc
);
1293 scop
= scop_from_non_affine_while(pet_expr_copy(tree
->u
.l
.cond
),
1294 pet_tree_get_loc(tree
), tree
->u
.l
.body
, tree
->label
,
1295 inc
, pet_context_copy(pc
), state
);
1297 scop
= pet_scop_add_seq(state
->ctx
, scop_init
, scop
);
1299 pet_context_free(pc
);
1304 array
= extract_array(tree
->u
.l
.iv
, pc_init
, state
);
1306 array
->declared
= 1;
1307 scop_kill
= kill(pet_tree_get_loc(tree
), array
, pc_init
, state
);
1308 scop
= pet_scop_add_seq(state
->ctx
, scop_kill
, scop
);
1309 scop_kill
= kill(pet_tree_get_loc(tree
), array
, pc_init
, state
);
1310 scop_kill
= pet_scop_add_array(scop_kill
, array
);
1311 scop
= pet_scop_add_seq(state
->ctx
, scop
, scop_kill
);
1316 /* Given an access expression "expr", is the variable accessed by
1317 * "expr" assigned anywhere inside "tree"?
1319 static int is_assigned(__isl_keep pet_expr
*expr
, __isl_keep pet_tree
*tree
)
1324 id
= pet_expr_access_get_id(expr
);
1325 assigned
= pet_tree_writes(tree
, id
);
1331 /* Are all nested access parameters in "pa" allowed given "tree".
1332 * In particular, is none of them written by anywhere inside "tree".
1334 * If "tree" has any continue or break nodes in the current loop level,
1335 * then no nested access parameters are allowed.
1336 * In particular, if there is any nested access in a guard
1337 * for a piece of code containing a "continue", then we want to introduce
1338 * a separate statement for evaluating this guard so that we can express
1339 * that the result is false for all previous iterations.
1341 static int is_nested_allowed(__isl_keep isl_pw_aff
*pa
,
1342 __isl_keep pet_tree
*tree
)
1349 if (!pet_nested_any_in_pw_aff(pa
))
1352 if (pet_tree_has_continue_or_break(tree
))
1355 nparam
= isl_pw_aff_dim(pa
, isl_dim_param
);
1356 for (i
= 0; i
< nparam
; ++i
) {
1357 isl_id
*id
= isl_pw_aff_get_dim_id(pa
, isl_dim_param
, i
);
1361 if (!pet_nested_in_id(id
)) {
1366 expr
= pet_nested_extract_expr(id
);
1367 allowed
= pet_expr_get_type(expr
) == pet_expr_access
&&
1368 !is_assigned(expr
, tree
);
1370 pet_expr_free(expr
);
1380 /* Internal data structure for collect_local.
1381 * "pc" and "state" are needed to extract pet_arrays for the local variables.
1382 * "local" collects the results.
1384 struct pet_tree_collect_local_data
{
1386 struct pet_state
*state
;
1387 isl_union_set
*local
;
1390 /* Add the variable accessed by "var" to data->local.
1391 * We extract a representation of the variable from
1392 * the pet_array constructed using extract_array
1393 * to ensure consistency with the rest of the scop.
1395 static int add_local(struct pet_tree_collect_local_data
*data
,
1396 __isl_keep pet_expr
*var
)
1398 struct pet_array
*array
;
1401 array
= extract_array(var
, data
->pc
, data
->state
);
1405 universe
= isl_set_universe(isl_set_get_space(array
->extent
));
1406 data
->local
= isl_union_set_add_set(data
->local
, universe
);
1407 pet_array_free(array
);
1412 /* If the node "tree" declares a variable, then add it to
1415 static int extract_local_var(__isl_keep pet_tree
*tree
, void *user
)
1417 enum pet_tree_type type
;
1418 struct pet_tree_collect_local_data
*data
= user
;
1420 type
= pet_tree_get_type(tree
);
1421 if (type
== pet_tree_decl
|| type
== pet_tree_decl_init
)
1422 return add_local(data
, tree
->u
.d
.var
);
1427 /* If the node "tree" is a for loop that declares its induction variable,
1428 * then add it this induction variable to data->local.
1430 static int extract_local_iterator(__isl_keep pet_tree
*tree
, void *user
)
1432 struct pet_tree_collect_local_data
*data
= user
;
1434 if (pet_tree_get_type(tree
) == pet_tree_for
&& tree
->u
.l
.declared
)
1435 return add_local(data
, tree
->u
.l
.iv
);
1440 /* Collect and return all local variables of the for loop represented
1441 * by "tree", with "scop" the corresponding pet_scop.
1442 * "pc" and "state" are needed to extract pet_arrays for the local variables.
1444 * We collect not only the variables that are declared inside "tree",
1445 * but also the loop iterators that are declared anywhere inside
1446 * any possible macro statements in "scop".
1447 * The latter also appear as declared variable in the scop,
1448 * whereas other declared loop iterators only appear implicitly
1449 * in the iteration domains.
1451 static __isl_give isl_union_set
*collect_local(struct pet_scop
*scop
,
1452 __isl_keep pet_tree
*tree
, __isl_keep pet_context
*pc
,
1453 struct pet_state
*state
)
1457 struct pet_tree_collect_local_data data
= { pc
, state
};
1459 ctx
= pet_tree_get_ctx(tree
);
1460 data
.local
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
1462 if (pet_tree_foreach_sub_tree(tree
, &extract_local_var
, &data
) < 0)
1463 return isl_union_set_free(data
.local
);
1465 for (i
= 0; i
< scop
->n_stmt
; ++i
) {
1466 pet_tree
*body
= scop
->stmts
[i
]->body
;
1467 if (pet_tree_foreach_sub_tree(body
, &extract_local_iterator
,
1469 return isl_union_set_free(data
.local
);
1475 /* Add an independence to "scop" if the for node "tree" was marked
1477 * "domain" is the set of loop iterators, with the current for loop
1478 * innermost. If "sign" is positive, then the inner iterator increases.
1479 * Otherwise it decreases.
1480 * "pc" and "state" are needed to extract pet_arrays for the local variables.
1482 * If the tree was marked, then collect all local variables and
1483 * add an independence.
1485 static struct pet_scop
*set_independence(struct pet_scop
*scop
,
1486 __isl_keep pet_tree
*tree
, __isl_keep isl_set
*domain
, int sign
,
1487 __isl_keep pet_context
*pc
, struct pet_state
*state
)
1489 isl_union_set
*local
;
1491 if (!tree
->u
.l
.independent
)
1494 local
= collect_local(scop
, tree
, pc
, state
);
1495 scop
= pet_scop_set_independent(scop
, domain
, local
, sign
);
1500 /* Add a scop for assigning to the variable corresponding to the loop
1501 * iterator the result of adding the increment to the loop iterator
1502 * at the end of a loop body "scop" within the context "pc".
1503 * "tree" represents the for loop.
1505 * The increment is of the form
1509 * Note that "iv" on the right hand side will be evaluated in terms
1510 * of the (possibly virtual) loop iterator, i.e., the inner dimension
1511 * of the domain, while "iv" on the left hand side will not be evaluated
1512 * (because it is a write) and will continue to refer to the original
1515 static __isl_give pet_scop
*add_iterator_assignment(__isl_take pet_scop
*scop
,
1516 __isl_keep pet_tree
*tree
, __isl_keep pet_context
*pc
,
1517 struct pet_state
*state
)
1520 pet_expr
*expr
, *iv
, *inc
;
1522 iv
= pet_expr_copy(tree
->u
.l
.iv
);
1523 type_size
= pet_expr_get_type_size(iv
);
1524 iv
= pet_expr_access_set_write(iv
, 0);
1525 iv
= pet_expr_access_set_read(iv
, 1);
1526 inc
= pet_expr_copy(tree
->u
.l
.inc
);
1527 expr
= pet_expr_new_binary(type_size
, pet_op_add
, iv
, inc
);
1528 iv
= pet_expr_copy(tree
->u
.l
.iv
);
1529 expr
= pet_expr_new_binary(type_size
, pet_op_assign
, iv
, expr
);
1531 scop
= scop_add_inc(scop
, expr
, pet_tree_get_loc(tree
), pc
, state
);
1536 /* Construct a pet_scop for a for tree with static affine initialization
1537 * and constant increment within the context "pc".
1538 * The domain of "pc" has already been extended with an (at this point
1539 * unbounded) inner loop iterator corresponding to the current for loop.
1541 * The condition is allowed to contain nested accesses, provided
1542 * they are not being written to inside the body of the loop.
1543 * Otherwise, or if the condition is otherwise non-affine, the for loop is
1544 * essentially treated as a while loop, with iteration domain
1545 * { [l,i] : i >= init }, where l refers to the outer loop iterators.
1547 * We extract a pet_scop for the body after intersecting the domain of "pc"
1549 * { [l,i] : i >= init and condition' }
1553 * { [l,i] : i <= init and condition' }
1555 * Where condition' is equal to condition if the latter is
1556 * a simple upper [lower] bound and a condition that is extended
1557 * to apply to all previous iterations otherwise.
1558 * Afterwards, the schedule of the pet_scop is extended with
1566 * If the condition is non-affine, then we drop the condition from the
1567 * iteration domain and instead create a separate statement
1568 * for evaluating the condition. The body is then filtered to depend
1569 * on the result of the condition evaluating to true on all iterations
1570 * up to the current iteration, while the evaluation the condition itself
1571 * is filtered to depend on the result of the condition evaluating to true
1572 * on all previous iterations.
1573 * The context of the scop representing the body is dropped
1574 * because we don't know how many times the body will be executed,
1577 * If the stride of the loop is not 1, then "i >= init" is replaced by
1579 * (exists a: i = init + stride * a and a >= 0)
1581 * If the loop iterator i is unsigned, then wrapping may occur.
1582 * We therefore use a virtual iterator instead that does not wrap.
1583 * However, the condition in the code applies
1584 * to the wrapped value, so we need to change condition(l,i)
1585 * into condition([l,i % 2^width]). Similarly, we replace all accesses
1586 * to the original iterator by the wrapping of the virtual iterator.
1587 * Note that there may be no need to perform this final wrapping
1588 * if the loop condition (after wrapping) satisfies certain conditions.
1589 * However, the is_simple_bound condition is not enough since it doesn't
1590 * check if there even is an upper bound.
1592 * Wrapping on unsigned iterators can be avoided entirely if
1593 * the loop condition is simple, the loop iterator is incremented
1594 * [decremented] by one and the last value before wrapping cannot
1595 * possibly satisfy the loop condition.
1597 * Valid outer iterators for a for loop are those for which the initial
1598 * value itself, the increment on each domain iteration and
1599 * the condition on both the initial value and
1600 * the result of incrementing the iterator for each iteration of the domain
1602 * If the loop condition is non-affine, then we only consider validity
1603 * of the initial value.
1605 * If the loop iterator was not declared inside the loop header,
1606 * then the variable corresponding to this loop iterator is assigned
1607 * the result of adding the increment at the end of the loop body.
1608 * The assignment of the initial value is taken care of by
1609 * scop_from_affine_for_init.
1611 * If the body contains any break, then we keep track of it in "skip"
1612 * (if the skip condition is affine) or it is handled in scop_add_break
1613 * (if the skip condition is not affine).
1614 * Note that the affine break condition needs to be considered with
1615 * respect to previous iterations in the virtual domain (if any).
1617 static struct pet_scop
*scop_from_affine_for(__isl_keep pet_tree
*tree
,
1618 __isl_take isl_pw_aff
*init_val
, __isl_take isl_pw_aff
*pa_inc
,
1619 __isl_take isl_val
*inc
, __isl_take pet_context
*pc
,
1620 struct pet_state
*state
)
1623 isl_multi_aff
*sched
;
1624 isl_set
*cond
= NULL
;
1625 isl_set
*skip
= NULL
;
1626 isl_id
*id_test
= NULL
, *id_break_test
;
1627 struct pet_scop
*scop
, *scop_cond
= NULL
;
1634 int has_affine_break
;
1636 isl_map
*rev_wrap
= NULL
;
1637 isl_map
*init_val_map
;
1639 isl_set
*valid_init
;
1640 isl_set
*valid_cond
;
1641 isl_set
*valid_cond_init
;
1642 isl_set
*valid_cond_next
;
1644 pet_expr
*cond_expr
;
1645 pet_context
*pc_nested
;
1647 pos
= pet_context_dim(pc
) - 1;
1649 domain
= pet_context_get_domain(pc
);
1650 cond_expr
= pet_expr_copy(tree
->u
.l
.cond
);
1651 cond_expr
= pet_context_evaluate_expr(pc
, cond_expr
);
1652 pc_nested
= pet_context_copy(pc
);
1653 pc_nested
= pet_context_set_allow_nested(pc_nested
, 1);
1654 pa
= pet_expr_extract_affine_condition(cond_expr
, pc_nested
);
1655 pet_context_free(pc_nested
);
1656 pet_expr_free(cond_expr
);
1658 valid_inc
= isl_pw_aff_domain(pa_inc
);
1660 is_unsigned
= pet_expr_get_type_size(tree
->u
.l
.iv
) > 0;
1662 is_non_affine
= isl_pw_aff_involves_nan(pa
) ||
1663 !is_nested_allowed(pa
, tree
->u
.l
.body
);
1665 pa
= isl_pw_aff_free(pa
);
1667 valid_cond
= isl_pw_aff_domain(isl_pw_aff_copy(pa
));
1668 cond
= isl_pw_aff_non_zero_set(pa
);
1670 cond
= isl_set_universe(isl_set_get_space(domain
));
1672 valid_cond
= isl_set_coalesce(valid_cond
);
1673 is_one
= isl_val_is_one(inc
) || isl_val_is_negone(inc
);
1674 is_virtual
= is_unsigned
&&
1675 (!is_one
|| can_wrap(cond
, tree
->u
.l
.iv
, inc
));
1677 init_val_map
= isl_map_from_pw_aff(isl_pw_aff_copy(init_val
));
1678 init_val_map
= isl_map_equate(init_val_map
, isl_dim_in
, pos
,
1680 valid_cond_init
= enforce_subset(isl_map_domain(init_val_map
),
1681 isl_set_copy(valid_cond
));
1682 if (is_one
&& !is_virtual
) {
1685 isl_pw_aff_free(init_val
);
1686 pa
= pet_expr_extract_comparison(
1687 isl_val_is_pos(inc
) ? pet_op_ge
: pet_op_le
,
1688 tree
->u
.l
.iv
, tree
->u
.l
.init
, pc
);
1689 valid_init
= isl_pw_aff_domain(isl_pw_aff_copy(pa
));
1690 valid_init
= isl_set_eliminate(valid_init
, isl_dim_set
,
1691 isl_set_dim(domain
, isl_dim_set
) - 1, 1);
1692 cond
= isl_pw_aff_non_zero_set(pa
);
1693 domain
= isl_set_intersect(domain
, cond
);
1697 valid_init
= isl_pw_aff_domain(isl_pw_aff_copy(init_val
));
1698 strided
= strided_domain(init_val
, isl_val_copy(inc
));
1699 domain
= isl_set_intersect(domain
, strided
);
1703 isl_multi_aff
*wrap
;
1704 wrap
= compute_wrapping(isl_set_get_space(cond
), tree
->u
.l
.iv
);
1705 pc
= pet_context_preimage_domain(pc
, wrap
);
1706 rev_wrap
= isl_map_from_multi_aff(wrap
);
1707 rev_wrap
= isl_map_reverse(rev_wrap
);
1708 cond
= isl_set_apply(cond
, isl_map_copy(rev_wrap
));
1709 valid_cond
= isl_set_apply(valid_cond
, isl_map_copy(rev_wrap
));
1710 valid_inc
= isl_set_apply(valid_inc
, isl_map_copy(rev_wrap
));
1712 is_simple
= is_simple_bound(cond
, inc
);
1714 cond
= isl_set_gist(cond
, isl_set_copy(domain
));
1715 is_simple
= is_simple_bound(cond
, inc
);
1718 cond
= valid_for_each_iteration(cond
,
1719 isl_set_copy(domain
), isl_val_copy(inc
));
1720 cond
= isl_set_align_params(cond
, isl_set_get_space(domain
));
1721 domain
= isl_set_intersect(domain
, cond
);
1722 sched
= map_to_last(pc
, state
->n_loop
++, tree
->label
);
1723 if (isl_val_is_neg(inc
))
1724 sched
= isl_multi_aff_neg(sched
);
1726 valid_cond_next
= valid_on_next(valid_cond
, isl_set_copy(domain
),
1728 valid_inc
= enforce_subset(isl_set_copy(domain
), valid_inc
);
1730 pc
= pet_context_intersect_domain(pc
, isl_set_copy(domain
));
1732 if (is_non_affine
) {
1734 isl_multi_pw_aff
*test_index
;
1735 space
= isl_set_get_space(domain
);
1736 test_index
= pet_create_test_index(space
, state
->n_test
++);
1737 scop_cond
= scop_from_non_affine_condition(
1738 pet_expr_copy(tree
->u
.l
.cond
), state
->n_stmt
++,
1739 isl_multi_pw_aff_copy(test_index
),
1740 pet_tree_get_loc(tree
), pc
);
1741 id_test
= isl_multi_pw_aff_get_tuple_id(test_index
,
1743 scop_cond
= pet_scop_add_boolean_array(scop_cond
,
1744 isl_set_copy(domain
), test_index
,
1748 scop
= scop_from_tree(tree
->u
.l
.body
, pc
, state
);
1749 has_affine_break
= scop
&&
1750 pet_scop_has_affine_skip(scop
, pet_skip_later
);
1751 if (has_affine_break
)
1752 skip
= pet_scop_get_affine_skip_domain(scop
, pet_skip_later
);
1753 has_var_break
= scop
&& pet_scop_has_var_skip(scop
, pet_skip_later
);
1755 id_break_test
= pet_scop_get_skip_id(scop
, pet_skip_later
);
1756 if (is_non_affine
) {
1757 scop
= pet_scop_reset_context(scop
);
1759 if (!tree
->u
.l
.declared
)
1760 scop
= add_iterator_assignment(scop
, tree
, pc
, state
);
1761 scop
= pet_scop_reset_skips(scop
);
1762 scop
= pet_scop_resolve_nested(scop
);
1763 if (has_affine_break
) {
1764 domain
= apply_affine_break(domain
, skip
, isl_val_sgn(inc
),
1765 is_virtual
, rev_wrap
);
1766 scop
= pet_scop_intersect_domain_prefix(scop
,
1767 isl_set_copy(domain
));
1769 isl_map_free(rev_wrap
);
1771 scop
= scop_add_break(scop
, id_break_test
, isl_set_copy(domain
),
1774 scop
= scop_add_while(scop_cond
, scop
, id_test
,
1775 isl_set_copy(domain
),
1778 scop
= set_independence(scop
, tree
, domain
, isl_val_sgn(inc
),
1780 scop
= pet_scop_embed(scop
, domain
, sched
);
1781 if (is_non_affine
) {
1782 isl_set_free(valid_inc
);
1784 valid_inc
= isl_set_intersect(valid_inc
, valid_cond_next
);
1785 valid_inc
= isl_set_intersect(valid_inc
, valid_cond_init
);
1786 valid_inc
= isl_set_project_out(valid_inc
, isl_dim_set
, pos
, 1);
1787 scop
= pet_scop_restrict_context(scop
, valid_inc
);
1792 valid_init
= isl_set_project_out(valid_init
, isl_dim_set
, pos
, 1);
1793 scop
= pet_scop_restrict_context(scop
, valid_init
);
1795 pet_context_free(pc
);
1799 /* Construct a pet_scop for a for tree with static affine initialization
1800 * and constant increment within the context "pc_init".
1801 * In particular, "pc_init" represents the context of the loop,
1802 * whereas the domain of "pc" has already been extended with an (at this point
1803 * unbounded) inner loop iterator corresponding to the current for loop.
1805 * If the loop iterator was not declared inside the loop header,
1806 * then add an assignment of the initial value to the loop iterator
1807 * before the loop. The construction of a pet_scop for the loop itself,
1808 * including updates to the loop iterator, is handled by scop_from_affine_for.
1810 static __isl_give pet_scop
*scop_from_affine_for_init(__isl_keep pet_tree
*tree
,
1811 __isl_take isl_pw_aff
*init_val
, __isl_take isl_pw_aff
*pa_inc
,
1812 __isl_take isl_val
*inc
, __isl_keep pet_context
*pc_init
,
1813 __isl_take pet_context
*pc
, struct pet_state
*state
)
1815 pet_scop
*scop_init
, *scop
;
1817 if (!tree
->u
.l
.declared
)
1818 scop_init
= scop_from_for_init(tree
, pc_init
, state
);
1820 scop
= scop_from_affine_for(tree
, init_val
, pa_inc
, inc
, pc
, state
);
1822 if (!tree
->u
.l
.declared
)
1823 scop
= pet_scop_add_seq(state
->ctx
, scop_init
, scop
);
1828 /* Construct a pet_scop for a for statement within the context of "pc".
1830 * We update the context to reflect the writes to the loop variable and
1831 * the writes inside the body.
1833 * Then we check if the initialization of the for loop
1834 * is a static affine value and the increment is a constant.
1835 * If so, we construct the pet_scop using scop_from_affine_for_init.
1836 * Otherwise, we treat the for loop as a while loop
1837 * in scop_from_non_affine_for.
1839 * Note that the initialization and the increment are extracted
1840 * in a context where the current loop iterator has been added
1841 * to the context. If these turn out not be affine, then we
1842 * have reconstruct the body context without an assignment
1843 * to this loop iterator, as this variable will then not be
1844 * treated as a dimension of the iteration domain, but as any
1847 static struct pet_scop
*scop_from_for(__isl_keep pet_tree
*tree
,
1848 __isl_keep pet_context
*init_pc
, struct pet_state
*state
)
1852 isl_pw_aff
*pa_inc
, *init_val
;
1853 pet_context
*pc
, *pc_init_val
;
1858 iv
= pet_expr_access_get_id(tree
->u
.l
.iv
);
1859 pc
= pet_context_copy(init_pc
);
1860 pc
= pet_context_add_inner_iterator(pc
, iv
);
1861 pc
= pet_context_clear_writes_in_tree(pc
, tree
->u
.l
.body
);
1863 pc_init_val
= pet_context_copy(pc
);
1864 pc_init_val
= pet_context_clear_value(pc_init_val
, isl_id_copy(iv
));
1865 init_val
= pet_expr_extract_affine(tree
->u
.l
.init
, pc_init_val
);
1866 pet_context_free(pc_init_val
);
1867 pa_inc
= pet_expr_extract_affine(tree
->u
.l
.inc
, pc
);
1868 inc
= pet_extract_cst(pa_inc
);
1869 if (!pa_inc
|| !init_val
|| !inc
)
1871 if (!isl_pw_aff_involves_nan(pa_inc
) &&
1872 !isl_pw_aff_involves_nan(init_val
) && !isl_val_is_nan(inc
))
1873 return scop_from_affine_for_init(tree
, init_val
, pa_inc
, inc
,
1874 init_pc
, pc
, state
);
1876 isl_pw_aff_free(pa_inc
);
1877 isl_pw_aff_free(init_val
);
1879 pet_context_free(pc
);
1881 pc
= pet_context_copy(init_pc
);
1882 pc
= pet_context_add_infinite_loop(pc
);
1883 pc
= pet_context_clear_writes_in_tree(pc
, tree
->u
.l
.body
);
1884 return scop_from_non_affine_for(tree
, init_pc
, pc
, state
);
1886 isl_pw_aff_free(pa_inc
);
1887 isl_pw_aff_free(init_val
);
1889 pet_context_free(pc
);
1893 /* Check whether "expr" is an affine constraint within the context "pc".
1895 static int is_affine_condition(__isl_keep pet_expr
*expr
,
1896 __isl_keep pet_context
*pc
)
1901 pa
= pet_expr_extract_affine_condition(expr
, pc
);
1904 is_affine
= !isl_pw_aff_involves_nan(pa
);
1905 isl_pw_aff_free(pa
);
1910 /* Check if the given if statement is a conditional assignement
1911 * with a non-affine condition.
1913 * In particular we check if "stmt" is of the form
1920 * where the condition is non-affine and a is some array or scalar access.
1922 static int is_conditional_assignment(__isl_keep pet_tree
*tree
,
1923 __isl_keep pet_context
*pc
)
1927 pet_expr
*expr1
, *expr2
;
1929 ctx
= pet_tree_get_ctx(tree
);
1930 if (!pet_options_get_detect_conditional_assignment(ctx
))
1932 if (tree
->type
!= pet_tree_if_else
)
1934 if (tree
->u
.i
.then_body
->type
!= pet_tree_expr
)
1936 if (tree
->u
.i
.else_body
->type
!= pet_tree_expr
)
1938 expr1
= tree
->u
.i
.then_body
->u
.e
.expr
;
1939 expr2
= tree
->u
.i
.else_body
->u
.e
.expr
;
1940 if (pet_expr_get_type(expr1
) != pet_expr_op
)
1942 if (pet_expr_get_type(expr2
) != pet_expr_op
)
1944 if (pet_expr_op_get_type(expr1
) != pet_op_assign
)
1946 if (pet_expr_op_get_type(expr2
) != pet_op_assign
)
1948 expr1
= pet_expr_get_arg(expr1
, 0);
1949 expr2
= pet_expr_get_arg(expr2
, 0);
1950 equal
= pet_expr_is_equal(expr1
, expr2
);
1951 pet_expr_free(expr1
);
1952 pet_expr_free(expr2
);
1953 if (equal
< 0 || !equal
)
1955 if (is_affine_condition(tree
->u
.i
.cond
, pc
))
1961 /* Given that "tree" is of the form
1968 * where a is some array or scalar access, construct a pet_scop
1969 * corresponding to this conditional assignment within the context "pc".
1970 * "cond_pa" is an affine expression with nested accesses representing
1973 * The constructed pet_scop then corresponds to the expression
1975 * a = condition ? f(...) : g(...)
1977 * All access relations in f(...) are intersected with condition
1978 * while all access relation in g(...) are intersected with the complement.
1980 static struct pet_scop
*scop_from_conditional_assignment(
1981 __isl_keep pet_tree
*tree
, __isl_take isl_pw_aff
*cond_pa
,
1982 __isl_take pet_context
*pc
, struct pet_state
*state
)
1985 isl_set
*cond
, *comp
;
1986 isl_multi_pw_aff
*index
;
1987 pet_expr
*expr1
, *expr2
;
1988 pet_expr
*pe_cond
, *pe_then
, *pe_else
, *pe
, *pe_write
;
1989 struct pet_scop
*scop
;
1991 cond
= isl_pw_aff_non_zero_set(isl_pw_aff_copy(cond_pa
));
1992 comp
= isl_pw_aff_zero_set(isl_pw_aff_copy(cond_pa
));
1993 index
= isl_multi_pw_aff_from_pw_aff(cond_pa
);
1995 expr1
= tree
->u
.i
.then_body
->u
.e
.expr
;
1996 expr2
= tree
->u
.i
.else_body
->u
.e
.expr
;
1998 pe_cond
= pet_expr_from_index(index
);
2000 pe_then
= pet_expr_get_arg(expr1
, 1);
2001 pe_then
= pet_context_evaluate_expr(pc
, pe_then
);
2002 pe_then
= pet_expr_restrict(pe_then
, cond
);
2003 pe_else
= pet_expr_get_arg(expr2
, 1);
2004 pe_else
= pet_context_evaluate_expr(pc
, pe_else
);
2005 pe_else
= pet_expr_restrict(pe_else
, comp
);
2006 pe_write
= pet_expr_get_arg(expr1
, 0);
2007 pe_write
= pet_context_evaluate_expr(pc
, pe_write
);
2009 pe
= pet_expr_new_ternary(pe_cond
, pe_then
, pe_else
);
2010 type_size
= pet_expr_get_type_size(pe_write
);
2011 pe
= pet_expr_new_binary(type_size
, pet_op_assign
, pe_write
, pe
);
2013 scop
= scop_from_evaluated_expr(pe
, state
->n_stmt
++,
2014 pet_tree_get_loc(tree
), pc
);
2016 pet_context_free(pc
);
2021 /* Construct a pet_scop for a non-affine if statement within the context "pc".
2023 * We create a separate statement that writes the result
2024 * of the non-affine condition to a virtual scalar.
2025 * A constraint requiring the value of this virtual scalar to be one
2026 * is added to the iteration domains of the then branch.
2027 * Similarly, a constraint requiring the value of this virtual scalar
2028 * to be zero is added to the iteration domains of the else branch, if any.
2029 * We combine the schedules as a sequence to ensure that the virtual scalar
2030 * is written before it is read.
2032 * If there are any breaks or continues in the then and/or else
2033 * branches, then we may have to compute a new skip condition.
2034 * This is handled using a pet_skip_info object.
2035 * On initialization, the object checks if skip conditions need
2036 * to be computed. If so, it does so in pet_skip_info_if_extract_index and
2037 * adds them in pet_skip_info_add.
2039 static struct pet_scop
*scop_from_non_affine_if(__isl_keep pet_tree
*tree
,
2040 __isl_take pet_context
*pc
, struct pet_state
*state
)
2045 isl_multi_pw_aff
*test_index
;
2046 struct pet_skip_info skip
;
2047 struct pet_scop
*scop
, *scop_then
, *scop_else
= NULL
;
2049 has_else
= tree
->type
== pet_tree_if_else
;
2051 space
= pet_context_get_space(pc
);
2052 test_index
= pet_create_test_index(space
, state
->n_test
++);
2053 scop
= scop_from_non_affine_condition(pet_expr_copy(tree
->u
.i
.cond
),
2054 state
->n_stmt
++, isl_multi_pw_aff_copy(test_index
),
2055 pet_tree_get_loc(tree
), pc
);
2056 domain
= pet_context_get_domain(pc
);
2057 scop
= pet_scop_add_boolean_array(scop
, domain
,
2058 isl_multi_pw_aff_copy(test_index
), state
->int_size
);
2060 scop_then
= scop_from_tree(tree
->u
.i
.then_body
, pc
, state
);
2062 scop_else
= scop_from_tree(tree
->u
.i
.else_body
, pc
, state
);
2064 pet_skip_info_if_init(&skip
, state
->ctx
, scop_then
, scop_else
,
2066 pet_skip_info_if_extract_index(&skip
, test_index
, pc
, state
);
2068 scop_then
= pet_scop_filter(scop_then
,
2069 isl_multi_pw_aff_copy(test_index
), 1);
2071 scop_else
= pet_scop_filter(scop_else
, test_index
, 0);
2072 scop_then
= pet_scop_add_par(state
->ctx
, scop_then
, scop_else
);
2074 isl_multi_pw_aff_free(test_index
);
2076 scop
= pet_scop_add_seq(state
->ctx
, scop
, scop_then
);
2078 scop
= pet_skip_info_add(&skip
, scop
);
2080 pet_context_free(pc
);
2084 /* Construct a pet_scop for an affine if statement within the context "pc".
2086 * The condition is added to the iteration domains of the then branch,
2087 * while the opposite of the condition in added to the iteration domains
2088 * of the else branch, if any.
2090 * If there are any breaks or continues in the then and/or else
2091 * branches, then we may have to compute a new skip condition.
2092 * This is handled using a pet_skip_info_if object.
2093 * On initialization, the object checks if skip conditions need
2094 * to be computed. If so, it does so in pet_skip_info_if_extract_cond and
2095 * adds them in pet_skip_info_add.
2097 static struct pet_scop
*scop_from_affine_if(__isl_keep pet_tree
*tree
,
2098 __isl_take isl_pw_aff
*cond
, __isl_take pet_context
*pc
,
2099 struct pet_state
*state
)
2103 isl_set
*set
, *complement
;
2105 struct pet_skip_info skip
;
2106 struct pet_scop
*scop
, *scop_then
, *scop_else
= NULL
;
2107 pet_context
*pc_body
;
2109 ctx
= pet_tree_get_ctx(tree
);
2111 has_else
= tree
->type
== pet_tree_if_else
;
2113 valid
= isl_pw_aff_domain(isl_pw_aff_copy(cond
));
2114 set
= isl_pw_aff_non_zero_set(isl_pw_aff_copy(cond
));
2116 pc_body
= pet_context_copy(pc
);
2117 pc_body
= pet_context_intersect_domain(pc_body
, isl_set_copy(set
));
2118 scop_then
= scop_from_tree(tree
->u
.i
.then_body
, pc_body
, state
);
2119 pet_context_free(pc_body
);
2121 pc_body
= pet_context_copy(pc
);
2122 complement
= isl_set_copy(valid
);
2123 complement
= isl_set_subtract(valid
, isl_set_copy(set
));
2124 pc_body
= pet_context_intersect_domain(pc_body
,
2125 isl_set_copy(complement
));
2126 scop_else
= scop_from_tree(tree
->u
.i
.else_body
, pc_body
, state
);
2127 pet_context_free(pc_body
);
2130 pet_skip_info_if_init(&skip
, ctx
, scop_then
, scop_else
, has_else
, 1);
2131 pet_skip_info_if_extract_cond(&skip
, cond
, pc
, state
);
2132 isl_pw_aff_free(cond
);
2134 scop
= pet_scop_restrict(scop_then
, set
);
2137 scop_else
= pet_scop_restrict(scop_else
, complement
);
2138 scop
= pet_scop_add_par(ctx
, scop
, scop_else
);
2140 scop
= pet_scop_resolve_nested(scop
);
2141 scop
= pet_scop_restrict_context(scop
, valid
);
2143 scop
= pet_skip_info_add(&skip
, scop
);
2145 pet_context_free(pc
);
2149 /* Construct a pet_scop for an if statement within the context "pc".
2151 * If the condition fits the pattern of a conditional assignment,
2152 * then it is handled by scop_from_conditional_assignment.
2153 * Note that the condition is only considered for a conditional assignment
2154 * if it is not static-affine. However, it should still convert
2155 * to an affine expression when nesting is allowed.
2157 * Otherwise, we check if the condition is affine.
2158 * If so, we construct the scop in scop_from_affine_if.
2159 * Otherwise, we construct the scop in scop_from_non_affine_if.
2161 * We allow the condition to be dynamic, i.e., to refer to
2162 * scalars or array elements that may be written to outside
2163 * of the given if statement. These nested accesses are then represented
2164 * as output dimensions in the wrapping iteration domain.
2165 * If it is also written _inside_ the then or else branch, then
2166 * we treat the condition as non-affine.
2167 * As explained in extract_non_affine_if, this will introduce
2168 * an extra statement.
2169 * For aesthetic reasons, we want this statement to have a statement
2170 * number that is lower than those of the then and else branches.
2171 * In order to evaluate if we will need such a statement, however, we
2172 * first construct scops for the then and else branches.
2173 * We therefore reserve a statement number if we might have to
2174 * introduce such an extra statement.
2176 static struct pet_scop
*scop_from_if(__isl_keep pet_tree
*tree
,
2177 __isl_keep pet_context
*pc
, struct pet_state
*state
)
2181 pet_expr
*cond_expr
;
2182 pet_context
*pc_nested
;
2187 has_else
= tree
->type
== pet_tree_if_else
;
2189 pc
= pet_context_copy(pc
);
2190 pc
= pet_context_clear_writes_in_tree(pc
, tree
->u
.i
.then_body
);
2192 pc
= pet_context_clear_writes_in_tree(pc
, tree
->u
.i
.else_body
);
2194 cond_expr
= pet_expr_copy(tree
->u
.i
.cond
);
2195 cond_expr
= pet_context_evaluate_expr(pc
, cond_expr
);
2196 pc_nested
= pet_context_copy(pc
);
2197 pc_nested
= pet_context_set_allow_nested(pc_nested
, 1);
2198 cond
= pet_expr_extract_affine_condition(cond_expr
, pc_nested
);
2199 pet_context_free(pc_nested
);
2200 pet_expr_free(cond_expr
);
2203 pet_context_free(pc
);
2207 if (isl_pw_aff_involves_nan(cond
)) {
2208 isl_pw_aff_free(cond
);
2209 return scop_from_non_affine_if(tree
, pc
, state
);
2212 if (is_conditional_assignment(tree
, pc
))
2213 return scop_from_conditional_assignment(tree
, cond
, pc
, state
);
2215 if ((!is_nested_allowed(cond
, tree
->u
.i
.then_body
) ||
2216 (has_else
&& !is_nested_allowed(cond
, tree
->u
.i
.else_body
)))) {
2217 isl_pw_aff_free(cond
);
2218 return scop_from_non_affine_if(tree
, pc
, state
);
2221 return scop_from_affine_if(tree
, cond
, pc
, state
);
2224 /* Return a one-dimensional multi piecewise affine expression that is equal
2225 * to the constant 1 and is defined over the given domain.
2227 static __isl_give isl_multi_pw_aff
*one_mpa(__isl_take isl_space
*space
)
2229 isl_local_space
*ls
;
2232 ls
= isl_local_space_from_space(space
);
2233 aff
= isl_aff_zero_on_domain(ls
);
2234 aff
= isl_aff_set_constant_si(aff
, 1);
2236 return isl_multi_pw_aff_from_pw_aff(isl_pw_aff_from_aff(aff
));
2239 /* Construct a pet_scop for a continue statement with the given domain space.
2241 * We simply create an empty scop with a universal pet_skip_now
2242 * skip condition. This skip condition will then be taken into
2243 * account by the enclosing loop construct, possibly after
2244 * being incorporated into outer skip conditions.
2246 static struct pet_scop
*scop_from_continue(__isl_keep pet_tree
*tree
,
2247 __isl_take isl_space
*space
)
2249 struct pet_scop
*scop
;
2251 scop
= pet_scop_empty(isl_space_copy(space
));
2253 scop
= pet_scop_set_skip(scop
, pet_skip_now
, one_mpa(space
));
2258 /* Construct a pet_scop for a break statement with the given domain space.
2260 * We simply create an empty scop with both a universal pet_skip_now
2261 * skip condition and a universal pet_skip_later skip condition.
2262 * These skip conditions will then be taken into
2263 * account by the enclosing loop construct, possibly after
2264 * being incorporated into outer skip conditions.
2266 static struct pet_scop
*scop_from_break(__isl_keep pet_tree
*tree
,
2267 __isl_take isl_space
*space
)
2269 struct pet_scop
*scop
;
2270 isl_multi_pw_aff
*skip
;
2272 scop
= pet_scop_empty(isl_space_copy(space
));
2274 skip
= one_mpa(space
);
2275 scop
= pet_scop_set_skip(scop
, pet_skip_now
,
2276 isl_multi_pw_aff_copy(skip
));
2277 scop
= pet_scop_set_skip(scop
, pet_skip_later
, skip
);
2282 /* Extract a clone of the kill statement "stmt".
2283 * The domain of the clone is given by "domain".
2285 static struct pet_scop
*extract_kill(__isl_keep isl_set
*domain
,
2286 struct pet_stmt
*stmt
, struct pet_state
*state
)
2290 isl_multi_pw_aff
*mpa
;
2293 if (!domain
|| !stmt
)
2296 kill
= pet_tree_expr_get_expr(stmt
->body
);
2297 space
= pet_stmt_get_space(stmt
);
2298 space
= isl_space_map_from_set(space
);
2299 mpa
= isl_multi_pw_aff_identity(space
);
2300 mpa
= isl_multi_pw_aff_reset_tuple_id(mpa
, isl_dim_in
);
2301 kill
= pet_expr_update_domain(kill
, mpa
);
2302 tree
= pet_tree_new_expr(kill
);
2303 tree
= pet_tree_set_loc(tree
, pet_loc_copy(stmt
->loc
));
2304 stmt
= pet_stmt_from_pet_tree(isl_set_copy(domain
),
2305 state
->n_stmt
++, tree
);
2306 return pet_scop_from_pet_stmt(isl_set_get_space(domain
), stmt
);
2309 /* Extract a clone of the kill statements in "scop".
2310 * The domain of each clone is given by "domain".
2311 * "scop" is expected to have been created from a DeclStmt
2312 * and should have (one of) the kill(s) as its first statement.
2313 * If "scop" was created from a declaration group, then there
2314 * may be multiple kill statements inside.
2316 static struct pet_scop
*extract_kills(__isl_keep isl_set
*domain
,
2317 struct pet_scop
*scop
, struct pet_state
*state
)
2320 struct pet_stmt
*stmt
;
2321 struct pet_scop
*kill
;
2324 if (!domain
|| !scop
)
2326 ctx
= isl_set_get_ctx(domain
);
2327 if (scop
->n_stmt
< 1)
2328 isl_die(ctx
, isl_error_internal
,
2329 "expecting at least one statement", return NULL
);
2330 stmt
= scop
->stmts
[0];
2331 if (!pet_stmt_is_kill(stmt
))
2332 isl_die(ctx
, isl_error_internal
,
2333 "expecting kill statement", return NULL
);
2335 kill
= extract_kill(domain
, stmt
, state
);
2337 for (i
= 1; i
< scop
->n_stmt
; ++i
) {
2338 struct pet_scop
*kill_i
;
2340 stmt
= scop
->stmts
[i
];
2341 if (!pet_stmt_is_kill(stmt
))
2344 kill_i
= extract_kill(domain
, stmt
, state
);
2345 kill
= pet_scop_add_par(ctx
, kill
, kill_i
);
2351 /* Has "tree" been created from a DeclStmt?
2352 * That is, is it either a declaration or a group of declarations?
2354 static int tree_is_decl(__isl_keep pet_tree
*tree
)
2361 is_decl
= pet_tree_is_decl(tree
);
2362 if (is_decl
< 0 || is_decl
)
2365 if (tree
->type
!= pet_tree_block
)
2367 if (pet_tree_block_get_block(tree
))
2369 if (tree
->u
.b
.n
== 0)
2372 for (i
= 0; i
< tree
->u
.b
.n
; ++i
) {
2373 is_decl
= tree_is_decl(tree
->u
.b
.child
[i
]);
2374 if (is_decl
< 0 || !is_decl
)
2381 /* Does "tree" represent an assignment to a variable?
2383 * The assignment may be one of
2384 * - a declaration with initialization
2385 * - an expression with a top-level assignment operator
2387 static int is_assignment(__isl_keep pet_tree
*tree
)
2391 if (tree
->type
== pet_tree_decl_init
)
2393 return pet_tree_is_assign(tree
);
2396 /* Update "pc" by taking into account the assignment performed by "tree",
2397 * where "tree" satisfies is_assignment.
2399 * In particular, if the lhs of the assignment is a scalar variable and
2400 * if the rhs is an affine expression, then keep track of this value in "pc"
2401 * so that we can plug it in when we later come across the same variable.
2403 * Any previously assigned value to the variable has already been removed
2404 * by scop_handle_writes.
2406 static __isl_give pet_context
*handle_assignment(__isl_take pet_context
*pc
,
2407 __isl_keep pet_tree
*tree
)
2409 pet_expr
*var
, *val
;
2413 if (pet_tree_get_type(tree
) == pet_tree_decl_init
) {
2414 var
= pet_tree_decl_get_var(tree
);
2415 val
= pet_tree_decl_get_init(tree
);
2418 expr
= pet_tree_expr_get_expr(tree
);
2419 var
= pet_expr_get_arg(expr
, 0);
2420 val
= pet_expr_get_arg(expr
, 1);
2421 pet_expr_free(expr
);
2424 if (!pet_expr_is_scalar_access(var
)) {
2430 pa
= pet_expr_extract_affine(val
, pc
);
2432 pc
= pet_context_free(pc
);
2434 if (!isl_pw_aff_involves_nan(pa
)) {
2435 id
= pet_expr_access_get_id(var
);
2436 pc
= pet_context_set_value(pc
, id
, pa
);
2438 isl_pw_aff_free(pa
);
2446 /* Mark all arrays in "scop" as being exposed.
2448 static struct pet_scop
*mark_exposed(struct pet_scop
*scop
)
2454 for (i
= 0; i
< scop
->n_array
; ++i
)
2455 scop
->arrays
[i
]->exposed
= 1;
2459 /* Try and construct a pet_scop corresponding to (part of)
2460 * a sequence of statements within the context "pc".
2462 * After extracting a statement, we update "pc"
2463 * based on the top-level assignments in the statement
2464 * so that we can exploit them in subsequent statements in the same block.
2465 * Top-level affine assumptions are also recorded in the context.
2467 * If there are any breaks or continues in the individual statements,
2468 * then we may have to compute a new skip condition.
2469 * This is handled using a pet_skip_info object.
2470 * On initialization, the object checks if skip conditions need
2471 * to be computed. If so, it does so in pet_skip_info_seq_extract and
2472 * adds them in pet_skip_info_add.
2474 * If "block" is set, then we need to insert kill statements at
2475 * the end of the block for any array that has been declared by
2476 * one of the statements in the sequence. Each of these declarations
2477 * results in the construction of a kill statement at the place
2478 * of the declaration, so we simply collect duplicates of
2479 * those kill statements and append these duplicates to the constructed scop.
2481 * If "block" is not set, then any array declared by one of the statements
2482 * in the sequence is marked as being exposed.
2484 * If autodetect is set, then we allow the extraction of only a subrange
2485 * of the sequence of statements. However, if there is at least one statement
2486 * for which we could not construct a scop and the final range contains
2487 * either no statements or at least one kill, then we discard the entire
2490 static struct pet_scop
*scop_from_block(__isl_keep pet_tree
*tree
,
2491 __isl_keep pet_context
*pc
, struct pet_state
*state
)
2497 struct pet_scop
*scop
, *kills
;
2499 ctx
= pet_tree_get_ctx(tree
);
2501 space
= pet_context_get_space(pc
);
2502 domain
= pet_context_get_domain(pc
);
2503 pc
= pet_context_copy(pc
);
2504 scop
= pet_scop_empty(isl_space_copy(space
));
2505 kills
= pet_scop_empty(space
);
2506 for (i
= 0; i
< tree
->u
.b
.n
; ++i
) {
2507 struct pet_scop
*scop_i
;
2509 if (pet_scop_has_affine_skip(scop
, pet_skip_now
))
2510 pc
= apply_affine_continue(pc
, scop
);
2511 scop_i
= scop_from_tree(tree
->u
.b
.child
[i
], pc
, state
);
2512 if (pet_tree_is_assume(tree
->u
.b
.child
[i
]))
2513 pc
= scop_add_affine_assumption(scop_i
, pc
);
2514 pc
= scop_handle_writes(scop_i
, pc
);
2515 if (is_assignment(tree
->u
.b
.child
[i
]))
2516 pc
= handle_assignment(pc
, tree
->u
.b
.child
[i
]);
2517 struct pet_skip_info skip
;
2518 pet_skip_info_seq_init(&skip
, ctx
, scop
, scop_i
);
2519 pet_skip_info_seq_extract(&skip
, pc
, state
);
2520 if (scop_i
&& tree_is_decl(tree
->u
.b
.child
[i
])) {
2521 if (tree
->u
.b
.block
) {
2522 struct pet_scop
*kill
;
2523 kill
= extract_kills(domain
, scop_i
, state
);
2524 kills
= pet_scop_add_par(ctx
, kills
, kill
);
2526 scop_i
= mark_exposed(scop_i
);
2528 scop
= pet_scop_add_seq(ctx
, scop
, scop_i
);
2530 scop
= pet_skip_info_add(&skip
, scop
);
2535 isl_set_free(domain
);
2537 scop
= pet_scop_add_seq(ctx
, scop
, kills
);
2539 pet_context_free(pc
);
2544 /* Internal data structure for extract_declared_arrays.
2546 * "pc" and "state" are used to create pet_array objects and kill statements.
2547 * "any" is initialized to 0 by the caller and set to 1 as soon as we have
2548 * found any declared array.
2549 * "scop" has been initialized by the caller and is used to attach
2550 * the created pet_array objects.
2551 * "kill_before" and "kill_after" are created and updated by
2552 * extract_declared_arrays to collect the kills of the arrays.
2554 struct pet_tree_extract_declared_arrays_data
{
2556 struct pet_state
*state
;
2561 struct pet_scop
*scop
;
2562 struct pet_scop
*kill_before
;
2563 struct pet_scop
*kill_after
;
2566 /* Check if the node "node" declares any array or scalar.
2567 * If so, create the corresponding pet_array and attach it to data->scop.
2568 * Additionally, create two kill statements for the array and add them
2569 * to data->kill_before and data->kill_after.
2571 static int extract_declared_arrays(__isl_keep pet_tree
*node
, void *user
)
2573 enum pet_tree_type type
;
2574 struct pet_tree_extract_declared_arrays_data
*data
= user
;
2575 struct pet_array
*array
;
2576 struct pet_scop
*scop_kill
;
2579 type
= pet_tree_get_type(node
);
2580 if (type
== pet_tree_decl
|| type
== pet_tree_decl_init
)
2581 var
= node
->u
.d
.var
;
2582 else if (type
== pet_tree_for
&& node
->u
.l
.declared
)
2587 array
= extract_array(var
, data
->pc
, data
->state
);
2589 array
->declared
= 1;
2590 data
->scop
= pet_scop_add_array(data
->scop
, array
);
2592 scop_kill
= kill(pet_tree_get_loc(node
), array
, data
->pc
, data
->state
);
2594 data
->kill_before
= scop_kill
;
2596 data
->kill_before
= pet_scop_add_par(data
->ctx
,
2597 data
->kill_before
, scop_kill
);
2599 scop_kill
= kill(pet_tree_get_loc(node
), array
, data
->pc
, data
->state
);
2601 data
->kill_after
= scop_kill
;
2603 data
->kill_after
= pet_scop_add_par(data
->ctx
,
2604 data
->kill_after
, scop_kill
);
2611 /* Convert a pet_tree that consists of more than a single leaf
2612 * to a pet_scop with a single statement encapsulating the entire pet_tree.
2613 * Do so within the context of "pc", taking into account the writes inside
2614 * "tree". That is, first clear any previously assigned values to variables
2615 * that are written by "tree".
2617 * After constructing the core scop, we also look for any arrays (or scalars)
2618 * that are declared inside "tree". Each of those arrays is marked as
2619 * having been declared and kill statements for these arrays
2620 * are introduced before and after the core scop.
2621 * Note that the input tree is not a leaf so that the declaration
2622 * cannot occur at the outer level.
2624 static struct pet_scop
*scop_from_tree_macro(__isl_take pet_tree
*tree
,
2625 __isl_keep pet_context
*pc
, struct pet_state
*state
)
2627 struct pet_tree_extract_declared_arrays_data data
= { pc
, state
};
2629 data
.pc
= pet_context_copy(data
.pc
);
2630 data
.pc
= pet_context_clear_writes_in_tree(data
.pc
, tree
);
2631 data
.scop
= scop_from_unevaluated_tree(pet_tree_copy(tree
),
2632 state
->n_stmt
++, data
.pc
);
2635 data
.ctx
= pet_context_get_ctx(data
.pc
);
2636 if (pet_tree_foreach_sub_tree(tree
, &extract_declared_arrays
,
2638 data
.scop
= pet_scop_free(data
.scop
);
2639 pet_tree_free(tree
);
2640 pet_context_free(data
.pc
);
2645 data
.scop
= pet_scop_add_seq(data
.ctx
, data
.kill_before
, data
.scop
);
2646 data
.scop
= pet_scop_add_seq(data
.ctx
, data
.scop
, data
.kill_after
);
2651 /* Construct a pet_scop that corresponds to the pet_tree "tree"
2652 * within the context "pc" by calling the appropriate function
2653 * based on the type of "tree".
2655 * If the initially constructed pet_scop turns out to involve
2656 * dynamic control and if the user has requested an encapsulation
2657 * of all dynamic control, then this pet_scop is discarded and
2658 * a new pet_scop is created with a single statement representing
2659 * the entire "tree".
2660 * However, if the scop contains any active continue or break,
2661 * then we need to include the loop containing the continue or break
2662 * in the encapsulation. We therefore postpone the encapsulation
2663 * until we have constructed a pet_scop for this enclosing loop.
2665 static struct pet_scop
*scop_from_tree(__isl_keep pet_tree
*tree
,
2666 __isl_keep pet_context
*pc
, struct pet_state
*state
)
2669 struct pet_scop
*scop
= NULL
;
2674 ctx
= pet_tree_get_ctx(tree
);
2675 switch (tree
->type
) {
2676 case pet_tree_error
:
2678 case pet_tree_block
:
2679 return scop_from_block(tree
, pc
, state
);
2680 case pet_tree_break
:
2681 return scop_from_break(tree
, pet_context_get_space(pc
));
2682 case pet_tree_continue
:
2683 return scop_from_continue(tree
, pet_context_get_space(pc
));
2685 case pet_tree_decl_init
:
2686 return scop_from_decl(tree
, pc
, state
);
2688 return scop_from_tree_expr(tree
, pc
, state
);
2690 case pet_tree_if_else
:
2691 scop
= scop_from_if(tree
, pc
, state
);
2694 scop
= scop_from_for(tree
, pc
, state
);
2696 case pet_tree_while
:
2697 scop
= scop_from_while(tree
, pc
, state
);
2699 case pet_tree_infinite_loop
:
2700 scop
= scop_from_infinite_for(tree
, pc
, state
);
2707 if (!pet_options_get_encapsulate_dynamic_control(ctx
) ||
2708 !pet_scop_has_data_dependent_conditions(scop
) ||
2709 pet_scop_has_var_skip(scop
, pet_skip_now
))
2712 pet_scop_free(scop
);
2713 return scop_from_tree_macro(pet_tree_copy(tree
), pc
, state
);
2716 /* If "tree" has a label that is of the form S_<nr>, then make
2717 * sure that state->n_stmt is greater than nr to ensure that
2718 * we will not generate S_<nr> ourselves.
2720 static int set_first_stmt(__isl_keep pet_tree
*tree
, void *user
)
2722 struct pet_state
*state
= user
;
2730 name
= isl_id_get_name(tree
->label
);
2731 if (strncmp(name
, "S_", 2) != 0)
2733 nr
= atoi(name
+ 2);
2734 if (nr
>= state
->n_stmt
)
2735 state
->n_stmt
= nr
+ 1;
2740 /* Construct a pet_scop that corresponds to the pet_tree "tree".
2741 * "int_size" is the number of bytes need to represent an integer.
2742 * "extract_array" is a callback that we can use to create a pet_array
2743 * that corresponds to the variable accessed by an expression.
2745 * Initialize the global state, construct a context and then
2746 * construct the pet_scop by recursively visiting the tree.
2748 * state.n_stmt is initialized to point beyond any explicit S_<nr> label.
2750 struct pet_scop
*pet_scop_from_pet_tree(__isl_take pet_tree
*tree
, int int_size
,
2751 struct pet_array
*(*extract_array
)(__isl_keep pet_expr
*access
,
2752 __isl_keep pet_context
*pc
, void *user
), void *user
,
2753 __isl_keep pet_context
*pc
)
2755 struct pet_scop
*scop
;
2756 struct pet_state state
= { 0 };
2761 state
.ctx
= pet_tree_get_ctx(tree
);
2762 state
.int_size
= int_size
;
2763 state
.extract_array
= extract_array
;
2765 if (pet_tree_foreach_sub_tree(tree
, &set_first_stmt
, &state
) < 0)
2766 tree
= pet_tree_free(tree
);
2768 scop
= scop_from_tree(tree
, pc
, &state
);
2769 scop
= pet_scop_set_loc(scop
, pet_tree_get_loc(tree
));
2771 pet_tree_free(tree
);
2774 scop
->context
= isl_set_params(scop
->context
);