Merge branch 'derm8' into win2
[pachi/peepo.git] / uct / uct.c
blob722de5a7292bba2ef9fb02023d1f996b019868a4
1 #include <assert.h>
2 #include <math.h>
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <string.h>
6 #include <time.h>
8 #define DEBUG
10 #include "debug.h"
11 #include "board.h"
12 #include "gtp.h"
13 #include "move.h"
14 #include "mq.h"
15 #include "joseki/base.h"
16 #include "playout.h"
17 #include "playout/moggy.h"
18 #include "playout/light.h"
19 #include "tactics/util.h"
20 #include "timeinfo.h"
21 #include "uct/dynkomi.h"
22 #include "uct/internal.h"
23 #include "uct/plugins.h"
24 #include "uct/prior.h"
25 #include "uct/search.h"
26 #include "uct/slave.h"
27 #include "uct/tree.h"
28 #include "uct/uct.h"
29 #include "uct/walk.h"
31 struct uct_policy *policy_ucb1_init(struct uct *u, char *arg);
32 struct uct_policy *policy_ucb1amaf_init(struct uct *u, char *arg);
33 static void uct_pondering_start(struct uct *u, struct board *b0, struct tree *t, enum stone color);
35 /* Maximal simulation length. */
36 #define MC_GAMELEN MAX_GAMELEN
39 static void
40 setup_state(struct uct *u, struct board *b, enum stone color)
42 u->t = tree_init(b, color, u->fast_alloc ? u->max_tree_size : 0,
43 u->max_pruned_size, u->pruning_threshold, u->local_tree_aging, u->stats_hbits);
44 if (u->force_seed)
45 fast_srandom(u->force_seed);
46 if (UDEBUGL(0))
47 fprintf(stderr, "Fresh board with random seed %lu\n", fast_getseed());
48 //board_print(b, stderr);
49 if (!u->no_tbook && b->moves == 0) {
50 assert(color == S_BLACK);
51 tree_load(u->t, b);
55 static void
56 reset_state(struct uct *u)
58 assert(u->t);
59 tree_done(u->t); u->t = NULL;
62 static void
63 setup_dynkomi(struct uct *u, struct board *b, enum stone to_play)
65 if (u->t->use_extra_komi && !u->pondering && u->dynkomi->permove)
66 u->t->extra_komi = u->dynkomi->permove(u->dynkomi, b, u->t);
67 else if (!u->t->use_extra_komi)
68 u->t->extra_komi = 0;
71 void
72 uct_prepare_move(struct uct *u, struct board *b, enum stone color)
74 if (u->t) {
75 /* Verify that we have sane state. */
76 assert(b->es == u);
77 assert(u->t && b->moves);
78 if (color != stone_other(u->t->root_color)) {
79 fprintf(stderr, "Fatal: Non-alternating play detected %d %d\n",
80 color, u->t->root_color);
81 exit(1);
83 uct_htable_reset(u->t);
85 } else {
86 /* We need fresh state. */
87 b->es = u;
88 setup_state(u, b, color);
91 u->ownermap.playouts = 0;
92 memset(u->ownermap.map, 0, board_size2(b) * sizeof(u->ownermap.map[0]));
93 u->played_own = u->played_all = 0;
96 static void
97 dead_group_list(struct uct *u, struct board *b, struct move_queue *mq)
99 struct group_judgement gj;
100 gj.thres = GJ_THRES;
101 gj.gs = alloca(board_size2(b) * sizeof(gj.gs[0]));
102 board_ownermap_judge_group(b, &u->ownermap, &gj);
103 groups_of_status(b, &gj, GS_DEAD, mq);
106 bool
107 uct_pass_is_safe(struct uct *u, struct board *b, enum stone color, bool pass_all_alive)
109 /* Make sure enough playouts are simulated to get a reasonable dead group list. */
110 while (u->ownermap.playouts < GJ_MINGAMES)
111 uct_playout(u, b, color, u->t);
113 struct move_queue mq = { .moves = 0 };
114 dead_group_list(u, b, &mq);
115 if (pass_all_alive && mq.moves > 0)
116 return false; // We need to remove some dead groups first.
117 return pass_is_safe(b, color, &mq);
120 static char *
121 uct_printhook_ownermap(struct board *board, coord_t c, char *s, char *end)
123 struct uct *u = board->es;
124 if (!u) {
125 strcat(s, ". ");
126 return s + 2;
128 const char chr[] = ":XO,"; // dame, black, white, unclear
129 const char chm[] = ":xo,";
130 char ch = chr[board_ownermap_judge_point(&u->ownermap, c, GJ_THRES)];
131 if (ch == ',') { // less precise estimate then?
132 ch = chm[board_ownermap_judge_point(&u->ownermap, c, 0.67)];
134 s += snprintf(s, end - s, "%c ", ch);
135 return s;
138 static char *
139 uct_notify_play(struct engine *e, struct board *b, struct move *m)
141 struct uct *u = e->data;
142 if (!u->t) {
143 /* No state, create one - this is probably game beginning
144 * and we need to load the opening tbook right now. */
145 uct_prepare_move(u, b, m->color);
146 assert(u->t);
149 /* Stop pondering, required by tree_promote_at() */
150 uct_pondering_stop(u);
151 if (UDEBUGL(2) && u->slave)
152 tree_dump(u->t, u->dumpthres);
154 if (is_resign(m->coord)) {
155 /* Reset state. */
156 reset_state(u);
157 return NULL;
160 /* Promote node of the appropriate move to the tree root. */
161 assert(u->t->root);
162 if (!tree_promote_at(u->t, b, m->coord)) {
163 if (UDEBUGL(0))
164 fprintf(stderr, "Warning: Cannot promote move node! Several play commands in row?\n");
165 reset_state(u);
166 return NULL;
169 /* If we are a slave in a distributed engine, start pondering once
170 * we know which move we actually played. See uct_genmove() about
171 * the check for pass. */
172 if (u->pondering_opt && u->slave && m->color == u->my_color && !is_pass(m->coord))
173 uct_pondering_start(u, b, u->t, stone_other(m->color));
175 return NULL;
178 static char *
179 uct_undo(struct engine *e, struct board *b)
181 struct uct *u = e->data;
183 if (!u->t) return NULL;
184 uct_pondering_stop(u);
185 reset_state(u);
186 return NULL;
189 static char *
190 uct_result(struct engine *e, struct board *b)
192 struct uct *u = e->data;
193 static char reply[1024];
195 if (!u->t)
196 return NULL;
197 enum stone color = u->t->root_color;
198 struct tree_node *n = u->t->root;
199 snprintf(reply, 1024, "%s %s %d %.2f %.1f",
200 stone2str(color), coord2sstr(node_coord(n), b),
201 n->u.playouts, tree_node_get_value(u->t, -1, n->u.value),
202 u->t->use_extra_komi ? u->t->extra_komi : 0);
203 return reply;
206 static char *
207 uct_chat(struct engine *e, struct board *b, char *cmd)
209 struct uct *u = e->data;
210 static char reply[1024];
212 cmd += strspn(cmd, " \n\t");
213 if (!strncasecmp(cmd, "winrate", 7)) {
214 if (!u->t)
215 return "no game context (yet?)";
216 enum stone color = u->t->root_color;
217 struct tree_node *n = u->t->root;
218 snprintf(reply, 1024, "In %d playouts at %d threads, %s %s can win with %.2f%% probability",
219 n->u.playouts, u->threads, stone2str(color), coord2sstr(node_coord(n), b),
220 tree_node_get_value(u->t, -1, n->u.value) * 100);
221 if (u->t->use_extra_komi && abs(u->t->extra_komi) >= 0.5) {
222 sprintf(reply + strlen(reply), ", while self-imposing extra komi %.1f",
223 u->t->extra_komi);
225 strcat(reply, ".");
226 return reply;
228 return NULL;
231 static void
232 uct_dead_group_list(struct engine *e, struct board *b, struct move_queue *mq)
234 struct uct *u = e->data;
236 /* This means the game is probably over, no use pondering on. */
237 uct_pondering_stop(u);
239 if (u->pass_all_alive)
240 return; // no dead groups
242 bool mock_state = false;
244 if (!u->t) {
245 /* No state, but we cannot just back out - we might
246 * have passed earlier, only assuming some stones are
247 * dead, and then re-connected, only to lose counting
248 * when all stones are assumed alive. */
249 uct_prepare_move(u, b, S_BLACK); assert(u->t);
250 mock_state = true;
252 /* Make sure the ownermap is well-seeded. */
253 while (u->ownermap.playouts < GJ_MINGAMES)
254 uct_playout(u, b, S_BLACK, u->t);
255 /* Show the ownermap: */
256 if (DEBUGL(2))
257 board_print_custom(b, stderr, uct_printhook_ownermap);
259 dead_group_list(u, b, mq);
261 if (mock_state) {
262 /* Clean up the mock state in case we will receive
263 * a genmove; we could get a non-alternating-move
264 * error from uct_prepare_move() in that case otherwise. */
265 reset_state(u);
269 static void
270 playout_policy_done(struct playout_policy *p)
272 if (p->done) p->done(p);
273 if (p->data) free(p->data);
274 free(p);
277 static void
278 uct_done(struct engine *e)
280 /* This is called on engine reset, especially when clear_board
281 * is received and new game should begin. */
282 struct uct *u = e->data;
283 uct_pondering_stop(u);
284 if (u->t) reset_state(u);
285 free(u->ownermap.map);
287 free(u->policy);
288 free(u->random_policy);
289 playout_policy_done(u->playout);
290 uct_prior_done(u->prior);
291 joseki_done(u->jdict);
292 pluginset_done(u->plugins);
297 /* Run time-limited MCTS search on foreground. */
298 static int
299 uct_search(struct uct *u, struct board *b, struct time_info *ti, enum stone color, struct tree *t)
301 struct uct_search_state s;
302 uct_search_start(u, b, color, t, ti, &s);
303 if (UDEBUGL(2) && s.base_playouts > 0)
304 fprintf(stderr, "<pre-simulated %d games>\n", s.base_playouts);
306 /* The search tree is ctx->t. This is currently == . It is important
307 * to reference ctx->t directly since the
308 * thread manager will swap the tree pointer asynchronously. */
310 /* Now, just periodically poll the search tree. */
311 /* Note that in case of TD_GAMES, threads will not wait for
312 * the uct_search_check_stop() signalization. */
313 while (1) {
314 time_sleep(TREE_BUSYWAIT_INTERVAL);
315 /* TREE_BUSYWAIT_INTERVAL should never be less than desired time, or the
316 * time control is broken. But if it happens to be less, we still search
317 * at least 100ms otherwise the move is completely random. */
319 int i = uct_search_games(&s);
320 /* Print notifications etc. */
321 uct_search_progress(u, b, color, t, ti, &s, i);
322 /* Check if we should stop the search. */
323 if (uct_search_check_stop(u, b, color, t, ti, &s, i))
324 break;
327 struct uct_thread_ctx *ctx = uct_search_stop();
328 if (UDEBUGL(2)) tree_dump(t, u->dumpthres);
329 if (UDEBUGL(2))
330 fprintf(stderr, "(avg score %f/%d value %f/%d)\n",
331 u->dynkomi->score.value, u->dynkomi->score.playouts,
332 u->dynkomi->value.value, u->dynkomi->value.playouts);
333 if (UDEBUGL(0))
334 uct_progress_status(u, t, color, ctx->games);
336 u->played_own += ctx->games;
337 return ctx->games;
340 /* Start pondering background with @color to play. */
341 static void
342 uct_pondering_start(struct uct *u, struct board *b0, struct tree *t, enum stone color)
344 if (UDEBUGL(1))
345 fprintf(stderr, "Starting to ponder with color %s\n", stone2str(stone_other(color)));
346 u->pondering = true;
348 /* We need a local board copy to ponder upon. */
349 struct board *b = malloc2(sizeof(*b)); board_copy(b, b0);
351 /* *b0 did not have the genmove'd move played yet. */
352 struct move m = { node_coord(t->root), t->root_color };
353 int res = board_play(b, &m);
354 assert(res >= 0);
355 setup_dynkomi(u, b, stone_other(m.color));
357 /* Start MCTS manager thread "headless". */
358 static struct uct_search_state s;
359 uct_search_start(u, b, color, t, NULL, &s);
362 /* uct_search_stop() frontend for the pondering (non-genmove) mode, and
363 * to stop the background search for a slave in the distributed engine. */
364 void
365 uct_pondering_stop(struct uct *u)
367 if (!thread_manager_running)
368 return;
370 /* Stop the thread manager. */
371 struct uct_thread_ctx *ctx = uct_search_stop();
372 if (UDEBUGL(1)) {
373 if (u->pondering) fprintf(stderr, "(pondering) ");
374 uct_progress_status(u, ctx->t, ctx->color, ctx->games);
376 if (u->pondering) {
377 free(ctx->b);
378 u->pondering = false;
383 void
384 uct_genmove_setup(struct uct *u, struct board *b, enum stone color)
386 if (b->superko_violation) {
387 fprintf(stderr, "!!! WARNING: SUPERKO VIOLATION OCCURED BEFORE THIS MOVE\n");
388 fprintf(stderr, "Maybe you play with situational instead of positional superko?\n");
389 fprintf(stderr, "I'm going to ignore the violation, but note that I may miss\n");
390 fprintf(stderr, "some moves valid under this ruleset because of this.\n");
391 b->superko_violation = false;
394 uct_prepare_move(u, b, color);
396 assert(u->t);
397 u->my_color = color;
399 /* How to decide whether to use dynkomi in this game? Since we use
400 * pondering, it's not simple "who-to-play" matter. Decide based on
401 * the last genmove issued. */
402 u->t->use_extra_komi = !!(u->dynkomi_mask & color);
403 setup_dynkomi(u, b, color);
405 if (b->rules == RULES_JAPANESE)
406 u->territory_scoring = true;
408 /* Make pessimistic assumption about komi for Japanese rules to
409 * avoid losing by 0.5 when winning by 0.5 with Chinese rules.
410 * The rules usually give the same winner if the integer part of komi
411 * is odd so we adjust the komi only if it is even (for a board of
412 * odd size). We are not trying to get an exact evaluation for rare
413 * cases of seki. For details see http://home.snafu.de/jasiek/parity.html */
414 if (u->territory_scoring && (((int)floor(b->komi) + board_size(b)) & 1)) {
415 b->komi += (color == S_BLACK ? 1.0 : -1.0);
416 if (UDEBUGL(0))
417 fprintf(stderr, "Setting komi to %.1f assuming Japanese rules\n",
418 b->komi);
422 static coord_t *
423 uct_genmove(struct engine *e, struct board *b, struct time_info *ti, enum stone color, bool pass_all_alive)
425 double start_time = time_now();
426 struct uct *u = e->data;
427 u->pass_all_alive |= pass_all_alive;
428 uct_pondering_stop(u);
429 uct_genmove_setup(u, b, color);
431 /* Start the Monte Carlo Tree Search! */
432 int base_playouts = u->t->root->u.playouts;
433 int played_games = uct_search(u, b, ti, color, u->t);
435 coord_t best_coord;
436 struct tree_node *best;
437 best = uct_search_result(u, b, color, u->pass_all_alive, played_games, base_playouts, &best_coord);
439 if (UDEBUGL(2)) {
440 double time = time_now() - start_time + 0.000001; /* avoid divide by zero */
441 fprintf(stderr, "genmove in %0.2fs (%d games/s, %d games/s/thread)\n",
442 time, (int)(played_games/time), (int)(played_games/time/u->threads));
445 if (!best) {
446 /* Pass or resign. */
447 reset_state(u);
448 return coord_copy(best_coord);
450 tree_promote_node(u->t, &best);
452 /* After a pass, pondering is harmful for two reasons:
453 * (i) We might keep pondering even when the game is over.
454 * Of course this is the case for opponent resign as well.
455 * (ii) More importantly, the ownermap will get skewed since
456 * the UCT will start cutting off any playouts. */
457 if (u->pondering_opt && !is_pass(node_coord(best))) {
458 uct_pondering_start(u, b, u->t, stone_other(color));
460 return coord_copy(best_coord);
464 bool
465 uct_gentbook(struct engine *e, struct board *b, struct time_info *ti, enum stone color)
467 struct uct *u = e->data;
468 if (!u->t) uct_prepare_move(u, b, color);
469 assert(u->t);
471 if (ti->dim == TD_GAMES) {
472 /* Don't count in games that already went into the tbook. */
473 ti->len.games += u->t->root->u.playouts;
475 uct_search(u, b, ti, color, u->t);
477 assert(ti->dim == TD_GAMES);
478 tree_save(u->t, b, ti->len.games / 100);
480 return true;
483 void
484 uct_dumptbook(struct engine *e, struct board *b, enum stone color)
486 struct uct *u = e->data;
487 struct tree *t = tree_init(b, color, u->fast_alloc ? u->max_tree_size : 0,
488 u->max_pruned_size, u->pruning_threshold, u->local_tree_aging, 0);
489 tree_load(t, b);
490 tree_dump(t, 0);
491 tree_done(t);
495 floating_t
496 uct_evaluate(struct engine *e, struct board *b, struct time_info *ti, coord_t c, enum stone color)
498 struct uct *u = e->data;
500 struct board b2;
501 board_copy(&b2, b);
502 struct move m = { c, color };
503 int res = board_play(&b2, &m);
504 if (res < 0)
505 return NAN;
506 color = stone_other(color);
508 if (u->t) reset_state(u);
509 uct_prepare_move(u, &b2, color);
510 assert(u->t);
512 floating_t bestval;
513 uct_search(u, &b2, ti, color, u->t);
514 struct tree_node *best = u->policy->choose(u->policy, u->t->root, &b2, color, resign);
515 if (!best) {
516 bestval = NAN; // the opponent has no reply!
517 } else {
518 bestval = tree_node_get_value(u->t, 1, best->u.value);
521 reset_state(u); // clean our junk
523 return isnan(bestval) ? NAN : 1.0f - bestval;
527 struct uct *
528 uct_state_init(char *arg, struct board *b)
530 struct uct *u = calloc2(1, sizeof(struct uct));
532 u->debug_level = debug_level;
533 u->gamelen = MC_GAMELEN;
534 u->resign_threshold = 0.2;
535 u->sure_win_threshold = 0.85;
536 u->mercymin = 0;
537 u->significant_threshold = 50;
538 u->expand_p = 8;
539 u->dumpthres = 1000;
540 u->playout_amaf = true;
541 u->playout_amaf_nakade = false;
542 u->amaf_prior = false;
543 u->max_tree_size = 1408ULL * 1048576;
544 u->fast_alloc = true;
545 u->pruning_threshold = 0;
547 u->threads = 1;
548 u->thread_model = TM_TREEVL;
549 u->virtual_loss = 1;
551 u->fuseki_end = 20; // max time at 361*20% = 72 moves (our 36th move, still 99 to play)
552 u->yose_start = 40; // (100-40-25)*361/100/2 = 63 moves still to play by us then
553 u->bestr_ratio = 0.02;
554 // 2.5 is clearly too much, but seems to compensate well for overly stern time allocations.
555 // TODO: Further tuning and experiments with better time allocation schemes.
556 u->best2_ratio = 2.5;
557 u->max_maintime_ratio = 3.0;
559 u->val_scale = 0.04; u->val_points = 40;
560 u->dynkomi_interval = 1000;
561 u->dynkomi_mask = S_BLACK | S_WHITE;
563 u->tenuki_d = 4;
564 u->local_tree_aging = 80;
565 u->local_tree_depth_decay = 1.5;
566 u->local_tree_rootgoal = true;
567 u->local_tree_neival = true;
569 u->max_slaves = -1;
570 u->slave_index = -1;
571 u->stats_delay = 0.01; // 10 ms
573 u->plugins = pluginset_init(b);
575 u->jdict = joseki_load(b->size);
577 if (arg) {
578 char *optspec, *next = arg;
579 while (*next) {
580 optspec = next;
581 next += strcspn(next, ",");
582 if (*next) { *next++ = 0; } else { *next = 0; }
584 char *optname = optspec;
585 char *optval = strchr(optspec, '=');
586 if (optval) *optval++ = 0;
588 /** Basic options */
590 if (!strcasecmp(optname, "debug")) {
591 if (optval)
592 u->debug_level = atoi(optval);
593 else
594 u->debug_level++;
595 } else if (!strcasecmp(optname, "dumpthres") && optval) {
596 /* When dumping the UCT tree on output, include
597 * nodes with at least this many playouts.
598 * (This value is re-scaled "intelligently"
599 * in case of very large trees.) */
600 u->dumpthres = atoi(optval);
601 } else if (!strcasecmp(optname, "resign_threshold") && optval) {
602 /* Resign when this ratio of games is lost
603 * after GJ_MINGAMES sample is taken. */
604 u->resign_threshold = atof(optval);
605 } else if (!strcasecmp(optname, "sure_win_threshold") && optval) {
606 /* Stop reading when this ratio of games is won
607 * after PLAYOUT_EARLY_BREAK_MIN sample is
608 * taken. (Prevents stupid time losses,
609 * friendly to human opponents.) */
610 u->sure_win_threshold = atof(optval);
611 } else if (!strcasecmp(optname, "force_seed") && optval) {
612 /* Set RNG seed at the tree setup. */
613 u->force_seed = atoi(optval);
614 } else if (!strcasecmp(optname, "no_tbook")) {
615 /* Disable UCT opening tbook. */
616 u->no_tbook = true;
617 } else if (!strcasecmp(optname, "pass_all_alive")) {
618 /* Whether to consider passing only after all
619 * dead groups were removed from the board;
620 * this is like all genmoves are in fact
621 * kgs-genmove_cleanup. */
622 u->pass_all_alive = !optval || atoi(optval);
623 } else if (!strcasecmp(optname, "territory_scoring")) {
624 /* Use territory scoring (default is area scoring).
625 * An explicit kgs-rules command overrides this. */
626 u->territory_scoring = !optval || atoi(optval);
627 } else if (!strcasecmp(optname, "stones_only")) {
628 /* Do not count eyes. Nice to teach go to kids.
629 * http://strasbourg.jeudego.org/regle_strasbourgeoise.htm */
630 b->rules = RULES_STONES_ONLY;
631 u->pass_all_alive = true;
632 } else if (!strcasecmp(optname, "banner") && optval) {
633 /* Additional banner string. This must come as the
634 * last engine parameter. */
635 if (*next) *--next = ',';
636 u->banner = strdup(optval);
637 break;
638 } else if (!strcasecmp(optname, "plugin") && optval) {
639 /* Load an external plugin; filename goes before the colon,
640 * extra arguments after the colon. */
641 char *pluginarg = strchr(optval, ':');
642 if (pluginarg)
643 *pluginarg++ = 0;
644 plugin_load(u->plugins, optval, pluginarg);
646 /** UCT behavior and policies */
648 } else if ((!strcasecmp(optname, "policy")
649 /* Node selection policy. ucb1amaf is the
650 * default policy implementing RAVE, while
651 * ucb1 is the simple exploration/exploitation
652 * policy. Policies can take further extra
653 * options. */
654 || !strcasecmp(optname, "random_policy")) && optval) {
655 /* A policy to be used randomly with small
656 * chance instead of the default policy. */
657 char *policyarg = strchr(optval, ':');
658 struct uct_policy **p = !strcasecmp(optname, "policy") ? &u->policy : &u->random_policy;
659 if (policyarg)
660 *policyarg++ = 0;
661 if (!strcasecmp(optval, "ucb1")) {
662 *p = policy_ucb1_init(u, policyarg);
663 } else if (!strcasecmp(optval, "ucb1amaf")) {
664 *p = policy_ucb1amaf_init(u, policyarg);
665 } else {
666 fprintf(stderr, "UCT: Invalid tree policy %s\n", optval);
667 exit(1);
669 } else if (!strcasecmp(optname, "playout") && optval) {
670 /* Random simulation (playout) policy.
671 * moggy is the default policy with large
672 * amount of domain-specific knowledge and
673 * heuristics. light is a simple uniformly
674 * random move selection policy. */
675 char *playoutarg = strchr(optval, ':');
676 if (playoutarg)
677 *playoutarg++ = 0;
678 if (!strcasecmp(optval, "moggy")) {
679 u->playout = playout_moggy_init(playoutarg, b, u->jdict);
680 } else if (!strcasecmp(optval, "light")) {
681 u->playout = playout_light_init(playoutarg, b);
682 } else {
683 fprintf(stderr, "UCT: Invalid playout policy %s\n", optval);
684 exit(1);
686 } else if (!strcasecmp(optname, "prior") && optval) {
687 /* Node priors policy. When expanding a node,
688 * it will seed node values heuristically
689 * (most importantly, based on playout policy
690 * opinion, but also with regard to other
691 * things). See uct/prior.c for details.
692 * Use prior=eqex=0 to disable priors. */
693 u->prior = uct_prior_init(optval, b);
694 } else if (!strcasecmp(optname, "mercy") && optval) {
695 /* Minimal difference of black/white captures
696 * to stop playout - "Mercy Rule". Speeds up
697 * hopeless playouts at the expense of some
698 * accuracy. */
699 u->mercymin = atoi(optval);
700 } else if (!strcasecmp(optname, "gamelen") && optval) {
701 /* Maximum length of single simulation
702 * in moves. */
703 u->gamelen = atoi(optval);
704 } else if (!strcasecmp(optname, "expand_p") && optval) {
705 /* Expand UCT nodes after it has been
706 * visited this many times. */
707 u->expand_p = atoi(optval);
708 } else if (!strcasecmp(optname, "random_policy_chance") && optval) {
709 /* If specified (N), with probability 1/N, random_policy policy
710 * descend is used instead of main policy descend; useful
711 * if specified policy (e.g. UCB1AMAF) can make unduly biased
712 * choices sometimes, you can fall back to e.g.
713 * random_policy=UCB1. */
714 u->random_policy_chance = atoi(optval);
716 /** General AMAF behavior */
717 /* (Only relevant if the policy supports AMAF.
718 * More variables can be tuned as policy
719 * parameters.) */
721 } else if (!strcasecmp(optname, "playout_amaf")) {
722 /* Whether to include random playout moves in
723 * AMAF as well. (Otherwise, only tree moves
724 * are included in AMAF. Of course makes sense
725 * only in connection with an AMAF policy.) */
726 /* with-without: 55.5% (+-4.1) */
727 if (optval && *optval == '0')
728 u->playout_amaf = false;
729 else
730 u->playout_amaf = true;
731 } else if (!strcasecmp(optname, "playout_amaf_nakade")) {
732 /* Whether to include nakade moves from playouts
733 * in the AMAF statistics; this tends to nullify
734 * the playout_amaf effect by adding too much
735 * noise. */
736 if (optval && *optval == '0')
737 u->playout_amaf_nakade = false;
738 else
739 u->playout_amaf_nakade = true;
740 } else if (!strcasecmp(optname, "playout_amaf_cutoff") && optval) {
741 /* Keep only first N% of playout stage AMAF
742 * information. */
743 u->playout_amaf_cutoff = atoi(optval);
744 } else if (!strcasecmp(optname, "amaf_prior") && optval) {
745 /* In node policy, consider prior values
746 * part of the real result term or part
747 * of the AMAF term? */
748 u->amaf_prior = atoi(optval);
750 /** Performance and memory management */
752 } else if (!strcasecmp(optname, "threads") && optval) {
753 /* By default, Pachi will run with only single
754 * tree search thread! */
755 u->threads = atoi(optval);
756 } else if (!strcasecmp(optname, "thread_model") && optval) {
757 if (!strcasecmp(optval, "tree")) {
758 /* Tree parallelization - all threads
759 * grind on the same tree. */
760 u->thread_model = TM_TREE;
761 u->virtual_loss = 0;
762 } else if (!strcasecmp(optval, "treevl")) {
763 /* Tree parallelization, but also
764 * with virtual losses - this discou-
765 * rages most threads choosing the
766 * same tree branches to read. */
767 u->thread_model = TM_TREEVL;
768 } else {
769 fprintf(stderr, "UCT: Invalid thread model %s\n", optval);
770 exit(1);
772 } else if (!strcasecmp(optname, "virtual_loss")) {
773 /* Number of virtual losses added before evaluating a node. */
774 u->virtual_loss = !optval || atoi(optval);
775 } else if (!strcasecmp(optname, "pondering")) {
776 /* Keep searching even during opponent's turn. */
777 u->pondering_opt = !optval || atoi(optval);
778 } else if (!strcasecmp(optname, "max_tree_size") && optval) {
779 /* Maximum amount of memory [MiB] consumed by the move tree.
780 * For fast_alloc it includes the temp tree used for pruning.
781 * Default is 3072 (3 GiB). */
782 u->max_tree_size = atol(optval) * 1048576;
783 } else if (!strcasecmp(optname, "fast_alloc")) {
784 u->fast_alloc = !optval || atoi(optval);
785 } else if (!strcasecmp(optname, "pruning_threshold") && optval) {
786 /* Force pruning at beginning of a move if the tree consumes
787 * more than this [MiB]. Default is 10% of max_tree_size.
788 * Increase to reduce pruning time overhead if memory is plentiful.
789 * This option is meaningful only for fast_alloc. */
790 u->pruning_threshold = atol(optval) * 1048576;
792 /** Time control */
794 } else if (!strcasecmp(optname, "best2_ratio") && optval) {
795 /* If set, prolong simulating while
796 * first_best/second_best playouts ratio
797 * is less than best2_ratio. */
798 u->best2_ratio = atof(optval);
799 } else if (!strcasecmp(optname, "bestr_ratio") && optval) {
800 /* If set, prolong simulating while
801 * best,best_best_child values delta
802 * is more than bestr_ratio. */
803 u->bestr_ratio = atof(optval);
804 } else if (!strcasecmp(optname, "max_maintime_ratio") && optval) {
805 /* If set and while not in byoyomi, prolong simulating no more than
806 * max_maintime_ratio times the normal desired thinking time. */
807 u->max_maintime_ratio = atof(optval);
808 } else if (!strcasecmp(optname, "fuseki_end") && optval) {
809 /* At the very beginning it's not worth thinking
810 * too long because the playout evaluations are
811 * very noisy. So gradually increase the thinking
812 * time up to maximum when fuseki_end percent
813 * of the board has been played.
814 * This only applies if we are not in byoyomi. */
815 u->fuseki_end = atoi(optval);
816 } else if (!strcasecmp(optname, "yose_start") && optval) {
817 /* When yose_start percent of the board has been
818 * played, or if we are in byoyomi, stop spending
819 * more time and spread the remaining time
820 * uniformly.
821 * Between fuseki_end and yose_start, we spend
822 * a constant proportion of the remaining time
823 * on each move. (yose_start should actually
824 * be much earlier than when real yose start,
825 * but "yose" is a good short name to convey
826 * the idea.) */
827 u->yose_start = atoi(optval);
829 /** Dynamic komi */
831 } else if (!strcasecmp(optname, "dynkomi") && optval) {
832 /* Dynamic komi approach; there are multiple
833 * ways to adjust komi dynamically throughout
834 * play. We currently support two: */
835 char *dynkomiarg = strchr(optval, ':');
836 if (dynkomiarg)
837 *dynkomiarg++ = 0;
838 if (!strcasecmp(optval, "none")) {
839 u->dynkomi = uct_dynkomi_init_none(u, dynkomiarg, b);
840 } else if (!strcasecmp(optval, "linear")) {
841 /* You should set dynkomi_mask=1
842 * since this doesn't work well
843 * for white handicaps! */
844 u->dynkomi = uct_dynkomi_init_linear(u, dynkomiarg, b);
845 } else if (!strcasecmp(optval, "adaptive")) {
846 /* There are many more knobs to
847 * crank - see uct/dynkomi.c. */
848 u->dynkomi = uct_dynkomi_init_adaptive(u, dynkomiarg, b);
849 } else {
850 fprintf(stderr, "UCT: Invalid dynkomi mode %s\n", optval);
851 exit(1);
853 } else if (!strcasecmp(optname, "dynkomi_mask") && optval) {
854 /* Bitmask of colors the player must be
855 * for dynkomi be applied; you may want
856 * to use dynkomi_mask=3 to allow dynkomi
857 * even in games where Pachi is white. */
858 u->dynkomi_mask = atoi(optval);
859 } else if (!strcasecmp(optname, "dynkomi_interval") && optval) {
860 /* If non-zero, re-adjust dynamic komi
861 * throughout a single genmove reading,
862 * roughly every N simulations. */
863 /* XXX: Does not work with tree
864 * parallelization. */
865 u->dynkomi_interval = atoi(optval);
867 /** Node value result scaling */
869 } else if (!strcasecmp(optname, "val_scale") && optval) {
870 /* How much of the game result value should be
871 * influenced by win size. Zero means it isn't. */
872 u->val_scale = atof(optval);
873 } else if (!strcasecmp(optname, "val_points") && optval) {
874 /* Maximum size of win to be scaled into game
875 * result value. Zero means boardsize^2. */
876 u->val_points = atoi(optval) * 2; // result values are doubled
877 } else if (!strcasecmp(optname, "val_extra")) {
878 /* If false, the score coefficient will be simply
879 * added to the value, instead of scaling the result
880 * coefficient because of it. */
881 u->val_extra = !optval || atoi(optval);
883 /** Local trees */
884 /* (Purely experimental. Does not work - yet!) */
886 } else if (!strcasecmp(optname, "local_tree")) {
887 /* Whether to bias exploration by local tree values. */
888 u->local_tree = !optval || atoi(optval);
889 } else if (!strcasecmp(optname, "tenuki_d") && optval) {
890 /* Tenuki distance at which to break the local tree. */
891 u->tenuki_d = atoi(optval);
892 if (u->tenuki_d > TREE_NODE_D_MAX + 1) {
893 fprintf(stderr, "uct: tenuki_d must not be larger than TREE_NODE_D_MAX+1 %d\n", TREE_NODE_D_MAX + 1);
894 exit(1);
896 } else if (!strcasecmp(optname, "local_tree_aging") && optval) {
897 /* How much to reduce local tree values between moves. */
898 u->local_tree_aging = atof(optval);
899 } else if (!strcasecmp(optname, "local_tree_depth_decay") && optval) {
900 /* With value x>0, during the descent the node
901 * contributes 1/x^depth playouts in
902 * the local tree. I.e., with x>1, nodes more
903 * distant from local situation contribute more
904 * than nodes near the root. */
905 u->local_tree_depth_decay = atof(optval);
906 } else if (!strcasecmp(optname, "local_tree_allseq")) {
907 /* If disabled, only complete sequences are stored
908 * in the local tree. If this is on, also
909 * subsequences starting at each move are stored. */
910 u->local_tree_allseq = !optval || atoi(optval);
911 } else if (!strcasecmp(optname, "local_tree_neival")) {
912 /* If disabled, local node value is not
913 * computed just based on terminal status
914 * of the coordinate, but also its neighbors. */
915 u->local_tree_neival = !optval || atoi(optval);
916 } else if (!strcasecmp(optname, "local_tree_rootgoal")) {
917 /* If enabled, all moves within a tree branch
918 * are considered wrt. their merit reaching
919 * tachtical goal of making the first move
920 * in the branch survive. */
921 u->local_tree_rootgoal = !optval || atoi(optval);
922 } else if (!strcasecmp(optname, "local_tree_rootchoose")) {
923 /* If disabled, only moves within the local
924 * tree branch are considered; the values
925 * of the branch roots (i.e. root children)
926 * are ignored. This may make sense together
927 * with "rootgoal", we consider only moves
928 * that influence the goal, not the "rating"
929 * of the goal itself. (The real solution
930 * will be probably using criticality to pick
931 * local tree branches.) */
932 u->local_tree_rootchoose = !optval || atoi(optval);
934 /** Other heuristics */
935 } else if (!strcasecmp(optname, "significant_threshold") && optval) {
936 /* Some heuristics (XXX: none in mainline) rely
937 * on the knowledge of the last "significant"
938 * node in the descent. Such a node is
939 * considered reasonably trustworthy to carry
940 * some meaningful information in the values
941 * of the node and its children. */
942 u->significant_threshold = atoi(optval);
944 /** Distributed engine slaves setup */
946 } else if (!strcasecmp(optname, "slave")) {
947 /* Act as slave for the distributed engine. */
948 u->slave = !optval || atoi(optval);
949 } else if (!strcasecmp(optname, "slave_index") && optval) {
950 /* Optional index if per-slave behavior is desired.
951 * Must be given as index/max */
952 u->slave_index = atoi(optval);
953 char *p = strchr(optval, '/');
954 if (p) u->max_slaves = atoi(++p);
955 } else if (!strcasecmp(optname, "shared_nodes") && optval) {
956 /* Share at most shared_nodes between master and slave at each genmoves.
957 * Must use the same value in master and slaves. */
958 u->shared_nodes = atoi(optval);
959 } else if (!strcasecmp(optname, "shared_levels") && optval) {
960 /* Share only nodes of level <= shared_levels. */
961 u->shared_levels = atoi(optval);
962 } else if (!strcasecmp(optname, "stats_hbits") && optval) {
963 /* Set hash table size to 2^stats_hbits for the shared stats. */
964 u->stats_hbits = atoi(optval);
965 } else if (!strcasecmp(optname, "stats_delay") && optval) {
966 /* How long to wait in slave for initial stats to build up before
967 * replying to the genmoves command (in ms) */
968 u->stats_delay = 0.001 * atof(optval);
970 } else {
971 fprintf(stderr, "uct: Invalid engine argument %s or missing value\n", optname);
972 exit(1);
977 if (!u->policy)
978 u->policy = policy_ucb1amaf_init(u, NULL);
980 if (!!u->random_policy_chance ^ !!u->random_policy) {
981 fprintf(stderr, "uct: Only one of random_policy and random_policy_chance is set\n");
982 exit(1);
985 if (!u->local_tree) {
986 /* No ltree aging. */
987 u->local_tree_aging = 1.0f;
990 if (u->fast_alloc) {
991 if (u->pruning_threshold < u->max_tree_size / 10)
992 u->pruning_threshold = u->max_tree_size / 10;
993 if (u->pruning_threshold > u->max_tree_size / 2)
994 u->pruning_threshold = u->max_tree_size / 2;
996 /* Limit pruning temp space to 20% of memory. Beyond this we discard
997 * the nodes and recompute them at the next move if necessary. */
998 u->max_pruned_size = u->max_tree_size / 5;
999 u->max_tree_size -= u->max_pruned_size;
1000 } else {
1001 /* Reserve 5% memory in case the background free() are slower
1002 * than the concurrent allocations. */
1003 u->max_tree_size -= u->max_tree_size / 20;
1006 if (!u->prior)
1007 u->prior = uct_prior_init(NULL, b);
1009 if (!u->playout)
1010 u->playout = playout_moggy_init(NULL, b, u->jdict);
1011 if (!u->playout->debug_level)
1012 u->playout->debug_level = u->debug_level;
1014 u->ownermap.map = malloc2(board_size2(b) * sizeof(u->ownermap.map[0]));
1016 if (u->slave) {
1017 if (!u->stats_hbits) u->stats_hbits = DEFAULT_STATS_HBITS;
1018 if (!u->shared_nodes) u->shared_nodes = DEFAULT_SHARED_NODES;
1019 assert(u->shared_levels * board_bits2(b) <= 8 * (int)sizeof(path_t));
1022 if (!u->dynkomi)
1023 u->dynkomi = uct_dynkomi_init_adaptive(u, NULL, b);
1025 /* Some things remain uninitialized for now - the opening tbook
1026 * is not loaded and the tree not set up. */
1027 /* This will be initialized in setup_state() at the first move
1028 * received/requested. This is because right now we are not aware
1029 * about any komi or handicap setup and such. */
1031 return u;
1034 struct engine *
1035 engine_uct_init(char *arg, struct board *b)
1037 struct uct *u = uct_state_init(arg, b);
1038 struct engine *e = calloc2(1, sizeof(struct engine));
1039 e->name = "UCT Engine";
1040 e->printhook = uct_printhook_ownermap;
1041 e->notify_play = uct_notify_play;
1042 e->chat = uct_chat;
1043 e->undo = uct_undo;
1044 e->result = uct_result;
1045 e->genmove = uct_genmove;
1046 e->genmoves = uct_genmoves;
1047 e->dead_group_list = uct_dead_group_list;
1048 e->done = uct_done;
1049 e->data = u;
1050 if (u->slave)
1051 e->notify = uct_notify;
1053 const char banner[] = "I'm playing UCT. When I'm losing, I will resign, "
1054 "if I think I win, I play until you pass. "
1055 "Anyone can send me 'winrate' in private chat to get my assessment of the position.";
1056 if (!u->banner) u->banner = "";
1057 e->comment = malloc2(sizeof(banner) + strlen(u->banner) + 1);
1058 sprintf(e->comment, "%s %s", banner, u->banner);
1060 return e;