Opening Book: Invert node stats if we are white
[pachi/peepo.git] / uct / tree.c
blobae1fe90556664a641a9fdefb910a308136db91a6
1 #include <assert.h>
2 #include <math.h>
3 #include <stddef.h>
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
8 #include "board.h"
9 #include "debug.h"
10 #include "engine.h"
11 #include "move.h"
12 #include "playout.h"
13 #include "uct/internal.h"
14 #include "uct/tree.h"
17 static struct tree_node *
18 tree_init_node(struct tree *t, coord_t coord, int depth)
20 struct tree_node *n = calloc(1, sizeof(*n));
21 n->coord = coord;
22 n->depth = depth;
23 if (depth > t->max_depth)
24 t->max_depth = depth;
25 return n;
28 struct tree *
29 tree_init(struct board *board, enum stone color)
31 struct tree *t = calloc(1, sizeof(*t));
32 t->board = board;
33 /* The root PASS move is only virtual, we never play it. */
34 t->root = tree_init_node(t, pass, 0);
35 t->root_symmetry = board->symmetry;
36 return t;
40 static void
41 tree_done_node(struct tree *t, struct tree_node *n)
43 struct tree_node *ni = n->children;
44 while (ni) {
45 struct tree_node *nj = ni->sibling;
46 tree_done_node(t, ni);
47 ni = nj;
49 free(n);
52 void
53 tree_done(struct tree *t)
55 tree_done_node(t, t->root);
56 free(t);
60 static void
61 tree_node_dump(struct tree *tree, struct tree_node *node, int l, int thres)
63 for (int i = 0; i < l; i++) fputc(' ', stderr);
64 int children = 0;
65 for (struct tree_node *ni = node->children; ni; ni = ni->sibling)
66 children++;
67 fprintf(stderr, "[%s] %f (%d/%d playouts [prior %d/%d amaf %d/%d]; hints %x; %d children)\n", coord2sstr(node->coord, tree->board), node->u.value, node->u.wins, node->u.playouts, node->prior.wins, node->prior.playouts, node->amaf.wins, node->amaf.playouts, node->hints, children);
69 /* Print nodes sorted by #playouts. */
71 struct tree_node *nbox[1000]; int nboxl = 0;
72 for (struct tree_node *ni = node->children; ni; ni = ni->sibling)
73 if (ni->u.playouts > thres)
74 nbox[nboxl++] = ni;
76 while (true) {
77 int best = -1;
78 for (int i = 0; i < nboxl; i++)
79 if (nbox[i] && (best < 0 || nbox[i]->u.playouts > nbox[best]->u.playouts))
80 best = i;
81 if (best < 0)
82 break;
83 tree_node_dump(tree, nbox[best], l + 1, thres);
84 nbox[best] = NULL;
88 void
89 tree_dump(struct tree *tree, int thres)
91 tree_node_dump(tree, tree->root, 0, thres);
95 static char *
96 tree_book_name(struct board *b)
98 static char buf[256];
99 sprintf(buf, "uctbook-%d-%02.01f.pachitree", b->size - 2, b->komi);
100 return buf;
103 static void
104 tree_node_save(FILE *f, struct tree_node *node, int thres)
106 fputc(1, f);
107 fwrite(((void *) node) + offsetof(struct tree_node, depth),
108 sizeof(struct tree_node) - offsetof(struct tree_node, depth),
109 1, f);
111 if (node->u.playouts >= thres)
112 for (struct tree_node *ni = node->children; ni; ni = ni->sibling)
113 tree_node_save(f, ni, thres);
115 fputc(0, f);
118 void
119 tree_save(struct tree *tree, struct board *b, int thres)
121 char *filename = tree_book_name(b);
122 FILE *f = fopen(filename, "wb");
123 if (!f) {
124 perror("fopen");
125 return;
127 tree_node_save(f, tree->root, thres);
128 fputc(0, f);
129 fclose(f);
133 void
134 tree_node_load(FILE *f, struct tree_node *node, int *num, bool invert)
136 (*num)++;
138 fread(((void *) node) + offsetof(struct tree_node, depth),
139 sizeof(struct tree_node) - offsetof(struct tree_node, depth),
140 1, f);
142 if (invert) {
143 node->u.wins = node->u.playouts - node->u.wins;
144 node->u.value = 1 - node->u.value;
145 node->amaf.wins = node->amaf.playouts - node->amaf.wins;
146 node->amaf.value = 1 - node->amaf.value;
147 node->prior.wins = node->prior.playouts - node->prior.wins;
148 node->prior.value = 1 - node->prior.value;
151 struct tree_node *ni = NULL, *ni_prev = NULL;
152 while (fgetc(f)) {
153 ni_prev = ni; ni = calloc(1, sizeof(*ni));
154 if (!node->children)
155 node->children = ni;
156 else
157 ni_prev->sibling = ni;
158 ni->parent = node;
159 tree_node_load(f, ni, num, invert);
163 void
164 tree_load(struct tree *tree, struct board *b, enum stone color)
166 char *filename = tree_book_name(b);
167 FILE *f = fopen(filename, "rb");
168 if (!f)
169 return;
171 fprintf(stderr, "Loading opening book %s...\n", filename);
173 int num = 0;
174 if (fgetc(f))
175 tree_node_load(f, tree->root, &num, color != S_BLACK);
176 fprintf(stderr, "Loaded %d nodes.\n", num);
178 fclose(f);
182 /* Tree symmetry: When possible, we will localize the tree to a single part
183 * of the board in tree_expand_node() and possibly flip along symmetry axes
184 * to another part of the board in tree_promote_at(). We follow b->symmetry
185 * guidelines here. */
188 void
189 tree_expand_node(struct tree *t, struct tree_node *node, struct board *b, enum stone color, int radar, struct uct_policy *policy, int parity)
191 struct tree_node *ni = tree_init_node(t, pass, node->depth + 1);
192 ni->parent = node; node->children = ni;
194 /* The loop considers only the symmetry playground. */
195 if (UDEBUGL(6)) {
196 fprintf(stderr, "expanding %s within [%d,%d],[%d,%d] %d-%d\n",
197 coord2sstr(node->coord, b),
198 b->symmetry.x1, b->symmetry.y1,
199 b->symmetry.x2, b->symmetry.y2,
200 b->symmetry.type, b->symmetry.d);
202 for (int i = b->symmetry.x1; i <= b->symmetry.x2; i++) {
203 for (int j = b->symmetry.y1; j <= b->symmetry.y2; j++) {
204 if (b->symmetry.d) {
205 int x = b->symmetry.type == SYM_DIAG_DOWN ? board_size(b) - 1 - i : i;
206 if (x > j) {
207 if (UDEBUGL(7))
208 fprintf(stderr, "drop %d,%d\n", i, j);
209 continue;
213 coord_t c = coord_xy_otf(i, j, t->board);
214 if (board_at(b, c) != S_NONE)
215 continue;
216 /* This looks very useful on large boards - weeds out huge amount of crufty moves. */
217 if (b->hash /* not empty board */ && radar && !board_stone_radar(b, c, radar))
218 continue;
220 struct tree_node *nj = tree_init_node(t, c, node->depth + 1);
221 nj->parent = node; ni->sibling = nj; ni = nj;
223 if (policy->prior)
224 policy->prior(policy, t, ni, b, color, parity);
230 static coord_t
231 flip_coord(struct board *b, coord_t c,
232 bool flip_horiz, bool flip_vert, int flip_diag)
234 int x = coord_x(c, b), y = coord_y(c, b);
235 if (flip_diag) {
236 int z = x; x = y; y = z;
238 if (flip_horiz) {
239 x = board_size(b) - 1 - x;
241 if (flip_vert) {
242 y = board_size(b) - 1 - y;
244 return coord_xy_otf(x, y, b);
247 static void
248 tree_fix_node_symmetry(struct board *b, struct tree_node *node,
249 bool flip_horiz, bool flip_vert, int flip_diag)
251 node->coord = flip_coord(b, node->coord, flip_horiz, flip_vert, flip_diag);
253 for (struct tree_node *ni = node->children; ni; ni = ni->sibling)
254 tree_fix_node_symmetry(b, ni, flip_horiz, flip_vert, flip_diag);
257 static void
258 tree_fix_symmetry(struct tree *tree, struct board *b, coord_t c)
260 struct board_symmetry *s = &tree->root_symmetry;
261 int cx = coord_x(c, b), cy = coord_y(c, b);
263 /* playground X->h->v->d normalization
264 * :::.. .d...
265 * .::.. v....
266 * ..:.. .....
267 * ..... h...X
268 * ..... ..... */
269 bool flip_horiz = cx < s->x1 || cx > s->x2;
270 bool flip_vert = cy < s->y1 || cy > s->y2;
272 bool flip_diag = 0;
273 if (s->d) {
274 bool dir = (s->type == SYM_DIAG_DOWN);
275 int x = dir ^ flip_horiz ^ flip_vert ? board_size(b) - 1 - cx : cx;
276 if (flip_vert ? x < cy : x > cy) {
277 flip_diag = 1;
281 if (UDEBUGL(4)) {
282 fprintf(stderr, "%s will flip %d %d %d -> %s, sym %d (%d) -> %d (%d)\n",
283 coord2sstr(c, b), flip_horiz, flip_vert, flip_diag,
284 coord2sstr(flip_coord(b, c, flip_horiz, flip_vert, flip_diag), b),
285 s->type, s->d, b->symmetry.type, b->symmetry.d);
287 tree_fix_node_symmetry(b, tree->root, flip_horiz, flip_vert, flip_diag);
291 static void
292 tree_unlink_node(struct tree_node *node)
294 struct tree_node *ni = node->parent;
295 if (ni->children == node) {
296 ni->children = node->sibling;
297 } else {
298 ni = ni->children;
299 while (ni->sibling != node)
300 ni = ni->sibling;
301 ni->sibling = node->sibling;
305 void
306 tree_delete_node(struct tree *tree, struct tree_node *node)
308 tree_unlink_node(node);
309 tree_done_node(tree, node);
312 void
313 tree_promote_node(struct tree *tree, struct tree_node *node)
315 assert(node->parent == tree->root);
316 tree_unlink_node(node);
317 tree_done_node(tree, tree->root);
318 tree->root = node;
319 board_symmetry_update(tree->board, &tree->root_symmetry, node->coord);
320 node->parent = NULL;
323 bool
324 tree_promote_at(struct tree *tree, struct board *b, coord_t c)
326 tree_fix_symmetry(tree, b, c);
328 for (struct tree_node *ni = tree->root->children; ni; ni = ni->sibling) {
329 if (ni->coord == c) {
330 tree_promote_node(tree, ni);
331 return true;
334 return false;
337 bool
338 tree_leaf_node(struct tree_node *node)
340 return !(node->children);
343 void
344 tree_update_node_value(struct tree_node *node, bool add_amaf)
346 node->u.value = (float)(node->u.wins + node->prior.wins + (add_amaf ? node->amaf.wins : 0))
347 / (node->u.playouts + node->prior.playouts + (add_amaf ? node->amaf.playouts : 0));
348 #if 0
349 { struct board b2; board_size(&b2) = 9+2;
350 fprintf(stderr, "%s->%s %d/%d %d/%d %f\n", node->parent ? coord2sstr(node->parent->coord, &b2) : NULL, coord2sstr(node->coord, &b2), node->u.wins, node->u.playouts, node->prior.wins, node->prior.playouts, node->u.value); }
351 #endif