Fix final_status_list argument (again).
[pachi/t.git] / uct / uct.c
blob4aed225c438730a3ffe42fe473baa071b3a13899
1 #include <assert.h>
2 #include <math.h>
3 #include <pthread.h>
4 #include <signal.h>
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <time.h>
10 #define DEBUG
12 #include "debug.h"
13 #include "board.h"
14 #include "gtp.h"
15 #include "move.h"
16 #include "mq.h"
17 #include "playout.h"
18 #include "playout/elo.h"
19 #include "playout/moggy.h"
20 #include "playout/light.h"
21 #include "random.h"
22 #include "tactics.h"
23 #include "timeinfo.h"
24 #include "distributed/distributed.h"
25 #include "uct/dynkomi.h"
26 #include "uct/internal.h"
27 #include "uct/prior.h"
28 #include "uct/tree.h"
29 #include "uct/uct.h"
30 #include "uct/walk.h"
32 struct uct_policy *policy_ucb1_init(struct uct *u, char *arg);
33 struct uct_policy *policy_ucb1amaf_init(struct uct *u, char *arg);
34 static void uct_pondering_stop(struct uct *u);
35 static void uct_pondering_start(struct uct *u, struct board *b0, struct tree *t, enum stone color);
38 /* Default number of simulations to perform per move.
39 * Note that this is now in total over all threads! (Unless TM_ROOT.) */
40 #define MC_GAMES 80000
41 #define MC_GAMELEN MAX_GAMELEN
42 static const struct time_info default_ti = {
43 .period = TT_MOVE,
44 .dim = TD_GAMES,
45 .len = { .games = MC_GAMES },
48 /* How big proportion of ownermap counts must be of one color to consider
49 * the point sure. */
50 #define GJ_THRES 0.8
51 /* How many games to consider at minimum before judging groups. */
52 #define GJ_MINGAMES 500
54 /* How often to inspect the tree from the main thread to check for playout
55 * stop, progress reports, etc. (in seconds) */
56 #define TREE_BUSYWAIT_INTERVAL 0.1 /* 100ms */
58 /* Once per how many simulations (per thread) to show a progress report line. */
59 #define TREE_SIMPROGRESS_INTERVAL 10000
61 /* When terminating uct_search() early, the safety margin to add to the
62 * remaining playout number estimate when deciding whether the result can
63 * still change. */
64 #define PLAYOUT_DELTA_SAFEMARGIN 1000
67 static void
68 setup_state(struct uct *u, struct board *b, enum stone color)
70 u->t = tree_init(b, color, u->fast_alloc ? u->max_tree_size : 0, u->local_tree_aging);
71 if (u->force_seed)
72 fast_srandom(u->force_seed);
73 if (UDEBUGL(0))
74 fprintf(stderr, "Fresh board with random seed %lu\n", fast_getseed());
75 //board_print(b, stderr);
76 if (!u->no_book && b->moves == 0) {
77 assert(color == S_BLACK);
78 tree_load(u->t, b);
82 static void
83 reset_state(struct uct *u)
85 assert(u->t);
86 tree_done(u->t); u->t = NULL;
89 static void
90 setup_dynkomi(struct uct *u, struct board *b, enum stone to_play)
92 if (u->t->use_extra_komi && u->dynkomi->permove)
93 u->t->extra_komi = u->dynkomi->permove(u->dynkomi, b, u->t);
96 static void
97 prepare_move(struct engine *e, struct board *b, enum stone color)
99 struct uct *u = e->data;
101 if (u->t) {
102 /* Verify that we have sane state. */
103 assert(b->es == u);
104 assert(u->t && b->moves);
105 if (color != stone_other(u->t->root_color)) {
106 fprintf(stderr, "Fatal: Non-alternating play detected %d %d\n",
107 color, u->t->root_color);
108 exit(1);
111 } else {
112 /* We need fresh state. */
113 b->es = u;
114 setup_state(u, b, color);
117 u->ownermap.playouts = 0;
118 memset(u->ownermap.map, 0, board_size2(b) * sizeof(u->ownermap.map[0]));
121 static void
122 dead_group_list(struct uct *u, struct board *b, struct move_queue *mq)
124 struct group_judgement gj;
125 gj.thres = GJ_THRES;
126 gj.gs = alloca(board_size2(b) * sizeof(gj.gs[0]));
127 board_ownermap_judge_group(b, &u->ownermap, &gj);
128 groups_of_status(b, &gj, GS_DEAD, mq);
131 bool
132 uct_pass_is_safe(struct uct *u, struct board *b, enum stone color, bool pass_all_alive)
134 if (u->ownermap.playouts < GJ_MINGAMES)
135 return false;
137 struct move_queue mq = { .moves = 0 };
138 if (!pass_all_alive)
139 dead_group_list(u, b, &mq);
140 return pass_is_safe(b, color, &mq);
143 /* This function is called only when running as slave in the distributed version. */
144 static enum parse_code
145 uct_notify(struct engine *e, struct board *b, int id, char *cmd, char *args, char **reply)
147 struct uct *u = e->data;
149 /* Force resending the whole command history if we are out of sync
150 * but do it only once, not if already getting the history. */
151 if ((move_number(id) != b->moves || !b->size)
152 && !reply_disabled(id) && !is_reset(cmd)) {
153 if (UDEBUGL(0))
154 fprintf(stderr, "Out of sync, id %d, move %d\n", id, b->moves);
155 static char buf[128];
156 snprintf(buf, sizeof(buf), "out of sync, move %d expected", b->moves);
157 *reply = buf;
158 return P_DONE_ERROR;
160 return reply_disabled(id) ? P_NOREPLY : P_OK;
163 static void
164 uct_printhook_ownermap(struct board *board, coord_t c, FILE *f)
166 struct uct *u = board->es;
167 assert(u);
168 const char chr[] = ":XO,"; // dame, black, white, unclear
169 const char chm[] = ":xo,";
170 char ch = chr[board_ownermap_judge_point(&u->ownermap, c, GJ_THRES)];
171 if (ch == ',') { // less precise estimate then?
172 ch = chm[board_ownermap_judge_point(&u->ownermap, c, 0.67)];
174 fprintf(f, "%c ", ch);
177 static char *
178 uct_notify_play(struct engine *e, struct board *b, struct move *m)
180 struct uct *u = e->data;
181 if (!u->t) {
182 /* No state, create one - this is probably game beginning
183 * and we need to load the opening book right now. */
184 prepare_move(e, b, m->color);
185 assert(u->t);
188 /* Stop pondering, required by tree_promote_at() */
189 uct_pondering_stop(u);
191 if (is_resign(m->coord)) {
192 /* Reset state. */
193 reset_state(u);
194 return NULL;
197 /* Promote node of the appropriate move to the tree root. */
198 assert(u->t->root);
199 if (!tree_promote_at(u->t, b, m->coord)) {
200 if (UDEBUGL(0))
201 fprintf(stderr, "Warning: Cannot promote move node! Several play commands in row?\n");
202 reset_state(u);
203 return NULL;
206 /* If we are a slave in a distributed engine, start pondering once
207 * we know which move we actually played. See uct_genmove() about
208 * the check for pass. */
209 if (u->pondering_opt && u->slave && m->color == u->my_color && !is_pass(m->coord))
210 uct_pondering_start(u, b, u->t, stone_other(m->color));
212 return NULL;
215 static char *
216 uct_chat(struct engine *e, struct board *b, char *cmd)
218 struct uct *u = e->data;
219 static char reply[1024];
221 cmd += strspn(cmd, " \n\t");
222 if (!strncasecmp(cmd, "winrate", 7)) {
223 if (!u->t)
224 return "no game context (yet?)";
225 enum stone color = u->t->root_color;
226 struct tree_node *n = u->t->root;
227 snprintf(reply, 1024, "In %d playouts at %d threads, %s %s can win with %.2f%% probability",
228 n->u.playouts, u->threads, stone2str(color), coord2sstr(n->coord, b),
229 tree_node_get_value(u->t, -1, n->u.value) * 100);
230 if (u->t->use_extra_komi && abs(u->t->extra_komi) >= 0.5) {
231 sprintf(reply + strlen(reply), ", while self-imposing extra komi %.1f",
232 u->t->extra_komi);
234 strcat(reply, ".");
235 return reply;
237 return NULL;
240 static void
241 uct_dead_group_list(struct engine *e, struct board *b, struct move_queue *mq)
243 struct uct *u = e->data;
245 /* This means the game is probably over, no use pondering on. */
246 uct_pondering_stop(u);
248 if (u->pass_all_alive)
249 return; // no dead groups
251 bool mock_state = false;
253 if (!u->t) {
254 /* No state, but we cannot just back out - we might
255 * have passed earlier, only assuming some stones are
256 * dead, and then re-connected, only to lose counting
257 * when all stones are assumed alive. */
258 /* Mock up some state and seed the ownermap by few
259 * simulations. */
260 prepare_move(e, b, S_BLACK); assert(u->t);
261 for (int i = 0; i < GJ_MINGAMES; i++)
262 uct_playout(u, b, S_BLACK, u->t);
263 mock_state = true;
266 dead_group_list(u, b, mq);
268 if (mock_state) {
269 /* Clean up the mock state in case we will receive
270 * a genmove; we could get a non-alternating-move
271 * error from prepare_move() in that case otherwise. */
272 reset_state(u);
276 static void
277 playout_policy_done(struct playout_policy *p)
279 if (p->done) p->done(p);
280 if (p->data) free(p->data);
281 free(p);
284 static void
285 uct_done(struct engine *e)
287 /* This is called on engine reset, especially when clear_board
288 * is received and new game should begin. */
289 struct uct *u = e->data;
290 uct_pondering_stop(u);
291 if (u->t) reset_state(u);
292 free(u->ownermap.map);
294 free(u->policy);
295 free(u->random_policy);
296 playout_policy_done(u->playout);
297 uct_prior_done(u->prior);
301 /* Pachi threading structure (if uct_playouts_parallel() is used):
303 * main thread
304 * | main(), GTP communication, ...
305 * | starts and stops the search managed by thread_manager
307 * thread_manager
308 * | spawns and collects worker threads
310 * worker0
311 * worker1
312 * ...
313 * workerK
314 * uct_playouts() loop, doing descend-playout until uct_halt
316 * Another way to look at it is by functions (lines denote thread boundaries):
318 * | uct_genmove()
319 * | uct_search() (uct_search_start() .. uct_search_stop())
320 * | -----------------------
321 * | spawn_thread_manager()
322 * | -----------------------
323 * | spawn_worker()
324 * V uct_playouts() */
326 /* Set in thread manager in case the workers should stop. */
327 volatile sig_atomic_t uct_halt = 0;
328 /* ID of the running worker thread. */
329 __thread int thread_id = -1;
330 /* ID of the thread manager. */
331 static pthread_t thread_manager;
332 static bool thread_manager_running;
334 static pthread_mutex_t finish_mutex = PTHREAD_MUTEX_INITIALIZER;
335 static pthread_cond_t finish_cond = PTHREAD_COND_INITIALIZER;
336 static volatile int finish_thread;
337 static pthread_mutex_t finish_serializer = PTHREAD_MUTEX_INITIALIZER;
339 struct spawn_ctx {
340 int tid;
341 struct uct *u;
342 struct board *b;
343 enum stone color;
344 struct tree *t;
345 unsigned long seed;
346 int games;
349 static void *
350 spawn_worker(void *ctx_)
352 struct spawn_ctx *ctx = ctx_;
353 /* Setup */
354 fast_srandom(ctx->seed);
355 thread_id = ctx->tid;
356 /* Run */
357 ctx->games = uct_playouts(ctx->u, ctx->b, ctx->color, ctx->t);
358 /* Finish */
359 pthread_mutex_lock(&finish_serializer);
360 pthread_mutex_lock(&finish_mutex);
361 finish_thread = ctx->tid;
362 pthread_cond_signal(&finish_cond);
363 pthread_mutex_unlock(&finish_mutex);
364 return ctx;
367 /* Thread manager, controlling worker threads. It must be called with
368 * finish_mutex lock held, but it will unlock it itself before exiting;
369 * this is necessary to be completely deadlock-free. */
370 /* The finish_cond can be signalled for it to stop; in that case,
371 * the caller should set finish_thread = -1. */
372 /* After it is started, it will update mctx->t to point at some tree
373 * used for the actual search (matters only for TM_ROOT), on return
374 * it will set mctx->games to the number of performed simulations. */
375 static void *
376 spawn_thread_manager(void *ctx_)
378 /* In thread_manager, we use only some of the ctx fields. */
379 struct spawn_ctx *mctx = ctx_;
380 struct uct *u = mctx->u;
381 struct tree *t = mctx->t;
382 bool shared_tree = u->parallel_tree;
383 fast_srandom(mctx->seed);
385 int played_games = 0;
386 pthread_t threads[u->threads];
387 int joined = 0;
389 uct_halt = 0;
391 /* Garbage collect the tree by preference when pondering. */
392 if (u->pondering && t->nodes && t->nodes_size > t->max_tree_size/2) {
393 unsigned long temp_size = (MIN_FREE_MEM_PERCENT * t->max_tree_size) / 100;
394 t->root = tree_garbage_collect(t, temp_size, t->root);
397 /* Spawn threads... */
398 for (int ti = 0; ti < u->threads; ti++) {
399 struct spawn_ctx *ctx = malloc(sizeof(*ctx));
400 ctx->u = u; ctx->b = mctx->b; ctx->color = mctx->color;
401 mctx->t = ctx->t = shared_tree ? t : tree_copy(t);
402 ctx->tid = ti; ctx->seed = fast_random(65536) + ti;
403 pthread_create(&threads[ti], NULL, spawn_worker, ctx);
404 if (UDEBUGL(3))
405 fprintf(stderr, "Spawned worker %d\n", ti);
408 /* ...and collect them back: */
409 while (joined < u->threads) {
410 /* Wait for some thread to finish... */
411 pthread_cond_wait(&finish_cond, &finish_mutex);
412 if (finish_thread < 0) {
413 /* Stop-by-caller. Tell the workers to wrap up. */
414 uct_halt = 1;
415 continue;
417 /* ...and gather its remnants. */
418 struct spawn_ctx *ctx;
419 pthread_join(threads[finish_thread], (void **) &ctx);
420 played_games += ctx->games;
421 joined++;
422 if (!shared_tree) {
423 if (ctx->t == mctx->t) mctx->t = t;
424 tree_merge(t, ctx->t);
425 tree_done(ctx->t);
427 free(ctx);
428 if (UDEBUGL(3))
429 fprintf(stderr, "Joined worker %d\n", finish_thread);
430 pthread_mutex_unlock(&finish_serializer);
433 pthread_mutex_unlock(&finish_mutex);
435 if (!shared_tree)
436 tree_normalize(mctx->t, u->threads);
438 mctx->games = played_games;
439 return mctx;
442 static struct spawn_ctx *
443 uct_search_start(struct uct *u, struct board *b, enum stone color, struct tree *t)
445 assert(u->threads > 0);
446 assert(!thread_manager_running);
448 struct spawn_ctx ctx = { .u = u, .b = b, .color = color, .t = t, .seed = fast_random(65536) };
449 static struct spawn_ctx mctx; mctx = ctx;
450 pthread_mutex_lock(&finish_mutex);
451 pthread_create(&thread_manager, NULL, spawn_thread_manager, &mctx);
452 thread_manager_running = true;
453 return &mctx;
456 static struct spawn_ctx *
457 uct_search_stop(void)
459 assert(thread_manager_running);
461 /* Signal thread manager to stop the workers. */
462 pthread_mutex_lock(&finish_mutex);
463 finish_thread = -1;
464 pthread_cond_signal(&finish_cond);
465 pthread_mutex_unlock(&finish_mutex);
467 /* Collect the thread manager. */
468 struct spawn_ctx *pctx;
469 thread_manager_running = false;
470 pthread_join(thread_manager, (void **) &pctx);
471 return pctx;
475 /* Determine whether we should terminate the search early. */
476 static bool
477 uct_search_stop_early(struct uct *u, struct tree *t, struct board *b,
478 struct time_info *ti, struct time_stop *stop,
479 struct tree_node *best, struct tree_node *best2,
480 int base_playouts, int i)
482 /* Early break in won situation. */
483 if (best->u.playouts >= 2000 && tree_node_get_value(t, 1, best->u.value) >= u->loss_threshold)
484 return true;
485 /* Earlier break in super-won situation. */
486 if (best->u.playouts >= 500 && tree_node_get_value(t, 1, best->u.value) >= 0.95)
487 return true;
489 /* Break early if we estimate the second-best move cannot
490 * catch up in assigned time anymore. We use all our time
491 * if we are in byoyomi with single stone remaining in our
492 * period, however - it's better to pre-ponder. */
493 bool time_indulgent = (!ti->len.t.main_time && ti->len.t.byoyomi_stones == 1);
494 if (best2 && ti->dim == TD_WALLTIME && !time_indulgent) {
495 double elapsed = time_now() - ti->len.t.timer_start;
496 double remaining = stop->worst.time - elapsed;
497 double pps = ((double)i - base_playouts) / elapsed;
498 double estplayouts = remaining * pps + PLAYOUT_DELTA_SAFEMARGIN;
499 if (best->u.playouts > best2->u.playouts + estplayouts) {
500 if (UDEBUGL(2))
501 fprintf(stderr, "Early stop, result cannot change: "
502 "best %d, best2 %d, estimated %f simulations to go\n",
503 best->u.playouts, best2->u.playouts, estplayouts);
504 return true;
508 return false;
511 /* Determine whether we should terminate the search later. */
512 static bool
513 uct_search_keep_looking(struct uct *u, struct tree *t, struct board *b,
514 struct tree_node *best, struct tree_node *best2,
515 struct tree_node *bestr, struct tree_node *winner, int i)
517 if (!best) {
518 if (UDEBUGL(2))
519 fprintf(stderr, "Did not find best move, still trying...\n");
520 return true;
523 if (u->best2_ratio > 0) {
524 /* Check best/best2 simulations ratio. If the
525 * two best moves give very similar results,
526 * keep simulating. */
527 if (best2 && best2->u.playouts
528 && (double)best->u.playouts / best2->u.playouts < u->best2_ratio) {
529 if (UDEBUGL(2))
530 fprintf(stderr, "Best2 ratio %f < threshold %f\n",
531 (double)best->u.playouts / best2->u.playouts,
532 u->best2_ratio);
533 return true;
537 if (u->bestr_ratio > 0) {
538 /* Check best, best_best value difference. If the best move
539 * and its best child do not give similar enough results,
540 * keep simulating. */
541 if (bestr && bestr->u.playouts
542 && fabs((double)best->u.value - bestr->u.value) > u->bestr_ratio) {
543 if (UDEBUGL(2))
544 fprintf(stderr, "Bestr delta %f > threshold %f\n",
545 fabs((double)best->u.value - bestr->u.value),
546 u->bestr_ratio);
547 return true;
551 if (winner && winner != best) {
552 /* Keep simulating if best explored
553 * does not have also highest value. */
554 if (UDEBUGL(2))
555 fprintf(stderr, "[%d] best %3s [%d] %f != winner %3s [%d] %f\n", i,
556 coord2sstr(best->coord, t->board),
557 best->u.playouts, tree_node_get_value(t, 1, best->u.value),
558 coord2sstr(winner->coord, t->board),
559 winner->u.playouts, tree_node_get_value(t, 1, winner->u.value));
560 return true;
563 /* No reason to keep simulating, bye. */
564 return false;
567 /* Run time-limited MCTS search on foreground. */
568 static int
569 uct_search(struct uct *u, struct board *b, struct time_info *ti, enum stone color, struct tree *t)
571 int base_playouts = u->t->root->u.playouts;
572 if (UDEBUGL(2) && base_playouts > 0)
573 fprintf(stderr, "<pre-simulated %d games skipped>\n", base_playouts);
575 /* Set up time conditions. */
576 if (ti->period == TT_NULL) *ti = default_ti;
577 struct time_stop stop;
578 time_stop_conditions(ti, b, u->fuseki_end, u->yose_start, &stop);
580 /* Number of last dynkomi adjustment. */
581 int last_dynkomi = t->root->u.playouts;
582 /* Number of last game with progress print. */
583 int last_print = t->root->u.playouts;
584 /* Number of simulations to wait before next print. */
585 int print_interval = TREE_SIMPROGRESS_INTERVAL * (u->thread_model == TM_ROOT ? 1 : u->threads);
586 /* Printed notification about full memory? */
587 bool print_fullmem = false;
589 struct spawn_ctx *ctx = uct_search_start(u, b, color, t);
591 /* The search tree is ctx->t. This is normally == t, but in case of
592 * TM_ROOT, it is one of the trees belonging to the independent
593 * workers. It is important to reference ctx->t directly since the
594 * thread manager will swap the tree pointer asynchronously. */
595 /* XXX: This means TM_ROOT support is suboptimal since single stalled
596 * thread can stall the others in case of limiting the search by game
597 * count. However, TM_ROOT just does not deserve any more extra code
598 * right now. */
600 struct tree_node *best = NULL;
601 struct tree_node *best2 = NULL; // Second-best move.
602 struct tree_node *bestr = NULL; // best's best child.
603 struct tree_node *winner = NULL;
605 double busywait_interval = TREE_BUSYWAIT_INTERVAL;
607 /* Now, just periodically poll the search tree. */
608 while (1) {
609 time_sleep(busywait_interval);
610 /* busywait_interval should never be less than desired time, or the
611 * time control is broken. But if it happens to be less, we still search
612 * at least 100ms otherwise the move is completely random. */
614 int i = ctx->t->root->u.playouts;
616 /* Adjust dynkomi? */
617 if (ctx->t->use_extra_komi && u->dynkomi->permove
618 && u->dynkomi_interval
619 && i > last_dynkomi + u->dynkomi_interval) {
620 float old_dynkomi = ctx->t->extra_komi;
621 ctx->t->extra_komi = u->dynkomi->permove(u->dynkomi, b, ctx->t);
622 if (UDEBUGL(3) && old_dynkomi != ctx->t->extra_komi)
623 fprintf(stderr, "dynkomi adjusted (%f -> %f)\n", old_dynkomi, ctx->t->extra_komi);
626 /* Print progress? */
627 if (i - last_print > print_interval) {
628 last_print += print_interval; // keep the numbers tidy
629 uct_progress_status(u, ctx->t, color, last_print);
631 if (!print_fullmem && ctx->t->nodes_size > u->max_tree_size) {
632 if (UDEBUGL(2))
633 fprintf(stderr, "memory limit hit (%lu > %lu)\n", ctx->t->nodes_size, u->max_tree_size);
634 print_fullmem = true;
637 /* Never consider stopping if we played too few simulations.
638 * Maybe we risk losing on time when playing in super-extreme
639 * time pressure but the tree is going to be just too messed
640 * up otherwise - we might even play invalid suicides or pass
641 * when we mustn't. */
642 if (i < GJ_MINGAMES)
643 continue;
645 best = u->policy->choose(u->policy, ctx->t->root, b, color, resign);
646 if (best) best2 = u->policy->choose(u->policy, ctx->t->root, b, color, best->coord);
648 /* Possibly stop search early if it's no use to try on. */
649 if (best && uct_search_stop_early(u, ctx->t, b, ti, &stop, best, best2, base_playouts, i))
650 break;
652 /* Check against time settings. */
653 bool desired_done = false;
654 if (ti->dim == TD_WALLTIME) {
655 double elapsed = time_now() - ti->len.t.timer_start;
656 if (elapsed > stop.worst.time) break;
657 desired_done = elapsed > stop.desired.time;
659 } else { assert(ti->dim == TD_GAMES);
660 if (i > stop.worst.playouts) break;
661 desired_done = i > stop.desired.playouts;
664 /* We want to stop simulating, but are willing to keep trying
665 * if we aren't completely sure about the winner yet. */
666 if (desired_done) {
667 if (u->policy->winner && u->policy->evaluate) {
668 struct uct_descent descent = { .node = ctx->t->root };
669 u->policy->winner(u->policy, ctx->t, &descent);
670 winner = descent.node;
672 if (best)
673 bestr = u->policy->choose(u->policy, best, b, stone_other(color), resign);
674 if (!uct_search_keep_looking(u, ctx->t, b, best, best2, bestr, winner, i))
675 break;
678 /* TODO: Early break if best->variance goes under threshold and we already
679 * have enough playouts (possibly thanks to book or to pondering)? */
682 ctx = uct_search_stop();
684 if (UDEBUGL(2))
685 tree_dump(t, u->dumpthres);
686 if (UDEBUGL(0))
687 uct_progress_status(u, t, color, ctx->games);
689 return ctx->games;
693 /* Start pondering background with @color to play. */
694 static void
695 uct_pondering_start(struct uct *u, struct board *b0, struct tree *t, enum stone color)
697 if (UDEBUGL(1))
698 fprintf(stderr, "Starting to ponder with color %s\n", stone2str(stone_other(color)));
699 u->pondering = true;
701 /* We need a local board copy to ponder upon. */
702 struct board *b = malloc(sizeof(*b)); board_copy(b, b0);
704 /* *b0 did not have the genmove'd move played yet. */
705 struct move m = { t->root->coord, t->root_color };
706 int res = board_play(b, &m);
707 assert(res >= 0);
708 setup_dynkomi(u, b, stone_other(m.color));
710 /* Start MCTS manager thread "headless". */
711 uct_search_start(u, b, color, t);
714 /* uct_search_stop() frontend for the pondering (non-genmove) mode. */
715 static void
716 uct_pondering_stop(struct uct *u)
718 u->pondering = false;
719 if (!thread_manager_running)
720 return;
722 /* Stop the thread manager. */
723 struct spawn_ctx *ctx = uct_search_stop();
724 if (UDEBUGL(1)) {
725 fprintf(stderr, "(pondering) ");
726 uct_progress_status(u, ctx->t, ctx->color, ctx->games);
728 free(ctx->b);
732 static coord_t *
733 uct_genmove(struct engine *e, struct board *b, struct time_info *ti, enum stone color, bool pass_all_alive)
735 double start_time = time_now();
736 struct uct *u = e->data;
738 if (b->superko_violation) {
739 fprintf(stderr, "!!! WARNING: SUPERKO VIOLATION OCCURED BEFORE THIS MOVE\n");
740 fprintf(stderr, "Maybe you play with situational instead of positional superko?\n");
741 fprintf(stderr, "I'm going to ignore the violation, but note that I may miss\n");
742 fprintf(stderr, "some moves valid under this ruleset because of this.\n");
743 b->superko_violation = false;
746 /* Seed the tree. */
747 uct_pondering_stop(u);
748 prepare_move(e, b, color);
749 assert(u->t);
750 u->my_color = color;
752 /* How to decide whether to use dynkomi in this game? Since we use
753 * pondering, it's not simple "who-to-play" matter. Decide based on
754 * the last genmove issued. */
755 u->t->use_extra_komi = !!(u->dynkomi_mask & color);
756 setup_dynkomi(u, b, color);
758 /* Make pessimistic assumption about komi for Japanese rules to
759 * avoid losing by 0.5 when winning by 0.5 with Chinese rules.
760 * The rules usually give the same winner if the integer part of komi
761 * is odd so we adjust the komi only if it is even (for a board of
762 * odd size). We are not trying to get an exact evaluation for rare
763 * cases of seki. For details see http://home.snafu.de/jasiek/parity.html
764 * TODO: Support the kgs-rules command once available. */
765 if (u->territory_scoring && (((int)floor(b->komi) + board_size(b)) & 1)) {
766 b->komi += (color == S_BLACK ? 1.0 : -1.0);
767 if (UDEBUGL(0))
768 fprintf(stderr, "Setting komi to %.1f assuming Japanese rules\n",
769 b->komi);
772 int base_playouts = u->t->root->u.playouts;
773 /* Perform the Monte Carlo Tree Search! */
774 int played_games = uct_search(u, b, ti, color, u->t);
776 /* Choose the best move from the tree. */
777 struct tree_node *best = u->policy->choose(u->policy, u->t->root, b, color, resign);
778 if (!best) {
779 reset_state(u);
780 return coord_copy(pass);
782 if (UDEBUGL(1))
783 fprintf(stderr, "*** WINNER is %s (%d,%d) with score %1.4f (%d/%d:%d/%d games), extra komi %f\n",
784 coord2sstr(best->coord, b), coord_x(best->coord, b), coord_y(best->coord, b),
785 tree_node_get_value(u->t, 1, best->u.value), best->u.playouts,
786 u->t->root->u.playouts, u->t->root->u.playouts - base_playouts, played_games,
787 u->t->extra_komi);
789 /* Do not resign if we're so short of time that evaluation of best
790 * move is completely unreliable, we might be winning actually.
791 * In this case best is almost random but still better than resign.
792 * Also do not resign if we are getting bad results while actually
793 * giving away extra komi points (dynkomi). */
794 if (tree_node_get_value(u->t, 1, best->u.value) < u->resign_ratio
795 && !is_pass(best->coord) && best->u.playouts > GJ_MINGAMES
796 && u->t->extra_komi <= 1 /* XXX we assume dynamic komi == we are black */) {
797 reset_state(u);
798 return coord_copy(resign);
801 /* If the opponent just passed and we win counting, always
802 * pass as well. */
803 if (b->moves > 1 && is_pass(b->last_move.coord)) {
804 /* Make sure enough playouts are simulated. */
805 while (u->ownermap.playouts < GJ_MINGAMES)
806 uct_playout(u, b, color, u->t);
807 if (uct_pass_is_safe(u, b, color, u->pass_all_alive || pass_all_alive)) {
808 if (UDEBUGL(0))
809 fprintf(stderr, "<Will rather pass, looks safe enough.>\n");
810 best->coord = pass;
814 /* If we are a slave in the distributed engine, we'll soon get
815 * a "play" command later telling us which move was chosen,
816 * and pondering now will not gain much. */
817 if (!u->slave) {
818 tree_promote_node(u->t, &best);
820 /* After a pass, pondering is harmful for two reasons:
821 * (i) We might keep pondering even when the game is over.
822 * Of course this is the case for opponent resign as well.
823 * (ii) More importantly, the ownermap will get skewed since
824 * the UCT will start cutting off any playouts. */
825 if (u->pondering_opt && !is_pass(best->coord)) {
826 uct_pondering_start(u, b, u->t, stone_other(color));
829 if (UDEBUGL(2)) {
830 double time = time_now() - start_time + 0.000001; /* avoid divide by zero */
831 fprintf(stderr, "genmove in %0.2fs (%d games/s, %d games/s/thread)\n",
832 time, (int)(played_games/time), (int)(played_games/time/u->threads));
834 return coord_copy(best->coord);
838 static char *
839 uct_genmoves(struct engine *e, struct board *b, struct time_info *ti, enum stone color, bool pass_all_alive)
841 struct uct *u = e->data;
842 assert(u->slave);
844 coord_t *c = uct_genmove(e, b, ti, color, pass_all_alive);
846 /* Return a buffer with one line "total_playouts threads" then a list of lines
847 * "coord playouts value". Keep this code in sync with select_best_move(). */
848 static char reply[10240];
849 char *r = reply;
850 char *end = reply + sizeof(reply);
851 struct tree_node *root = u->t->root;
852 r += snprintf(r, end - r, "%d %d", root->u.playouts, u->threads);
853 int min_playouts = root->u.playouts / 100;
855 // Give a large weight to pass or resign, but still allow other moves.
856 if (is_pass(*c) || is_resign(*c))
857 r += snprintf(r, end - r, "\n%s %d %.1f", coord2sstr(*c, b), root->u.playouts,
858 (float)is_pass(*c));
859 coord_done(c);
861 for (struct tree_node *ni = root->children; ni; ni = ni->sibling) {
862 if (ni->u.playouts <= min_playouts
863 || ni->hints & TREE_HINT_INVALID
864 || is_pass(ni->coord))
865 continue;
866 char *coord = coord2sstr(ni->coord, b);
867 // We return the values as stored in the tree, so from black's view.
868 r += snprintf(r, end - r, "\n%s %d %.7f", coord, ni->u.playouts, ni->u.value);
870 return reply;
874 bool
875 uct_genbook(struct engine *e, struct board *b, struct time_info *ti, enum stone color)
877 struct uct *u = e->data;
878 if (!u->t) prepare_move(e, b, color);
879 assert(u->t);
881 if (ti->dim == TD_GAMES) {
882 /* Don't count in games that already went into the book. */
883 ti->len.games += u->t->root->u.playouts;
885 uct_search(u, b, ti, color, u->t);
887 assert(ti->dim == TD_GAMES);
888 tree_save(u->t, b, ti->len.games / 100);
890 return true;
893 void
894 uct_dumpbook(struct engine *e, struct board *b, enum stone color)
896 struct uct *u = e->data;
897 struct tree *t = tree_init(b, color, u->fast_alloc ? u->max_tree_size : 0, u->local_tree_aging);
898 tree_load(t, b);
899 tree_dump(t, 0);
900 tree_done(t);
904 struct uct *
905 uct_state_init(char *arg, struct board *b)
907 struct uct *u = calloc(1, sizeof(struct uct));
908 bool using_elo = false;
910 u->debug_level = debug_level;
911 u->gamelen = MC_GAMELEN;
912 u->mercymin = 0;
913 u->expand_p = 2;
914 u->dumpthres = 1000;
915 u->playout_amaf = true;
916 u->playout_amaf_nakade = false;
917 u->amaf_prior = false;
918 u->max_tree_size = 3072ULL * 1048576;
920 u->dynkomi_mask = S_BLACK;
922 u->threads = 1;
923 u->thread_model = TM_TREEVL;
924 u->parallel_tree = true;
925 u->virtual_loss = true;
927 u->fuseki_end = 20; // max time at 361*20% = 72 moves (our 36th move, still 99 to play)
928 u->yose_start = 40; // (100-40-25)*361/100/2 = 63 moves still to play by us then
929 u->bestr_ratio = 0.02;
930 // 2.5 is clearly too much, but seems to compensate well for overly stern time allocations.
931 // TODO: Further tuning and experiments with better time allocation schemes.
932 u->best2_ratio = 2.5;
934 u->val_scale = 0.04; u->val_points = 40;
936 u->tenuki_d = 4;
937 u->local_tree_aging = 2;
939 if (arg) {
940 char *optspec, *next = arg;
941 while (*next) {
942 optspec = next;
943 next += strcspn(next, ",");
944 if (*next) { *next++ = 0; } else { *next = 0; }
946 char *optname = optspec;
947 char *optval = strchr(optspec, '=');
948 if (optval) *optval++ = 0;
950 if (!strcasecmp(optname, "debug")) {
951 if (optval)
952 u->debug_level = atoi(optval);
953 else
954 u->debug_level++;
955 } else if (!strcasecmp(optname, "mercy") && optval) {
956 /* Minimal difference of black/white captures
957 * to stop playout - "Mercy Rule". Speeds up
958 * hopeless playouts at the expense of some
959 * accuracy. */
960 u->mercymin = atoi(optval);
961 } else if (!strcasecmp(optname, "gamelen") && optval) {
962 u->gamelen = atoi(optval);
963 } else if (!strcasecmp(optname, "expand_p") && optval) {
964 u->expand_p = atoi(optval);
965 } else if (!strcasecmp(optname, "dumpthres") && optval) {
966 u->dumpthres = atoi(optval);
967 } else if (!strcasecmp(optname, "best2_ratio") && optval) {
968 /* If set, prolong simulating while
969 * first_best/second_best playouts ratio
970 * is less than best2_ratio. */
971 u->best2_ratio = atof(optval);
972 } else if (!strcasecmp(optname, "bestr_ratio") && optval) {
973 /* If set, prolong simulating while
974 * best,best_best_child values delta
975 * is more than bestr_ratio. */
976 u->bestr_ratio = atof(optval);
977 } else if (!strcasecmp(optname, "playout_amaf")) {
978 /* Whether to include random playout moves in
979 * AMAF as well. (Otherwise, only tree moves
980 * are included in AMAF. Of course makes sense
981 * only in connection with an AMAF policy.) */
982 /* with-without: 55.5% (+-4.1) */
983 if (optval && *optval == '0')
984 u->playout_amaf = false;
985 else
986 u->playout_amaf = true;
987 } else if (!strcasecmp(optname, "playout_amaf_nakade")) {
988 /* Whether to include nakade moves from playouts
989 * in the AMAF statistics; this tends to nullify
990 * the playout_amaf effect by adding too much
991 * noise. */
992 if (optval && *optval == '0')
993 u->playout_amaf_nakade = false;
994 else
995 u->playout_amaf_nakade = true;
996 } else if (!strcasecmp(optname, "playout_amaf_cutoff") && optval) {
997 /* Keep only first N% of playout stage AMAF
998 * information. */
999 u->playout_amaf_cutoff = atoi(optval);
1000 } else if ((!strcasecmp(optname, "policy") || !strcasecmp(optname, "random_policy")) && optval) {
1001 char *policyarg = strchr(optval, ':');
1002 struct uct_policy **p = !strcasecmp(optname, "policy") ? &u->policy : &u->random_policy;
1003 if (policyarg)
1004 *policyarg++ = 0;
1005 if (!strcasecmp(optval, "ucb1")) {
1006 *p = policy_ucb1_init(u, policyarg);
1007 } else if (!strcasecmp(optval, "ucb1amaf")) {
1008 *p = policy_ucb1amaf_init(u, policyarg);
1009 } else {
1010 fprintf(stderr, "UCT: Invalid tree policy %s\n", optval);
1011 exit(1);
1013 } else if (!strcasecmp(optname, "playout") && optval) {
1014 char *playoutarg = strchr(optval, ':');
1015 if (playoutarg)
1016 *playoutarg++ = 0;
1017 if (!strcasecmp(optval, "moggy")) {
1018 u->playout = playout_moggy_init(playoutarg, b);
1019 } else if (!strcasecmp(optval, "light")) {
1020 u->playout = playout_light_init(playoutarg, b);
1021 } else if (!strcasecmp(optval, "elo")) {
1022 u->playout = playout_elo_init(playoutarg, b);
1023 using_elo = true;
1024 } else {
1025 fprintf(stderr, "UCT: Invalid playout policy %s\n", optval);
1026 exit(1);
1028 } else if (!strcasecmp(optname, "prior") && optval) {
1029 u->prior = uct_prior_init(optval, b);
1030 } else if (!strcasecmp(optname, "amaf_prior") && optval) {
1031 u->amaf_prior = atoi(optval);
1032 } else if (!strcasecmp(optname, "threads") && optval) {
1033 /* By default, Pachi will run with only single
1034 * tree search thread! */
1035 u->threads = atoi(optval);
1036 } else if (!strcasecmp(optname, "thread_model") && optval) {
1037 if (!strcasecmp(optval, "root")) {
1038 /* Root parallelization - each thread
1039 * does independent search, trees are
1040 * merged at the end. */
1041 u->thread_model = TM_ROOT;
1042 u->parallel_tree = false;
1043 u->virtual_loss = false;
1044 } else if (!strcasecmp(optval, "tree")) {
1045 /* Tree parallelization - all threads
1046 * grind on the same tree. */
1047 u->thread_model = TM_TREE;
1048 u->parallel_tree = true;
1049 u->virtual_loss = false;
1050 } else if (!strcasecmp(optval, "treevl")) {
1051 /* Tree parallelization, but also
1052 * with virtual losses - this discou-
1053 * rages most threads choosing the
1054 * same tree branches to read. */
1055 u->thread_model = TM_TREEVL;
1056 u->parallel_tree = true;
1057 u->virtual_loss = true;
1058 } else {
1059 fprintf(stderr, "UCT: Invalid thread model %s\n", optval);
1060 exit(1);
1062 } else if (!strcasecmp(optname, "pondering")) {
1063 /* Keep searching even during opponent's turn. */
1064 u->pondering_opt = !optval || atoi(optval);
1065 } else if (!strcasecmp(optname, "fuseki_end") && optval) {
1066 /* At the very beginning it's not worth thinking
1067 * too long because the playout evaluations are
1068 * very noisy. So gradually increase the thinking
1069 * time up to maximum when fuseki_end percent
1070 * of the board has been played.
1071 * This only applies if we are not in byoyomi. */
1072 u->fuseki_end = atoi(optval);
1073 } else if (!strcasecmp(optname, "yose_start") && optval) {
1074 /* When yose_start percent of the board has been
1075 * played, or if we are in byoyomi, stop spending
1076 * more time and spread the remaining time
1077 * uniformly.
1078 * Between fuseki_end and yose_start, we spend
1079 * a constant proportion of the remaining time
1080 * on each move. (yose_start should actually
1081 * be much earlier than when real yose start,
1082 * but "yose" is a good short name to convey
1083 * the idea.) */
1084 u->yose_start = atoi(optval);
1085 } else if (!strcasecmp(optname, "force_seed") && optval) {
1086 u->force_seed = atoi(optval);
1087 } else if (!strcasecmp(optname, "no_book")) {
1088 u->no_book = true;
1089 } else if (!strcasecmp(optname, "dynkomi") && optval) {
1090 /* Dynamic komi approach; there are multiple
1091 * ways to adjust komi dynamically throughout
1092 * play. We currently support two: */
1093 char *dynkomiarg = strchr(optval, ':');
1094 if (dynkomiarg)
1095 *dynkomiarg++ = 0;
1096 if (!strcasecmp(optval, "none")) {
1097 u->dynkomi = uct_dynkomi_init_none(u, dynkomiarg, b);
1098 } else if (!strcasecmp(optval, "linear")) {
1099 u->dynkomi = uct_dynkomi_init_linear(u, dynkomiarg, b);
1100 } else if (!strcasecmp(optval, "adaptive")) {
1101 u->dynkomi = uct_dynkomi_init_adaptive(u, dynkomiarg, b);
1102 } else {
1103 fprintf(stderr, "UCT: Invalid dynkomi mode %s\n", optval);
1104 exit(1);
1106 } else if (!strcasecmp(optname, "dynkomi_mask") && optval) {
1107 /* Bitmask of colors the player must be
1108 * for dynkomi be applied; you may want
1109 * to use dynkomi_mask=3 to allow dynkomi
1110 * even in games where Pachi is white. */
1111 u->dynkomi_mask = atoi(optval);
1112 } else if (!strcasecmp(optname, "dynkomi_interval") && optval) {
1113 /* If non-zero, re-adjust dynamic komi
1114 * throughout a single genmove reading,
1115 * roughly every N simulations. */
1116 u->dynkomi_interval = atoi(optval);
1117 } else if (!strcasecmp(optname, "val_scale") && optval) {
1118 /* How much of the game result value should be
1119 * influenced by win size. Zero means it isn't. */
1120 u->val_scale = atof(optval);
1121 } else if (!strcasecmp(optname, "val_points") && optval) {
1122 /* Maximum size of win to be scaled into game
1123 * result value. Zero means boardsize^2. */
1124 u->val_points = atoi(optval) * 2; // result values are doubled
1125 } else if (!strcasecmp(optname, "val_extra")) {
1126 /* If false, the score coefficient will be simply
1127 * added to the value, instead of scaling the result
1128 * coefficient because of it. */
1129 u->val_extra = !optval || atoi(optval);
1130 } else if (!strcasecmp(optname, "local_tree") && optval) {
1131 /* Whether to bias exploration by local tree values
1132 * (must be supported by the used policy).
1133 * 0: Don't.
1134 * 1: Do, value = result.
1135 * Try to temper the result:
1136 * 2: Do, value = 0.5+(result-expected)/2.
1137 * 3: Do, value = 0.5+bzz((result-expected)^2).
1138 * 4: Do, value = 0.5+sqrt(result-expected)/2. */
1139 u->local_tree = atoi(optval);
1140 } else if (!strcasecmp(optname, "tenuki_d") && optval) {
1141 /* Tenuki distance at which to break the local tree. */
1142 u->tenuki_d = atoi(optval);
1143 if (u->tenuki_d > TREE_NODE_D_MAX + 1) {
1144 fprintf(stderr, "uct: tenuki_d must not be larger than TREE_NODE_D_MAX+1 %d\n", TREE_NODE_D_MAX + 1);
1145 exit(1);
1147 } else if (!strcasecmp(optname, "local_tree_aging") && optval) {
1148 /* How much to reduce local tree values between moves. */
1149 u->local_tree_aging = atof(optval);
1150 } else if (!strcasecmp(optname, "local_tree_allseq")) {
1151 /* By default, only complete sequences are stored
1152 * in the local tree. If this is on, also
1153 * subsequences starting at each move are stored. */
1154 u->local_tree_allseq = !optval || atoi(optval);
1155 } else if (!strcasecmp(optname, "local_tree_playout")) {
1156 /* Whether to adjust ELO playout probability
1157 * distributions according to matched localtree
1158 * information. */
1159 u->local_tree_playout = !optval || atoi(optval);
1160 } else if (!strcasecmp(optname, "local_tree_pseqroot")) {
1161 /* By default, when we have no sequence move
1162 * to suggest in-playout, we give up. If this
1163 * is on, we make probability distribution from
1164 * sequences first moves instead. */
1165 u->local_tree_pseqroot = !optval || atoi(optval);
1166 } else if (!strcasecmp(optname, "pass_all_alive")) {
1167 /* Whether to consider all stones alive at the game
1168 * end instead of marking dead groupd. */
1169 u->pass_all_alive = !optval || atoi(optval);
1170 } else if (!strcasecmp(optname, "territory_scoring")) {
1171 /* Use territory scoring (default is area scoring).
1172 * An explicit kgs-rules command overrides this. */
1173 u->territory_scoring = !optval || atoi(optval);
1174 } else if (!strcasecmp(optname, "random_policy_chance") && optval) {
1175 /* If specified (N), with probability 1/N, random_policy policy
1176 * descend is used instead of main policy descend; useful
1177 * if specified policy (e.g. UCB1AMAF) can make unduly biased
1178 * choices sometimes, you can fall back to e.g.
1179 * random_policy=UCB1. */
1180 u->random_policy_chance = atoi(optval);
1181 } else if (!strcasecmp(optname, "max_tree_size") && optval) {
1182 /* Maximum amount of memory [MiB] consumed by the move tree.
1183 * For fast_alloc it includes the temp tree used for pruning.
1184 * Default is 3072 (3 GiB). Note that if you use TM_ROOT,
1185 * this limits size of only one of the trees, not all of them
1186 * together. */
1187 u->max_tree_size = atol(optval) * 1048576;
1188 } else if (!strcasecmp(optname, "fast_alloc")) {
1189 u->fast_alloc = !optval || atoi(optval);
1190 } else if (!strcasecmp(optname, "slave")) {
1191 /* Act as slave for the distributed engine. */
1192 u->slave = !optval || atoi(optval);
1193 } else if (!strcasecmp(optname, "banner") && optval) {
1194 /* Additional banner string. This must come as the
1195 * last engine parameter. */
1196 if (*next) *--next = ',';
1197 u->banner = strdup(optval);
1198 break;
1199 } else {
1200 fprintf(stderr, "uct: Invalid engine argument %s or missing value\n", optname);
1201 exit(1);
1206 u->resign_ratio = 0.2; /* Resign when most games are lost. */
1207 u->loss_threshold = 0.85; /* Stop reading if after at least 5000 playouts this is best value. */
1208 if (!u->policy)
1209 u->policy = policy_ucb1amaf_init(u, NULL);
1211 if (!!u->random_policy_chance ^ !!u->random_policy) {
1212 fprintf(stderr, "uct: Only one of random_policy and random_policy_chance is set\n");
1213 exit(1);
1216 if (!u->local_tree) {
1217 /* No ltree aging. */
1218 u->local_tree_aging = 1.0f;
1220 if (!using_elo)
1221 u->local_tree_playout = false;
1223 if (u->fast_alloc && !u->parallel_tree) {
1224 fprintf(stderr, "fast_alloc not supported with root parallelization.\n");
1225 exit(1);
1227 if (u->fast_alloc)
1228 u->max_tree_size = (100ULL * u->max_tree_size) / (100 + MIN_FREE_MEM_PERCENT);
1230 if (!u->prior)
1231 u->prior = uct_prior_init(NULL, b);
1233 if (!u->playout)
1234 u->playout = playout_moggy_init(NULL, b);
1235 u->playout->debug_level = u->debug_level;
1237 u->ownermap.map = malloc(board_size2(b) * sizeof(u->ownermap.map[0]));
1239 if (!u->dynkomi)
1240 u->dynkomi = uct_dynkomi_init_linear(u, NULL, b);
1242 /* Some things remain uninitialized for now - the opening book
1243 * is not loaded and the tree not set up. */
1244 /* This will be initialized in setup_state() at the first move
1245 * received/requested. This is because right now we are not aware
1246 * about any komi or handicap setup and such. */
1248 return u;
1251 struct engine *
1252 engine_uct_init(char *arg, struct board *b)
1254 struct uct *u = uct_state_init(arg, b);
1255 struct engine *e = calloc(1, sizeof(struct engine));
1256 e->name = "UCT Engine";
1257 e->printhook = uct_printhook_ownermap;
1258 e->notify_play = uct_notify_play;
1259 e->chat = uct_chat;
1260 e->genmove = uct_genmove;
1261 e->genmoves = uct_genmoves;
1262 e->dead_group_list = uct_dead_group_list;
1263 e->done = uct_done;
1264 e->data = u;
1265 if (u->slave)
1266 e->notify = uct_notify;
1268 const char banner[] = "I'm playing UCT. When I'm losing, I will resign, "
1269 "if I think I win, I play until you pass. "
1270 "Anyone can send me 'winrate' in private chat to get my assessment of the position.";
1271 if (!u->banner) u->banner = "";
1272 e->comment = malloc(sizeof(banner) + strlen(u->banner) + 1);
1273 sprintf(e->comment, "%s %s", banner, u->banner);
1275 return e;