UCT node.coord: Access using node_coord()
[pachi/t.git] / uct / policy / ucb1amaf.c
blobd7e83969187a209aa19da4b424e082809003bad7
1 #include <assert.h>
2 #include <math.h>
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <string.h>
7 #include "board.h"
8 #include "debug.h"
9 #include "move.h"
10 #include "random.h"
11 #include "uct/internal.h"
12 #include "uct/tree.h"
13 #include "uct/policy/generic.h"
15 /* This implements the UCB1 policy with an extra AMAF heuristics. */
17 struct ucb1_policy_amaf {
18 /* This is what the Modification of UCT with Patterns in Monte Carlo Go
19 * paper calls 'p'. Original UCB has this on 2, but this seems to
20 * produce way too wide searches; reduce this to get deeper and
21 * narrower readouts - try 0.2. */
22 floating_t explore_p;
23 /* First Play Urgency - if set to less than infinity (the MoGo paper
24 * above reports 1.0 as the best), new branches are explored only
25 * if none of the existing ones has higher urgency than fpu. */
26 floating_t fpu;
27 unsigned int equiv_rave;
28 bool check_nakade;
29 bool sylvain_rave;
30 /* Coefficient of local tree values embedded in RAVE. */
31 floating_t ltree_rave;
32 /* Coefficient of criticality embedded in RAVE. */
33 floating_t crit_rave;
34 int crit_min_playouts;
35 bool crit_negative;
36 bool crit_amaf;
40 static inline floating_t fast_sqrt(unsigned int x)
42 static const floating_t table[] = {
43 0, 1, 1.41421356237309504880, 1.73205080756887729352,
44 2.00000000000000000000, 2.23606797749978969640,
45 2.44948974278317809819, 2.64575131106459059050,
46 2.82842712474619009760, 3.00000000000000000000,
47 3.16227766016837933199, 3.31662479035539984911,
48 3.46410161513775458705, 3.60555127546398929311,
49 3.74165738677394138558, 3.87298334620741688517,
50 4.00000000000000000000, 4.12310562561766054982,
51 4.24264068711928514640, 4.35889894354067355223,
52 4.47213595499957939281, 4.58257569495584000658,
53 4.69041575982342955456, 4.79583152331271954159,
54 4.89897948556635619639, 5.00000000000000000000,
55 5.09901951359278483002, 5.19615242270663188058,
56 5.29150262212918118100, 5.38516480713450403125,
57 5.47722557505166113456, 5.56776436283002192211,
58 5.65685424949238019520, 5.74456264653802865985,
59 5.83095189484530047087, 5.91607978309961604256,
60 6.00000000000000000000, 6.08276253029821968899,
61 6.16441400296897645025, 6.24499799839839820584,
62 6.32455532033675866399, 6.40312423743284868648,
63 6.48074069840786023096, 6.55743852430200065234,
64 6.63324958071079969822, 6.70820393249936908922,
65 6.78232998312526813906, 6.85565460040104412493,
66 6.92820323027550917410, 7.00000000000000000000,
67 7.07106781186547524400, 7.14142842854284999799,
68 7.21110255092797858623, 7.28010988928051827109,
69 7.34846922834953429459, 7.41619848709566294871,
70 7.48331477354788277116, 7.54983443527074969723,
71 7.61577310586390828566, 7.68114574786860817576,
72 7.74596669241483377035, 7.81024967590665439412,
73 7.87400787401181101968, 7.93725393319377177150,
75 if (x < sizeof(table) / sizeof(*table)) {
76 return table[x];
77 } else {
78 return sqrt(x);
82 #define URAVE_DEBUG if (0)
83 static floating_t inline
84 ucb1rave_evaluate(struct uct_policy *p, struct tree *tree, struct uct_descent *descent, int parity)
86 struct ucb1_policy_amaf *b = p->data;
87 struct tree_node *node = descent->node;
88 struct tree_node *lnode = descent->lnode;
90 struct move_stats n = node->u, r = node->amaf;
91 if (p->uct->amaf_prior) {
92 stats_merge(&r, &node->prior);
93 } else {
94 stats_merge(&n, &node->prior);
97 /* Local tree heuristics. */
98 assert(!lnode || lnode->parent);
99 if (p->uct->local_tree && b->ltree_rave > 0 && lnode
100 && (p->uct->local_tree_rootchoose || lnode->parent->parent)) {
101 struct move_stats l = lnode->u;
102 l.playouts = ((floating_t) l.playouts) * b->ltree_rave / LTREE_PLAYOUTS_MULTIPLIER;
103 URAVE_DEBUG fprintf(stderr, "[ltree] adding [%s] %f%%%d to [%s] RAVE %f%%%d\n",
104 coord2sstr(node_coord(lnode), tree->board), l.value, l.playouts,
105 coord2sstr(node_coord(node), tree->board), r.value, r.playouts);
106 stats_merge(&r, &l);
109 /* Criticality heuristics. */
110 if (b->crit_rave > 0 && node->u.playouts > b->crit_min_playouts) {
111 floating_t crit = tree_node_criticality(tree, node);
112 if (b->crit_negative || crit > 0) {
113 struct move_stats c = {
114 .value = tree_node_get_value(tree, parity, 1.0f),
115 .playouts = crit * r.playouts * b->crit_rave
117 URAVE_DEBUG fprintf(stderr, "[crit] adding %f%%%d to [%s] RAVE %f%%%d\n",
118 c.value, c.playouts,
119 coord2sstr(node_coord(node), tree->board), r.value, r.playouts);
120 stats_merge(&r, &c);
125 floating_t value = 0;
126 if (n.playouts) {
127 if (r.playouts) {
128 /* At the beginning, beta is at 1 and RAVE is used.
129 * At b->equiv_rate, beta is at 1/3 and gets steeper on. */
130 floating_t beta;
131 if (b->sylvain_rave) {
132 beta = (floating_t) r.playouts / (r.playouts + n.playouts
133 + (floating_t) n.playouts * r.playouts / b->equiv_rave);
134 } else {
135 /* XXX: This can be cached in descend; but we don't use this by default. */
136 beta = sqrt(b->equiv_rave / (3 * node->parent->u.playouts + b->equiv_rave));
139 value = beta * r.value + (1.f - beta) * n.value;
140 URAVE_DEBUG fprintf(stderr, "\t%s value = %f * %f + (1 - %f) * %f (prior %f)\n",
141 coord2sstr(node_coord(node), tree->board), beta, r.value, beta, n.value, node->prior.value);
142 } else {
143 value = n.value;
144 URAVE_DEBUG fprintf(stderr, "\t%s value = %f (prior %f)\n",
145 coord2sstr(node_coord(node), tree->board), n.value, node->prior.value);
147 } else if (r.playouts) {
148 value = r.value;
149 URAVE_DEBUG fprintf(stderr, "\t%s value = rave %f (prior %f)\n",
150 coord2sstr(node_coord(node), tree->board), r.value, node->prior.value);
152 descent->value.playouts = r.playouts + n.playouts;
153 descent->value.value = value;
154 return tree_node_get_value(tree, parity, value);
157 void
158 ucb1rave_descend(struct uct_policy *p, struct tree *tree, struct uct_descent *descent, int parity, bool allow_pass)
160 struct ucb1_policy_amaf *b = p->data;
161 floating_t nconf = 1.f;
162 if (b->explore_p > 0)
163 nconf = sqrt(log(descent->node->u.playouts + descent->node->prior.playouts));
165 uctd_try_node_children(tree, descent, allow_pass, parity, p->uct->tenuki_d, di, urgency) {
166 struct tree_node *ni = di.node;
167 urgency = ucb1rave_evaluate(p, tree, &di, parity);
169 if (ni->u.playouts > 0 && b->explore_p > 0) {
170 urgency += b->explore_p * nconf / fast_sqrt(ni->u.playouts);
172 } else if (ni->u.playouts + ni->amaf.playouts + ni->prior.playouts == 0) {
173 /* assert(!u->even_eqex); */
174 urgency = b->fpu;
176 } uctd_set_best_child(di, urgency);
178 uctd_get_best_child(descent);
182 void
183 ucb1amaf_update(struct uct_policy *p, struct tree *tree, struct tree_node *node,
184 enum stone node_color, enum stone player_color,
185 struct playout_amafmap *map, struct board *final_board,
186 floating_t result)
188 struct ucb1_policy_amaf *b = p->data;
189 enum stone winner_color = result > 0.5 ? S_BLACK : S_WHITE;
190 enum stone child_color = stone_other(node_color);
192 #if 0
193 struct board bb; bb.size = 9+2;
194 for (struct tree_node *ni = node; ni; ni = ni->parent)
195 fprintf(stderr, "%s ", coord2sstr(node_coord(ni), &bb));
196 fprintf(stderr, "[color %d] update result %d (color %d)\n",
197 node_color, result, player_color);
198 #endif
200 while (node) {
201 if (node->parent == NULL)
202 assert(tree->root_color == stone_other(child_color));
204 if (!b->crit_amaf && !is_pass(node_coord(node))) {
205 stats_add_result(&node->winner_owner, board_at(final_board, node_coord(node)) == winner_color ? 1.0 : 0.0, 1);
206 stats_add_result(&node->black_owner, board_at(final_board, node_coord(node)) == S_BLACK ? 1.0 : 0.0, 1);
208 stats_add_result(&node->u, result, 1);
209 if (!is_pass(node_coord(node)) && amaf_nakade(map->map[node_coord(node)]))
210 amaf_op(map->map[node_coord(node)], -);
212 /* This loop ignores symmetry considerations, but they should
213 * matter only at a point when AMAF doesn't help much. */
214 assert(map->game_baselen >= 0);
215 for (struct tree_node *ni = node->children; ni; ni = ni->sibling) {
216 enum stone amaf_color = map->map[node_coord(ni)];
217 assert(amaf_color != S_OFFBOARD);
218 if (amaf_color == S_NONE)
219 continue;
220 if (amaf_nakade(map->map[node_coord(ni)])) {
221 if (!b->check_nakade)
222 continue;
223 unsigned int i;
224 for (i = map->game_baselen; i < map->gamelen; i++)
225 if (map->game[i].coord == node_coord(ni)
226 && map->game[i].color == child_color)
227 break;
228 if (i == map->gamelen)
229 continue;
230 amaf_color = child_color;
233 floating_t nres = result;
234 if (amaf_color != child_color) {
235 continue;
237 /* For child_color != player_color, we still want
238 * to record the result unmodified; in that case,
239 * we will correctly negate them at the descend phase. */
241 if (b->crit_amaf && !is_pass(node_coord(node))) {
242 stats_add_result(&ni->winner_owner, board_at(final_board, node_coord(ni)) == winner_color ? 1.0 : 0.0, 1);
243 stats_add_result(&ni->black_owner, board_at(final_board, node_coord(ni)) == S_BLACK ? 1.0 : 0.0, 1);
245 stats_add_result(&ni->amaf, nres, 1);
247 #if 0
248 struct board bb; bb.size = 9+2;
249 fprintf(stderr, "* %s<%"PRIhash"> -> %s<%"PRIhash"> [%d/%f => %d/%f]\n",
250 coord2sstr(node_coord(node), &bb), node->hash,
251 coord2sstr(node_coord(ni), &bb), ni->hash,
252 player_color, result, child_color, nres);
253 #endif
256 if (!is_pass(node_coord(node))) {
257 map->game_baselen--;
259 node = node->parent; child_color = stone_other(child_color);
264 struct uct_policy *
265 policy_ucb1amaf_init(struct uct *u, char *arg)
267 struct uct_policy *p = calloc2(1, sizeof(*p));
268 struct ucb1_policy_amaf *b = calloc2(1, sizeof(*b));
269 p->uct = u;
270 p->data = b;
271 p->choose = uctp_generic_choose;
272 p->winner = uctp_generic_winner;
273 p->evaluate = ucb1rave_evaluate;
274 p->descend = ucb1rave_descend;
275 p->update = ucb1amaf_update;
276 p->wants_amaf = true;
278 b->explore_p = 0; // 0.02 can be also good on 19x19 with prior=eqex=40
279 b->equiv_rave = 3000;
280 b->fpu = INFINITY;
281 b->check_nakade = true;
282 b->sylvain_rave = true;
283 b->ltree_rave = 0.75f;
285 b->crit_rave = 1.0f;
286 b->crit_min_playouts = 2000;
287 b->crit_negative = 1;
288 b->crit_amaf = 0;
290 if (arg) {
291 char *optspec, *next = arg;
292 while (*next) {
293 optspec = next;
294 next += strcspn(next, ":");
295 if (*next) { *next++ = 0; } else { *next = 0; }
297 char *optname = optspec;
298 char *optval = strchr(optspec, '=');
299 if (optval) *optval++ = 0;
301 if (!strcasecmp(optname, "explore_p")) {
302 b->explore_p = atof(optval);
303 } else if (!strcasecmp(optname, "fpu") && optval) {
304 b->fpu = atof(optval);
305 } else if (!strcasecmp(optname, "equiv_rave") && optval) {
306 b->equiv_rave = atof(optval);
307 } else if (!strcasecmp(optname, "sylvain_rave")) {
308 b->sylvain_rave = !optval || *optval == '1';
309 } else if (!strcasecmp(optname, "check_nakade")) {
310 b->check_nakade = !optval || *optval == '1';
311 } else if (!strcasecmp(optname, "ltree_rave") && optval) {
312 b->ltree_rave = atof(optval);
313 } else if (!strcasecmp(optname, "crit_rave") && optval) {
314 b->crit_rave = atof(optval);
315 } else if (!strcasecmp(optname, "crit_min_playouts") && optval) {
316 b->crit_min_playouts = atoi(optval);
317 } else if (!strcasecmp(optname, "crit_negative")) {
318 b->crit_negative = !optval || *optval == '1';
319 } else if (!strcasecmp(optname, "crit_amaf")) {
320 b->crit_amaf = !optval || *optval == '1';
321 } else {
322 fprintf(stderr, "ucb1amaf: Invalid policy argument %s or missing value\n",
323 optname);
324 exit(1);
329 return p;