15 #include "tactics/util.h"
17 #include "uct/internal.h"
18 #include "uct/prior.h"
20 #include "uct/slave.h"
23 /* Allocate tree node(s). The returned nodes are _not_ initialized.
24 * Returns NULL if not enough memory.
25 * This function may be called by multiple threads in parallel. */
26 static struct tree_node
*
27 tree_alloc_node(struct tree
*t
, int count
, bool fast_alloc
, hash_t
*hash
)
29 struct tree_node
*n
= NULL
;
30 size_t nsize
= count
* sizeof(*n
);
31 unsigned long old_size
= __sync_fetch_and_add(&t
->nodes_size
, nsize
);
34 if (old_size
+ nsize
> t
->max_tree_size
)
36 assert(t
->nodes
!= NULL
);
37 n
= (struct tree_node
*)(t
->nodes
+ old_size
);
38 memset(n
, 0, sizeof(*n
));
40 n
= calloc2(count
, sizeof(*n
));
44 volatile static long c
= 1000000;
45 *hash
= __sync_fetch_and_add(&c
, count
);
51 /* Initialize a node at a given place in memory.
52 * This function may be called by multiple threads in parallel. */
54 tree_setup_node(struct tree
*t
, struct tree_node
*n
, coord_t coord
, int depth
, hash_t hash
)
59 if (depth
> t
->max_depth
)
63 /* Allocate and initialize a node. Returns NULL (fast_alloc mode)
64 * or exits the main program if not enough memory.
65 * This function may be called by multiple threads in parallel. */
66 static struct tree_node
*
67 tree_init_node(struct tree
*t
, coord_t coord
, int depth
, bool fast_alloc
)
71 n
= tree_alloc_node(t
, 1, fast_alloc
, &hash
);
73 tree_setup_node(t
, n
, coord
, depth
, hash
);
77 /* Create a tree structure. Pre-allocate all nodes if max_tree_size is > 0. */
79 tree_init(struct board
*board
, enum stone color
, unsigned long max_tree_size
,
80 unsigned long max_pruned_size
, unsigned long pruning_threshold
, floating_t ltree_aging
, int hbits
)
82 struct tree
*t
= calloc2(1, sizeof(*t
));
84 t
->max_tree_size
= max_tree_size
;
85 t
->max_pruned_size
= max_pruned_size
;
86 t
->pruning_threshold
= pruning_threshold
;
87 if (max_tree_size
!= 0) {
88 t
->nodes
= malloc2(max_tree_size
);
89 /* The nodes buffer doesn't need initialization. This is currently
90 * done by tree_init_node to spread the load. Doing a memset for the
91 * entire buffer here would be too slow for large trees (>10 GB). */
93 /* The root PASS move is only virtual, we never play it. */
94 t
->root
= tree_init_node(t
, pass
, 0, t
->nodes
);
95 t
->root_symmetry
= board
->symmetry
;
96 t
->root_color
= stone_other(color
); // to research black moves, root will be white
98 t
->ltree_black
= tree_init_node(t
, pass
, 0, false);
99 t
->ltree_white
= tree_init_node(t
, pass
, 0, false);
100 t
->ltree_aging
= ltree_aging
;
103 if (hbits
) t
->htable
= uct_htable_alloc(hbits
);
108 /* This function may be called by multiple threads in parallel on the
109 * same tree, but not on node n. n may be detached from the tree but
110 * must have been created in this tree originally.
111 * It returns the remaining size of the tree after n has been freed. */
113 tree_done_node(struct tree
*t
, struct tree_node
*n
)
115 struct tree_node
*ni
= n
->children
;
117 struct tree_node
*nj
= ni
->sibling
;
118 tree_done_node(t
, ni
);
122 unsigned long old_size
= __sync_fetch_and_sub(&t
->nodes_size
, sizeof(*n
));
123 return old_size
- sizeof(*n
);
131 /* Worker thread for tree_done_node_detached(). Only for fast_alloc=false. */
133 tree_done_node_worker(void *ctx_
)
135 struct subtree_ctx
*ctx
= ctx_
;
136 char *str
= coord2str(ctx
->n
->coord
, ctx
->t
->board
);
138 unsigned long tree_size
= tree_done_node(ctx
->t
, ctx
->n
);
142 fprintf(stderr
, "done freeing node at %s, tree size %lu\n", str
, tree_size
);
148 /* Asynchronously free the subtree of nodes rooted at n. If the tree becomes
149 * empty free the tree also. Only for fast_alloc=false. */
151 tree_done_node_detached(struct tree
*t
, struct tree_node
*n
)
153 if (n
->u
.playouts
< 1000) { // no thread for small tree
154 if (!tree_done_node(t
, n
))
159 pthread_attr_init(&attr
);
160 pthread_attr_setdetachstate(&attr
, PTHREAD_CREATE_DETACHED
);
163 struct subtree_ctx
*ctx
= malloc2(sizeof(struct subtree_ctx
));
166 pthread_create(&thread
, &attr
, tree_done_node_worker
, ctx
);
167 pthread_attr_destroy(&attr
);
171 tree_done(struct tree
*t
)
173 tree_done_node(t
, t
->ltree_black
);
174 tree_done_node(t
, t
->ltree_white
);
176 if (t
->htable
) free(t
->htable
);
180 } else if (!tree_done_node(t
, t
->root
)) {
182 /* A tree_done_node_worker might still be running on this tree but
183 * it will free the tree later. It is also freeing nodes faster than
184 * we will create new ones. */
190 tree_node_dump(struct tree
*tree
, struct tree_node
*node
, int treeparity
, int l
, int thres
)
192 for (int i
= 0; i
< l
; i
++) fputc(' ', stderr
);
194 for (struct tree_node
*ni
= node
->children
; ni
; ni
= ni
->sibling
)
196 /* We use 1 as parity, since for all nodes we want to know the
197 * win probability of _us_, not the node color. */
198 fprintf(stderr
, "[%s] %.3f/%d [prior %.3f/%d amaf %.3f/%d crit %.3f] h=%x c#=%d <%"PRIhash
">\n",
199 coord2sstr(node
->coord
, tree
->board
),
200 tree_node_get_value(tree
, treeparity
, node
->u
.value
), node
->u
.playouts
,
201 tree_node_get_value(tree
, treeparity
, node
->prior
.value
), node
->prior
.playouts
,
202 tree_node_get_value(tree
, treeparity
, node
->amaf
.value
), node
->amaf
.playouts
,
203 tree_node_criticality(tree
, node
),
204 node
->hints
, children
, node
->hash
);
206 /* Print nodes sorted by #playouts. */
208 struct tree_node
*nbox
[1000]; int nboxl
= 0;
209 for (struct tree_node
*ni
= node
->children
; ni
; ni
= ni
->sibling
)
210 if (ni
->u
.playouts
> thres
)
215 for (int i
= 0; i
< nboxl
; i
++)
216 if (nbox
[i
] && (best
< 0 || nbox
[i
]->u
.playouts
> nbox
[best
]->u
.playouts
))
220 tree_node_dump(tree
, nbox
[best
], treeparity
, l
+ 1, /* node->u.value < 0.1 ? 0 : */ thres
);
226 tree_dump(struct tree
*tree
, int thres
)
228 if (thres
&& tree
->root
->u
.playouts
/ thres
> 100) {
229 /* Be a bit sensible about this; the opening tbook can create
230 * huge dumps at first. */
231 thres
= tree
->root
->u
.playouts
/ 100 * (thres
< 1000 ? 1 : thres
/ 1000);
233 fprintf(stderr
, "(UCT tree; root %s; extra komi %f; max depth %d)\n",
234 stone2str(tree
->root_color
), tree
->extra_komi
,
235 tree
->max_depth
- tree
->root
->depth
);
236 tree_node_dump(tree
, tree
->root
, 1, 0, thres
);
238 if (DEBUGL(3) && tree
->ltree_black
) {
239 fprintf(stderr
, "B local tree:\n");
240 tree_node_dump(tree
, tree
->ltree_black
, tree
->root_color
== S_WHITE
? 1 : -1, 0, thres
);
241 fprintf(stderr
, "W local tree:\n");
242 tree_node_dump(tree
, tree
->ltree_white
, tree
->root_color
== S_BLACK
? 1 : -1, 0, thres
);
248 tree_book_name(struct board
*b
)
250 static char buf
[256];
251 if (b
->handicap
> 0) {
252 sprintf(buf
, "ucttbook-%d-%02.01f-h%d.pachitree", b
->size
- 2, b
->komi
, b
->handicap
);
254 sprintf(buf
, "ucttbook-%d-%02.01f.pachitree", b
->size
- 2, b
->komi
);
260 tree_node_save(FILE *f
, struct tree_node
*node
, int thres
)
262 bool save_children
= node
->u
.playouts
>= thres
;
265 node
->is_expanded
= 0;
268 fwrite(((void *) node
) + offsetof(struct tree_node
, depth
),
269 sizeof(struct tree_node
) - offsetof(struct tree_node
, depth
),
273 for (struct tree_node
*ni
= node
->children
; ni
; ni
= ni
->sibling
)
274 tree_node_save(f
, ni
, thres
);
277 node
->is_expanded
= 1;
284 tree_save(struct tree
*tree
, struct board
*b
, int thres
)
286 char *filename
= tree_book_name(b
);
287 FILE *f
= fopen(filename
, "wb");
292 tree_node_save(f
, tree
->root
, thres
);
299 tree_node_load(FILE *f
, struct tree_node
*node
, int *num
)
303 fread(((void *) node
) + offsetof(struct tree_node
, depth
),
304 sizeof(struct tree_node
) - offsetof(struct tree_node
, depth
),
307 /* Keep values in sane scale, otherwise we start overflowing. */
308 #define MAX_PLAYOUTS 10000000
309 if (node
->u
.playouts
> MAX_PLAYOUTS
) {
310 node
->u
.playouts
= MAX_PLAYOUTS
;
312 if (node
->amaf
.playouts
> MAX_PLAYOUTS
) {
313 node
->amaf
.playouts
= MAX_PLAYOUTS
;
315 memcpy(&node
->pu
, &node
->u
, sizeof(node
->u
));
317 struct tree_node
*ni
= NULL
, *ni_prev
= NULL
;
319 ni_prev
= ni
; ni
= calloc2(1, sizeof(*ni
));
323 ni_prev
->sibling
= ni
;
325 tree_node_load(f
, ni
, num
);
330 tree_load(struct tree
*tree
, struct board
*b
)
332 char *filename
= tree_book_name(b
);
333 FILE *f
= fopen(filename
, "rb");
337 fprintf(stderr
, "Loading opening tbook %s...\n", filename
);
341 tree_node_load(f
, tree
->root
, &num
);
342 fprintf(stderr
, "Loaded %d nodes.\n", num
);
348 /* Copy the subtree rooted at node: all nodes at or below depth
349 * or with at least threshold playouts. Only for fast_alloc.
350 * The code is destructive on src. The relative order of children of
351 * a given node is preserved (assumed by tree_get_node in particular).
352 * Returns the copy of node in the destination tree, or NULL
353 * if we could not copy it. */
354 static struct tree_node
*
355 tree_prune(struct tree
*dest
, struct tree
*src
, struct tree_node
*node
,
356 int threshold
, int depth
)
358 assert(dest
->nodes
&& node
);
359 struct tree_node
*n2
= tree_alloc_node(dest
, 1, true, NULL
);
363 if (n2
->depth
> dest
->max_depth
)
364 dest
->max_depth
= n2
->depth
;
366 n2
->is_expanded
= false;
368 if (node
->depth
>= depth
&& node
->u
.playouts
< threshold
)
370 /* For deep nodes with many playouts, we must copy all children,
371 * even those with zero playouts, because partially expanded
372 * nodes are not supported. Considering them as fully expanded
373 * would degrade the playing strength. The only exception is
374 * when dest becomes full, but this should never happen in practice
375 * if threshold is chosen to limit the number of nodes traversed. */
376 struct tree_node
*ni
= node
->children
;
379 struct tree_node
**prev2
= &(n2
->children
);
381 struct tree_node
*ni2
= tree_prune(dest
, src
, ni
, threshold
, depth
);
384 prev2
= &(ni2
->sibling
);
389 n2
->is_expanded
= true;
391 n2
->children
= NULL
; // avoid partially expanded nodes
396 /* The following constants are used for garbage collection of nodes.
397 * A tree is considered large if the top node has >= 40K playouts.
398 * For such trees, we copy deep nodes only if they have enough
399 * playouts, with a gradually increasing threshold up to 40.
400 * These constants define how much time we're willing to spend
401 * scanning the source tree when promoting a move. The chosen values
402 * make worst case pruning in about 3s for 20 GB ram, and this
403 * is only for long thinking time (>1M playouts). For fast games the
404 * trees don't grow large. For small ram or fast game we copy the
405 * entire tree. These values do not degrade playing strength and are
406 * necessary to avoid losing on time; increasing DEEP_PLAYOUTS_THRESHOLD
407 * or decreasing LARGE_TREE_PLAYOUTS will make the program faster but
409 #define LARGE_TREE_PLAYOUTS 40000LL
410 #define DEEP_PLAYOUTS_THRESHOLD 40
412 /* Garbage collect the tree early if the top node has < 5K playouts,
413 * to avoid having to do it later on a large subtree.
414 * This guarantees garbage collection in < 1s. */
415 #define SMALL_TREE_PLAYOUTS 5000
417 /* Free all the tree, keeping only the subtree rooted at node.
418 * Prune the subtree if necessary to fit in memory or
419 * to save time scanning the tree.
420 * Returns the moved node. Only for fast_alloc. */
422 tree_garbage_collect(struct tree
*tree
, struct tree_node
*node
)
424 assert(tree
->nodes
&& !node
->parent
&& !node
->sibling
);
425 double start_time
= time_now();
426 unsigned long orig_size
= tree
->nodes_size
;
428 struct tree
*temp_tree
= tree_init(tree
->board
, tree
->root_color
,
429 tree
->max_pruned_size
, 0, 0, tree
->ltree_aging
, 0);
430 temp_tree
->nodes_size
= 0; // We do not want the dummy pass node
431 struct tree_node
*temp_node
;
433 /* Find the maximum depth at which we can copy all nodes. */
435 for (struct tree_node
*ni
= node
->children
; ni
; ni
= ni
->sibling
)
437 unsigned long nodes_size
= max_nodes
* sizeof(*node
);
438 int max_depth
= node
->depth
;
439 while (nodes_size
< tree
->max_pruned_size
&& max_nodes
> 1) {
441 nodes_size
+= max_nodes
* nodes_size
;
445 /* Copy all nodes for small trees. For large trees, copy all nodes
446 * with depth <= max_depth, and all nodes with enough playouts.
447 * Avoiding going too deep (except for nodes with many playouts) is mostly
448 * to save time scanning the source tree. It can take over 20s to traverse
449 * completely a large source tree (20 GB) even without copying because
450 * the traversal is not friendly at all with the memory cache. */
451 int threshold
= (node
->u
.playouts
- LARGE_TREE_PLAYOUTS
) * DEEP_PLAYOUTS_THRESHOLD
/ LARGE_TREE_PLAYOUTS
;
452 if (threshold
< 0) threshold
= 0;
453 if (threshold
> DEEP_PLAYOUTS_THRESHOLD
) threshold
= DEEP_PLAYOUTS_THRESHOLD
;
454 temp_node
= tree_prune(temp_tree
, tree
, node
, threshold
, max_depth
);
457 /* Now copy back to original tree. */
458 tree
->nodes_size
= 0;
460 struct tree_node
*new_node
= tree_prune(tree
, temp_tree
, temp_node
, 0, temp_tree
->max_depth
);
463 double now
= time_now();
464 static double prev_time
;
465 if (!prev_time
) prev_time
= start_time
;
467 "tree pruned in %0.6g s, prev %0.3g s ago, dest depth %d wanted %d,"
468 " size %lu->%lu/%lu, playouts %d\n",
469 now
- start_time
, start_time
- prev_time
, temp_tree
->max_depth
, max_depth
,
470 orig_size
, temp_tree
->nodes_size
, tree
->max_pruned_size
, new_node
->u
.playouts
);
471 prev_time
= start_time
;
473 if (temp_tree
->nodes_size
>= temp_tree
->max_tree_size
) {
474 fprintf(stderr
, "temp tree overflow, max_tree_size %lu, pruning_threshold %lu\n",
475 tree
->max_tree_size
, tree
->pruning_threshold
);
476 /* This is not a serious problem, we will simply recompute the discarded nodes
477 * at the next move if necessary. This is better than frequently wasting memory. */
479 assert(tree
->nodes_size
== temp_tree
->nodes_size
);
480 assert(tree
->max_depth
== temp_tree
->max_depth
);
482 tree_done(temp_tree
);
487 /* Get a node of given coordinate from within parent, possibly creating it
488 * if necessary - in a very raw form (no .d, priors, ...). */
489 /* FIXME: Adjust for board symmetry. */
491 tree_get_node(struct tree
*t
, struct tree_node
*parent
, coord_t c
, bool create
)
493 if (!parent
->children
|| parent
->children
->coord
>= c
) {
494 /* Special case: Insertion at the beginning. */
495 if (parent
->children
&& parent
->children
->coord
== c
)
496 return parent
->children
;
500 struct tree_node
*nn
= tree_init_node(t
, c
, parent
->depth
+ 1, false);
501 nn
->parent
= parent
; nn
->sibling
= parent
->children
;
502 parent
->children
= nn
;
506 /* No candidate at the beginning, look through all the children. */
508 struct tree_node
*ni
;
509 for (ni
= parent
->children
; ni
->sibling
; ni
= ni
->sibling
)
510 if (ni
->sibling
->coord
>= c
)
513 if (ni
->sibling
&& ni
->sibling
->coord
== c
)
515 assert(ni
->coord
< c
);
519 struct tree_node
*nn
= tree_init_node(t
, c
, parent
->depth
+ 1, false);
520 nn
->parent
= parent
; nn
->sibling
= ni
->sibling
; ni
->sibling
= nn
;
524 /* Get local tree node corresponding to given node, given local node child
525 * iterator @lni (which points either at the corresponding node, or at the
526 * nearest local tree node after @ni). */
528 tree_lnode_for_node(struct tree
*tree
, struct tree_node
*ni
, struct tree_node
*lni
, int tenuki_d
)
530 /* Now set up lnode, which is the actual local node
531 * corresponding to ni - either lni if it is an
532 * exact match and ni is not tenuki, <pass> local
533 * node if ni is tenuki, or NULL if there is no
534 * corresponding node available. */
536 if (is_pass(ni
->coord
)) {
537 /* Also, for sanity reasons we never use local
538 * tree for passes. (Maybe we could, but it's
539 * too hard to think about.) */
543 if (lni
->coord
== ni
->coord
) {
544 /* We don't consider tenuki a sequence play
545 * that we have in local tree even though
546 * ni->d is too high; this can happen if this
547 * occured in different board topology. */
551 if (ni
->d
>= tenuki_d
) {
552 /* Tenuki, pick a pass lsibling if available. */
553 assert(lni
->parent
&& lni
->parent
->children
);
554 if (is_pass(lni
->parent
->children
->coord
)) {
555 return lni
->parent
->children
;
561 /* No corresponding local node, lnode stays NULL. */
566 /* Tree symmetry: When possible, we will localize the tree to a single part
567 * of the board in tree_expand_node() and possibly flip along symmetry axes
568 * to another part of the board in tree_promote_at(). We follow b->symmetry
569 * guidelines here. */
572 /* This function must be thread safe, given that board b is only modified by the calling thread. */
574 tree_expand_node(struct tree
*t
, struct tree_node
*node
, struct board
*b
, enum stone color
, struct uct
*u
, int parity
)
576 /* Get a Common Fate Graph distance map from parent node. */
577 int distances
[board_size2(b
)];
578 if (!is_pass(b
->last_move
.coord
) && !is_resign(b
->last_move
.coord
)) {
579 cfg_distances(b
, node
->coord
, distances
, TREE_NODE_D_MAX
);
581 // Pass or resign - everything is too far.
582 foreach_point(b
) { distances
[c
] = TREE_NODE_D_MAX
+ 1; } foreach_point_end
;
585 /* Get a map of prior values to initialize the new nodes with. */
586 struct prior_map map
= {
589 .parity
= tree_parity(t
, parity
),
590 .distances
= distances
,
592 // Include pass in the prior map.
593 struct move_stats map_prior
[board_size2(b
) + 1]; map
.prior
= &map_prior
[1];
594 bool map_consider
[board_size2(b
) + 1]; map
.consider
= &map_consider
[1];
595 memset(map_prior
, 0, sizeof(map_prior
));
596 memset(map_consider
, 0, sizeof(map_consider
));
597 map
.consider
[pass
] = true;
598 foreach_free_point(b
) {
599 assert(board_at(b
, c
) == S_NONE
);
600 if (!board_is_valid_play(b
, color
, c
))
602 map
.consider
[c
] = true;
603 } foreach_free_point_end
;
604 uct_prior(u
, node
, &map
);
606 /* Now, create the nodes. */
607 struct tree_node
*ni
= tree_init_node(t
, pass
, node
->depth
+ 1, t
->nodes
);
608 /* In fast_alloc mode we might temporarily run out of nodes but this should be rare. */
610 node
->is_expanded
= false;
613 struct tree_node
*first_child
= ni
;
615 ni
->prior
= map
.prior
[pass
]; ni
->d
= TREE_NODE_D_MAX
+ 1;
617 /* The loop considers only the symmetry playground. */
619 fprintf(stderr
, "expanding %s within [%d,%d],[%d,%d] %d-%d\n",
620 coord2sstr(node
->coord
, b
),
621 b
->symmetry
.x1
, b
->symmetry
.y1
,
622 b
->symmetry
.x2
, b
->symmetry
.y2
,
623 b
->symmetry
.type
, b
->symmetry
.d
);
625 for (int j
= b
->symmetry
.y1
; j
<= b
->symmetry
.y2
; j
++) {
626 for (int i
= b
->symmetry
.x1
; i
<= b
->symmetry
.x2
; i
++) {
628 int x
= b
->symmetry
.type
== SYM_DIAG_DOWN
? board_size(b
) - 1 - i
: i
;
631 fprintf(stderr
, "drop %d,%d\n", i
, j
);
636 coord_t c
= coord_xy(t
->board
, i
, j
);
637 if (!map
.consider
[c
]) // Filter out invalid moves
639 assert(c
!= node
->coord
); // I have spotted "C3 C3" in some sequence...
641 struct tree_node
*nj
= tree_init_node(t
, c
, node
->depth
+ 1, t
->nodes
);
643 node
->is_expanded
= false;
646 nj
->parent
= node
; ni
->sibling
= nj
; ni
= nj
;
648 ni
->prior
= map
.prior
[c
];
649 ni
->d
= distances
[c
];
652 node
->children
= first_child
; // must be done at the end to avoid race
657 flip_coord(struct board
*b
, coord_t c
,
658 bool flip_horiz
, bool flip_vert
, int flip_diag
)
660 int x
= coord_x(c
, b
), y
= coord_y(c
, b
);
662 int z
= x
; x
= y
; y
= z
;
665 x
= board_size(b
) - 1 - x
;
668 y
= board_size(b
) - 1 - y
;
670 return coord_xy(b
, x
, y
);
674 tree_fix_node_symmetry(struct board
*b
, struct tree_node
*node
,
675 bool flip_horiz
, bool flip_vert
, int flip_diag
)
677 if (!is_pass(node
->coord
))
678 node
->coord
= flip_coord(b
, node
->coord
, flip_horiz
, flip_vert
, flip_diag
);
680 for (struct tree_node
*ni
= node
->children
; ni
; ni
= ni
->sibling
)
681 tree_fix_node_symmetry(b
, ni
, flip_horiz
, flip_vert
, flip_diag
);
685 tree_fix_symmetry(struct tree
*tree
, struct board
*b
, coord_t c
)
690 struct board_symmetry
*s
= &tree
->root_symmetry
;
691 int cx
= coord_x(c
, b
), cy
= coord_y(c
, b
);
693 /* playground X->h->v->d normalization
699 bool flip_horiz
= cx
< s
->x1
|| cx
> s
->x2
;
700 bool flip_vert
= cy
< s
->y1
|| cy
> s
->y2
;
704 bool dir
= (s
->type
== SYM_DIAG_DOWN
);
705 int x
= dir
^ flip_horiz
^ flip_vert
? board_size(b
) - 1 - cx
: cx
;
706 if (flip_vert
? x
< cy
: x
> cy
) {
712 fprintf(stderr
, "%s [%d,%d -> %d,%d;%d,%d] will flip %d %d %d -> %s, sym %d (%d) -> %d (%d)\n",
714 cx
, cy
, s
->x1
, s
->y1
, s
->x2
, s
->y2
,
715 flip_horiz
, flip_vert
, flip_diag
,
716 coord2sstr(flip_coord(b
, c
, flip_horiz
, flip_vert
, flip_diag
), b
),
717 s
->type
, s
->d
, b
->symmetry
.type
, b
->symmetry
.d
);
719 if (flip_horiz
|| flip_vert
|| flip_diag
)
720 tree_fix_node_symmetry(b
, tree
->root
, flip_horiz
, flip_vert
, flip_diag
);
725 tree_unlink_node(struct tree_node
*node
)
727 struct tree_node
*ni
= node
->parent
;
728 if (ni
->children
== node
) {
729 ni
->children
= node
->sibling
;
732 while (ni
->sibling
!= node
)
734 ni
->sibling
= node
->sibling
;
736 node
->sibling
= NULL
;
740 /* Reduce weight of statistics on promotion. Remove nodes that
741 * get reduced to zero playouts; returns next node to consider
742 * in the children list (@node may get deleted). */
743 static struct tree_node
*
744 tree_age_node(struct tree
*tree
, struct tree_node
*node
)
746 node
->u
.playouts
/= tree
->ltree_aging
;
747 if (node
->parent
&& !node
->u
.playouts
) {
748 struct tree_node
*sibling
= node
->sibling
;
749 /* Delete node, no playouts. */
750 tree_unlink_node(node
);
751 tree_done_node(tree
, node
);
755 struct tree_node
*ni
= node
->children
;
756 while (ni
) ni
= tree_age_node(tree
, ni
);
757 return node
->sibling
;
760 /* Promotes the given node as the root of the tree. In the fast_alloc
761 * mode, the node may be moved and some of its subtree may be pruned. */
763 tree_promote_node(struct tree
*tree
, struct tree_node
**node
)
765 assert((*node
)->parent
== tree
->root
);
766 tree_unlink_node(*node
);
768 /* Freeing the rest of the tree can take several seconds on large
769 * trees, so we must do it asynchronously: */
770 tree_done_node_detached(tree
, tree
->root
);
772 /* Garbage collect if we run out of memory, or it is cheap to do so now: */
773 if (tree
->nodes_size
>= tree
->pruning_threshold
774 || (tree
->nodes_size
>= tree
->max_tree_size
/ 10 && (*node
)->u
.playouts
< SMALL_TREE_PLAYOUTS
))
775 *node
= tree_garbage_collect(tree
, *node
);
778 tree
->root_color
= stone_other(tree
->root_color
);
780 board_symmetry_update(tree
->board
, &tree
->root_symmetry
, (*node
)->coord
);
781 /* See tree.score description for explanation on why don't we zero
782 * score on node promotion. */
783 // tree->score.playouts = 0;
785 /* If the tree deepest node was under node, or if we called tree_garbage_collect,
786 * tree->max_depth is correct. Otherwise we could traverse the tree
787 * to recompute max_depth but it's not worth it: it's just for debugging
788 * and soon the tree will grow and max_depth will become correct again. */
790 if (tree
->ltree_aging
!= 1.0f
) { // XXX: != should work here even with the floating_t
791 tree_age_node(tree
, tree
->ltree_black
);
792 tree_age_node(tree
, tree
->ltree_white
);
797 tree_promote_at(struct tree
*tree
, struct board
*b
, coord_t c
)
799 tree_fix_symmetry(tree
, b
, c
);
801 for (struct tree_node
*ni
= tree
->root
->children
; ni
; ni
= ni
->sibling
) {
802 if (ni
->coord
== c
) {
803 tree_promote_node(tree
, &ni
);