Imported more code from the old engine.
[peakengine.git] / engine / include / support / vector3d.h
blob85a3ee3aef76aa297b36923cfca11f66ecdf1ff6
1 // Copyright (C) 2002-2007 Nikolaus Gebhardt
2 // This file is part of the "Irrlicht Engine".
3 // For conditions of distribution and use, see copyright notice in irrlicht.h
5 #ifndef __IRR_POINT_3D_H_INCLUDED__
6 #define __IRR_POINT_3D_H_INCLUDED__
8 #include "irrMath.h"
10 namespace irr
12 namespace core
15 //! 3d vector template class with lots of operators and methods.
16 template <class T>
17 class vector3d
19 public:
21 vector3d() : X(0), Y(0), Z(0) {}
22 vector3d(T nx, T ny, T nz) : X(nx), Y(ny), Z(nz) {}
23 vector3d(const vector3d<T>& other) : X(other.X), Y(other.Y), Z(other.Z) {}
25 // operators
27 vector3d<T> operator-() const { return vector3d<T>(-X, -Y, -Z); }
29 vector3d<T>& operator=(const vector3d<T>& other) { X = other.X; Y = other.Y; Z = other.Z; return *this; }
31 vector3d<T> operator+(const vector3d<T>& other) const { return vector3d<T>(X + other.X, Y + other.Y, Z + other.Z); }
32 vector3d<T>& operator+=(const vector3d<T>& other) { X+=other.X; Y+=other.Y; Z+=other.Z; return *this; }
34 vector3d<T> operator-(const vector3d<T>& other) const { return vector3d<T>(X - other.X, Y - other.Y, Z - other.Z); }
35 vector3d<T>& operator-=(const vector3d<T>& other) { X-=other.X; Y-=other.Y; Z-=other.Z; return *this; }
37 vector3d<T> operator*(const vector3d<T>& other) const { return vector3d<T>(X * other.X, Y * other.Y, Z * other.Z); }
38 vector3d<T>& operator*=(const vector3d<T>& other) { X*=other.X; Y*=other.Y; Z*=other.Z; return *this; }
39 vector3d<T> operator*(const T v) const { return vector3d<T>(X * v, Y * v, Z * v); }
40 vector3d<T>& operator*=(const T v) { X*=v; Y*=v; Z*=v; return *this; }
42 vector3d<T> operator/(const vector3d<T>& other) const { return vector3d<T>(X / other.X, Y / other.Y, Z / other.Z); }
43 vector3d<T>& operator/=(const vector3d<T>& other) { X/=other.X; Y/=other.Y; Z/=other.Z; return *this; }
44 vector3d<T> operator/(const T v) const { T i=(T)1.0/v; return vector3d<T>(X * i, Y * i, Z * i); }
45 vector3d<T>& operator/=(const T v) { T i=(T)1.0/v; X*=i; Y*=i; Z*=i; return *this; }
47 bool operator<=(const vector3d<T>&other) const { return X<=other.X && Y<=other.Y && Z<=other.Z;};
48 bool operator>=(const vector3d<T>&other) const { return X>=other.X && Y>=other.Y && Z>=other.Z;};
49 bool operator<(const vector3d<T>&other) const { return X<other.X && Y<other.Y && Z<other.Z;};
50 bool operator>(const vector3d<T>&other) const { return X>other.X && Y>other.Y && Z>other.Z;};
52 //! use week float compare
53 //bool operator==(const vector3d<T>& other) const { return other.X==X && other.Y==Y && other.Z==Z; }
54 //bool operator!=(const vector3d<T>& other) const { return other.X!=X || other.Y!=Y || other.Z!=Z; }
56 bool operator==(const vector3d<T>& other) const
58 return this->equals(other);
61 bool operator!=(const vector3d<T>& other) const
63 return !this->equals(other);
66 // functions
68 //! returns if this vector equals the other one, taking floating point rounding errors into account
69 bool equals(const vector3d<T>& other, const T tolerance = (T)ROUNDING_ERROR_32 ) const
71 return core::equals(X, other.X, tolerance) &&
72 core::equals(Y, other.Y, tolerance) &&
73 core::equals(Z, other.Z, tolerance);
76 void set(const T nx, const T ny, const T nz) {X=nx; Y=ny; Z=nz; }
77 void set(const vector3d<T>& p) { X=p.X; Y=p.Y; Z=p.Z;}
79 //! Returns length of the vector.
80 T getLength() const { return (T) sqrt((f64)(X*X + Y*Y + Z*Z)); }
82 //! Returns squared length of the vector.
83 /** This is useful because it is much faster than
84 getLength(). */
85 T getLengthSQ() const { return X*X + Y*Y + Z*Z; }
87 //! Returns the dot product with another vector.
88 T dotProduct(const vector3d<T>& other) const
90 return X*other.X + Y*other.Y + Z*other.Z;
93 //! Returns distance from another point.
94 /** Here, the vector is interpreted as point in 3 dimensional space. */
95 T getDistanceFrom(const vector3d<T>& other) const
97 return vector3d<T>(X - other.X, Y - other.Y, Z - other.Z).getLength();
100 //! Returns squared distance from another point.
101 /** Here, the vector is interpreted as point in 3 dimensional space. */
102 T getDistanceFromSQ(const vector3d<T>& other) const
104 return vector3d<T>(X - other.X, Y - other.Y, Z - other.Z).getLengthSQ();
107 //! Calculates the cross product with another vector
108 //! \param p: vector to multiply with.
109 //! \return Crossproduct of this vector with p.
110 vector3d<T> crossProduct(const vector3d<T>& p) const
112 return vector3d<T>(Y * p.Z - Z * p.Y, Z * p.X - X * p.Z, X * p.Y - Y * p.X);
115 //! Returns if this vector interpreted as a point is on a line between two other points.
116 /** It is assumed that the point is on the line. */
117 //! \param begin: Beginning vector to compare between.
118 //! \param end: Ending vector to compare between.
119 //! \return True if this vector is between begin and end. False if not.
120 bool isBetweenPoints(const vector3d<T>& begin, const vector3d<T>& end) const
122 T f = (end - begin).getLengthSQ();
123 return getDistanceFromSQ(begin) < f &&
124 getDistanceFromSQ(end) < f;
127 //! Normalizes the vector. In case of the 0 vector the result
128 //! is still 0, otherwise the length of the vector will be 1.
129 //! Todo: 64 Bit template doesnt work.. need specialized template
130 vector3d<T>& normalize()
132 T l = X*X + Y*Y + Z*Z;
133 if (l == 0)
134 return *this;
135 l = (T) reciprocal_squareroot ( (f32)l );
136 X *= l;
137 Y *= l;
138 Z *= l;
139 return *this;
142 //! Sets the length of the vector to a new value
143 void setLength(T newlength)
145 normalize();
146 *this *= newlength;
149 //! Inverts the vector.
150 void invert()
152 X *= -1.0f;
153 Y *= -1.0f;
154 Z *= -1.0f;
157 //! Rotates the vector by a specified number of degrees around the Y
158 //! axis and the specified center.
159 //! \param degrees: Number of degrees to rotate around the Y axis.
160 //! \param center: The center of the rotation.
161 void rotateXZBy(f64 degrees, const vector3d<T>& center)
163 degrees *= DEGTORAD64;
164 T cs = (T)cos(degrees);
165 T sn = (T)sin(degrees);
166 X -= center.X;
167 Z -= center.Z;
168 set(X*cs - Z*sn, Y, X*sn + Z*cs);
169 X += center.X;
170 Z += center.Z;
173 //! Rotates the vector by a specified number of degrees around the Z
174 //! axis and the specified center.
175 //! \param degrees: Number of degrees to rotate around the Z axis.
176 //! \param center: The center of the rotation.
177 void rotateXYBy(f64 degrees, const vector3d<T>& center)
179 degrees *= DEGTORAD64;
180 T cs = (T)cos(degrees);
181 T sn = (T)sin(degrees);
182 X -= center.X;
183 Y -= center.Y;
184 set(X*cs - Y*sn, X*sn + Y*cs, Z);
185 X += center.X;
186 Y += center.Y;
189 //! Rotates the vector by a specified number of degrees around the X
190 //! axis and the specified center.
191 //! \param degrees: Number of degrees to rotate around the X axis.
192 //! \param center: The center of the rotation.
193 void rotateYZBy(f64 degrees, const vector3d<T>& center)
195 degrees *= DEGTORAD64;
196 T cs = (T)cos(degrees);
197 T sn = (T)sin(degrees);
198 Z -= center.Z;
199 Y -= center.Y;
200 set(X, Y*cs - Z*sn, Y*sn + Z*cs);
201 Z += center.Z;
202 Y += center.Y;
205 //! Returns interpolated vector.
206 /** \param other: other vector to interpolate between
207 \param d: value between 0.0f and 1.0f. */
208 vector3d<T> getInterpolated(const vector3d<T>& other, const T d) const
210 const T inv = (T) 1.0 - d;
211 return vector3d<T>(other.X*inv + X*d, other.Y*inv + Y*d, other.Z*inv + Z*d);
214 //! Returns interpolated vector. ( quadratic )
215 /** \param v2: second vector to interpolate with
216 \param v3: third vector to interpolate with
217 \param d: value between 0.0f and 1.0f. */
218 vector3d<T> getInterpolated_quadratic(const vector3d<T>& v2, const vector3d<T>& v3, const T d) const
220 // this*(1-d)*(1-d) + 2 * v2 * (1-d) + v3 * d * d;
221 const T inv = (T) 1.0 - d;
222 const T mul0 = inv * inv;
223 const T mul1 = (T) 2.0 * d * inv;
224 const T mul2 = d * d;
226 return vector3d<T> ( X * mul0 + v2.X * mul1 + v3.X * mul2,
227 Y * mul0 + v2.Y * mul1 + v3.Y * mul2,
228 Z * mul0 + v2.Z * mul1 + v3.Z * mul2);
231 //! Gets the Y and Z rotations of a vector.
232 /** Thanks to Arras on the Irrlicht forums to add this method.
233 \return A vector representing the rotation in degrees of
234 this vector. The Z component of the vector will always be 0. */
235 vector3d<T> getHorizontalAngle()
237 vector3d<T> angle;
239 angle.Y = (T)atan2(X, Z);
240 angle.Y *= (f32)RADTODEG64;
242 if (angle.Y < 0.0f) angle.Y += 360.0f;
243 if (angle.Y >= 360.0f) angle.Y -= 360.0f;
245 f32 z1 = sqrtf(X*X + Z*Z);
247 angle.X = (T)atan2(z1, Y);
248 angle.X *= (f32)RADTODEG64;
249 angle.X -= 90.0f;
251 if (angle.X < 0.0f) angle.X += 360.0f;
252 if (angle.X >= 360.0f) angle.X -= 360.0f;
254 return angle;
257 //! Fills an array of 4 values with the vector data (usually floats).
258 /** Useful for setting in shader constants for example. The fourth value
259 will always be 0. */
260 void getAs4Values(T* array) const
262 array[0] = X;
263 array[1] = Y;
264 array[2] = Z;
265 array[3] = 0;
269 // member variables
271 T X, Y, Z;
275 //! Typedef for a f32 3d vector.
276 typedef vector3d<f32> vector3df;
277 //! Typedef for an integer 3d vector.
278 typedef vector3d<s32> vector3di;
280 template<class S, class T> vector3d<T> operator*(const S scalar, const vector3d<T>& vector) { return vector*scalar; }
282 } // end namespace core
283 } // end namespace irr
285 #endif