14 #define MAX_NET_LAG 2.0 /* Max net lag in seconds. TODO: estimate dynamically. */
15 #define RESERVED_BYOYOMI_PERCENT 15 /* Reserve 15% of byoyomi time as safety margin if risk of losing on time */
17 /* For safety, use at most 3 times the desired time on a single move
18 * in main time, and 1.1 times in byoyomi. */
19 #define MAX_MAIN_TIME_EXTENSION 3.0
20 #define MAX_BYOYOMI_TIME_EXTENSION 1.1
23 time_parse(struct time_info
*ti
, char *s
)
26 case '_': ti
->period
= TT_TOTAL
; s
++; break;
27 default: ti
->period
= TT_MOVE
; break;
32 ti
->len
.games
= atoi(++s
);
37 ti
->dim
= TD_WALLTIME
;
38 ti
->len
.t
.timer_start
= 0;
39 if (ti
->period
== TT_TOTAL
) {
40 ti
->len
.t
.main_time
= atof(s
);
41 ti
->len
.t
.byoyomi_time
= 0.0;
42 ti
->len
.t
.byoyomi_time_max
= 0.0;
43 ti
->len
.t
.byoyomi_periods
= 0;
44 ti
->len
.t
.byoyomi_stones
= 0;
45 ti
->len
.t
.byoyomi_stones_max
= 0;
46 } else { assert(ti
->period
== TT_MOVE
);
47 ti
->len
.t
.main_time
= 0.0;
48 ti
->len
.t
.byoyomi_time
= atof(s
);
49 ti
->len
.t
.byoyomi_time_max
= ti
->len
.t
.byoyomi_time
;
50 ti
->len
.t
.byoyomi_periods
= 1;
51 ti
->len
.t
.byoyomi_stones
= 1;
52 ti
->len
.t
.byoyomi_stones_max
= 1;
59 /* Update time settings according to gtp time_settings or kgs-time_settings command. */
61 time_settings(struct time_info
*ti
, int main_time
, int byoyomi_time
, int byoyomi_stones
, int byoyomi_periods
)
64 ti
->period
= TT_NULL
; // no time limit, rely on engine default
66 ti
->period
= main_time
> 0 ? TT_TOTAL
: TT_MOVE
;
67 ti
->dim
= TD_WALLTIME
;
68 ti
->len
.t
.timer_start
= 0;
69 ti
->len
.t
.main_time
= (double) main_time
;
70 ti
->len
.t
.byoyomi_time
= (double) byoyomi_time
;
71 ti
->len
.t
.byoyomi_periods
= byoyomi_periods
;
72 ti
->len
.t
.byoyomi_stones
= byoyomi_stones
;
73 ti
->len
.t
.canadian
= byoyomi_stones
> 0;
74 if (byoyomi_time
> 0) {
75 /* Normally, only one of byoyomi_periods and
76 * byoyomi_stones arguments will be > 0. However,
77 * our data structure uses generalized byoyomi
78 * specification that will assume "1 byoyomi period
79 * of N stones" for Canadian byoyomi and "N byoyomi
80 * periods of 1 stone" for Japanese byoyomi. */
81 if (ti
->len
.t
.byoyomi_periods
< 1)
82 ti
->len
.t
.byoyomi_periods
= 1;
83 if (ti
->len
.t
.byoyomi_stones
< 1)
84 ti
->len
.t
.byoyomi_stones
= 1;
86 assert(!ti
->len
.t
.byoyomi_periods
&& !ti
->len
.t
.byoyomi_stones
);
88 ti
->len
.t
.byoyomi_time_max
= ti
->len
.t
.byoyomi_time
;
89 ti
->len
.t
.byoyomi_stones_max
= ti
->len
.t
.byoyomi_stones
;
93 /* Update time information according to gtp time_left command.
94 * kgs doesn't give time_left for the first move, so make sure
95 * that just time_settings + time_stop_conditions still work. */
97 time_left(struct time_info
*ti
, int time_left
, int stones_left
)
99 assert(ti
->period
!= TT_NULL
);
100 ti
->dim
= TD_WALLTIME
;
102 if (!time_left
&& !stones_left
) {
103 /* Some GTP peers send time_left 0 0 at the end of main time. */
104 ti
->period
= TT_MOVE
;
105 ti
->len
.t
.main_time
= 0;
106 /* byoyomi_time kept fully charged. */
108 } else if (!stones_left
) {
110 ti
->period
= TT_TOTAL
;
111 ti
->len
.t
.main_time
= time_left
;
112 /* byoyomi_time kept fully charged. */
116 ti
->period
= TT_MOVE
;
117 ti
->len
.t
.main_time
= 0;
118 ti
->len
.t
.byoyomi_time
= time_left
;
119 if (ti
->len
.t
.canadian
) {
120 ti
->len
.t
.byoyomi_stones
= stones_left
;
122 // field misused by kgs
123 ti
->len
.t
.byoyomi_periods
= stones_left
;
128 /* Start our timer. kgs does this (correctly) on "play" not "genmove"
129 * unless we are making the first move of the game. */
131 time_start_timer(struct time_info
*ti
)
133 if (ti
->period
!= TT_NULL
&& ti
->dim
== TD_WALLTIME
)
134 ti
->len
.t
.timer_start
= time_now();
138 time_sub(struct time_info
*ti
, double interval
)
140 assert(ti
->dim
== TD_WALLTIME
&& ti
->period
!= TT_NULL
);
142 if (ti
->period
== TT_TOTAL
) {
143 ti
->len
.t
.main_time
-= interval
;
144 if (ti
->len
.t
.main_time
>= 0)
146 /* Fall-through to byoyomi. */
147 ti
->period
= TT_MOVE
;
148 interval
= -ti
->len
.t
.main_time
;
149 ti
->len
.t
.main_time
= 0;
152 ti
->len
.t
.byoyomi_time
-= interval
;
153 if (ti
->len
.t
.byoyomi_time
< 0) {
155 if (--ti
->len
.t
.byoyomi_periods
< 1) {
156 fprintf(stderr
, "*** LOST ON TIME internally! (%0.2f, spent %0.2fs on last move)\n",
157 ti
->len
.t
.byoyomi_time
, interval
);
158 /* Well, what can we do? Pretend this didn't happen. */
159 ti
->len
.t
.byoyomi_periods
= 1;
161 ti
->len
.t
.byoyomi_time
= ti
->len
.t
.byoyomi_time_max
;
162 ti
->len
.t
.byoyomi_stones
= ti
->len
.t
.byoyomi_stones_max
;
165 if (--ti
->len
.t
.byoyomi_stones
< 1) {
166 /* Finished a period. */
167 ti
->len
.t
.byoyomi_time
= ti
->len
.t
.byoyomi_time_max
;
168 ti
->len
.t
.byoyomi_stones
= ti
->len
.t
.byoyomi_stones_max
;
172 /* Returns the current time. */
177 clock_gettime(CLOCK_REALTIME
, &now
);
178 return now
.tv_sec
+ now
.tv_nsec
/1000000000.0;
181 /* Sleep for a given interval (in seconds). Return immediately if interval < 0. */
183 time_sleep(double interval
)
187 ts
.tv_nsec
= (int)(modf(interval
, &sec
)*1000000000.0);
188 ts
.tv_sec
= (int)sec
;
189 nanosleep(&ts
, NULL
); /* ignore error if interval was < 0 */
193 /* Returns true if we are in byoyomi (or should play as if in byo yomi
194 * because remaining time per move in main time is less than byoyomi time
197 time_in_byoyomi(struct time_info
*ti
) {
198 assert(ti
->dim
== TD_WALLTIME
);
199 if (!ti
->len
.t
.byoyomi_time
)
200 return false; // there is no byoyomi!
201 assert(ti
->len
.t
.byoyomi_stones
> 0);
202 if (!ti
->len
.t
.main_time
)
203 return true; // we _are_ in byoyomi
204 if (ti
->len
.t
.main_time
<= ti
->len
.t
.byoyomi_time
/ ti
->len
.t
.byoyomi_stones
+ 0.001)
205 return true; // our basic time left is less than byoyomi time per move
209 /* Set worst.time to all available remaining time (main time plus usable
210 * byoyomi), to be spread over returned number of moves (expected game
211 * length minus moves to be played in final byoyomi - if we would not be
212 * able to spend more time on them in main time anyway). */
214 time_stop_set_remaining(struct time_info
*ti
, struct board
*b
, double net_lag
, struct time_stop
*stop
)
216 int moves_left
= board_estimated_moves_left(b
);
217 stop
->worst
.time
= ti
->len
.t
.main_time
;
219 if (!ti
->len
.t
.byoyomi_time
)
222 /* Time for one move in byoyomi. */
223 assert(ti
->len
.t
.byoyomi_stones
> 0);
224 double move_time
= ti
->len
.t
.byoyomi_time
/ ti
->len
.t
.byoyomi_stones
;
226 /* (i) Plan to extend our thinking time to make use of byoyom. */
228 /* For Japanese byoyomi with N>1 periods, we use N-1 periods
229 * as main time, keeping the last one as insurance against
230 * unexpected net lag. */
231 if (ti
->len
.t
.byoyomi_periods
> 2) {
232 stop
->worst
.time
+= (ti
->len
.t
.byoyomi_periods
- 2) * move_time
;
233 // Will add 1 more byoyomi_time just below
236 /* In case of Canadian byoyomi, include time that can be spent
237 * on its first move. */
238 stop
->worst
.time
+= move_time
;
240 /* (ii) Do not play faster in main time than we would in byoyomi. */
242 /* Maximize the number of moves played uniformly in main time,
243 * while not playing faster in main time than in byoyomi.
244 * At this point, the main time remaining is stop->worst.time and
245 * already includes the first (canadian) or N-1 byoyomi periods. */
246 double real_move_time
= move_time
- net_lag
;
247 if (real_move_time
> 0) {
248 int main_moves
= stop
->worst
.time
/ real_move_time
;
249 if (moves_left
> main_moves
) {
250 /* We plan to do too many moves in main time,
251 * do the rest in byoyomi. */
252 moves_left
= main_moves
;
254 if (moves_left
<= 0) // possible if too much lag
261 /* Adjust the recommended per-move time based on the current game phase.
262 * We expect stop->worst to be total time available, stop->desired the current
263 * per-move time allocation, and set stop->desired to adjusted per-move time. */
265 time_stop_phase_adjust(struct board
*b
, int fuseki_end
, int yose_start
, struct time_stop
*stop
)
267 int bsize
= (board_size(b
)-2)*(board_size(b
)-2);
268 fuseki_end
= fuseki_end
* bsize
/ 100; // move nb at fuseki end
269 yose_start
= yose_start
* bsize
/ 100; // move nb at yose start
270 assert(fuseki_end
< yose_start
);
272 /* No adjustments in yose. */
273 if (b
->moves
>= yose_start
)
275 int moves_to_yose
= (yose_start
- b
->moves
) / 2;
276 // ^- /2 because we only consider the moves we have to play ourselves
277 int left_at_yose_start
= board_estimated_moves_left(b
) - moves_to_yose
;
278 if (left_at_yose_start
< MIN_MOVES_LEFT
)
279 left_at_yose_start
= MIN_MOVES_LEFT
;
281 /* This particular value of middlegame_time will continuously converge
282 * to effective "yose_time" value as we approach yose_start. */
283 double middlegame_time
= stop
->worst
.time
/ left_at_yose_start
;
284 if (middlegame_time
< stop
->desired
.time
)
287 if (b
->moves
< fuseki_end
) {
288 assert(fuseki_end
> 0);
289 /* At the game start, use stop->desired.time (rather
290 * conservative estimate), then gradually prolong it. */
291 double beta
= b
->moves
/ fuseki_end
;
292 stop
->desired
.time
= middlegame_time
* beta
+ stop
->desired
.time
* (1 - beta
);
294 } else { assert(b
->moves
< yose_start
);
295 /* Middlegame, start with relatively large value, then
296 * converge to the uniform-timeslice yose value. */
297 stop
->desired
.time
= middlegame_time
;
301 /* Pre-process time_info for search control and sets the desired stopping conditions. */
303 time_stop_conditions(struct time_info
*ti
, struct board
*b
, int fuseki_end
, int yose_start
, struct time_stop
*stop
)
305 /* We must have _some_ limits by now, be it random default values! */
306 assert(ti
->period
!= TT_NULL
);
308 /* Special-case limit by number of simulations. */
309 if (ti
->dim
== TD_GAMES
) {
310 if (ti
->period
== TT_TOTAL
) {
311 ti
->period
= TT_MOVE
;
312 ti
->len
.games
/= board_estimated_moves_left(b
);
315 stop
->desired
.playouts
= ti
->len
.games
;
316 /* We force worst == desired, so note that we will NOT loop
317 * until best == winner. */
318 stop
->worst
.playouts
= ti
->len
.games
;
322 assert(ti
->dim
== TD_WALLTIME
);
325 /* Minimum net lag (seconds) to be reserved in the time for move. */
326 double net_lag
= MAX_NET_LAG
;
327 if (!ti
->len
.t
.timer_start
) {
328 ti
->len
.t
.timer_start
= time_now(); // we're playing the first game move
330 net_lag
+= time_now() - ti
->len
.t
.timer_start
;
331 // TODO: keep statistics to get good estimate of lag not just current move
335 if (ti
->period
== TT_TOTAL
&& time_in_byoyomi(ti
)) {
336 /* Technically, we are still in main time, but we can
337 * effectively switch to byoyomi scheduling since we
338 * have less time available than one byoyomi move takes. */
339 ti
->period
= TT_MOVE
;
343 if (ti
->period
== TT_MOVE
) {
344 /* We are in byoyomi, or almost! */
346 /* The period can still include some tiny remnant of main
347 * time if we are just switching to byoyomi. */
348 double period_len
= ti
->len
.t
.byoyomi_time
+ ti
->len
.t
.main_time
;
350 stop
->worst
.time
= period_len
;
351 assert(ti
->len
.t
.byoyomi_stones
> 0);
352 stop
->desired
.time
= period_len
/ ti
->len
.t
.byoyomi_stones
;
354 /* Use a larger safety margin if we risk losing on time on
355 * this move; it makes no sense to have 30s byoyomi and wait
356 * until 28s to play our move). */
357 if (stop
->desired
.time
>= period_len
- net_lag
) {
358 double safe_margin
= RESERVED_BYOYOMI_PERCENT
* stop
->desired
.time
/ 100;
359 if (safe_margin
> net_lag
)
360 net_lag
= safe_margin
;
363 /* Make recommended_old == average(recommended_new, max) */
364 double worst_time
= stop
->desired
.time
* MAX_BYOYOMI_TIME_EXTENSION
;
365 if (worst_time
< stop
->worst
.time
)
366 stop
->worst
.time
= worst_time
;
367 stop
->desired
.time
*= (2 - MAX_BYOYOMI_TIME_EXTENSION
);
369 } else { assert(ti
->period
== TT_TOTAL
);
370 /* We are in main time. */
372 assert(ti
->len
.t
.main_time
> 0);
373 /* Set worst.time to all available remaining time, to be spread
374 * over returned number of moves. */
375 int moves_left
= time_stop_set_remaining(ti
, b
, net_lag
, stop
);
377 /* Allocate even slice of the remaining time for next move. */
378 stop
->desired
.time
= stop
->worst
.time
/ moves_left
;
379 assert(stop
->desired
.time
> 0 && stop
->worst
.time
> 0);
380 assert(stop
->desired
.time
<= stop
->worst
.time
+ 0.001);
382 /* Furthermore, tweak the slice based on the game phase. */
383 time_stop_phase_adjust(b
, fuseki_end
, yose_start
, stop
);
385 /* Put final upper bound on maximal time spent on the move. */
386 double worst_time
= stop
->desired
.time
* MAX_MAIN_TIME_EXTENSION
;
387 if (worst_time
< stop
->worst
.time
)
388 stop
->worst
.time
= worst_time
;
389 if (stop
->desired
.time
> stop
->worst
.time
)
390 stop
->desired
.time
= stop
->worst
.time
;
394 fprintf(stderr
, "desired %0.2f, worst %0.2f, clock [%d] %0.2f + %0.2f/%d*%d, lag %0.2f\n",
395 stop
->desired
.time
, stop
->worst
.time
,
396 ti
->dim
, ti
->len
.t
.main_time
,
397 ti
->len
.t
.byoyomi_time
, ti
->len
.t
.byoyomi_stones
,
398 ti
->len
.t
.byoyomi_periods
, net_lag
);
400 /* Account for lag. */
401 stop
->desired
.time
-= net_lag
;
402 stop
->worst
.time
-= net_lag
;