15 #include "joseki/base.h"
17 #include "playout/moggy.h"
18 #include "playout/light.h"
19 #include "tactics/util.h"
21 #include "uct/dynkomi.h"
22 #include "uct/internal.h"
23 #include "uct/plugins.h"
24 #include "uct/prior.h"
25 #include "uct/search.h"
26 #include "uct/slave.h"
31 struct uct_policy
*policy_ucb1_init(struct uct
*u
, char *arg
);
32 struct uct_policy
*policy_ucb1amaf_init(struct uct
*u
, char *arg
, struct board
*board
);
33 static void uct_pondering_start(struct uct
*u
, struct board
*b0
, struct tree
*t
, enum stone color
);
35 /* Maximal simulation length. */
36 #define MC_GAMELEN MAX_GAMELEN
40 setup_state(struct uct
*u
, struct board
*b
, enum stone color
)
42 u
->t
= tree_init(b
, color
, u
->fast_alloc
? u
->max_tree_size
: 0,
43 u
->max_pruned_size
, u
->pruning_threshold
, u
->local_tree_aging
, u
->stats_hbits
);
45 fast_srandom(u
->force_seed
);
47 fprintf(stderr
, "Fresh board with random seed %lu\n", fast_getseed());
48 if (!u
->no_tbook
&& b
->moves
== 0) {
49 assert(color
== S_BLACK
);
55 reset_state(struct uct
*u
)
58 tree_done(u
->t
); u
->t
= NULL
;
62 setup_dynkomi(struct uct
*u
, struct board
*b
, enum stone to_play
)
64 if (u
->t
->use_extra_komi
&& !u
->pondering
&& u
->dynkomi
->permove
)
65 u
->t
->extra_komi
= u
->dynkomi
->permove(u
->dynkomi
, b
, u
->t
);
66 else if (!u
->t
->use_extra_komi
)
71 uct_prepare_move(struct uct
*u
, struct board
*b
, enum stone color
)
74 /* Verify that we have sane state. */
76 assert(u
->t
&& b
->moves
);
77 if (color
!= stone_other(u
->t
->root_color
)) {
78 fprintf(stderr
, "Fatal: Non-alternating play detected %d %d\n",
79 color
, u
->t
->root_color
);
82 uct_htable_reset(u
->t
);
85 /* We need fresh state. */
87 setup_state(u
, b
, color
);
90 u
->ownermap
.playouts
= 0;
91 memset(u
->ownermap
.map
, 0, board_size2(b
) * sizeof(u
->ownermap
.map
[0]));
92 u
->played_own
= u
->played_all
= 0;
96 dead_group_list(struct uct
*u
, struct board
*b
, struct move_queue
*mq
)
98 enum gj_state gs_array
[board_size2(b
)];
99 struct group_judgement gj
= { .thres
= GJ_THRES
, .gs
= gs_array
};
100 board_ownermap_judge_groups(b
, &u
->ownermap
, &gj
);
101 groups_of_status(b
, &gj
, GS_DEAD
, mq
);
105 uct_pass_is_safe(struct uct
*u
, struct board
*b
, enum stone color
, bool pass_all_alive
)
107 /* Make sure enough playouts are simulated to get a reasonable dead group list. */
108 while (u
->ownermap
.playouts
< GJ_MINGAMES
)
109 uct_playout(u
, b
, color
, u
->t
);
111 struct move_queue mq
= { .moves
= 0 };
112 dead_group_list(u
, b
, &mq
);
113 if (pass_all_alive
&& mq
.moves
> 0)
114 return false; // We need to remove some dead groups first.
115 return pass_is_safe(b
, color
, &mq
);
119 uct_printhook_ownermap(struct board
*board
, coord_t c
, char *s
, char *end
)
121 struct uct
*u
= board
->es
;
126 const char chr
[] = ":XO,"; // dame, black, white, unclear
127 const char chm
[] = ":xo,";
128 char ch
= chr
[board_ownermap_judge_point(&u
->ownermap
, c
, GJ_THRES
)];
129 if (ch
== ',') { // less precise estimate then?
130 ch
= chm
[board_ownermap_judge_point(&u
->ownermap
, c
, 0.67)];
132 s
+= snprintf(s
, end
- s
, "%c ", ch
);
137 uct_notify_play(struct engine
*e
, struct board
*b
, struct move
*m
, char *enginearg
)
139 struct uct
*u
= e
->data
;
141 /* No state, create one - this is probably game beginning
142 * and we need to load the opening tbook right now. */
143 uct_prepare_move(u
, b
, m
->color
);
147 /* Stop pondering, required by tree_promote_at() */
148 uct_pondering_stop(u
);
149 if (UDEBUGL(2) && u
->slave
)
150 tree_dump(u
->t
, u
->dumpthres
);
152 if (is_resign(m
->coord
)) {
158 /* Promote node of the appropriate move to the tree root. */
160 if (!tree_promote_at(u
->t
, b
, m
->coord
)) {
162 fprintf(stderr
, "Warning: Cannot promote move node! Several play commands in row?\n");
167 /* If we are a slave in a distributed engine, start pondering once
168 * we know which move we actually played. See uct_genmove() about
169 * the check for pass. */
170 if (u
->pondering_opt
&& u
->slave
&& m
->color
== u
->my_color
&& !is_pass(m
->coord
))
171 uct_pondering_start(u
, b
, u
->t
, stone_other(m
->color
));
177 uct_undo(struct engine
*e
, struct board
*b
)
179 struct uct
*u
= e
->data
;
181 if (!u
->t
) return NULL
;
182 uct_pondering_stop(u
);
188 uct_result(struct engine
*e
, struct board
*b
)
190 struct uct
*u
= e
->data
;
191 static char reply
[1024];
195 enum stone color
= u
->t
->root_color
;
196 struct tree_node
*n
= u
->t
->root
;
197 snprintf(reply
, 1024, "%s %s %d %.2f %.1f",
198 stone2str(color
), coord2sstr(node_coord(n
), b
),
199 n
->u
.playouts
, tree_node_get_value(u
->t
, -1, n
->u
.value
),
200 u
->t
->use_extra_komi
? u
->t
->extra_komi
: 0);
205 uct_chat(struct engine
*e
, struct board
*b
, char *cmd
)
207 struct uct
*u
= e
->data
;
208 static char reply
[1024];
210 cmd
+= strspn(cmd
, " \n\t");
211 if (!strncasecmp(cmd
, "winrate", 7)) {
213 return "no game context (yet?)";
214 enum stone color
= u
->t
->root_color
;
215 struct tree_node
*n
= u
->t
->root
;
216 snprintf(reply
, 1024, "In %d playouts at %d threads, %s %s can win with %.2f%% probability",
217 n
->u
.playouts
, u
->threads
, stone2str(color
), coord2sstr(node_coord(n
), b
),
218 tree_node_get_value(u
->t
, -1, n
->u
.value
) * 100);
219 if (u
->t
->use_extra_komi
&& abs(u
->t
->extra_komi
) >= 0.5) {
220 sprintf(reply
+ strlen(reply
), ", while self-imposing extra komi %.1f",
230 uct_dead_group_list(struct engine
*e
, struct board
*b
, struct move_queue
*mq
)
232 struct uct
*u
= e
->data
;
234 /* This means the game is probably over, no use pondering on. */
235 uct_pondering_stop(u
);
237 if (u
->pass_all_alive
)
238 return; // no dead groups
240 bool mock_state
= false;
243 /* No state, but we cannot just back out - we might
244 * have passed earlier, only assuming some stones are
245 * dead, and then re-connected, only to lose counting
246 * when all stones are assumed alive. */
247 uct_prepare_move(u
, b
, S_BLACK
); assert(u
->t
);
250 /* Make sure the ownermap is well-seeded. */
251 while (u
->ownermap
.playouts
< GJ_MINGAMES
)
252 uct_playout(u
, b
, S_BLACK
, u
->t
);
253 /* Show the ownermap: */
255 board_print_custom(b
, stderr
, uct_printhook_ownermap
);
257 dead_group_list(u
, b
, mq
);
260 /* Clean up the mock state in case we will receive
261 * a genmove; we could get a non-alternating-move
262 * error from uct_prepare_move() in that case otherwise. */
268 playout_policy_done(struct playout_policy
*p
)
270 if (p
->done
) p
->done(p
);
271 if (p
->data
) free(p
->data
);
276 uct_done(struct engine
*e
)
278 /* This is called on engine reset, especially when clear_board
279 * is received and new game should begin. */
280 struct uct
*u
= e
->data
;
281 uct_pondering_stop(u
);
282 if (u
->t
) reset_state(u
);
283 free(u
->ownermap
.map
);
286 free(u
->random_policy
);
287 playout_policy_done(u
->playout
);
288 uct_prior_done(u
->prior
);
289 joseki_done(u
->jdict
);
290 pluginset_done(u
->plugins
);
295 /* Run time-limited MCTS search on foreground. */
297 uct_search(struct uct
*u
, struct board
*b
, struct time_info
*ti
, enum stone color
, struct tree
*t
)
299 struct uct_search_state s
;
300 uct_search_start(u
, b
, color
, t
, ti
, &s
);
301 if (UDEBUGL(2) && s
.base_playouts
> 0)
302 fprintf(stderr
, "<pre-simulated %d games>\n", s
.base_playouts
);
304 /* The search tree is ctx->t. This is currently == . It is important
305 * to reference ctx->t directly since the
306 * thread manager will swap the tree pointer asynchronously. */
308 /* Now, just periodically poll the search tree. */
309 /* Note that in case of TD_GAMES, threads will not wait for
310 * the uct_search_check_stop() signalization. */
312 time_sleep(TREE_BUSYWAIT_INTERVAL
);
313 /* TREE_BUSYWAIT_INTERVAL should never be less than desired time, or the
314 * time control is broken. But if it happens to be less, we still search
315 * at least 100ms otherwise the move is completely random. */
317 int i
= uct_search_games(&s
);
318 /* Print notifications etc. */
319 uct_search_progress(u
, b
, color
, t
, ti
, &s
, i
);
320 /* Check if we should stop the search. */
321 if (uct_search_check_stop(u
, b
, color
, t
, ti
, &s
, i
))
325 struct uct_thread_ctx
*ctx
= uct_search_stop();
326 if (UDEBUGL(2)) tree_dump(t
, u
->dumpthres
);
328 fprintf(stderr
, "(avg score %f/%d; dynkomi's %f/%d value %f/%d)\n",
329 t
->avg_score
.value
, t
->avg_score
.playouts
,
330 u
->dynkomi
->score
.value
, u
->dynkomi
->score
.playouts
,
331 u
->dynkomi
->value
.value
, u
->dynkomi
->value
.playouts
);
332 uct_progress_status(u
, t
, color
, ctx
->games
, true);
334 u
->played_own
+= ctx
->games
;
338 /* Start pondering background with @color to play. */
340 uct_pondering_start(struct uct
*u
, struct board
*b0
, struct tree
*t
, enum stone color
)
343 fprintf(stderr
, "Starting to ponder with color %s\n", stone2str(stone_other(color
)));
346 /* We need a local board copy to ponder upon. */
347 struct board
*b
= malloc2(sizeof(*b
)); board_copy(b
, b0
);
349 /* *b0 did not have the genmove'd move played yet. */
350 struct move m
= { node_coord(t
->root
), t
->root_color
};
351 int res
= board_play(b
, &m
);
353 setup_dynkomi(u
, b
, stone_other(m
.color
));
355 /* Start MCTS manager thread "headless". */
356 static struct uct_search_state s
;
357 uct_search_start(u
, b
, color
, t
, NULL
, &s
);
360 /* uct_search_stop() frontend for the pondering (non-genmove) mode, and
361 * to stop the background search for a slave in the distributed engine. */
363 uct_pondering_stop(struct uct
*u
)
365 if (!thread_manager_running
)
368 /* Stop the thread manager. */
369 struct uct_thread_ctx
*ctx
= uct_search_stop();
371 if (u
->pondering
) fprintf(stderr
, "(pondering) ");
372 uct_progress_status(u
, ctx
->t
, ctx
->color
, ctx
->games
, true);
376 u
->pondering
= false;
382 uct_genmove_setup(struct uct
*u
, struct board
*b
, enum stone color
)
384 if (b
->superko_violation
) {
385 fprintf(stderr
, "!!! WARNING: SUPERKO VIOLATION OCCURED BEFORE THIS MOVE\n");
386 fprintf(stderr
, "Maybe you play with situational instead of positional superko?\n");
387 fprintf(stderr
, "I'm going to ignore the violation, but note that I may miss\n");
388 fprintf(stderr
, "some moves valid under this ruleset because of this.\n");
389 b
->superko_violation
= false;
392 uct_prepare_move(u
, b
, color
);
397 /* How to decide whether to use dynkomi in this game? Since we use
398 * pondering, it's not simple "who-to-play" matter. Decide based on
399 * the last genmove issued. */
400 u
->t
->use_extra_komi
= !!(u
->dynkomi_mask
& color
);
401 setup_dynkomi(u
, b
, color
);
403 if (b
->rules
== RULES_JAPANESE
)
404 u
->territory_scoring
= true;
406 /* Make pessimistic assumption about komi for Japanese rules to
407 * avoid losing by 0.5 when winning by 0.5 with Chinese rules.
408 * The rules usually give the same winner if the integer part of komi
409 * is odd so we adjust the komi only if it is even (for a board of
410 * odd size). We are not trying to get an exact evaluation for rare
411 * cases of seki. For details see http://home.snafu.de/jasiek/parity.html */
412 if (u
->territory_scoring
&& (((int)floor(b
->komi
) + board_size(b
)) & 1)) {
413 b
->komi
+= (color
== S_BLACK
? 1.0 : -1.0);
415 fprintf(stderr
, "Setting komi to %.1f assuming Japanese rules\n",
421 uct_genmove(struct engine
*e
, struct board
*b
, struct time_info
*ti
, enum stone color
, bool pass_all_alive
)
423 double start_time
= time_now();
424 struct uct
*u
= e
->data
;
425 u
->pass_all_alive
|= pass_all_alive
;
426 uct_pondering_stop(u
);
427 uct_genmove_setup(u
, b
, color
);
429 /* Start the Monte Carlo Tree Search! */
430 int base_playouts
= u
->t
->root
->u
.playouts
;
431 int played_games
= uct_search(u
, b
, ti
, color
, u
->t
);
434 struct tree_node
*best
;
435 best
= uct_search_result(u
, b
, color
, u
->pass_all_alive
, played_games
, base_playouts
, &best_coord
);
438 double time
= time_now() - start_time
+ 0.000001; /* avoid divide by zero */
439 fprintf(stderr
, "genmove in %0.2fs (%d games/s, %d games/s/thread)\n",
440 time
, (int)(played_games
/time
), (int)(played_games
/time
/u
->threads
));
444 /* Pass or resign. */
446 return coord_copy(best_coord
);
448 tree_promote_node(u
->t
, &best
);
450 /* After a pass, pondering is harmful for two reasons:
451 * (i) We might keep pondering even when the game is over.
452 * Of course this is the case for opponent resign as well.
453 * (ii) More importantly, the ownermap will get skewed since
454 * the UCT will start cutting off any playouts. */
455 if (u
->pondering_opt
&& !is_pass(node_coord(best
))) {
456 uct_pondering_start(u
, b
, u
->t
, stone_other(color
));
458 return coord_copy(best_coord
);
463 uct_gentbook(struct engine
*e
, struct board
*b
, struct time_info
*ti
, enum stone color
)
465 struct uct
*u
= e
->data
;
466 if (!u
->t
) uct_prepare_move(u
, b
, color
);
469 if (ti
->dim
== TD_GAMES
) {
470 /* Don't count in games that already went into the tbook. */
471 ti
->len
.games
+= u
->t
->root
->u
.playouts
;
473 uct_search(u
, b
, ti
, color
, u
->t
);
475 assert(ti
->dim
== TD_GAMES
);
476 tree_save(u
->t
, b
, ti
->len
.games
/ 100);
482 uct_dumptbook(struct engine
*e
, struct board
*b
, enum stone color
)
484 struct uct
*u
= e
->data
;
485 struct tree
*t
= tree_init(b
, color
, u
->fast_alloc
? u
->max_tree_size
: 0,
486 u
->max_pruned_size
, u
->pruning_threshold
, u
->local_tree_aging
, 0);
494 uct_evaluate_one(struct engine
*e
, struct board
*b
, struct time_info
*ti
, coord_t c
, enum stone color
)
496 struct uct
*u
= e
->data
;
500 struct move m
= { c
, color
};
501 int res
= board_play(&b2
, &m
);
504 color
= stone_other(color
);
506 if (u
->t
) reset_state(u
);
507 uct_prepare_move(u
, &b2
, color
);
511 uct_search(u
, &b2
, ti
, color
, u
->t
);
512 struct tree_node
*best
= u
->policy
->choose(u
->policy
, u
->t
->root
, &b2
, color
, resign
);
514 bestval
= NAN
; // the opponent has no reply!
516 bestval
= tree_node_get_value(u
->t
, 1, best
->u
.value
);
519 reset_state(u
); // clean our junk
521 return isnan(bestval
) ? NAN
: 1.0f
- bestval
;
525 uct_evaluate(struct engine
*e
, struct board
*b
, struct time_info
*ti
, floating_t
*vals
, enum stone color
)
527 for (int i
= 0; i
< b
->flen
; i
++) {
528 if (is_pass(b
->f
[i
]))
531 vals
[i
] = uct_evaluate_one(e
, b
, ti
, b
->f
[i
], color
);
537 uct_state_init(char *arg
, struct board
*b
)
539 struct uct
*u
= calloc2(1, sizeof(struct uct
));
540 bool pat_setup
= false;
542 u
->debug_level
= debug_level
;
543 u
->reportfreq
= 10000;
544 u
->gamelen
= MC_GAMELEN
;
545 u
->resign_threshold
= 0.2;
546 u
->sure_win_threshold
= 0.9;
548 u
->significant_threshold
= 50;
551 u
->playout_amaf
= true;
552 u
->amaf_prior
= false;
553 u
->max_tree_size
= 1408ULL * 1048576;
554 u
->fast_alloc
= true;
555 u
->pruning_threshold
= 0;
558 u
->thread_model
= TM_TREEVL
;
561 u
->fuseki_end
= 20; // max time at 361*20% = 72 moves (our 36th move, still 99 to play)
562 u
->yose_start
= 40; // (100-40-25)*361/100/2 = 63 moves still to play by us then
563 u
->bestr_ratio
= 0.02;
564 // 2.5 is clearly too much, but seems to compensate well for overly stern time allocations.
565 // TODO: Further tuning and experiments with better time allocation schemes.
566 u
->best2_ratio
= 2.5;
567 u
->max_maintime_ratio
= 3.0;
569 u
->val_scale
= 0; u
->val_points
= 40;
570 u
->dynkomi_interval
= 1000;
571 u
->dynkomi_mask
= S_BLACK
| S_WHITE
;
574 u
->local_tree_aging
= 80;
575 u
->local_tree_depth_decay
= 1.5;
576 u
->local_tree_eval
= LTE_ROOT
;
577 u
->local_tree_neival
= true;
581 u
->stats_delay
= 0.01; // 10 ms
583 u
->plugins
= pluginset_init(b
);
585 u
->jdict
= joseki_load(b
->size
);
588 char *optspec
, *next
= arg
;
591 next
+= strcspn(next
, ",");
592 if (*next
) { *next
++ = 0; } else { *next
= 0; }
594 char *optname
= optspec
;
595 char *optval
= strchr(optspec
, '=');
596 if (optval
) *optval
++ = 0;
600 if (!strcasecmp(optname
, "debug")) {
602 u
->debug_level
= atoi(optval
);
605 } else if (!strcasecmp(optname
, "reporting") && optval
) {
606 /* The format of output for detailed progress
607 * information (such as current best move and
608 * its value, etc.). */
609 if (!strcasecmp(optval
, "text")) {
610 /* Plaintext traditional output. */
611 u
->reporting
= UR_TEXT
;
612 } else if (!strcasecmp(optval
, "json")) {
613 /* JSON output. Implies debug=0. */
614 u
->reporting
= UR_JSON
;
616 } else if (!strcasecmp(optval
, "jsonbig")) {
617 /* JSON output, but much more detailed.
618 * Implies debug=0. */
619 u
->reporting
= UR_JSON_BIG
;
622 fprintf(stderr
, "UCT: Invalid reporting format %s\n", optval
);
625 } else if (!strcasecmp(optname
, "reportfreq") && optval
) {
626 /* The progress information line will be shown
627 * every <reportfreq> simulations. */
628 u
->reportfreq
= atoi(optval
);
629 } else if (!strcasecmp(optname
, "dumpthres") && optval
) {
630 /* When dumping the UCT tree on output, include
631 * nodes with at least this many playouts.
632 * (This value is re-scaled "intelligently"
633 * in case of very large trees.) */
634 u
->dumpthres
= atoi(optval
);
635 } else if (!strcasecmp(optname
, "resign_threshold") && optval
) {
636 /* Resign when this ratio of games is lost
637 * after GJ_MINGAMES sample is taken. */
638 u
->resign_threshold
= atof(optval
);
639 } else if (!strcasecmp(optname
, "sure_win_threshold") && optval
) {
640 /* Stop reading when this ratio of games is won
641 * after PLAYOUT_EARLY_BREAK_MIN sample is
642 * taken. (Prevents stupid time losses,
643 * friendly to human opponents.) */
644 u
->sure_win_threshold
= atof(optval
);
645 } else if (!strcasecmp(optname
, "force_seed") && optval
) {
646 /* Set RNG seed at the tree setup. */
647 u
->force_seed
= atoi(optval
);
648 } else if (!strcasecmp(optname
, "no_tbook")) {
649 /* Disable UCT opening tbook. */
651 } else if (!strcasecmp(optname
, "pass_all_alive")) {
652 /* Whether to consider passing only after all
653 * dead groups were removed from the board;
654 * this is like all genmoves are in fact
655 * kgs-genmove_cleanup. */
656 u
->pass_all_alive
= !optval
|| atoi(optval
);
657 } else if (!strcasecmp(optname
, "territory_scoring")) {
658 /* Use territory scoring (default is area scoring).
659 * An explicit kgs-rules command overrides this. */
660 u
->territory_scoring
= !optval
|| atoi(optval
);
661 } else if (!strcasecmp(optname
, "stones_only")) {
662 /* Do not count eyes. Nice to teach go to kids.
663 * http://strasbourg.jeudego.org/regle_strasbourgeoise.htm */
664 b
->rules
= RULES_STONES_ONLY
;
665 u
->pass_all_alive
= true;
666 } else if (!strcasecmp(optname
, "banner") && optval
) {
667 /* Additional banner string. This must come as the
668 * last engine parameter. */
669 if (*next
) *--next
= ',';
670 u
->banner
= strdup(optval
);
672 } else if (!strcasecmp(optname
, "plugin") && optval
) {
673 /* Load an external plugin; filename goes before the colon,
674 * extra arguments after the colon. */
675 char *pluginarg
= strchr(optval
, ':');
678 plugin_load(u
->plugins
, optval
, pluginarg
);
680 /** UCT behavior and policies */
682 } else if ((!strcasecmp(optname
, "policy")
683 /* Node selection policy. ucb1amaf is the
684 * default policy implementing RAVE, while
685 * ucb1 is the simple exploration/exploitation
686 * policy. Policies can take further extra
688 || !strcasecmp(optname
, "random_policy")) && optval
) {
689 /* A policy to be used randomly with small
690 * chance instead of the default policy. */
691 char *policyarg
= strchr(optval
, ':');
692 struct uct_policy
**p
= !strcasecmp(optname
, "policy") ? &u
->policy
: &u
->random_policy
;
695 if (!strcasecmp(optval
, "ucb1")) {
696 *p
= policy_ucb1_init(u
, policyarg
);
697 } else if (!strcasecmp(optval
, "ucb1amaf")) {
698 *p
= policy_ucb1amaf_init(u
, policyarg
, b
);
700 fprintf(stderr
, "UCT: Invalid tree policy %s\n", optval
);
703 } else if (!strcasecmp(optname
, "playout") && optval
) {
704 /* Random simulation (playout) policy.
705 * moggy is the default policy with large
706 * amount of domain-specific knowledge and
707 * heuristics. light is a simple uniformly
708 * random move selection policy. */
709 char *playoutarg
= strchr(optval
, ':');
712 if (!strcasecmp(optval
, "moggy")) {
713 u
->playout
= playout_moggy_init(playoutarg
, b
, u
->jdict
);
714 } else if (!strcasecmp(optval
, "light")) {
715 u
->playout
= playout_light_init(playoutarg
, b
);
717 fprintf(stderr
, "UCT: Invalid playout policy %s\n", optval
);
720 } else if (!strcasecmp(optname
, "prior") && optval
) {
721 /* Node priors policy. When expanding a node,
722 * it will seed node values heuristically
723 * (most importantly, based on playout policy
724 * opinion, but also with regard to other
725 * things). See uct/prior.c for details.
726 * Use prior=eqex=0 to disable priors. */
727 u
->prior
= uct_prior_init(optval
, b
, u
);
728 } else if (!strcasecmp(optname
, "mercy") && optval
) {
729 /* Minimal difference of black/white captures
730 * to stop playout - "Mercy Rule". Speeds up
731 * hopeless playouts at the expense of some
733 u
->mercymin
= atoi(optval
);
734 } else if (!strcasecmp(optname
, "gamelen") && optval
) {
735 /* Maximum length of single simulation
737 u
->gamelen
= atoi(optval
);
738 } else if (!strcasecmp(optname
, "expand_p") && optval
) {
739 /* Expand UCT nodes after it has been
740 * visited this many times. */
741 u
->expand_p
= atoi(optval
);
742 } else if (!strcasecmp(optname
, "random_policy_chance") && optval
) {
743 /* If specified (N), with probability 1/N, random_policy policy
744 * descend is used instead of main policy descend; useful
745 * if specified policy (e.g. UCB1AMAF) can make unduly biased
746 * choices sometimes, you can fall back to e.g.
747 * random_policy=UCB1. */
748 u
->random_policy_chance
= atoi(optval
);
750 /** General AMAF behavior */
751 /* (Only relevant if the policy supports AMAF.
752 * More variables can be tuned as policy
755 } else if (!strcasecmp(optname
, "playout_amaf")) {
756 /* Whether to include random playout moves in
757 * AMAF as well. (Otherwise, only tree moves
758 * are included in AMAF. Of course makes sense
759 * only in connection with an AMAF policy.) */
760 /* with-without: 55.5% (+-4.1) */
761 if (optval
&& *optval
== '0')
762 u
->playout_amaf
= false;
764 u
->playout_amaf
= true;
765 } else if (!strcasecmp(optname
, "playout_amaf_cutoff") && optval
) {
766 /* Keep only first N% of playout stage AMAF
768 u
->playout_amaf_cutoff
= atoi(optval
);
769 } else if (!strcasecmp(optname
, "amaf_prior") && optval
) {
770 /* In node policy, consider prior values
771 * part of the real result term or part
772 * of the AMAF term? */
773 u
->amaf_prior
= atoi(optval
);
775 /** Performance and memory management */
777 } else if (!strcasecmp(optname
, "threads") && optval
) {
778 /* By default, Pachi will run with only single
779 * tree search thread! */
780 u
->threads
= atoi(optval
);
781 } else if (!strcasecmp(optname
, "thread_model") && optval
) {
782 if (!strcasecmp(optval
, "tree")) {
783 /* Tree parallelization - all threads
784 * grind on the same tree. */
785 u
->thread_model
= TM_TREE
;
787 } else if (!strcasecmp(optval
, "treevl")) {
788 /* Tree parallelization, but also
789 * with virtual losses - this discou-
790 * rages most threads choosing the
791 * same tree branches to read. */
792 u
->thread_model
= TM_TREEVL
;
794 fprintf(stderr
, "UCT: Invalid thread model %s\n", optval
);
797 } else if (!strcasecmp(optname
, "virtual_loss")) {
798 /* Number of virtual losses added before evaluating a node. */
799 u
->virtual_loss
= !optval
|| atoi(optval
);
800 } else if (!strcasecmp(optname
, "pondering")) {
801 /* Keep searching even during opponent's turn. */
802 u
->pondering_opt
= !optval
|| atoi(optval
);
803 } else if (!strcasecmp(optname
, "max_tree_size") && optval
) {
804 /* Maximum amount of memory [MiB] consumed by the move tree.
805 * For fast_alloc it includes the temp tree used for pruning.
806 * Default is 3072 (3 GiB). */
807 u
->max_tree_size
= atol(optval
) * 1048576;
808 } else if (!strcasecmp(optname
, "fast_alloc")) {
809 u
->fast_alloc
= !optval
|| atoi(optval
);
810 } else if (!strcasecmp(optname
, "pruning_threshold") && optval
) {
811 /* Force pruning at beginning of a move if the tree consumes
812 * more than this [MiB]. Default is 10% of max_tree_size.
813 * Increase to reduce pruning time overhead if memory is plentiful.
814 * This option is meaningful only for fast_alloc. */
815 u
->pruning_threshold
= atol(optval
) * 1048576;
819 } else if (!strcasecmp(optname
, "best2_ratio") && optval
) {
820 /* If set, prolong simulating while
821 * first_best/second_best playouts ratio
822 * is less than best2_ratio. */
823 u
->best2_ratio
= atof(optval
);
824 } else if (!strcasecmp(optname
, "bestr_ratio") && optval
) {
825 /* If set, prolong simulating while
826 * best,best_best_child values delta
827 * is more than bestr_ratio. */
828 u
->bestr_ratio
= atof(optval
);
829 } else if (!strcasecmp(optname
, "max_maintime_ratio") && optval
) {
830 /* If set and while not in byoyomi, prolong simulating no more than
831 * max_maintime_ratio times the normal desired thinking time. */
832 u
->max_maintime_ratio
= atof(optval
);
833 } else if (!strcasecmp(optname
, "fuseki_end") && optval
) {
834 /* At the very beginning it's not worth thinking
835 * too long because the playout evaluations are
836 * very noisy. So gradually increase the thinking
837 * time up to maximum when fuseki_end percent
838 * of the board has been played.
839 * This only applies if we are not in byoyomi. */
840 u
->fuseki_end
= atoi(optval
);
841 } else if (!strcasecmp(optname
, "yose_start") && optval
) {
842 /* When yose_start percent of the board has been
843 * played, or if we are in byoyomi, stop spending
844 * more time and spread the remaining time
846 * Between fuseki_end and yose_start, we spend
847 * a constant proportion of the remaining time
848 * on each move. (yose_start should actually
849 * be much earlier than when real yose start,
850 * but "yose" is a good short name to convey
852 u
->yose_start
= atoi(optval
);
856 } else if (!strcasecmp(optname
, "dynkomi") && optval
) {
857 /* Dynamic komi approach; there are multiple
858 * ways to adjust komi dynamically throughout
859 * play. We currently support two: */
860 char *dynkomiarg
= strchr(optval
, ':');
863 if (!strcasecmp(optval
, "none")) {
864 u
->dynkomi
= uct_dynkomi_init_none(u
, dynkomiarg
, b
);
865 } else if (!strcasecmp(optval
, "linear")) {
866 /* You should set dynkomi_mask=1 or a very low
867 * handicap_value for white. */
868 u
->dynkomi
= uct_dynkomi_init_linear(u
, dynkomiarg
, b
);
869 } else if (!strcasecmp(optval
, "adaptive")) {
870 /* There are many more knobs to
871 * crank - see uct/dynkomi.c. */
872 u
->dynkomi
= uct_dynkomi_init_adaptive(u
, dynkomiarg
, b
);
874 fprintf(stderr
, "UCT: Invalid dynkomi mode %s\n", optval
);
877 } else if (!strcasecmp(optname
, "dynkomi_mask") && optval
) {
878 /* Bitmask of colors the player must be
879 * for dynkomi be applied; the default dynkomi_mask=3 allows
880 * dynkomi even in games where Pachi is white. */
881 u
->dynkomi_mask
= atoi(optval
);
882 } else if (!strcasecmp(optname
, "dynkomi_interval") && optval
) {
883 /* If non-zero, re-adjust dynamic komi
884 * throughout a single genmove reading,
885 * roughly every N simulations. */
886 /* XXX: Does not work with tree
887 * parallelization. */
888 u
->dynkomi_interval
= atoi(optval
);
890 /** Node value result scaling */
892 } else if (!strcasecmp(optname
, "val_scale") && optval
) {
893 /* How much of the game result value should be
894 * influenced by win size. Zero means it isn't. */
895 u
->val_scale
= atof(optval
);
896 } else if (!strcasecmp(optname
, "val_points") && optval
) {
897 /* Maximum size of win to be scaled into game
898 * result value. Zero means boardsize^2. */
899 u
->val_points
= atoi(optval
) * 2; // result values are doubled
900 } else if (!strcasecmp(optname
, "val_extra")) {
901 /* If false, the score coefficient will be simply
902 * added to the value, instead of scaling the result
903 * coefficient because of it. */
904 u
->val_extra
= !optval
|| atoi(optval
);
907 /* (Purely experimental. Does not work - yet!) */
909 } else if (!strcasecmp(optname
, "local_tree")) {
910 /* Whether to bias exploration by local tree values. */
911 u
->local_tree
= !optval
|| atoi(optval
);
912 } else if (!strcasecmp(optname
, "tenuki_d") && optval
) {
913 /* Tenuki distance at which to break the local tree. */
914 u
->tenuki_d
= atoi(optval
);
915 if (u
->tenuki_d
> TREE_NODE_D_MAX
+ 1) {
916 fprintf(stderr
, "uct: tenuki_d must not be larger than TREE_NODE_D_MAX+1 %d\n", TREE_NODE_D_MAX
+ 1);
919 } else if (!strcasecmp(optname
, "local_tree_aging") && optval
) {
920 /* How much to reduce local tree values between moves. */
921 u
->local_tree_aging
= atof(optval
);
922 } else if (!strcasecmp(optname
, "local_tree_depth_decay") && optval
) {
923 /* With value x>0, during the descent the node
924 * contributes 1/x^depth playouts in
925 * the local tree. I.e., with x>1, nodes more
926 * distant from local situation contribute more
927 * than nodes near the root. */
928 u
->local_tree_depth_decay
= atof(optval
);
929 } else if (!strcasecmp(optname
, "local_tree_allseq")) {
930 /* If disabled, only complete sequences are stored
931 * in the local tree. If this is on, also
932 * subsequences starting at each move are stored. */
933 u
->local_tree_allseq
= !optval
|| atoi(optval
);
934 } else if (!strcasecmp(optname
, "local_tree_neival")) {
935 /* If disabled, local node value is not
936 * computed just based on terminal status
937 * of the coordinate, but also its neighbors. */
938 u
->local_tree_neival
= !optval
|| atoi(optval
);
939 } else if (!strcasecmp(optname
, "local_tree_eval")) {
940 /* How is the value inserted in the local tree
942 if (!strcasecmp(optval
, "root"))
943 /* All moves within a tree branch are
944 * considered wrt. their merit
945 * reaching tachtical goal of making
946 * the first move in the branch
948 u
->local_tree_eval
= LTE_ROOT
;
949 else if (!strcasecmp(optval
, "each"))
950 /* Each move is considered wrt.
951 * its own survival. */
952 u
->local_tree_eval
= LTE_EACH
;
953 else if (!strcasecmp(optval
, "total"))
954 /* The tactical goal is the survival
955 * of all the moves of my color and
956 * non-survival of all the opponent
957 * moves. Local values (and their
958 * inverses) are averaged. */
959 u
->local_tree_eval
= LTE_TOTAL
;
961 fprintf(stderr
, "uct: unknown local_tree_eval %s\n", optval
);
964 } else if (!strcasecmp(optname
, "local_tree_rootchoose")) {
965 /* If disabled, only moves within the local
966 * tree branch are considered; the values
967 * of the branch roots (i.e. root children)
968 * are ignored. This may make sense together
969 * with eval!=each, we consider only moves
970 * that influence the goal, not the "rating"
971 * of the goal itself. (The real solution
972 * will be probably using criticality to pick
973 * local tree branches.) */
974 u
->local_tree_rootchoose
= !optval
|| atoi(optval
);
976 /** Other heuristics */
977 } else if (!strcasecmp(optname
, "patterns")) {
978 /* Load pattern database. Various modules
979 * (priors, policies etc.) may make use
980 * of this database. They will request
981 * it automatically in that case, but you
982 * can use this option to tweak the pattern
984 patterns_init(&u
->pat
, optval
, false, true);
985 u
->want_pat
= pat_setup
= true;
986 } else if (!strcasecmp(optname
, "significant_threshold") && optval
) {
987 /* Some heuristics (XXX: none in mainline) rely
988 * on the knowledge of the last "significant"
989 * node in the descent. Such a node is
990 * considered reasonably trustworthy to carry
991 * some meaningful information in the values
992 * of the node and its children. */
993 u
->significant_threshold
= atoi(optval
);
995 /** Distributed engine slaves setup */
997 } else if (!strcasecmp(optname
, "slave")) {
998 /* Act as slave for the distributed engine. */
999 u
->slave
= !optval
|| atoi(optval
);
1000 } else if (!strcasecmp(optname
, "slave_index") && optval
) {
1001 /* Optional index if per-slave behavior is desired.
1002 * Must be given as index/max */
1003 u
->slave_index
= atoi(optval
);
1004 char *p
= strchr(optval
, '/');
1005 if (p
) u
->max_slaves
= atoi(++p
);
1006 } else if (!strcasecmp(optname
, "shared_nodes") && optval
) {
1007 /* Share at most shared_nodes between master and slave at each genmoves.
1008 * Must use the same value in master and slaves. */
1009 u
->shared_nodes
= atoi(optval
);
1010 } else if (!strcasecmp(optname
, "shared_levels") && optval
) {
1011 /* Share only nodes of level <= shared_levels. */
1012 u
->shared_levels
= atoi(optval
);
1013 } else if (!strcasecmp(optname
, "stats_hbits") && optval
) {
1014 /* Set hash table size to 2^stats_hbits for the shared stats. */
1015 u
->stats_hbits
= atoi(optval
);
1016 } else if (!strcasecmp(optname
, "stats_delay") && optval
) {
1017 /* How long to wait in slave for initial stats to build up before
1018 * replying to the genmoves command (in ms) */
1019 u
->stats_delay
= 0.001 * atof(optval
);
1022 fprintf(stderr
, "uct: Invalid engine argument %s or missing value\n", optname
);
1029 u
->policy
= policy_ucb1amaf_init(u
, NULL
, b
);
1031 if (!!u
->random_policy_chance
^ !!u
->random_policy
) {
1032 fprintf(stderr
, "uct: Only one of random_policy and random_policy_chance is set\n");
1036 if (!u
->local_tree
) {
1037 /* No ltree aging. */
1038 u
->local_tree_aging
= 1.0f
;
1041 if (u
->fast_alloc
) {
1042 if (u
->pruning_threshold
< u
->max_tree_size
/ 10)
1043 u
->pruning_threshold
= u
->max_tree_size
/ 10;
1044 if (u
->pruning_threshold
> u
->max_tree_size
/ 2)
1045 u
->pruning_threshold
= u
->max_tree_size
/ 2;
1047 /* Limit pruning temp space to 20% of memory. Beyond this we discard
1048 * the nodes and recompute them at the next move if necessary. */
1049 u
->max_pruned_size
= u
->max_tree_size
/ 5;
1050 u
->max_tree_size
-= u
->max_pruned_size
;
1052 /* Reserve 5% memory in case the background free() are slower
1053 * than the concurrent allocations. */
1054 u
->max_tree_size
-= u
->max_tree_size
/ 20;
1058 u
->prior
= uct_prior_init(NULL
, b
, u
);
1061 u
->playout
= playout_moggy_init(NULL
, b
, u
->jdict
);
1062 if (!u
->playout
->debug_level
)
1063 u
->playout
->debug_level
= u
->debug_level
;
1065 if (u
->want_pat
&& !pat_setup
)
1066 patterns_init(&u
->pat
, NULL
, false, true);
1068 u
->ownermap
.map
= malloc2(board_size2(b
) * sizeof(u
->ownermap
.map
[0]));
1071 if (!u
->stats_hbits
) u
->stats_hbits
= DEFAULT_STATS_HBITS
;
1072 if (!u
->shared_nodes
) u
->shared_nodes
= DEFAULT_SHARED_NODES
;
1073 assert(u
->shared_levels
* board_bits2(b
) <= 8 * (int)sizeof(path_t
));
1077 u
->dynkomi
= uct_dynkomi_init_linear(u
, NULL
, b
);
1079 /* Some things remain uninitialized for now - the opening tbook
1080 * is not loaded and the tree not set up. */
1081 /* This will be initialized in setup_state() at the first move
1082 * received/requested. This is because right now we are not aware
1083 * about any komi or handicap setup and such. */
1089 engine_uct_init(char *arg
, struct board
*b
)
1091 struct uct
*u
= uct_state_init(arg
, b
);
1092 struct engine
*e
= calloc2(1, sizeof(struct engine
));
1094 e
->printhook
= uct_printhook_ownermap
;
1095 e
->notify_play
= uct_notify_play
;
1098 e
->result
= uct_result
;
1099 e
->genmove
= uct_genmove
;
1100 e
->genmoves
= uct_genmoves
;
1101 e
->evaluate
= uct_evaluate
;
1102 e
->dead_group_list
= uct_dead_group_list
;
1106 e
->notify
= uct_notify
;
1108 const char banner
[] = "If you believe you have won but I am still playing, "
1109 "please help me understand by capturing all dead stones. "
1110 "Anyone can send me 'winrate' in private chat to get my assessment of the position.";
1111 if (!u
->banner
) u
->banner
= "";
1112 e
->comment
= malloc2(sizeof(banner
) + strlen(u
->banner
) + 1);
1113 sprintf(e
->comment
, "%s %s", banner
, u
->banner
);