Fix the UCT book scaling code
[pachi/peepo.git] / uct / tree.c
blob2c53d15c20c5896797d55ee8ec4db96b986d34bd
1 #include <assert.h>
2 #include <math.h>
3 #include <stddef.h>
4 #include <stdint.h>
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
9 #include "board.h"
10 #include "debug.h"
11 #include "engine.h"
12 #include "move.h"
13 #include "playout.h"
14 #include "uct/internal.h"
15 #include "uct/tree.h"
18 static struct tree_node *
19 tree_init_node(struct tree *t, coord_t coord, int depth)
21 struct tree_node *n = calloc(1, sizeof(*n));
22 n->coord = coord;
23 n->depth = depth;
24 if (depth > t->max_depth)
25 t->max_depth = depth;
26 return n;
29 struct tree *
30 tree_init(struct board *board, enum stone color)
32 struct tree *t = calloc(1, sizeof(*t));
33 t->board = board;
34 /* The root PASS move is only virtual, we never play it. */
35 t->root = tree_init_node(t, pass, 0);
36 t->root_symmetry = board->symmetry;
37 return t;
41 static void
42 tree_done_node(struct tree *t, struct tree_node *n)
44 struct tree_node *ni = n->children;
45 while (ni) {
46 struct tree_node *nj = ni->sibling;
47 tree_done_node(t, ni);
48 ni = nj;
50 free(n);
53 void
54 tree_done(struct tree *t)
56 tree_done_node(t, t->root);
57 free(t);
61 static void
62 tree_node_dump(struct tree *tree, struct tree_node *node, int l, int thres)
64 for (int i = 0; i < l; i++) fputc(' ', stderr);
65 int children = 0;
66 for (struct tree_node *ni = node->children; ni; ni = ni->sibling)
67 children++;
68 fprintf(stderr, "[%s] %f (%d/%d playouts [prior %d/%d amaf %d/%d]; hints %x; %d children)\n", coord2sstr(node->coord, tree->board), node->u.value, node->u.wins, node->u.playouts, node->prior.wins, node->prior.playouts, node->amaf.wins, node->amaf.playouts, node->hints, children);
70 /* Print nodes sorted by #playouts. */
72 struct tree_node *nbox[1000]; int nboxl = 0;
73 for (struct tree_node *ni = node->children; ni; ni = ni->sibling)
74 if (ni->u.playouts > thres)
75 nbox[nboxl++] = ni;
77 while (true) {
78 int best = -1;
79 for (int i = 0; i < nboxl; i++)
80 if (nbox[i] && (best < 0 || nbox[i]->u.playouts > nbox[best]->u.playouts))
81 best = i;
82 if (best < 0)
83 break;
84 tree_node_dump(tree, nbox[best], l + 1, node->u.value < 0.1 ? 0 : thres);
85 nbox[best] = NULL;
89 void
90 tree_dump(struct tree *tree, int thres)
92 tree_node_dump(tree, tree->root, 0, thres);
96 static char *
97 tree_book_name(struct board *b)
99 static char buf[256];
100 sprintf(buf, "uctbook-%d-%02.01f.pachitree", b->size - 2, b->komi);
101 return buf;
104 static void
105 tree_node_save(FILE *f, struct tree_node *node, int thres)
107 fputc(1, f);
108 fwrite(((void *) node) + offsetof(struct tree_node, depth),
109 sizeof(struct tree_node) - offsetof(struct tree_node, depth),
110 1, f);
112 if (node->u.playouts >= thres)
113 for (struct tree_node *ni = node->children; ni; ni = ni->sibling)
114 tree_node_save(f, ni, thres);
116 fputc(0, f);
119 void
120 tree_save(struct tree *tree, struct board *b, int thres)
122 char *filename = tree_book_name(b);
123 FILE *f = fopen(filename, "wb");
124 if (!f) {
125 perror("fopen");
126 return;
128 tree_node_save(f, tree->root, thres);
129 fputc(0, f);
130 fclose(f);
134 void
135 tree_node_load(FILE *f, struct tree_node *node, int *num, bool invert)
137 (*num)++;
139 fread(((void *) node) + offsetof(struct tree_node, depth),
140 sizeof(struct tree_node) - offsetof(struct tree_node, depth),
141 1, f);
143 /* Keep values in sane scale, otherwise we start overflowing.
144 * We may go slow here but we must be careful about not getting
145 * too huge integers.*/
146 #define MAX_PLAYOUTS 10000000
147 if (node->u.playouts > MAX_PLAYOUTS) {
148 int over = node->u.playouts - MAX_PLAYOUTS;
149 node->u.wins -= ((double) node->u.wins / node->u.playouts) * over;
150 node->u.playouts = MAX_PLAYOUTS;
152 if (node->amaf.playouts > MAX_PLAYOUTS) {
153 int over = node->amaf.playouts - MAX_PLAYOUTS;
154 node->amaf.wins -= ((double) node->amaf.wins / node->amaf.playouts) * over;
155 node->amaf.playouts = MAX_PLAYOUTS;
158 if (invert) {
159 node->u.wins = node->u.playouts - node->u.wins;
160 node->u.value = 1 - node->u.value;
161 node->amaf.wins = node->amaf.playouts - node->amaf.wins;
162 node->amaf.value = 1 - node->amaf.value;
163 node->prior.wins = node->prior.playouts - node->prior.wins;
164 node->prior.value = 1 - node->prior.value;
167 struct tree_node *ni = NULL, *ni_prev = NULL;
168 while (fgetc(f)) {
169 ni_prev = ni; ni = calloc(1, sizeof(*ni));
170 if (!node->children)
171 node->children = ni;
172 else
173 ni_prev->sibling = ni;
174 ni->parent = node;
175 tree_node_load(f, ni, num, invert);
179 void
180 tree_load(struct tree *tree, struct board *b, enum stone color)
182 char *filename = tree_book_name(b);
183 FILE *f = fopen(filename, "rb");
184 if (!f)
185 return;
187 fprintf(stderr, "Loading opening book %s...\n", filename);
189 int num = 0;
190 if (fgetc(f))
191 tree_node_load(f, tree->root, &num, color != S_BLACK);
192 fprintf(stderr, "Loaded %d nodes.\n", num);
194 fclose(f);
198 static struct tree_node *
199 tree_node_copy(struct tree_node *node)
201 struct tree_node *n2 = malloc(sizeof(*n2));
202 *n2 = *node;
203 if (!node->children)
204 return n2;
205 struct tree_node *ni = node->children;
206 struct tree_node *ni2 = tree_node_copy(ni);
207 n2->children = ni2; ni2->parent = n2;
208 while ((ni = ni->sibling)) {
209 ni2->sibling = tree_node_copy(ni);
210 ni2 = ni2->sibling; ni2->parent = n2;
212 return n2;
215 struct tree *
216 tree_copy(struct tree *tree)
218 struct tree *t2 = malloc(sizeof(*t2));
219 *t2 = *tree;
220 t2->root = tree_node_copy(tree->root);
221 return t2;
225 static void
226 tree_node_merge(struct tree_node *dest, struct tree_node *src)
228 dest->hints |= src->hints;
230 /* Merge the children, both are coord-sorted lists. */
231 struct tree_node *di = dest->children, *dip = NULL;
232 struct tree_node *si = src->children, *sip = NULL;
233 while (di && si) {
234 if (di->coord != si->coord) {
235 /* src has some extra items or misses di */
236 struct tree_node *si2 = si->sibling;
237 while (si2 && di->coord != si2->coord) {
238 si2 = si2->sibling;
240 if (!si2)
241 goto next_di; /* src misses di, move on */
242 /* chain the extra [si,si2) items before di */
243 if (dip)
244 dip->sibling = si;
245 else
246 dest->children = si;
247 while (si->sibling != si2) {
248 si->parent = dest;
249 si = si->sibling;
251 si->sibling = di;
252 si = si2;
253 if (sip)
254 sip->sibling = si;
255 else
256 src->children = si;
258 /* Matching nodes - recurse... */
259 tree_node_merge(di, si);
260 /* ...and move on. */
261 sip = si; si = si->sibling;
262 next_di:
263 dip = di; di = di->sibling;
265 if (si) {
266 if (dip)
267 dip->sibling = si;
268 else
269 dest->children = si;
270 while (si) {
271 si->parent = dest;
272 si = si->sibling;
274 if (sip)
275 sip->sibling = NULL;
276 else
277 src->children = NULL;
280 dest->prior.playouts += src->prior.playouts;
281 dest->prior.wins += src->prior.wins;
282 if (dest->prior.playouts)
283 dest->prior.value = dest->prior.wins / dest->prior.playouts;
284 dest->amaf.playouts += src->amaf.playouts;
285 dest->amaf.wins += src->amaf.wins;
286 if (dest->amaf.playouts)
287 dest->amaf.value = dest->amaf.wins / dest->amaf.playouts;
288 dest->u.playouts += src->u.playouts;
289 dest->u.wins += src->u.wins;
290 if (dest->prior.playouts + dest->amaf.playouts + dest->u.playouts)
291 tree_update_node_value(dest);
294 /* Merge two trees built upon the same board. Note that the operation is
295 * destructive on src. */
296 void
297 tree_merge(struct tree *dest, struct tree *src)
299 if (src->max_depth > dest->max_depth)
300 dest->max_depth = src->max_depth;
301 tree_node_merge(dest->root, src->root);
305 /* Tree symmetry: When possible, we will localize the tree to a single part
306 * of the board in tree_expand_node() and possibly flip along symmetry axes
307 * to another part of the board in tree_promote_at(). We follow b->symmetry
308 * guidelines here. */
311 void
312 tree_expand_node(struct tree *t, struct tree_node *node, struct board *b, enum stone color, int radar, struct uct_policy *policy, int parity)
314 struct tree_node *ni = tree_init_node(t, pass, node->depth + 1);
315 ni->parent = node; node->children = ni;
317 /* The loop considers only the symmetry playground. */
318 if (UDEBUGL(6)) {
319 fprintf(stderr, "expanding %s within [%d,%d],[%d,%d] %d-%d\n",
320 coord2sstr(node->coord, b),
321 b->symmetry.x1, b->symmetry.y1,
322 b->symmetry.x2, b->symmetry.y2,
323 b->symmetry.type, b->symmetry.d);
325 for (int i = b->symmetry.x1; i <= b->symmetry.x2; i++) {
326 for (int j = b->symmetry.y1; j <= b->symmetry.y2; j++) {
327 if (b->symmetry.d) {
328 int x = b->symmetry.type == SYM_DIAG_DOWN ? board_size(b) - 1 - i : i;
329 if (x > j) {
330 if (UDEBUGL(7))
331 fprintf(stderr, "drop %d,%d\n", i, j);
332 continue;
336 coord_t c = coord_xy_otf(i, j, t->board);
337 if (board_at(b, c) != S_NONE)
338 continue;
339 /* This looks very useful on large boards - weeds out huge amount of crufty moves. */
340 if (b->hash /* not empty board */ && radar && !board_stone_radar(b, c, radar))
341 continue;
343 struct tree_node *nj = tree_init_node(t, c, node->depth + 1);
344 nj->parent = node; ni->sibling = nj; ni = nj;
346 if (policy->prior)
347 policy->prior(policy, t, ni, b, color, parity);
353 static coord_t
354 flip_coord(struct board *b, coord_t c,
355 bool flip_horiz, bool flip_vert, int flip_diag)
357 int x = coord_x(c, b), y = coord_y(c, b);
358 if (flip_diag) {
359 int z = x; x = y; y = z;
361 if (flip_horiz) {
362 x = board_size(b) - 1 - x;
364 if (flip_vert) {
365 y = board_size(b) - 1 - y;
367 return coord_xy_otf(x, y, b);
370 static void
371 tree_fix_node_symmetry(struct board *b, struct tree_node *node,
372 bool flip_horiz, bool flip_vert, int flip_diag)
374 node->coord = flip_coord(b, node->coord, flip_horiz, flip_vert, flip_diag);
376 for (struct tree_node *ni = node->children; ni; ni = ni->sibling)
377 tree_fix_node_symmetry(b, ni, flip_horiz, flip_vert, flip_diag);
380 static void
381 tree_fix_symmetry(struct tree *tree, struct board *b, coord_t c)
383 struct board_symmetry *s = &tree->root_symmetry;
384 int cx = coord_x(c, b), cy = coord_y(c, b);
386 /* playground X->h->v->d normalization
387 * :::.. .d...
388 * .::.. v....
389 * ..:.. .....
390 * ..... h...X
391 * ..... ..... */
392 bool flip_horiz = cx < s->x1 || cx > s->x2;
393 bool flip_vert = cy < s->y1 || cy > s->y2;
395 bool flip_diag = 0;
396 if (s->d) {
397 bool dir = (s->type == SYM_DIAG_DOWN);
398 int x = dir ^ flip_horiz ^ flip_vert ? board_size(b) - 1 - cx : cx;
399 if (flip_vert ? x < cy : x > cy) {
400 flip_diag = 1;
404 if (UDEBUGL(4)) {
405 fprintf(stderr, "%s will flip %d %d %d -> %s, sym %d (%d) -> %d (%d)\n",
406 coord2sstr(c, b), flip_horiz, flip_vert, flip_diag,
407 coord2sstr(flip_coord(b, c, flip_horiz, flip_vert, flip_diag), b),
408 s->type, s->d, b->symmetry.type, b->symmetry.d);
410 tree_fix_node_symmetry(b, tree->root, flip_horiz, flip_vert, flip_diag);
414 static void
415 tree_unlink_node(struct tree_node *node)
417 struct tree_node *ni = node->parent;
418 if (ni->children == node) {
419 ni->children = node->sibling;
420 } else {
421 ni = ni->children;
422 while (ni->sibling != node)
423 ni = ni->sibling;
424 ni->sibling = node->sibling;
428 void
429 tree_delete_node(struct tree *tree, struct tree_node *node)
431 tree_unlink_node(node);
432 tree_done_node(tree, node);
435 void
436 tree_promote_node(struct tree *tree, struct tree_node *node)
438 assert(node->parent == tree->root);
439 tree_unlink_node(node);
440 tree_done_node(tree, tree->root);
441 tree->root = node;
442 board_symmetry_update(tree->board, &tree->root_symmetry, node->coord);
443 node->parent = NULL;
446 bool
447 tree_promote_at(struct tree *tree, struct board *b, coord_t c)
449 tree_fix_symmetry(tree, b, c);
451 for (struct tree_node *ni = tree->root->children; ni; ni = ni->sibling) {
452 if (ni->coord == c) {
453 tree_promote_node(tree, ni);
454 return true;
457 return false;
460 bool
461 tree_leaf_node(struct tree_node *node)
463 return !(node->children);
466 void
467 tree_update_node_value(struct tree_node *node)
469 bool noamaf = node->hints & NODE_HINT_NOAMAF;
470 node->u.value = (float)(node->u.wins + node->prior.wins + (!noamaf ? node->amaf.wins : 0))
471 / (node->u.playouts + node->prior.playouts + (!noamaf ? node->amaf.playouts : 0));
472 #if 0
473 { struct board b2; board_size(&b2) = 9+2;
474 fprintf(stderr, "%s->%s %d/%d %d/%d %f\n", node->parent ? coord2sstr(node->parent->coord, &b2) : NULL, coord2sstr(node->coord, &b2), node->u.wins, node->u.playouts, node->prior.wins, node->prior.playouts, node->u.value); }
475 #endif